Zhang, Yun; Warnock, Garth L.; Ao, Ziliang; Park, Yoo Jin; Safikhan, Nooshin; Ghahary, Aziz
2018-01-01
Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet β-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1β (IL-1β) signaling in islets can restore the changes in β-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1β signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). β-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1β levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced β-cell phospho-PKB levels and increased islet IL-1β levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved β-cell survival. Furthermore, inhibition of IL-1β signaling by treatment with anakinra or exenatide increased β-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in β-cells which is associated with elevated islet IL-1β levels. Inhibitors of amyloid or amyloid-induced IL-1β production may provide a new approach to restore phospho-PKB levels thereby enhance β-cell survival and proliferation in conditions associated with islet amyloid formation such as T2D and clinical islet transplantation. PMID:29474443
Beta-cell metabolic alterations under chronic nutrient overload in rat and human islets
USDA-ARS?s Scientific Manuscript database
The aim of this study was to assess multifactorial Beta-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of ...
Phelps, Edward A.; Cianciaruso, Chiara; Santo-Domingo, Jaime; Pasquier, Miriella; Galliverti, Gabriele; Piemonti, Lorenzo; Berishvili, Ekaterine; Burri, Olivier; Wiederkehr, Andreas; Hubbell, Jeffrey A.; Baekkeskov, Steinunn
2017-01-01
A robust and reproducible method for culturing monolayers of adherent and well-spread primary islet cells on glass coverslips is required for detailed imaging studies by super-resolution and live-cell microscopy. Guided by an observation that dispersed islet cells spread and adhere well on glass surfaces in neuronal co-culture and form a monolayer of connected cells, we demonstrate that in the absence of neurons, well-defined surface coatings combined with components of neuronal culture media collectively support robust attachment and growth of primary human or rat islet cells as monolayers on glass surfaces. The islet cell monolayer cultures on glass stably maintain distinct mono-hormonal insulin+, glucagon+, somatostatin+ and PP+ cells and glucose-responsive synchronized calcium signaling as well as expression of the transcription factors Pdx-1 and NKX-6.1 in beta cells. This technical advance enabled detailed observation of sub-cellular processes in primary human and rat beta cells by super-resolution microscopy. The protocol is envisaged to have broad applicability to sophisticated analyses of pancreatic islet cells that reveal new biological insights, as demonstrated by the identification of an in vitro protocol that markedly increases proliferation of primary beta cells and is associated with a reduction in ciliated, ostensibly proliferation-suppressed beta cells. PMID:28401888
Komatsu, Hirotake; Cook, Colin; Wang, Chia-Hao; Medrano, Leonard; Lin, Henry; Kandeel, Fouad; Tai, Yu-Chong; Mullen, Yoko
2017-01-01
Background Type 1 diabetes is an autoimmune disease that destroys insulin-producing beta cells in the pancreas. Pancreatic islet transplantation could be an effective treatment option for type 1 diabetes once several issues are resolved, including donor shortage, prevention of islet necrosis and loss in pre- and post-transplantation, and optimization of immunosuppression. This study seeks to determine the cause of necrotic loss of isolated islets to improve transplant efficiency. Methodology The oxygen tension inside isolated human islets of different sizes was simulated under varying oxygen environments using a computational in silico model. In vitro human islet viability was also assessed after culturing in different oxygen conditions. Correlation between simulation data and experimentally measured islet viability was examined. Using these in vitro viability data of human islets, the effect of islet diameter and oxygen tension of the culture environment on islet viability was also analyzed using a logistic regression model. Principal findings Computational simulation clearly revealed the oxygen gradient inside the islet structure. We found that oxygen tension in the islet core was greatly lower (hypoxic) than that on the islet surface due to the oxygen consumption by the cells. The hypoxic core was expanded in the larger islets or in lower oxygen cultures. These findings were consistent with results from in vitro islet viability assays that measured central necrosis in the islet core, indicating that hypoxia is one of the major causes of central necrosis. The logistic regression analysis revealed a negative effect of large islet and low oxygen culture on islet survival. Conclusions/Significance Hypoxic core conditions, induced by the oxygen gradient inside islets, contribute to the development of central necrosis of human isolated islets. Supplying sufficient oxygen during culture could be an effective and reasonable method to maintain isolated islets viable. PMID:28832685
Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells
Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K
2013-01-01
Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001 PMID:24252877
Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.
Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K
2013-11-19
Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela
2009-04-15
Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.
Liu, Hui; Remedi, Maria S.; Pappan, Kirk L.; Kwon, Guim; Rohatgi, Nidhi; Marshall, Connie A.; McDaniel, Michael L.
2009-01-01
OBJECTIVE—Our previous studies demonstrated that nutrient regulation of mammalian target of rapamycin (mTOR) signaling promotes regenerative processes in rodent islets but rarely in human islets. Our objective was to extend these findings by using therapeutic agents to determine whether the regulation of glycogen synthase kinase-3 (GSK-3)/β-catenin and mTOR signaling represent key components necessary for effecting a positive impact on human β-cell mass relevant to type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS—Primary adult human and rat islets were treated with the GSK-3 inhibitors, LiCl and the highly potent 1-azakenpaullone (1-Akp), and with nutrients. DNA synthesis, cell cycle progression, and proliferation of β-cells were assessed. Measurement of insulin secretion and content and Western blot analysis of GSK-3 and mTOR signaling components were performed. RESULTS—Human islets treated for 4 days with LiCl or 1-Akp exhibited significant increases in DNA synthesis, cell cycle progression, and proliferation of β-cells that displayed varying degrees of sensitivity to rapamycin. Intermediate glucose (8 mmol/l) produced a striking degree of synergism in combination with GSK-3 inhibition to enhance bromodeoxyuridine (BrdU) incorporation and Ki-67 expression in human β-cells. Nuclear translocation of β-catenin responsible for cell proliferation was found to be particularly sensitive to rapamycin. CONCLUSIONS—A combination of GSK-3 inhibition and nutrient activation of mTOR contributes to enhanced DNA synthesis, cell cycle progression, and proliferation of human β-cells. Identification of therapeutic agents that appropriately regulate GSK-3 and mTOR signaling may provide a feasible and available approach to enhance human islet growth and proliferation. PMID:19073772
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela
2009-01-01
Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116
Barlow, A D; Xie, J; Moore, C E; Campbell, S C; Shaw, J A M; Nicholson, M L; Herbert, T P
2012-05-01
Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB. Rapamycin treatment of MIN6 cells and islets of Langerhans resulted in a loss of cell function and viability. Although rapamycin acutely inhibited mTOR complex 1 (mTORC1), the toxic effects of rapamycin were more closely correlated to the dissociation and inactivation of mTORC2 and the inhibition of PKB. Indeed, the overproduction of constitutively active PKB protected islets from rapamycin toxicity whereas the inhibition of PKB led to a loss of cell viability. Moreover, the selective inactivation of mTORC2 using siRNA directed towards rapamycin-insensitive companion of target of rapamycin (RICTOR), mimicked the toxic effects of chronic rapamycin treatment. This report provides evidence that rapamycin toxicity is mediated by the inactivation of mTORC2 and the inhibition of PKB and thus reveals the molecular basis of rapamycin toxicity and the essential role of mTORC2 in maintaining beta cell function and survival.
Persaud, Shanta J; Arden, Catherine; Bergsten, Peter; Bone, Adrian J; Brown, James; Dunmore, Simon; Harrison, Moira; Hauge-Evans, Astrid; Kelly, Catriona; King, Aileen; Maffucci, Tania; Marriott, Claire E; McClenaghan, Neville; Morgan, Noel G; Reers, Christina; Russell, Mark A; Turner, Mark D; Willoughby, Emma; Younis, Mustafa Y G; Zhi, Z L; Jones, Peter M
2010-01-01
Laboratory-based research aimed at understanding processes regulating insulin secretion and mechanisms underlying β-cell dysfunction and loss in diabetes often makes use of rodents, as these processes are in many respects similar between rats/mice and humans. Indeed, a rough calculation suggests that islets have been isolated from as many as 150,000 rodents to generate the data contained within papers published in 2009 and the first four months of 2010. Rodent use for islet isolation has been mitigated, to a certain extent, by the availability of a variety of insulin-secreting cell lines that are used by researchers world-wide. However, when maintained as monolayers the cell lines do not replicate the robust, sustained secretory responses of primary islets which limits their usefulness as islet surrogates. On the other hand, there have been several reports that configuration of MIN6 β-cells, derived from a mouse insulinoma, as three-dimensional cell clusters termed ‘pseudoislets’ largely recapitulates the function of primary islet β-cells. The Diabetes Research Group at King’s College London has been using the MIN6 pseudoislet model for over a decade and they hosted a symposium on “Pseudoislets as primary islet replacements for research”, which was funded by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), in London on 15th and 16th April 2010. This small, focused meeting was conceived as an opportunity to consolidate information on experiences of working with pseudoislets between different UK labs, and to introduce the theory and practice of pseudoislet culture to laboratories working with islets and/or β-cell lines but who do not currently use pseudoislets. This short review summarizes the background to the development of the cell line-derived pseudoislet model, the key messages arising from the symposium and emerging themes for future pseudoislet research.
Mueller, Kate R; Balamurugan, A.N.; Cline, Gary W; Pongratz, Rebecca L; Hooper, Rebecca L; Weegman, Bradley P; Kitzmann, Jennifer P; Taylor, Michael J; Graham, Melanie L; Schuurman, Henk-Jan; Papas, Klearchos K
2014-01-01
Background Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remains a critical issue. Methods Islets isolated from human (n=3), NHP (n=2), adult pig (AP, n=3) and juvenile pig (JP, n=3) pancreata were perifused with medium at basal glucose (2.5mM) followed by high glucose (16.7mM) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Results NHP islets exhibited GSIS 3-fold higher than human islets, while AP and JP islets exhibited GSIS 1/3 and 1/16 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/3 of human islets. Conclusion Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for human, AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation which may be substantially higher than that required for humans. Finally, porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets. PMID:23384163
Effect of oxygen supply on the size of implantable islet-containing encapsulation devices.
Papas, Klearchos K; Avgoustiniatos, Efstathios S; Suszynski, Thomas M
2016-03-01
Beta-cell replacement therapy is a promising approach for the treatment of diabetes but is currently limited by the human islet availability and by the need for systemic immunosuppression. Tissue engineering approaches that will enable the utilization of islets or β-cells from alternative sources (such as porcine islets or human stem cell derived beta cells) and minimize or eliminate the need for immunosuppression have the potential to address these critical limitations. However, tissue engineering approaches are critically hindered by the device size (similar to the size of a large flat screen television) required for efficacy in humans. The primary factor dictating the device size is the oxygen availability to islets to support their viability and function (glucose-stimulated insulin secretion [GSIS]). GSIS is affected (inhibited) at a much higher oxygen partial pressure [pO2] than that of viability (e.g. 10 mmHg as opposed to 0.1 mmHg). Enhanced oxygen supply (higher pO2) than what is available in vivo at transplant sites can have a profound effect on the required device size (potentially reduce it to the size of a postage stamp). This paper summarizes key information on the effect of oxygen on islet viability and function within immunoisolation devices and describes the potential impact of enhanced oxygen supply to devices in vivo on device size reduction.
Mueller, Kate R; Balamurugan, A N; Cline, Gary W; Pongratz, Rebecca L; Hooper, Rebecca L; Weegman, Bradley P; Kitzmann, Jennifer P; Taylor, Michael J; Graham, Melanie L; Schuurman, Henk-Jan; Papas, Klearchos K
2013-01-01
Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remain a critical issue. Islets isolated from human (n = 3), NHP (n = 2), adult pig (AP, n = 3), and juvenile pig (JP, n = 4) pancreata were perifused with medium at basal glucose (2.5 mm) followed by high glucose (16.7 mm) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Nonhuman primate islets exhibited GSIS 3-fold higher than AP islets, while AP and JP islets exhibited GSIS 1/3 and 1/30 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/5 of human islets. Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation. Porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets. © 2013 John Wiley & Sons A/S.
Pournourmohammadi, Shirin; Grimaldi, Mariagrazia; Stridh, Malin H; Lavallard, Vanessa; Waagepetersen, Helle S; Wollheim, Claes B; Maechler, Pierre
2017-07-01
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1 -/- ). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1 -/- islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states. Copyright © 2017 Elsevier Ltd. All rights reserved.
A single-islet microplate assay to measure mouse and human islet insulin secretion.
Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E
2015-01-01
One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.
Loganathan, Gopalakrishnan; Graham, Melanie L.; Radosevich, David M.; Soltani, Sajjad M.; Tiwari, Mukesh; Anazawa, Takayuki; papas, Klearchos K.; Sutherland, David E.R.; Hering, Bernhard J.; Balamurugan, A.N.
2013-01-01
Background In the absence of a reliable islet potency assay, nude mice transplant is the criterion standard to assess islet quality for clinical transplantation. There are factors other than islet quality that affect the transplant outcome. Methods Here, we analyzed the transplant outcomes in 335 nude mice (NM) receiving islets from human (n=103), porcine (n=205), and non-human primate (NHP) donors (n=27). The islets (750, 1000, and 2000 islet equivalents) were transplanted under the kidney capsule of streptozotocin (STZ) induced diabetic NM. Results The proportion of mice that achieved normoglycemia was significantly higher in the group implanted with 2000 IEQ of human, porcine, or NHP islets (75% normoglycemic) versus groups that were implanted with 750 IEQ (7% normoglycemic) and 1000 IEQ (30% normoglycemic). In this study, we observed that the purity of porcine islet preparations (P ≤ .001), islet pellet size in porcine preparations (P ≤ .01) and mice recipient body weight for human islets preparations (P =.013), was independently associated with successful transplant outcome. NHP islets of 1000 IEQ were sufficient to achieve normoglycemic condition (83%). An islet mass of 2000 IEQ, high islet purity, increased recipient body weight, and high islet pellet volume increased the likelihood of successful reversal of diabetes in transplanted mice. Also, higher insulin secretory status of islets at basal stimulus was associated with a reduced mouse cure rate. The cumulative incidence of graft failure was significantly greater in human islets (56.12%) compared with porcine islets 35.57% (P ≤ .001). Conclusion Factors affecting NM bioassay were identified (islet mass, islet purity, pellet size, in vitro insulin secretory capability and mouse recipient body weight) and should be considered when evaluating islet function. PMID:23677052
Arzouni, Ahmed A; Vargas-Seymour, Andreia; Rackham, Chloe L; Dhadda, Paramjeet; Huang, Guo-Cai; Choudhary, Pratik; Nardi, Nance; King, Aileen J F; Jones, Peter M
2017-12-01
The aims of the present study were (i) to determine whether the reported beneficial effects of mesenchymal stromal cells (MSCs) on mouse islet function extend to clinically relevant human tissues (islets and MSCs), enabling translation into improved protocols for clinical human islet transplantation; and (ii) to identify possible mechanisms through which human MSCs influence human islet function. Human islets were co-cultured with human adipose tissue-derived MSCs (hASCs) or pre-treated with its products - extracellular matrix (ECM) and annexin A1 (ANXA1). Mouse islets were pre-treated with mouse MSC-derived ECM. Islet insulin secretory function was assessed in vitro by radioimmunoassay. Quantitative RT-PCR was used to screen human adipMSCs for potential ligands of human islet G-protein-coupled receptors. We show that co-culture with hASCs improves human islet secretory function in vitro , as measured by glucose-stimulated insulin secretion, confirming previous reports using rodent tissues. Furthermore, we demonstrate that these beneficial effects on islet function can be partly attributed to the MSC-derived products ECM and ANXA1. Our results suggest that hASCs have the potential to improve the quality of human islets isolated for transplantation therapy of Type 1 diabetes. Furthermore, it may be possible to achieve improvements in human islet quality in a cell-free culture system by using the MSC-derived products ANXA1 and ECM. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS
Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro
2011-01-01
SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503
Smura, Teemu; Ylipaasto, Petri; Klemola, Päivi; Kaijalainen, Svetlana; Kyllönen, Lauri; Sordi, Valeria; Piemonti, Lorenzo; Roivainen, Merja
2010-11-01
Enterovirus 94 (EV-94) is an enterovirus serotype described recently which, together with EV-68 and EV-70, forms human enterovirus D species. This study investigates the seroprevalences of these three serotypes and their abilities to infect, replicate, and damage cell types considered to be essential for enterovirus-induced diseases. The cell types studied included human leukocyte cell lines, primary endothelial cells, and pancreatic islets. High prevalence of neutralizing antibodies against EV-68 and EV-94 was found in the Finnish population. The virus strains studied had wide leukocyte tropism. EV-94 and EV-68 were able to produce infectious progeny in leukocyte cell lines with monocytic, granulocytic, T-cell, or B-cell characteristics. EV-94 and EV-70 were capable of infecting primary human umbilical vein endothelial cells, whereas EV-68 had only marginal progeny production and did not induce cytopathic effects in these cells. Intriguingly, EV-94 was able to damage pancreatic islet β-cells, to infect, replicate, and cause necrosis in human pancreatic islets, and to induce proinflammatory and chemoattractive cytokine expression in endothelial cells. These results suggest that HEV-D viruses may be more prevalent than has been thought previously, and they provide in vitro evidence that EV-94 may be a potent pathogen and should be considered a potentially diabetogenic enterovirus type. © 2010 Wiley-Liss, Inc.
Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Liu, Bo; Atanes, Patricio; Huang, Guo Cai; Baker, David; Alonso, Francisco José; Bermúdez-Silva, Francisco Javier; Persaud, Shanta J
2018-04-01
To examine the effects of Abn-CBD (GPR55 agonist) and LH-21 (CB1 antagonist) on human and mouse islet function, and to determine signalling via GPR55 using islets from GPR55 -/- mice. Islets isolated from human organ donors and mice were incubated in the absence or presence of Abn-CBD or LH-21, and insulin secretion, [Ca 2+ ] i, cAMP , apoptosis, β-cell proliferation and CREB and AKT phosphorylation were examined using standard techniques. Abn-CBD potentiated glucose-stimulated insulin secretion and elevated [Ca 2+ ] i in human islets and islets from both GPR55 +/+ and GPR55 -/- mice. LH-21 also increased insulin secretion and [Ca 2+ ] i in human islets and GPR55 +/+ mouse islets, but concentrations of LH-21 up to 0.1 μM were ineffective in islets from GPR55 -/- mice. Neither ligand affected basal insulin secretion or islet cAMP levels. Abn-CBD and LH-21 reduced cytokine-induced apoptosis in human islets and GPR55 +/+ mouse islets, and these effects were suppressed after GPR55 deletion. They also increased β-cell proliferation: the effects of Abn-CBD were preserved in islets from GPR55 -/- mice, while those of LH-21 were abolished. Abn-CBD and LH-21 increased AKT phosphorylation in mouse and human islets. This study showed that Abn-CBD and LH-21 improve human and mouse islet β-cell function and viability. Use of islets from GPR55 -/- mice suggests that designation of Abn-CBD and LH-21 as a GPR55 agonist and a CB1 antagonist, should be revised. © 2017 John Wiley & Sons Ltd.
Pepper, Andrew R; Bruni, Antonio; Pawlick, Rena; Wink, John; Rafiei, Yasmin; Gala-Lopez, Boris; Bral, Mariusz; Abualhassan, Nasser; Kin, Tatsuya; Shapiro, A M James
2017-10-01
Islet transplantation is an effective therapy in type 1 diabetes and recalcitrant hypoglycemia. However, there is an ongoing need to circumvent islet loss posttransplant. We explore herein the potential of the pan-caspase inhibitor F573 to mitigate early apoptosis-mediated islet death within portal and extrahepatic portal sites in mice. Mouse or human islets were cultured in standard media ±100 μM F573 and subsequently assessed for viability and apoptosis via terminal deoxynucleotidyl transferase dUTP nick end labeling staining and caspase-3 activation. Diabetic mice were transplanted with syngeneic islets placed under the kidney capsule (KC) or into the subcutaneous deviceless (DL) site at a marginal islet dose (150 islets), or into the portal vein (PV) at a full dose (500 islets). Human islets were transplanted under the KC of diabetic immunodeficient mice at a marginal dose (500 islet equivalents). Islets were cultured in the presence of F573, and F573 was administered subcutaneously on days 0 to 5 posttransplant. Control mice were transplanted with nontreated islets and were injected with saline. Graft function was measured by nonfasting blood glucose and glucose tolerance testing. F573 markedly reduced human and mouse islet apoptosis after in vitro culture (P < 0.05 and P < 0.05, respectively). Furthermore, F573 improved human islet function when transplanted under the KC (P < 0.05); whereas F573 did not enhance murine islet marginal KC transplants. Conversely, F573 significantly improved mouse islet engraftment in the PV and DL site (P < 0.05 and P < 0.05, respectively). The pan-caspase inhibitor F573 markedly reduces human and mouse islet apoptosis and improves engraftment most effectively in the portal and DL subcutaneous sites.
Abualhassan, Nasser; Sapozhnikov, Lena; Pawlick, Rena L; Kahana, Meygal; Pepper, Andrew R; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A M James
2016-01-01
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.
Pawlick, Rena L.; Kahana, Meygal; Pepper, Andrew R.; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A. M. James
2016-01-01
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ. PMID:27227978
Comparison of exendin-4 on beta-cell replication in mouse and human islet grafts.
Tian, Lei; Gao, Jie; Weng, Guangbin; Yi, Huimin; Tian, Bole; O'Brien, Timothy D; Guo, Zhiguang
2011-08-01
Exendin-4 can stimulate β-cell replication in mice. Whether it can stimulate β-cell replication in human islet grafts remains unknown. Therefore, we compared the effects of exendin-4 on β-cell replication in mouse and human islet grafts. Islets, isolated from mouse and human donors at different ages, were transplanted into diabetic mice and/or diabetic nude mice that were given bromodeoxyuridine (BrdU) with or without exendin-4. At 4 weeks post-transplantation, islet grafts were removed for insulin and BrdU staining and quantification of insulin(+)/BrdU(+) cells. Although diabetes was reversed in all mice transplanting syngeneic mouse islets from young or old donors, normoglycemia was achieved significantly faster in exendin-4 treated mice. Mouse islet grafts in exendin-4 treated mice had significantly more insulin(+)/BrdU(+) β cells than in untreated mice (P < 0.01). Human islet grafts from ≤22-year-old donors had more insulin(+)/BrdU(+) β cells in exendin-4 treated mice than that in untreated mice (P < 0.01). However, human islet grafts from ≥35-year-old donors contained few insulin(+)/BrdU(+) β cells in exendin-4 treated or untreated mice. Our data demonstrated that the capacity for β-cell replication in mouse and human islet grafts is different with and without exendin-4 treatment and indicated that GLP-1 agonists can stimulate β-cell replication in human islets from young donors. © 2011 The Authors. Transplant International © 2011 European Society for Organ Transplantation.
Microencapsulation of pancreatic islets with canine ear cartilage for immunoisolation.
Lee, J I; Kim, H W; Kim, J Y; Bae, S J; Joo, D J; Huh, K H; Fang, Y H; Jeong, J H; Kim, M S; Kim, Y S
2012-05-01
Improving human islet transplantation is often limited by the shortage of donors and the side effects of immunosuppressive agents. If immunoisolation is properly used, it can overcome these obstacles. Because artificial materials are adopted in this technique, however, there are still multiple issues with biocompatibility and foreign body reactions. We developed a chondrocyte microencapsulated immunoisolated islet (CMI-islet) that allows living cells to act as the immunoisolating material. To manufacture CMI-islets for xenotransplantation, isolated rat pancreatic islets were placed on low cell-binding culture dishes. Subsequently, expanded canine auricular cartiage primary cells were seeded on these dishes at a high density and maintained in a suspended state via a shaking culture system. Morphological evaluations showed good islet viability and a clear progression of the islet- encapsulation events. When the cells were challenged with glucose, they were able to secrete sufficient insulin according to glucose concentrations. The CMI-islets responded better to the glucose challenge than did nude pancreatic islets and created better glucose-insulin feedback regulation. Moreover, insulin secretion into the culture medium was confirmed over a period of 100 days, showing the survival and secretory capacity of the CMI-islet cells. By microencapsulating pancreatic islets with recipient ear cartilage cells, long-term insulin secretion can be maintained and the response to glucose challenges improved. This new immunodelusion technology differs from other immunoisolation techniques in that the donor tissue is enclosed with the recipient's tissue, thus allowing the transplanted cells to be recognized as recipient cells. This microencapsulation method may lead to developing viable xenotransplantation techniques that do not use immunosuppressive drugs. Copyright © 2012 Elsevier Inc. All rights reserved.
Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.
Lockridge, Amber D; Baumann, Daniel C; Akhaphong, Brian; Abrenica, Alleah; Miller, Robert F; Alejandro, Emilyn U
2016-11-01
NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.
Robertson, R Paul
2015-06-01
The therapeutic potential of pancreatic islet allotransplantation, in which human donor islets are used, as a treatment for type 1 diabetes (T1D) has fascinated diabetes researchers and clinicians for decades. At the same time, the therapeutic potential of total pancreatectomy and islet autotransplantation (TPIAT) (in which one's own islets are used) as a preventive treatment for diabetes in patients who undergo total pancreatectomy for chronic, painful pancreatitis has received relatively less attention. This is ironic, since the latter has been much more effective than the former in terms of successful glucose management and duration of efficacy. The reasons for this disparity can be partially identified. TPIAT receives very little attention in textbooks of internal medicine and general surgery and surprisingly little print in textbooks of endocrinology and transplantation. T1D is much more predominant than TPIAT as a clinical entity. Provision of insulin or replacement of islets is mandatory and a primary goal in T1D. Provision of pain relief from chronic pancreatitis is the primary goal of total pancreatectomy in TPIAT, whereas treatment of diabetes, and certainly prevention of diabetes, has been more of a secondary consideration. Nonetheless, research developments in both fields have contributed to success in one another. In this Perspective, I will provide a brief history of islet transplantation and contrast and compare the procedures of allo- and autoislet transplantation from three major points of view 1) the procedures of islet procurement, isolation, and transplantation; 2) the role and complications of immunosuppressive drugs; and 3) the posttransplant consequences on β- as well as α-cell function. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Liljebäck, Hanna; Grapensparr, Liza; Olerud, Johan; Carlsson, Per-Ola
2016-01-01
Clinical islet transplantation is characterized by a progressive deterioration of islet graft function, which renders many patients once again dependent on exogenous insulin administration within a couple of years. In this study, we aimed to investigate possible engraftment factors limiting the survival and viability of experimentally transplanted human islets beyond the first day after their transplantation to the liver. Human islets were transplanted into the liver of nude mice and characterized 1 or 30 days after transplantation by immunohistochemistry. The factors assessed were endocrine mass, cellular death, hypoxia, vascular density and amyloid formation in the transplanted islets. One day posttransplantation, necrotic cells, as well as apoptotic cells, were commonly observed. In contrast to necrotic death, apoptosis rates remained high 1 month posttransplantation, and the total islet mass was reduced by more than 50% between 1 and 30 days posttransplantation. Islet mass at 30 days posttransplantation correlated negatively to apoptotic death. Vascular density within the transplanted islets remained less than 30% of that in native human islets up to 30 days posttransplantation and was associated with prevailing hypoxia. Amyloid formation was rarely observed in the 1-day-old transplants, but was commonly observed in the 30-day-old islet transplants. We conclude that substantial islet cell death occurs beyond the immediate posttransplantation phase, particularly through apoptotic events. Concomitant low vascularization with prevailing hypoxia and progressive amyloid development was observed in the human islet grafts. Strategies to improve engraftment at the intraportal site or change of implantation site in the clinical setting are needed.
Construction of EMSC-islet co-localizing composites for xenogeneic porcine islet transplantation.
Kim, Jung-Sik; Chung, Hyunwoo; Byun, Nari; Kang, Seong-Jun; Lee, Sunho; Shin, Jun-Seop; Park, Chung-Gyu
2018-03-04
Pancreatic islet transplantation is an ultimate solution for treating patients with type 1 diabetes (T1D). The pig is an ideal donor of islets for replacing scarce human islets. Besides immunological hurdles, non-immunological hurdles including fragmentation and delayed engraftment of porcine islets need solutions to succeed in porcine islet xenotransplantation. In this study, we suggest a simple but effective modality, a cell/islet co-localizing composite, to overcome these challenges. Endothelial-like mesenchymal stem cells (EMSCs), differentiated from bone-marrow derived mouse mesenchymal stem cells (MSCs), and MSCs evenly coated the surface of porcine islets (>85%) through optimized culture conditions. Both MSCs and EMSCs significantly reduced the fragmentation of porcine islets and increased the islet masses, designated as islet equivalents (IEQs). In fibrin in vitro and in vivo angiogenesis analysis, constructed EMSC-islet composites showed higher angiogenic potentials than naked islets, MSC-islet composites, or human endothelial cell-islet composites. This novel delivery method of porcine islets may have beneficial effects on the engraftment of transplanted islets by prevention of fragmentation and enhancement of revascularization. Copyright © 2018 Elsevier Inc. All rights reserved.
The impact of IUGR on pancreatic islet development and β-cell function.
Boehmer, Brit H; Limesand, Sean W; Rozance, Paul J
2017-11-01
Placental insufficiency is a primary cause of intrauterine growth restriction (IUGR). IUGR increases the risk of developing type 2 diabetes mellitus (T2DM) throughout life, which indicates that insults from placental insufficiency impair β-cell development during the perinatal period because β-cells have a central role in the regulation of glucose tolerance. The severely IUGR fetal pancreas is characterized by smaller islets, less β-cells, and lower insulin secretion. Because of the important associations among impaired islet growth, β-cell dysfunction, impaired fetal growth, and the propensity for T2DM, significant progress has been made in understanding the pathophysiology of IUGR and programing events in the fetal endocrine pancreas. Animal models of IUGR replicate many of the observations in severe cases of human IUGR and allow us to refine our understanding of the pathophysiology of developmental and functional defects in islet from IUGR fetuses. Almost all models demonstrate a phenotype of progressive loss of β-cell mass and impaired β-cell function. This review will first provide evidence of impaired human islet development and β-cell function associated with IUGR and the impact on glucose homeostasis including the development of glucose intolerance and diabetes in adulthood. We then discuss evidence for the mechanisms regulating β-cell mass and insulin secretion in the IUGR fetus, including the role of hypoxia, catecholamines, nutrients, growth factors, and pancreatic vascularity. We focus on recent evidence from experimental interventions in established models of IUGR to understand better the pathophysiological mechanisms linking placental insufficiency with impaired islet development and β-cell function. © 2017 Society for Endocrinology.
Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony
2014-01-01
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo. PMID:24594640
Human islet cells are killed by BID-independent mechanisms in response to FAS ligand.
Joglekar, Mugdha V; Trivedi, Prerak M; Kay, Thomas W; Hawthorne, Wayne J; O'Connell, Philip J; Jenkins, Alicia J; Hardikar, Anandwardhan A; Thomas, Helen E
2016-04-01
Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.
Impact of Procedure-Related Complications on Long-term Islet Transplantation Outcome.
Caiazzo, Robert; Vantyghem, Marie-Christine; Raverdi, Violeta; Bonner, Caroline; Gmyr, Valery; Defrance, Frederique; Leroy, Clara; Sergent, Geraldine; Hubert, Thomas; Ernst, Oliver; Noel, Christian; Kerr-Conte, Julie; Pattou, François
2015-05-01
Pancreatic islet transplantation offers a promising biotherapy for the treatment of type 1 diabetes, but this procedure has met significant challenges over the years. One such challenge is to address why primary graft function still remains inconsistent after islet transplantation. Several variables have been shown to affect graft function, but the impact of procedure-related complications on primary and long-term graft functions has not yet been explored. Twenty-six patients with established type 1 diabetes were included in this study. Each patient had two to three intraportal islet infusions to obtain 10,000 islet equivalent (IEQ)/kg in body weight, equaling a total of 68 islet infusions. Islet transplantation consisted of three sequential fresh islet infusions within 3 months. Islet infusions were performed surgically or under ultrasound guidance, depending on patient morphology, availability of the radiology suite, and patient medical history. Prospective assessment of adverse events was recorded and graded using "Common Terminology Criteria for adverse events in Trials of Adult Pancreatic Islet Transplantation." There were no deaths or patients dropouts. Early complications occurred in nine of 68 procedures. β score 1 month after the last graft and optimal graft function (β score ≥7) rate were significantly lower in cases of procedure-related complications (P = 0.02, P = 0.03). Procedure-related complications negatively impacted graft function (P = 0.009) and was an independent predictive factor of long-term graft survival (P = 0.033) in multivariate analysis. Complications occurring during radiologic or surgical intraportal islet transplantation significantly impair primary graft function and graft survival regardless of their severity.
Microcirculation of human pancreatic islets transplanted under the renal capsule of nude mice.
Jansson, L; Tyrberg, B; Carlsson, P O; Nordin, A; Andersson, A; Källskog O
2001-08-27
The aim was to measure the capillary blood pressure in transplanted human islets. Human islets were isolated at the Central Unit of the beta-cell Transplant in Brussels, Belgium. After transport to our laboratory, the islets were implanted under the renal capsule of normoglycemic nude mice. Two weeks later the capillary and venous blood pressures in the islet graft and adjacent renal parenchyma were measured with a micropuncture technique. Capillary blood pressure was approximately 5-8 mmHg in both graft and renal capillaries: twice as high as in native islets. Venous blood pressures were similar (4-5 mmHg) in the veins draining the graft and in the renal interlobular veins. All veins leading from the graft emptied into the renal parenchyma, that is, into interlobular veins. The capillary hypertension seen in transplanted human islets is probably necessary to secure adequate drainage through the renal veins. Whether this contributes to the poor results of long-term islet graft survival is unknown.
Wen, Di; Peng, Yang; Liu, Di; Weizmann, Yossi; Mahato, Ram I
2016-09-28
Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferroptosis-inducing agents compromise in vitro human islet viability and function.
Bruni, Antonio; Pepper, Andrew R; Pawlick, Rena L; Gala-Lopez, Boris; Gamble, Anissa F; Kin, Tatsuya; Seeberger, Karen; Korbutt, Gregory S; Bornstein, Stefan R; Linkermann, Andreas; Shapiro, A M James
2018-05-22
Human islet transplantation has been hampered by donor cell death associated with the islet preparation procedure before transplantation. Regulated necrosis pathways are biochemically and morphologically distinct from apoptosis. Recently, ferroptosis was identified as a non-apoptotic form of iron-dependent regulated necrosis implicated in various pathological conditions. Mediators of islet oxidative stress, including glutathione peroxidase-4 (GPX4), have been identified as inhibitors of ferroptosis, and mechanisms that affect GPX4 function can impact islet function and viability. Ferroptosis has not been investigated directly in human islets, and its relevance in islet transplantation remains unknown. Herein, we sought to determine whether in vitro human islet viability and function is compromised in the presence of two distinct ferroptosis-inducing agents (FIA), erastin or RSL3, and whether these effects could be rescued with ferroptosis inhibitors, ferrostatin-1 (Fer-1), or desferrioxamine (DFO). Viability, as assessed by lactate dehydrogenase (LDH) release, revealed significant death in erastin- and RSL3-treated islets, 20.3% ± 3.8 and 24.4% ± 2.5, 24 h post culture, respectively. These effects were ameliorated in islets pre-treated with Fer-1 or the iron chelator, desferrioxamine (DFO). Stimulation index, a marker of islet function revealed a significant reduction in function in erastin-treated islets (control 1.97 ± 0.13 vs. 50 μM erastin 1.32 ± 0.1) (p < 0.05). Fer-1 and DFO pre-treatment alone did not augment islet viability or function. Pre-treatment of islets with erastin or Fer-1 did not impact in vivo engraftment in an immunodeficient mouse transplant model. Our data reveal that islets are indeed susceptible to ferroptosis in vitro, and induction of this novel cell death modality leads to compromised islet function, which can be recoverable in the presence of the ferroptosis inhibitors. The in vivo impact of this pathway in islet transplantation remains elusive given the constraints of our study, but warrants continued investigation.
Autologous islet transplantation: challenges and lessons.
Dunn, Ty B; Wilhelm, Joshua J; Bellin, Melena D; Pruett, Timothy L
2017-08-01
Human islet isolation and autotransplantation [autologous islet transplant (AUTX)] is performed to prevent or ameliorate brittle diabetes after total pancreatectomy performed for benign disease. The success or failure of the transplant can be associated with a profound impact on the individual's quality of life and even survival. AUTX offers unique insights into the effects of pancreas quality, islet number, isolation technique and alternate site engraftment on transplant efficacy. Herein, we review islet isolation with a focus on potential pathways to further optimize the endocrine outcome of AUTX, and compare and contrast differences in islet processing for AUTX and allotransplantation (allogeneic islet transplant). New knowledge of human islet biology and issues surrounding the engraftment process offer opportunities for innovative approaches toward optimizing islet cell transplantation. Improving the rate and durability of insulin independence in the often-times marginal dose model of AUTX may provide new insight toward improving the efficiency and durability of single donor islet (allogeneic islet transplant).
NASA Astrophysics Data System (ADS)
Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.
1992-09-01
The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.
Control of Insulin Secretion by Cholinergic Signaling in the Human Pancreatic Islet
Molina, Judith; Rodriguez-Diaz, Rayner; Fachado, Alberto; Jacques-Silva, M. Caroline
2014-01-01
Acetylcholine regulates hormone secretion from the pancreatic islet and is thus crucial for glucose homeostasis. Little is known, however, about acetylcholine (cholinergic) signaling in the human islet. We recently reported that in the human islet, acetylcholine is primarily a paracrine signal released from α-cells rather than primarily a neural signal as in rodent islets. In this study, we demonstrate that the effects acetylcholine produces in the human islet are different and more complex than expected from studies conducted on cell lines and rodent islets. We found that endogenous acetylcholine not only stimulates the insulin-secreting β-cell via the muscarinic acetylcholine receptors M3 and M5, but also the somatostatin-secreting δ-cell via M1 receptors. Because somatostatin is a strong inhibitor of insulin secretion, we hypothesized that cholinergic input to the δ-cell indirectly regulates β-cell function. Indeed, when all muscarinic signaling was blocked, somatostatin secretion decreased and insulin secretion unexpectedly increased, suggesting a reduced inhibitory input to β-cells. Endogenous cholinergic signaling therefore provides direct stimulatory and indirect inhibitory input to β-cells to regulate insulin secretion from the human islet. PMID:24658304
Raposo do Amaral, Alexandre S.; Pawlick, Rena L.; Rodrigues, Erika; Costal, Flavia; Pepper, Andrew; Ferreira Galvão, Flávio H.; Correa-Giannella, Maria Lucia; Shapiro, A. M.James
2013-01-01
Background The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. Methodology/Principal Findings In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. Conclusions/Significance GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation. PMID:23424628
Pig Pancreas Anatomy: Implications for Pancreas Procurement, Preservation, and Islet Isolation
Ferrer, Joana; Scott, William E; Weegman, Bradley P; Suszynski, Thomas M; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K
2009-01-01
Background Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. The limited human islet supply from cadavers and poor islet yield and quality remain substantial impediments to progress in the field. Use of porcine islets holds great promise for large-scale application of islet transplantation. Consistent isolation of porcine islets is dependent on advances in pancreas procurement and preservation, and islet isolation requiring detailed knowledge of the porcine pancreatic anatomy. The primary aim of this study was to describe the vascular and ductal anatomy of the porcine pancreas in order to guide and improve organ preservation and enzyme perfusion. Methods Pancreata were removed by en bloc viscerectomy from 65 female Landrace pigs. Results 15% of organs exhibited inconsistent vascular branching from the celiac trunk. All organs had uniform patterns of branching at the superior mesenteric artery. The superior and inferior mesenteric veins (IMV) merged to become the portal vein in all but one case in which the IMV drained into the splenic vein. 97% of pancreata had three lobes: duodenal (DL), connecting (CL), and splenic (SL); 39% demonstrated ductal communication between the CL and the other two lobes; 50% had ductal communication only between the CL and DL; and 11% presented other types of ductal delineation. Conclusions Accounting for the variations in vascular and ductal anatomy, as detailed in this study, will facilitate development of protocols for preservation, optimal enzyme administration, and pancreas distention and digestion, and ultimately lead to substantial improvements in isolation outcomes. PMID:19077881
Transient Suppression of TGFβ Receptor Signaling Facilitates Human Islet Transplantation
Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Zimmerman, Ray; Wiersch, John; Prasadan, Krishna; Shiota, Chiyo; Guo, Ping; Ramachandran, Sabarinathan; Witkowski, Piotr
2016-01-01
Although islet transplantation is an effective treatment for severe diabetes, its broad application is greatly limited due to a shortage of donor islets. Suppression of TGFβ receptor signaling in β-cells has been shown to increase β-cell proliferation in mice, but has not been rigorously examined in humans. Here, treatment of human islets with a TGFβ receptor I inhibitor, SB-431542 (SB), significantly improved C-peptide secretion by β-cells, and significantly increased β-cell number by increasing β-cell proliferation. In addition, SB increased cell-cycle activators and decreased cell-cycle suppressors in human β-cells. Transplantation of SB-treated human islets into diabetic immune-deficient mice resulted in significant improvement in blood glucose control, significantly higher serum and graft insulin content, and significantly greater increases in β-cell proliferation in the graft, compared with controls. Thus, our data suggest that transient suppression of TGFβ receptor signaling may improve the outcome of human islet transplantation, seemingly through increasing β-cell number and function. PMID:26872091
Hrytsenko, Olga; Pohajdak, Bill; Wright, James R
2016-07-03
Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.
Hrytsenko, Olga; Pohajdak, Bill; Wright, James R.
2016-01-01
ABSTRACT Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish. PMID:27222321
A 3D map of the islet routes throughout the healthy human pancreas
Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella
2015-01-01
Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671
Balamurugan, Appakalai N; Green, Michael L; Breite, Andrew G; Loganathan, Gopalakrishnan; Wilhelm, Joshua J; Tweed, Benjamin; Vargova, Lenka; Lockridge, Amber; Kuriti, Manikya; Hughes, Michael G; Williams, Stuart K; Hering, Bernhard J; Dwulet, Francis E; McCarthy, Robert C
2016-01-01
Isolation following a good manufacturing practice-compliant, human islet product requires development of a robust islet isolation procedure where effective limits of key reagents are known. The enzymes used for islet isolation are critical but little is known about the doses of class I and class II collagenase required for successful islet isolation. We used a factorial approach to evaluate the effect of high and low target activities of recombinant class I (rC1) and class II (rC2) collagenase on human islet yield. Consequently, 4 different enzyme formulations with divergent C1:C2 collagenase mass ratios were assessed, each supplemented with the same dose of neutral protease. Both split pancreas and whole pancreas models were used to test enzyme targets (n = 20). Islet yield/g pancreas was compared with historical enzymes (n = 42). Varying the Wunsch (rC2) and collagen degradation activity (CDA, rC1) target dose, and consequently the C1:C2 mass ratio, had no significant effect on tissue digestion. Digestions using higher doses of Wunsch and CDA resulted in comparable islet yields to those obtained with 60% and 50% of those activities, respectively. Factorial analysis revealed no significant main effect of Wunsch activity or CDA for any parameter measured. Aggregate results from 4 different collagenase formulations gave 44% higher islet yield (>5000 islet equivalents/g) in the body/tail of the pancreas (n = 12) when compared with those from the same segment using a standard natural collagenase/protease mixture (n = 6). Additionally, islet yields greater than 5000 islet equivalents/g pancreas were also obtained in whole human pancreas. A broader C1:C2 ratio can be used for human islet isolation than has been used in the past. Recombinant collagenase is an effective replacement for the natural enzyme and we have determined that high islet yield can be obtained even with low doses of rC1:rC2, which is beneficial for the survival of islets.
Expression of Receptors for Tetanus Toxin and Monoclonal Antibody A2B5 by Pancreatic Islet Cells
NASA Astrophysics Data System (ADS)
Eisenbarth, G. S.; Shimizu, K.; Bowring, M. A.; Wells, S.
1982-08-01
Studies of the reaction of antibody A2B5 and tetanus toxin with pancreatic islet cells, islet cell tumors, and other human amine precursor uptake and decarboxylation (APUD) tumors are described. By indirect immunofluorescence, antibody A2B5 and tetanus toxin were shown to specifically bind to the plasma membrane of human, rat, chicken, and mouse islet cells. The binding of antibody A2B5 to the cell surface of living islet cells has allowed isolation of these cells from a suspension of pancreatic cells by using a fluorescence-activated cell sorter. In studies designed to determine whether tetanus toxin and antibody A2B5 bound to the same surface antigen, A2B5 and tetanus toxin did not compete for binding to normal islet cells, a human islet cell tumor, or a rat islet cell tumor. In addition to binding to islet cell tumors, antibody A2B5 reacts with frozen sections, isolated cells, and cell lines of neural, neural crest, and APUD origin.
A novel method for murine intrahepatic islet transplantation via cecal vein.
Byun, Nari; Kim, Hyun-Je; Min, Byoung-Hoon; Shin, Jun-Seop; Yoon, Il-Hee; Kim, Jong-Min; Kim, Yong-Hee; Park, Chung-Gyu
2015-12-01
Islet transplantation is one of the most beneficial treatment modality to treat type 1 diabetic patients with frequent hypoglycemic unawareness. In clinical setting, human islets are infused via portal vein and are settled in the end-portal venules in the liver. However, mouse islets are transplanted into kidney subcapsule or liver through direct portal vein. These conventional transplantation methods have several drawbacks such as different physiological environments around the transplanted islets in kidney subcapsule from the liver and high mortality rate in direct portal vein approach. In this study, we introduced murine intrahepatic islet transplantation method via cecal vein to have the same surgical operation route in humans as well as guaranteeing low mortality rate after islet transplantation. With this protocol, consistent normoglycemia can be obtained in diabetic mice, while keeping operation-related mortality extremely low. This approach with easier accessibility and low mortality will make murine intrahepatic islet transplantation a useful model for studying immunological mechanisms such as strong innate and adaptive immune responses that occur in human islet transplantation. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapid deposition of amyloid in human islets transplanted into nude mice.
Westermark, P; Eizirik, D L; Pipeleers, D G; Hellerström, C; Andersson, A
1995-05-01
Human islets of Langerhans were transplanted to the subcapsular space of the kidneys of nude mice which were either normoglycaemic or made diabetic with alloxan. After 2 weeks, the transplants were processed for light and electron microscopical analyses. In all transplants, islet amyloid polypeptide (IAPP)-positive cells were found with highest frequency in normoglycaemic animals. IAPP-positive amyloid was seen in 16 out of 22 transplants (73%), either by polarisation microscopy after Congo red staining or by immune electron microscopy. At variance with previous findings of amyloid deposits exclusively in the extracellular space of islets of non-insulin-dependent diabetic patients, the grafted islets contained intracellular amyloid deposits as well. There was no clear difference in occurrence of amyloid between diabetic and non-diabetic animals. The present study indicates that human islets transplanted into nude mice very soon present IAPP-positive amyloid deposits. This technique may provide a valuable model for studies of the pathogenesis of islet amyloid and its impact on islet cell function.
Park, Yoo Jin; Warnock, Garth L; Ao, Ziliang; Safikhan, Nooshin; Meloche, Mark; Asadi, Ali; Kieffer, Timothy J; Marzban, Lucy
2017-05-01
Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation. © 2017 John Wiley & Sons Ltd.
Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke
2011-01-01
Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.
A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation
Hayes, Heather L.; Zhang, Lu; Becker, Thomas C.; Haldeman, Jonathan M.; Stephens, Samuel B.; Arlotto, Michelle; Moss, Larry G.; Newgard, Christopher B.
2016-01-01
The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in β-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a β-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and β cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor β (TGF-β) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and β-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and β cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation. PMID:27620967
Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010
Barton, Franca B.; Rickels, Michael R.; Alejandro, Rodolfo; Hering, Bernhard J.; Wease, Stephen; Naziruddin, Bashoo; Oberholzer, Jose; Odorico, Jon S.; Garfinkel, Marc R.; Levy, Marlon; Pattou, Francois; Berney, Thierry; Secchi, Antonio; Messinger, Shari; Senior, Peter A.; Maffi, Paola; Posselt, Andrew; Stock, Peter G.; Kaufman, Dixon B.; Luo, Xunrong; Kandeel, Fouad; Cagliero, Enrico; Turgeon, Nicole A.; Witkowski, Piotr; Naji, Ali; O’Connell, Philip J.; Greenbaum, Carla; Kudva, Yogish C.; Brayman, Kenneth L.; Aull, Meredith J.; Larsen, Christian; Kay, Tom W.H.; Fernandez, Luis A.; Vantyghem, Marie-Christine; Bellin, Melena; Shapiro, A.M. James
2012-01-01
OBJECTIVE To describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010. RESEARCH DESIGN AND METHODS A total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years. RESULTS Insulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA1c and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001). CONCLUSIONS The CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient. PMID:22723582
An effective purification method using large bottles for human pancreatic islet isolation
Shimoda, Masayuki; Itoh, Takeshi; Iwahashi, Shuichi; Takita, Morihito; Sugimoto, Koji; Kanak, Mazhar A.; Chujo, Daisuke; Naziruddin, Bashoo; Levy, Marlon F.; Grayburn, Paul A.; Matsumoto, Shinichi
2012-01-01
The purification process is one of the most difficult procedures in pancreatic islet isolation. It was demonstrated that the standard purification method using a COBE 2991 cell processor with Ficoll density gradient solution harmed islets mechanically by high shear force. We reported that purification using large bottles with a lower viscosity gradient solution could improve the efficacy of porcine islet purification. In this study, we examined whether the new bottle purification method could improve the purification of human islets. Nine human pancreata from brain-dead donors were used. After pancreas digestion, the digested tissue was divided into three groups. Each group was purified by continuous density gradient using ET-Kyoto and iodixanol gradient solution with either the standard COBE method (COBE group) or the top loading (top group) or bottom loading (bottom group) bottle purification methods. Islet yield, purity, recovery rate after purification, and in vitro and in vivo viability were compared. Islet yield per pancreas weight (IE/g) and the recovery rate in the top group were significantly higher than in the COBE and bottom groups. Furthermore, the average size of purified islets in the top group was significantly larger than in the COBE group, which indicated that the bottle method could reduce the shear force to the islets. In vivo viability was also significantly higher in the top group compared with the COBE group. In conclusion, the top-loading bottle method could improve the quality and quantity of human islets after purification. PMID:23221740
Wright, James R; Yang, Hua; Hyrtsenko, Olga; Xu, Bao-You; Yu, Weiming; Pohajdak, Bill
2014-01-01
Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes. © 2014 The Authors. Xenotransplantation Published by John Wiley & Sons Ltd.
Autologous Pancreatic Islet Transplantation in Human Bone Marrow
Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo
2013-01-01
The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196
Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.
Komatsu, Hirotake; Kang, Dongyang; Medrano, Leonard; Barriga, Alyssa; Mendez, Daniel; Rawson, Jeffrey; Omori, Keiko; Ferreri, Kevin; Tai, Yu-Chong; Kandeel, Fouad; Mullen, Yoko
2016-02-12
Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Douglas C.; Hester, Joanna; Nadig, Satish N.; Zhang, Wei; Trzonkowski, Piotr; Gray, Derek; Hughes, Stephen; Johnson, Paul; Wood, Kathryn J.
2013-01-01
Background Human regulatory T cells (Treg) offer an attractive adjunctive therapy to reduce current reliance on lifelong, nonspecific immunosuppression after transplantation. Here, we evaluated the ability of ex vivo expanded human Treg to prevent the rejection of islets of Langerhans in a humanized mouse model and examined the mechanisms involved. Methods We engrafted human pancreatic islets of Langerhans into the renal subcapsular space of immunodeficient BALB/c.rag2−/−.cγ−/− mice, previously rendered diabetic via injection of the β-cell toxin streptozocin. After the establishment of stable euglycemia, mice were reconstituted with allogeneic human peripheral blood mononuclear cells (PBMC) and the resultant alloreactive response studied. Ex vivo expanded CD25highCD4+ human Treg, which expressed FoxP3, CTLA-4, and CD62L and remained CD127low, were then cotransferred together with human PBMC and islet allografts and monitored for evidence of rejection. Results Human islets transplanted into diabetic immunodeficient mice reversed diabetes but were rejected rapidly after the mice were reconstituted with allogeneic human PBMC. Cotransfer of purified, ex vivo expanded human Treg prolonged islet allograft survival resulting in the accumulation of Treg in the peripheral lymphoid tissue and suppression of proliferation and interferon-γ production by T cells. In vitro, Treg suppressed activation of signal transducers and activators of transcription and inhibited the effector differentiation of responder T cells. Conclusions Ex vivo expanded Treg retain regulatory activity in vivo, can protect a human islet allograft from rejection by suppressing signal transducers and activators of transcription activation and inhibiting T-cell differentiation, and have clinical potential as an adjunctive cellular therapy. PMID:23917725
Evolution of Islet Transplantation for the Last 30 Years.
Farney, Alan C; Sutherland, David E R; Opara, Emmanuel C
2016-01-01
In this article, we will review the changes that have occurred in islet transplantation at the birth of Pancreas 30 years ago. The first attempts at β-cell replacement in humans, pancreas and islet transplantation, were performed in the 1960s and 1970s. Although pancreas transplantation has been an accepted treatment for severe labile diabetes predating the emergence of the journal, allogeneic islet transplantation remains experimental. Current investigations within islet transplantation focus to improve islet function after transplantation. Improving islet viability during isolation, exploring ways to increase engraftment, and protection from the host immune system are some of the goals of these investigative efforts. The major barriers to clinical islet transplantation are shortage of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. It is generally accepted that islet encapsulation is an immunoisolation tool with good potential to address the first 2 of those barriers. We have therefore devoted a major part of this review to the critical factors needed to make it a clinical reality. With improved islet isolation techniques and determination of the best site of engraftment as well as improved encapsulation techniques, we hope that islet transplantation could someday achieve routine clinical use.
Rfx6 Directs Islet Formation and Insulin Production in Mice and Humans
Smith, Stuart B.; Qu, Hui-Qi; Taleb, Nadine; Kishimoto, Nina; Scheel, David W.; Lu, Yang; Patch, Ann-Marie; Grabs, Rosemary; Wang, Juehu; Lynn, Francis C.; Miyatsuka, Takeshi; Mitchell, John; Seerke, Rina; Désir, Julie; Eijnden, Serge Vanden; Abramowicz, Marc; Kacet, Nadine; Weill, Jacques; Renard, Marie-Éve; Gentile, Mattia; Hansen, Inger; Dewar, Ken; Hattersley, Andrew T.; Wang, Rennian; Wilson, Maria E.; Johnson, Jeffrey D.; Polychronakos, Constantin; German, Michael S.
2009-01-01
Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor Neurogenin3 initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurogenin3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes. PMID:20148032
Inflammatory Response in Islet Transplantation
Kanak, Mazhar A.; Kunnathodi, Faisal; Lawrence, Michael C.; Levy, Marlon F.
2014-01-01
Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation. PMID:24883060
Liu, Guozheng; Dou, Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R; Shultz, Leonard D; Greiner, Dale L
2012-07-01
We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111In-labeled cMORF to direct targeting by 111In-labeled HPi1. HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ. Copyright © 2012 Elsevier Inc. All rights reserved.
Medarova, Zdravka; Vallabhajosyula, Prashanth; Tena, Aseda; Evgenov, Natalia; Pantazopoulos, Pamela; Tchipashvili, Vaja; Weir, Gordon; Sachs, David; Moore, Anna
2009-01-01
Objective As islet transplantation begins to show promise clinically, there is a critical need for reliable, non-invasive techniques to monitor islet graft survival. Previous work in our laboratory has shown that human islets labeled with a superparamagnetic iron oxide contrast agent and transplanted into mice could be detected by magnetic resonance imaging (MRI). The potential translation of these findings to the clinical situation requires validation of our methodology in a non-human primate model, which we have now carried out in baboons (Papio hamadryas) and reported here. Research Design and Methods: For islet labeling, we adapted the FDA-approved superparamagnetic iron oxide contrast agent, Feridex, which is used clinically for liver imaging. After partial pancreatectomy, Feridex-labeled islets were prepared and autotransplanted underneath the renal capsule and into the liver. Longitudinal in vivo MRI at days 1, 3, 8, 16, 23, and 30 after transplantation was performed in order to track the islet grafts. Results The renal subcapsular islet graft was easily detectable on T2*-weighted MRI images as a pocket of signal loss disrupting the contour of the kidney at the transplantation site. Islets transplanted in the liver appeared as distinct signal voids dispersed throughout the liver parenchyma. A semi-automated computational analysis of our MR imaging data established the feasibility of monitoring both the renal and intrahepatic grafts during the studied post-transplantation period. Conclusion This study establishes a method for the noninvasive, longitudinal detection of pancreatic islets transplanted into non-human primates using a low field clinical MRI system. PMID:19502957
Improved human islet preparations using Glucocorticoid and Exendin-4
Miki, Atsushi.; Ricordi, Camillo.; Yamamoto, Toshiyuki.; Sakuma, Yasunaru.; Misawa, Ryosuke.; Mita, Atsuyoshi.; Inverardi, Luca.; Alejandro, Rodolfo; Ichii, Hirohito.
2014-01-01
Objectives The effects of Glucocorticoid during culture on human islet cells have been controversial. Exendin-4 (EX) enhances the insulin secretion and significantly improves clinical outcomes in islet cell transplantation. In this study, we examined the effects of Glucocorticoids and exendin-4 on human islet cells during pre-transplant culture. Methods Methylprednisolone (MP) and/or EX were added to the standard culture medium for clinical islet cell transplantation. Islets were cultured for 24 hours with three different conditions (Control: no additives, MP alone, MP+EX). Beta cell fractional viability, cellular composition, multiple cytokine/chemokine production, multiple phosphorylation proteins and glucose induced insulin secretion were evaluated. Results Viable beta cell survival in MP and MP+EX group was significantly higher than in the control group. EX prevented MP induced reduction of insulin secretion. MP supplementation to the culture medium decreased cytokine and chemokine production. Moreover, Erk1/2 phosphorylation was significantly increased by MP and MP+EX. Conclusions Glucocorticoid supplementation into culture media significantly decreased the cytokine/chemokine production and increased the Erk1/2 phosphorylation, resulting in the improvement of human beta cell survival. In addition, EX maintained the insulin secretion suppressed by MP. The supplementation of MP and EX together could be a useful strategy to create suitable human islets for transplantation. PMID:25036907
Inhibition of inflammatory cytokine-induced response in human islet cells by withaferin A.
Peng, H; Olsen, G; Tamura, Y; Noguchi, H; Matsumoto, S; Levy, M F; Naziruddin, B
2010-01-01
After islet cell transplantation, a substantial mass of islets are lost owing to nonspecific inflammatory reactions. Cytokine exposure before or after transplantation can upregulate expression of proinflammatory genes via the nuclear factor-kappaB signaling pathway, eventually resulting in islet loss. To test the effects of a naturally occurring nuclear factor-kappaB inhibitor, withaferin A, on regulation of inflammatory genes in human islets. Human pancreatic islets were isolated using a modified Ricordi protocol. Purified islets were cultured for 2 days. The effect of withaferin A treatment on islet cell viability was examined using the fluorescein diacetate-propidium iodide dye exclusion test, and on function using a static glucose stimulation assay. Islet cells were treated with a cytokine mixture (50 U/mL of interleukin-1beta, 1000 U/mL of tumor necrosis factor-alpha, and 1000 U/mL of interferon-gamma) for 48 hours with or without withaferin A, 1 microg/mL. Treated islets were used for real-time polymerase chain reaction (PCR) array analysis for expression of inflammatory genes, and expression of other selected genes was analyzed using real-time PCR with single primers. Glucose stimulation and viability assays demonstrated that withaferin A was not toxic to islet cells. Of 84 inflammation-related genes examined using real-time PCR array analysis, 9 were significantly upregulated by cytokine treatment compared with the control group. However, addition of withaferin A to the culture significantly inhibited expression of all genes. Withaferin A significantly inhibits the inflammatory response of islet cells with cytokine exposure. Copyright 2010 Elsevier Inc. All rights reserved.
Glucose metabolism in pigs expressing human genes under an insulin promoter.
Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David
2015-01-01
Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Islet Transplantation and Encapsulation: An Update on Recent Developments
Vaithilingam, Vijayaganapathy; Tuch, Bernard E.
2011-01-01
Human islet transplantation can provide good glycemic control in diabetic recipients without exogenous insulin. However, a major factor limiting its application is the recipient's need to adhere to life-long immunosuppression, something that has serious side effects. Microencapsulating human islets is a strategy that should prevent rejection of the grafted tissue without the need for anti-rejection drugs. Despite promising studies in various animal models, the encapsulated human islets so far have not made an impact in the clinical setting. Many non-immunological and immunological factors such as biocompatibility, reduced immunoprotection, hypoxia, pericapsular fibrotic overgrowth, effects of the encapsulation process and post-transplant inflammation hamper the successful application of this promising technology. In this review, strategies are discussed to overcome the above-mentioned factors and to enhance the survival and function of encapsulated insulin-producing cells, whether in islets or surrogate β-cells. Studies at our center show that barium alginate microcapsules are biocompatible in rodents, but not in humans, raising concerns over the use of rodents to predict outcomes. Studies at our center also show that the encapsulation process had little or no effect on the cellular transcriptome of human islets and on their ability to function either in vitro or in vivo. New approaches incorporating further modifications to the microcapsule surface to prevent fibrotic overgrowth are vital, if encapsulated human islets or β-cell surrogates are to become a viable therapy option for type 1 diabetes in humans. PMID:21720673
A novel subcutaneous site of islet transplantation superior to the liver.
Yasunami, Yohichi; Nakafusa, Yuki; Nitta, Naoyoshi; Nakamura, Masafumi; Goto, Masafumi; Ono, Junko; Taniguchi, Masaru
2018-03-08
Islet transplantation is an attractive treatment for patients with insulin-dependent diabetes mellitus, and currently the liver is the favored transplantation site. However, an alternative site is desirable because of the low efficiency of hepatic transplantation, requiring 2-3 donors for a single recipient, and because the transplanted islets cannot be accessed or retrieved. We developed a novel procedure of islet transplantation to the inguinal subcutaneous white adipose tissue (ISWAT) of mice and described functional and morphological characteristics of transplanted syngeneic islets. Also, it was determined whether islet allograft rejection in the ISWAT can be prevented by immunosuppressive agents. Furthermore, it was examined whether human islets function when grafted in this particular site of immune-deficient mice. In this site, transplanted islets are engrafted as clusters and function to reverse STZ-induced diabetes in mice. Importantly, transplanted islets can be visualized by CT and are easily retrievable, and allograft rejection is preventable by blockade of co-stimulatory signals. Of much importance, the efficiency of islet transplantation in this site is superior to the liver, in which hyperglycemia of diabetic recipient mice is ameliorated after transplantation of 200 syngeneic islets (the islet number yielded from 1 mouse pancreas) to the ISWAT but not to the liver. Furthermore, human islets transplanted in this particular site function to reverse diabetes in immune-deficient mice. Thus, the ISWAT is superior to the liver as the site of islet transplantation, which may lead to improved outcome of clinical islet transplantation.
Kitzmann, Jennifer P; Pepper, Andrew R; Lopez, Boris G; Pawlick, Rena; Kin, Tatsuya; O’Gorman, Doug; Mueller, Kathryn R; Gruessner, Angelika C; Avgoustiniatos, Efstathios S; Karatzas, Theodore; Szot, Greg L; Posselt, Andrew M; Stock, Peter G; Wilson, John R; Shapiro, AM; Papas, Klearchos K
2014-01-01
The shipment of human islets from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Human islets(IE) were isolated from two manufacturing centers and shipped in 10cm2 surface area SRM vessels in temperature and pressure controlled containers to a distant center following at least two days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a micro centrifuge tube negative control (NC). LD was designed to mimic the standard culture density for human islet preparations (200 IE/cm2), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1–3 vessels. Upon receipt, islets were assessed for viability, measured by oxygen consumption rate normalized to DNA content (OCR/DNA), and quantity, measured by DNA, and, when possible, potency and function with dynamic glucose-stimulated insulin secretion (GSIS) measurements and transplants in immunodeficient B6 rag mice. Post-shipment OCR/DNA was not reduced in HD versus LD, and was substantially reduced in the NC condition. HD islets exhibited normal function post-shipment. Based on the data we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function. PMID:25131090
Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.
Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V
2014-01-01
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.
Ontogeny of Neuro-Insular Complexes and Islets Innervation in the Human Pancreas
Proshchina, Alexandra E.; Krivova, Yulia S.; Barabanov, Valeriy M.; Saveliev, Sergey V.
2014-01-01
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis. PMID:24795697
KIM, JAEHYUP; BREUNIG, MELISSA J.; ESCALANTE, LEAH E.; BHATIA, NEEHAR; DENU, RYAN A.; DOLLAR, BRIDGET A.; STEIN, ANDREW P.; HANSON, SUMMER E.; NADERI, NADIA; RADEK, JAMES; HAUGHY, DERMOT; BLOOM, DEBRA D.; ASSADI-PORTER, FARIBA M.; HEMATTI, PEIMAN
2012-01-01
Background aims Mesenchymal stromal cells (MSC) have now been shown to reside in numerous tissues throughout the body, including the pancreas. Ex vivo culture-expanded MSC derived from many tissues display important interactions with different types of immune cells in vitro and potentially play a significant role in tissue homeostasis in vivo. In this study, we investigated the biologic and immunomodulatory properties of human pancreatic islet-derived MSC. Methods We culture-expanded MSC from cadaveric human pancreatic islets and characterized them using flow cytometry, differentiation assays and nuclear magnetic resonance-based metabolomics. We also investigated the immunologic properties of pancreatic islet-derived MSC compared with bone marrow (BM) MSC. Results Pancreatic islet and BM-derived MSC expressed the same cell-surface markers by flow cytometry, and both could differentiate into bone, fat and cartilage. Metabolomics analysis of MSC from BM and pancreatic islets also showed a similar set of metabolic markers but quantitative polymerase chain reactions showed that pancreatic islet MSC expressed more interleukin(IL)-1b, IL-6, STAT3 and FGF9 compared with BM MSC, and less IL-10. However, similar to BM MSC, pancreatic islet MSC were able to suppress proliferation of allogeneic T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies. Conclusions Our in vitro analysis shows pancreatic islet-derived MSC have phenotypic, biologic and immunomodulatory characteristics similar, but not identical, to BM-derived MSC. We propose that pancreatic islet-derived MSC could potentially play an important role in improving the outcome of pancreatic islet transplantation by promoting engraftment and creating a favorable immune environment for long-term survival of islet allografts. PMID:22571381
Kumar, Rajesh; Balhuizen, Alexander; Amisten, Stefan; Lundquist, Ingmar; Salehi, Albert
2011-07-01
We have recently shown that 17β-estradiol (E2) and the synthetic G protein-coupled receptor 30 (GPR30) ligand G-1 have antiapoptotic actions in mouse pancreatic islets, raising the prospect that they might exert beneficial effects also in human islets. The objective of the present study was to identify the expression of GPR30 in human islets and clarify the role of GPR30 in islet hormone secretion and β-cell survival. GPR30 expression was analyzed by confocal microscopy, Western blot, and quantitative PCR in islets from female and male donors. Hormone secretion, phosphatidylinositol hydrolysis, cAMP content, and caspase-3 activity in female islets were determined with conventional methods and apoptosis with the annexin-V method. Confocal microscopy revealed GPR30 expression in islet insulin, glucagon, and somatostatin cells. GPR30 mRNA and protein expression was markedly higher in female vs. male islets. An amplifying effect of G-1 or E2 on cAMP content and insulin secretion from isolated female islets was not influenced by the E2 genomic receptor (ERα and ERβ) antagonists ICI 182,780 and EM-652. Cytokine-induced (IL-1β plus TNFα plus interferon-γ) apoptosis in islets cultured for 24 h at 5 mmol/liter glucose was almost abolished by G-1 or E2 treatment and was not affected by the nuclear estrogen receptor antagonists. Concentration-response studies on female islets from healthy controls and type 2 diabetic subjects showed that both E2 and G-1 displayed important antidiabetic actions by improving glucose-stimulated insulin release while suppressing glucagon and somatostatin secretion. In view of these findings, we propose that small molecules activating GPR30 could be promising in the therapy of diabetes mellitus.
Effect of Over 10-Year Cryopreserved Encapsulated Pancreatic Islets Of Langerhans.
Kinasiewicz, Joanna; Antosiak-Iwanska, Magdalena; Godlewska, Ewa; Sitarek, Elzbieta; Sabat, Marek; Fiedor, Piotr; Granicka, Ludomira
2017-08-28
Immunoisolation of pancreatic islets of Langerhans performed by the encapsulation process may be a method to avoid immunosuppressive therapy after transplant. The main problem related to islet transplant is shortage of human pancreata. Resolution of this obstacle may be cryopreservation of encapsulated islets, which enables collection of sufficient numbers of isolated islets required for transplant and long-term storage. Here, we assessed the ability of encapsulated islets to function after long-term banking at low temperature. Islets of Langerhans isolated from rat, pig, and human pancreata were encapsulated within alginate-poly-L-lysine-alginate microcapsules. Cryopreservation was carried out using a controlled method of freezing (Kriomedpol freezer; Kriomedpol, Warsaw, Poland), and samples were stored in liquid nitrogen. After 10 years, the samples were thawed with the rapid method (with 0.75 M of sucrose) and then cultured. We observed that microcapsules containing islets maintained their shape and integrity after thawing. During culture, free islets were defragmented into single cells, whereas encapsulated islets were still round in shape and compact. After 1, 4, and 7 days of culture of encapsulated islets, the use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests showed increased mitochondrial activity. After they were thawed, the insulin secretion capacity was comparable with that obtained with fresh islets. Cryopreservation and storage of free and microencapsulated islets were possible for about 10 years, although only encapsulated islets retained viability and secretory properties.
Pingitore, Attilio; Chambers, Edward S; Hill, Thomas; Maldonado, Inmaculada Ruz; Liu, Bo; Bewick, Gavin; Morrison, Douglas J; Preston, Tom; Wallis, Gareth A; Tedford, Catriona; Castañera González, Ramón; Huang, Guo C; Choudhary, Pratik; Frost, Gary; Persaud, Shanta J
2017-02-01
Diet-derived short chain fatty acids (SCFAs) improve glucose homeostasis in vivo, but the role of individual SCFAs and their mechanisms of action have not been defined. This study evaluated the effects of increasing colonic delivery of the SCFA propionate on β-cell function in humans and the direct effects of propionate on isolated human islets in vitro. For 24 weeks human subjects ingested an inulin-propionate ester that delivers propionate to the colon. Acute insulin, GLP-1 and non-esterified fatty acid (NEFA) levels were quantified pre- and post-supplementation in response to a mixed meal test. Expression of the SCFA receptor FFAR2 in human islets was determined by western blotting and immunohistochemistry. Dynamic insulin secretion from perifused human islets was quantified by radioimmunoassay and islet apoptosis was determined by quantification of caspase 3/7 activities. Colonic propionate delivery in vivo was associated with improved β-cell function with increased insulin secretion that was independent of changes in GLP-1 levels. Human islet β-cells expressed FFAR2 and propionate potentiated dynamic glucose-stimulated insulin secretion in vitro, an effect that was dependent on signalling via protein kinase C. Propionate also protected human islets from apoptosis induced by the NEFA sodium palmitate and inflammatory cytokines. Our results indicate that propionate has beneficial effects on β-cell function in vivo, and in vitro analyses demonstrated that it has direct effects to potentiate glucose-stimulated insulin release and maintain β-cell mass through inhibition of apoptosis. These observations support ingestion of propiogenic dietary fibres to maintain healthy glucose homeostasis. © 2016 John Wiley & Sons Ltd.
Wright, James R; Yang, Hua; Hyrtsenko, Olga; Xu, Bao-You; Yu, Weiming; Pohajdak, Bill
2014-01-01
Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes. PMID:25040337
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David
2010-09-03
Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less
Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future
Liu, Zhengzhao; Hu, Wenbao; He, Tian; Dai, Yifan; Hara, Hidetaka; Bottino, Rita; Cooper, David K. C.; Cai, Zhiming; Mou, Lisha
2017-01-01
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes. PMID:28155815
Ghosal, Abhisek; Sekar, Thillai V.
2014-01-01
Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078
Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro
2011-01-01
Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896
Characterization of resident lymphocytes in human pancreatic islets
Radenkovic, M.; Uvebrant, K.; Skog, O.; Sarmiento, L.; Avartsson, J.; Storm, P.; Vickman, P.; Bertilsson, P.‐A.; Fex, M.; Korgsgren, O.
2016-01-01
Summary The current view of type 1 diabetes (T1D) is that it is an immune‐mediated disease where lymphocytes infiltrate the pancreatic islets, promote killing of beta cells and cause overt diabetes. Although tissue resident immune cells have been demonstrated in several organs, the composition of lymphocytes in human healthy pancreatic islets have been scarcely studied. Here we aimed to investigate the phenotype of immune cells associated with human islets of non‐diabetic organ donors. A flow cytometry analysis of isolated islets from perfused pancreases (n = 38) was employed to identify alpha, beta, T, natural killer (NK) and B cells. Moreover, the expression of insulin and glucagon transcripts was evaluated by RNA sequencing. Up to 80% of the lymphocytes were CD3+ T cells with a remarkable bias towards CD8+ cells. Central memory and effector memory phenotypes dominated within the CD8+ and CD4+ T cells and most CD8+ T cells were positive for CD69 and up to 50–70% for CD103, both markers of resident memory cells. The frequency of B and NK cells was low in most islet preparations (12 and 3% of CD45+ cells, respectively), and the frequency of alpha and beta cells varied between donors and correlated clearly with insulin and glucagon mRNA expression. In conclusion, we demonstrated the predominance of canonical tissue resident memory CD8+ T cells associated with human islets. We believe that these results are important to understand more clearly the immunobiology of human islets and the disease‐related phenotypes observed in diabetes. PMID:27783386
Kuznetsova, Alexandra; Yu, Yue; Hollister-Lock, Jennifer; Opare-Addo, Lynn; Rozzo, Aldo; Sadagurski, Marianna; Norquay, Lisa; Reed, Jessica E.; El Khattabi, Ilham; Bonner-Weir, Susan; Weir, Gordon C.; Sharma, Arun
2016-01-01
The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes. PMID:27152363
Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds.
Hlavaty, K A; Gibly, R F; Zhang, X; Rives, C B; Graham, J G; Lowe, W L; Luo, X; Shea, L D
2014-07-01
Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.
Pancreatic islet isolation variables in non-human primates (rhesus macaques).
Andrades, P; Asiedu, C K; Gansuvd, B; Inusah, S; Goodwin, K J; Deckard, L A; Jargal, U; Thomas, J M
2008-07-01
Non-human primates (NHPs) are important preclinical models for pancreatic islet transplantation (PIT) because of their close phylogenetic and immunological relationship with humans. However, low availability of NHP tissue, long learning curves and prohibitive expenses constrain the consistency of isolated NHP islets for PIT studies. To advance preclinical studies, we attempted to identify key variables that consistently influence the quantity and quality of NHP islets. Seventy-two consecutive pancreatic islet isolations from rhesus macaques were reviewed retrospectively. A scaled down, semi-automated islet isolation method was used, and monkeys with streptozotocin-induced diabetes, weighing 3-7 kg, served as recipients for allotransplantation. We analysed the effects of 22 independent variables grouped as donor factors, surgical factors and isolation technique factors. Islet yields, success of isolation and transplantation results were used as quantitative and qualitative outcomes. In the multivariate analysis, variables that significantly affected islet yield were the type of monkey, pancreas preservation, enzyme lot and volume of enzyme delivered. The variables associated with successful isolation were the enzyme lot and volume delivered. The transplant result was correlated with pancreas preservation, enzyme lot, endotoxin levels and COBE collection method. Islet quantity and quality are highly variable between isolations. The data reviewed suggest that future NHP isolations should use bilayer preservation, infuse more than 80 ml of Liberase into the pancreas, collect non-fractioned tissue from the COBE, and strictly monitor for infection.
Simplified method to isolate highly pure canine pancreatic islets.
Woolcott, Orison O; Bergman, Richard N; Richey, Joyce M; Kirkman, Erlinda L; Harrison, L Nicole; Ionut, Viorica; Lottati, Maya; Zheng, Dan; Hsu, Isabel R; Stefanovski, Darko; Kabir, Morvarid; Kim, Stella P; Catalano, Karyn J; Chiu, Jenny D; Chow, Robert H
2012-01-01
The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS). Male mongrel dogs were used in the study. M2 (n = 7) included higher collagenase concentration, shorter digestion time, faster shaking speed, colder purification temperature, and higher differential density gradient than M1 (n = 7). Islet yield was similar between methods (3111.0 ± 309.1 and 3155.8 ± 644.5 islets/g, M1 and M2, respectively; P = 0.951). Pancreas weight and purity together were directly associated with the yield (adjusted R(2) = 0.61; P = 0.002). Purity was considerably improved with M2 (96.7% ± 1.2% vs 75.0% ± 6.3%; P = 0.006). M2 improved GSIS (P = 0.021). Independently, digestion time was inversely associated with GSIS. We describe an isolation method (M2) to obtain a highly pure yield of dog islets with adequate β-cell glucose responsiveness. The isolation variables associated with the outcomes in our canine model confirm previous reports in other species, including humans.
Simplified Method to Isolate Highly Pure Canine Pancreatic Islets
Woolcott, Orison O.; Bergman, Richard N.; Richey, Joyce M.; Kirkman, Erlinda L.; Harrison, L. Nicole; Ionut, Viorica; Lottati, Maya; Zheng, Dan; Hsu, Isabel R.; Stefanovski, Darko; Kabir, Morvarid; Kim, Stella P.; Catalano, Karyn J.; Chiu, Jenny D.; Chow, Robert H.
2015-01-01
Objectives The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS). Methods Male mongrel dogs were used in the study. M2 (n = 7) included higher collagenase concentration, shorter digestion time, faster shaking speed, colder purification temperature, and higher differential density gradient than M1 (n = 7). Results Islet yield was similar between methods (3111.0 ± 309.1 and 3155.8 ± 644.5 islets/g, M1 and M2, respectively; P = 0.951). Pancreas weight and purity together were directly associated with the yield (adjusted R2 = 0.61; P = 0.002). Purity was considerably improved with M2 (96.7% ± 1.2% vs 75.0% ± 6.3%; P = 0.006). M2 improved GSIS (P = 0.021). Independently, digestion time was inversely associated with GSIS. Conclusions We describe an isolation method (M2) to obtain a highly pure yield of dog islets with adequate β-cell glucose responsiveness. The isolation variables associated with the outcomes in our canine model confirm previous reports in other species, including humans. PMID:21792087
Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy
Heileman, K.; Daoud, J.; Hasilo, C.; Gasparrini, M.; Paraskevas, S.; Tabrizian, M.
2015-01-01
Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects. PMID:26339324
Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M
2013-01-01
Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.
Pancreatic Islets: Methods for Isolation and Purification of Juvenile and Adult Pig Islets.
Brandhorst, Heide; Johnson, Paul R V; Brandhorst, Daniel
The current situation of organ transplantation is mainly determined by the disbalance between the number of available organs and the number of patients on the waiting list. This obvious dilemma might be solved by the transplantation of porcine organs into human patients. The metabolic similarities which exist between both species made pancreatic islets of Langerhans to that donor tissue which will be most likely transplanted in human recipients. Nevertheless, the successful isolation of significant yields of viable porcine islets is extremely difficult and requires extensive experiences in the field. This review is focussing on the technical challenges, pitfalls and particularities that are associated with the isolation of islets from juvenile and adult pigs considering donor variables that can affect porcine islet isolation outcome.
Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum.
Avgoustiniatos, Efstathios S; Scott, William E; Suszynski, Thomas M; Schuurman, Henk-Jan; Nelson, Rebecca A; Rozak, Phillip R; Mueller, Kate R; Balamurugan, A N; Ansite, Jeffrey D; Fraga, Daniel W; Friberg, Andrew S; Wildey, Gina M; Tanaka, Tomohiro; Lyons, Connor A; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K
2012-01-01
Culture of human islets before clinical transplantation or distribution for research purposes is standard practice. At the time the Edmonton protocol was introduced, clinical islet manufacturing did not include culture, and human serum albumin (HSA), instead of fetal bovine serum (FBS), was used during other steps of the process to avoid the introduction of xenogeneic material. When culture was subsequently introduced, HSA was also used for medium supplementation instead of FBS, which was typically used for research islet culture. The use of HSA as culture supplement was not evaluated before this implementation. We performed a retrospective analysis of 103 high-purity islet preparations (76 research preparations, all with FBS culture supplementation, and 27 clinical preparations, all with HSA supplementation) for oxygen consumption rate per DNA content (OCR/DNA; a measure of viability) and diabetes reversal rate in diabetic nude mice (a measure of potency). After 2-day culture, research preparations exhibited an average OCR/DNA 51% higher (p < 0.001) and an average diabetes reversal rate 54% higher (p < 0.05) than clinical preparations, despite 87% of the research islet preparations having been derived from research-grade pancreata that are considered of lower quality. In a prospective paired study on islets from eight research preparations, OCR/DNA was, on average, 27% higher with FBS supplementation than that with HSA supplementation (p < 0.05). We conclude that the quality of clinical islet preparations can be improved when culture is performed in media supplemented with serum instead of albumin.
Andersson, Arne; Bohman, Sara; Borg, L. A. Håkan; Paulsson, Johan F.; Schultz, Sebastian W.; Westermark, Gunilla T.; Westermark, Per
2008-01-01
Following the encouraging report of the Edmonton group, there was a rejuvenation of the islet transplantation field. After that, more pessimistic views spread when long-term results of the clinical outcome were published. A progressive loss of the β-cell function meant that almost all patients were back on insulin therapy after 5 years. More than 10 years ago, we demonstrated that amyloid deposits rapidly formed in human islets and in mouse islets transgenic for human IAPP when grafted into nude mice. It is, therefore, conceivable to consider amyloid formation as one potential candidate for the long-term failure. The present paper reviews attempts in our laboratories to elucidate the dynamics of and mechanisms behind the formation of amyloid in transplanted islets with special emphasis on the impact of long-term hyperglycemia. PMID:19277203
Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie
2015-01-01
Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p < 0.001). Comparisons of individual methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p < 0.001). However, islet purity was routinely estimated as significantly higher with the manual method versus the ADIA method (p < 0.001). The ADIA method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.
Rheinheimer, Jakeline; Ziegelmann, Patrícia Klarmann; Carlessi, Rodrigo; Reck, Luciana Ross; Bauer, Andrea Carla; Leitão, Cristiane Bauermann; Crispim, Daisy
2014-01-01
Collagenases are critical reagents determining yield and quality of isolated human pancreatic islets and may affect islet transplantation outcome. Some islet transplantation centers have compared 2 or more collagenase blends; however, the results regarding differences in quantity and quality of islets are conflicting. Thus, for the first time, a mixed treatment comparison (MTC) meta-analysis was carried out to compile data about the effect of different collagenases used for human pancreas digestion on islet yield, purity, viability and stimulation index (SI). Pubmed, Embase and Cochrane libraries were searched. Of 755 articles retrieved, a total of 15 articles fulfilled the eligibility criteria and were included in the MTC meta-analysis. Our results revealed that Vitacyte and Liberase MTF were associated with a small increase in islet yield (islet equivalent number/g pancreas) when compared with Sevac enzyme [standardized mean difference (95% credible interval – CrI) = −2.19 (−4.25 to −0.21) and −2.28 (−4.49 to −0.23), respectively]. However, all other enzyme comparisons did not show any significant difference regarding islet yield. Purity and viability percentages were not significantly different among any of the analyzed digestion enzymes. Interestingly, Vitacyte and Serva NB1 were associated with increased SI when compared with Liberase MTF enzyme [unstandardized weighted mean difference (95% CrI) = −1.69 (−2.87 to −0.51) and −1.07 (−1.79 to −0.39), respectively]. In conclusion, our MTC meta-analysis suggests that the digestion enzymes currently being used for islet isolation works with similar efficiency regarding islet yield, purity and viability; however, Vitacyte and Serva NB1 enzymes seem to be associated with an improved SI as compared with Liberase MTF. PMID:25437379
Simeonovic, Charmaine J; Popp, Sarah K; Starrs, Lora M; Brown, Debra J; Ziolkowski, Andrew F; Ludwig, Barbara; Bornstein, Stefan R; Wilson, J Dennis; Pugliese, Alberto; Kay, Thomas W H; Thomas, Helen E; Loudovaris, Thomas; Choong, Fui Jiun; Freeman, Craig; Parish, Christopher R
2018-01-01
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Atchison, Nicole A.; Fan, Wei; Papas, Klearchos K.; Hering, Bernhard J.; Tsapatsis, Michael; Kokkoli, Efrosini
2010-01-01
Islet transplantation is a promising treatment for type 1 diabetes. Recent studies have demonstrated that human islet allografts can restore insulin independence to patients with this disease. As islet isolation and immunotherapeutic techniques improve, the demand for this cell-based therapy will dictate the need for other sources of islets. Pig islets could provide an unlimited supply for xenotransplantation and have shown promise as an alternative to human islet allografts. However, stresses imposed during islet isolation and transplantation decrease islet viability, leading to loss of graft function. In this study, we investigated the ability of a fibronectin-mimetic peptide, PR_b, which specifically binds to the α5β1 integrin, to reestablish lost extracellular matrix (ECM) around isolated pig islets and increase internalization of liposomes. Confocal microscopy and western blotting were used to show the presence of the integrin α5β1 on the pig islets on day 0 (day of isolation), as well as different days of islet culture. Islets cultured in medium supplemented with free PR_b for 48 hours were found to have increased levels of ECM fibronectin secretion compared to islets in normal culture conditions. Using confocal microscopy and flow cytometry we found that PR_b peptide-amphiphile functionalized liposomes delivered to the pig islets internalized into the cells in a PR_b concentration dependent manner, and non-functionalized liposomes showed minimal internalization. These studies proved that the fibronectin-mimetic peptide, PR_b, is an appropriate peptide bullet for applications involving α5β1 expressing pig islet cells. Fibronectin production stimulated through α5β1 PR_b binding may decrease apoptosis and therefore increase islet viability in culture. In addition, PR_b peptide-amphiphile functionalized liposomes may be used for targeted delivery of different agents to pig islet cells. PMID:20704278
Loganathan, G; Dawra, R K; Pugazhenthi, S; Wiseman, A C; Sanders, M A; Saluja, A K; Sutherland, D E R; Hering, B J; Balamurugan, A N
2010-01-01
Exocrine tissue is commonly cotransplanted with islets in autografting and allotransplantation of impure preparations. Proteases and insulin are released by acinar cells and islets, respectively, during pretransplantation culture and also systemically after transplantation. We hypothesized that released proteases could cleave insulin molecules and that addition of alpha-1 antitrypsin (A1AT) to impure islet cultures would block this cleavage, improving islet recovery and function. Trypsin, chymotrypsin, and elastase (TCE) activity and insulin levels were measured in culture supernates of pure (n = 5) and impure (n = 5) islet fractions, which were isolated from deceased donors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect insulin after incubation with proteases. We assessed the effects of A1AT supplementation (0.5 mg/mL; n = 4] on TCE activity, insulin levels, culture recovery, and islet quality. The ultrastructure of islets exposed to TCE versus control medium was examined using electron microscopy (EM). Protease (TCE) activity in culture supernatants was indirectly proportional to the percentage purity of islets: pure, impure, or highly impure. Increasingly lower levels of insulin were detected in culture supernatants when higher protease activity levels were present. Insulin levels measured from supernatants of impure and highly impure islet preparations were 61 +/- 23.7% and 34 +/- 33% of that in pure preparations, respectively. Incubation with commercially available proteases (TCE) or exocrine acinar cell supernatant cleaved insulin molecules as assessed using SDS-PAGE. Addition of A1AT to impure islet preparations reduced protease activity and restored normal insulin levels as detected using enzyme-linked immunosorbent assay (ELISA) and SDS-PAGE of culture supernates. A1AT improved insulin levels to 98% +/- 1.3% in impure and 78% +/- 34.2% in highly impure fractions compared with pure islet fractions. A1AT supplementation improved postculture recovery of islets in impure preparations compared with nontreated controls (72% +/- 9% vs 47% +/- 15%). Islet viability as measured using membrane integrity assays was similar in both the control (98% +/- 2%) and the A1AT-treated groups (99% +/- 1%). EM results revealed a reduction or absence of secretory granules after exposure to proteases (TCE). Culture of impure human islet fractions in the presence of A1AT prevented insulin cleavage and improved islet recovery. A1AT supplementation of islet culture media, therefore, may increase the proportion of human islet products that meet release criteria for transplantation. Copyright 2010 Elsevier Inc. All rights reserved.
Juang, Jyuhn-Huarng; Kuo, Chien-Hung; Peng, Shih-Jung; Tang, Shiue-Cheng
2015-02-01
The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.
Archibald, Peter R T; Williams, David J
2015-11-01
In the present study a cost-effectiveness analysis of allogeneic islet transplantation was performed and the financial feasibility of a human induced pluripotent stem cell-derived β-cell therapy was explored. Previously published cost and health benefit data for islet transplantation were utilized to perform the cost-effectiveness and sensitivity analyses. It was determined that, over a 9-year time horizon, islet transplantation would become cost saving and 'dominate' the comparator. Over a 20-year time horizon, islet transplantation would incur significant cost savings over the comparator (GB£59,000). Finally, assuming a similar cost of goods to islet transplantation and a lack of requirement for immunosuppression, a human induced pluripotent stem cell-derived β-cell therapy would dominate the comparator over an 8-year time horizon.
Rheinheimer, Jakeline; Bauer, Andrea C; Silveiro, Sandra P; Estivalet, Aline A F; Bouças, Ana P; Rosa, Annelise R; Souza, Bianca M de; Oliveira, Fernanda S de; Cruz, Lavínia A; Brondani, Letícia A; Azevedo, Mirela J; Lemos, Natália E; Carlessi, Rodrigo; Assmann, Taís S; Gross, Jorge L; Leitão, Cristiane B; Crispim, Daisy
2015-04-01
Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de Clínicas de Porto Alegre - Rio Grande do Sul, Brazil.
Evaluation of MicroRNA375 as a Novel Biomarker for Graft Damage in Clinical Islet Transplantation.
Kanak, Mazhar A; Takita, Morihito; Shahbazov, Rauf; Lawrence, Michael C; Chung, Wen Yuan; Dennison, Ashley R; Levy, Marlon F; Naziruddin, Bashoo
2015-08-01
Early and sensitive detection of islet graft damage is essential for improving posttransplant outcomes. MicroRNA 375 (miR375) has been reported as a biomarker of pancreatic β-cell death in small animal models. The miR375 levels were measured in purified human islets, sera from patients with autologous and allogeneic islet transplantation as well as total pancreatectomy alone (nontransplanted group). The miR375 levels were also determined in a miniaturized in vitro tube model comprising human islets and autologous blood. The miR375 expression level in islets was dose-dependent (P < 0.001) and significantly elevated after islet damage in plasma in the in vitro model (P = 0.003). Clinical analysis revealed that circulating miR375 levels in both autologous and allogeneic islet recipients were significantly elevated for 7 days after islet infusion, compared with the nontransplanted group (P = 0.005 and <0.001, respectively). Furthermore, miR375 detected the difference in islet graft damage among 3 different anti-inflammatory protocols for clinical autologous transplantation (P < 0.01). Circulating miR375 can be a reliable biomarker to detect graft damage in clinical islet transplantation because serum C-peptide and proinsulin levels are difficult to interpret due to the influence of multiple factors, such as β-cell stress and physiological response.
Boerschmann, H; Walter, M; Achenbach, P; Ziegler, A-G
2010-02-01
Immunomodulatory strategies in the management of type 1 diabetes mellitus (T1DM) have as their primary target the prevention of initiating islet autoimmunity (primary-), the secondary one is the progression to diabetes (secondary-) in non-diabetic persons at risk, and the decline of beta-cell function in new-onset patients (tertiary-prevention). This article reviews four recent immunointervention trials in patients with T1DM. (1) The Pre-POINT study is a primary prevention trial that will test whether vaccination with oral or nasal insulin can prevent the progression of islet autoimmunity and of T1DM in autoantibody-negative children who are genetically at high diabetes risk. (2) The Cord Blood study is a tertiary immunointervention trial that will test whether administration of autologous umbilical cord blood to children with T1DM can lead to regeneration of pancreatic islet insulin-producing beta-cells and improved blood glucose control. (3) The GAD Vaccination study will test whether vaccination with alum-formulated rhGAD65 (recombinant human glutamic acid decarboxylate) can preserve beta-cell function in 320 children with newly diagnosed T1DM, as has been suggested in a recent phase II study. (4) The AIDA study will test the beta-cell protective effect of interleukin-1-receptor antagonist Anakinra in 80 patients with T1DM, which has recently been shown to improve beta-cell function in patients with type 2 diabetes. Copyright Georg Thieme Verlag KG Stuttgart . New York.
Effectiveness of a web-based automated cell distribution system.
Niland, Joyce C; Stiller, Tracey; Cravens, James; Sowinski, Janice; Kaddis, John; Qian, Dajun
2010-01-01
In recent years, industries have turned to the field of operations research to help improve the efficiency of production and distribution processes. Largely absent is the application of this methodology to biological materials, such as the complex and costly procedure of human pancreas procurement and islet isolation. Pancreatic islets are used for basic science research and in a promising form of cell replacement therapy for a subset of patients afflicted with severe type 1 diabetes mellitus. Having an accurate and reliable system for cell distribution is therefore crucial. The Islet Cell Resource Center Consortium was formed in 2001 as the first and largest cooperative group of islet production and distribution facilities in the world. We previously reported on the development of a Matching Algorithm for Islet Distribution (MAID), an automated web-based tool used to optimize the distribution of human pancreatic islets by matching investigator requests to islet characteristics. This article presents an assessment of that algorithm and compares it to the manual distribution process used prior to MAID. A comparison was done using an investigator's ratio of the number of islets received divided by the number requested pre- and post-MAID. Although the supply of islets increased between the pre- versus post-MAID period, the median received-to-requested ratio remained around 60% due to an increase in demand post-MAID. A significantly smaller variation in the received-to-requested ratio was achieved in the post- versus pre-MAID period. In particular, the undesirable outcome of providing users with more islets than requested, ranging up to four times their request, was greatly reduced through the algorithm. In conclusion, this analysis demonstrates, for the first time, the effectiveness of using an automated web-based cell distribution system to facilitate efficient and consistent delivery of human pancreatic islets by enhancing the islet matching process.
Liu, S; Kilic, G; Meyers, M S; Navarro, G; Wang, Y; Oberholzer, J; Mauvais-Jarvis, F
2013-02-01
Pancreatic islet transplantation (PIT) offers a physiological treatment for type 1 diabetes, but the failure of islet engraftment hinders its application. The female hormone 17β-oestradiol (E2) favours islet survival and stimulates angiogenesis, raising the possibility that E2 may enhance islet engraftment following PIT. To explore this hypothesis, we used an insulin-deficient model with xenotransplantation of a marginal dose of human islets in nude mice rendered diabetic with streptozotocin. This was followed by 4 weeks of treatment with vehicle, E2, the non-feminising oestrogen 17α-oestradiol (17α-E2), the oestrogen receptor (ER) α agonist propyl-pyrazole-triol (PPT), the ERβ agonist diarylpropionitrile (DPN) or the G protein-coupled oestrogen receptor (GPER) agonist G1. Treatment with E2, 17α-E2, PPT, DPN or G1 acutely improved blood glucose and eventually promoted islet engraftment, thus reversing diabetes. The effects of E2 were retained in the presence of immunosuppression and persisted after discontinuation of E2 treatment. E2 produced an acute decrease in graft hypoxic damage and suppressed beta cell apoptosis. E2 also acutely suppressed hyperglucagonaemia without altering insulin secretion, leading to normalisation of blood glucose. During PIT, E2 synergistic actions contribute to enhancing human islet-graft survival, revascularisation and functional mass. This study identifies E2 as a short-term treatment to improve PIT.
Noso, Shinsuke; Kataoka, Kohsuke; Kawabata, Yumiko; Babaya, Naru; Hiromine, Yoshihisa; Yamaji, Kaori; Fujisawa, Tomomi; Aramata, Shinsaku; Kudo, Takashi; Takahashi, Satoru; Ikegami, Hiroshi
2010-01-01
OBJECTIVE Tissue-specific self-antigens are ectopically expressed within the thymus and play an important role in the induction of central tolerance. Insulin is expressed in both pancreatic islets and the thymus and is considered to be the primary antigen for type 1 diabetes. Here, we report the role of the insulin transactivator MafA in the expression of insulin in the thymus and susceptibility to type 1 diabetes. RESEARCH DESIGN AND METHODS The expression profiles of transcriptional factors (Pdx1, NeuroD, Mafa, and Aire) in pancreatic islets and the thymus were examined in nonobese diabetic (NOD) and control mice. Thymic Ins2 expression and serum autoantibodies were examined in Mafa knockout mice. Luciferase reporter assay was performed for newly identified polymorphisms of mouse Mafa and human MAFA. A case-control study was applied for human MAFA polymorphisms. RESULTS Mafa, Ins2, and Aire expression was detected in the thymus. Mafa expression was lower in NOD thymus than in the control and was correlated with Ins2 expression. Targeted disruption of MafA reduced thymic Ins2 expression and induced autoantibodies against pancreatic islets. Functional polymorphisms of MafA were newly identified in NOD mice and humans, and polymorphisms of human MAFA were associated with susceptibility to type 1 diabetes but not to autoimmune thyroid disease. CONCLUSIONS These data indicate that functional polymorphisms of MafA are associated with reduced expression of insulin in the thymus and susceptibility to type 1 diabetes in the NOD mouse as well as human type 1 diabetes. PMID:20682694
Thurner, Matthias; van de Bunt, Martijn; Torres, Jason M; Mahajan, Anubha; Nylander, Vibe; Bennett, Amanda J; Gaulton, Kyle J; Barrett, Amy; Burrows, Carla; Bell, Christopher G; Lowe, Robert; Beck, Stephan; Rakyan, Vardhman K; Gloyn, Anna L
2018-01-01
Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n = 17) and DNA methylation (whole-genome bisulphite sequencing, n = 10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis. PMID:29412141
Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.
2014-01-01
Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569
Novelli, Michela; Beffy, Pascale; Menegazzi, Marta; De Tata, Vincenzo; Martino, Luisa; Sgarbossa, Anna; Porozov, Svetlana; Pippa, Anna; Masini, Matilde; Marchetti, Piero; Masiello, Pellegrino
2014-02-01
The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.
Korutla, Laxminarayana; Habertheuer, Andreas; Yu, Ming; Rostami, Susan; Yuan, Chao-Xing; Reddy, Sanjana; Korutla, Varun; Koeberlein, Brigitte; Trofe-Clark, Jennifer; Rickels, Michael R.; Naji, Ali
2017-01-01
In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody–conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue. PMID:28319051
Pseudoislet of hybrid cellular spheroids from commercial cell lines.
Jo, Y H; Nam, B M; Kim, B Y; Nemeno, J G; Lee, S; Yeo, J E; Yang, W; Park, S H; Kim, Y S; Lee, J I
2013-10-01
Investigators conducting diabetes-related research have focused on islet transplantation as a radical therapy for type 1 diabetes mellitus. Pancreatic islet isolation, an essential process, is a very demanding work because of the proteolytic enzymes, species, treatment time, and individual difference. Replacement of primary isolated pancreatic islets must be carried out continuously for various in vitro tests, making primary isolated islets a useful tool for cell transplantation research. Hence, we sought to develop pseudoislets from commercial pancreas-derived cell lines. In this study, we used RIN-5F and RIN-m cells, which secrete insulin, somatostatin, or glucagon. To manufacture hybrid cellular spheroids, the cells were cultured under hanging drop plate and nonadhesive plate methods. We observed that hybrid cellular pseudoislets exhibited an oval shape, with sizes ranging from 590 to 1200 μm. Their morphology was similar to naïve islets. Cell line pseudoislets secreted and expressed insulin, glucagon, and somatostatin, as confirmed by reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry analyses. Thus, the current artificially manufactured biomimetic pseudoislets resembled pancreatic islets of the endocrine system, appearing as cellular aggregates that secreted insulin, glucagon, and somatostatin. Enhanced immunoisolation techniques may lead to the development of new islet sources for pancreatic transplantation through this pseudoislet strategy. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Pancreatic islet blood flow and its measurement
Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola
2016-01-01
Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642
Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.
Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C
2017-01-01
Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.
Carchia, E; Porreca, I; Almeida, P J; D'Angelo, F; Cuomo, D; Ceccarelli, M; De Felice, M; Mallardo, M; Ambrosino, C
2015-10-29
Epidemiologic and experimental studies have associated changes of blood glucose homeostasis to Bisphenol A (BPA) exposure. We took a toxicogenomic approach to investigate the mechanisms of low-dose (1 × 10(-9 )M) BPA toxicity in ex vivo cultures of primary murine pancreatic islets and hepatocytes. Twenty-nine inhibited genes were identified in islets and none in exposed hepatocytes. Although their expression was slightly altered, their impaired cellular level, as a whole, resulted in specific phenotypic changes. Damage of mitochondrial function and metabolism, as predicted by bioinformatics analyses, was observed: BPA exposure led to a time-dependent decrease in mitochondrial membrane potential, to an increase of ROS cellular levels and, finally, to an induction of apoptosis, attributable to the bigger Bax/Bcl-2 ratio owing to activation of NF-κB pathway. Our data suggest a multifactorial mechanism for BPA toxicity in pancreatic islets with emphasis to mitochondria dysfunction and NF-κB activation. Finally, we assessed in vitro the viability of BPA-treated islets in stressing condition, as exposure to high glucose, evidencing a reduced ability of the exposed islets to respond to further damages. The result was confirmed in vivo evaluating the reduction of glycemia in hyperglycemic mice transplanted with control and BPA-treated pancreatic islets. The reported findings identify the pancreatic islet as the main target of BPA toxicity in impairing the glycemia. They suggest that the BPA exposure can weaken the response of the pancreatic islets to damages. The last observation could represent a broader concept whose consideration should lead to the development of experimental plans better reproducing the multiple exposure conditions.
Attenuation of primary nonfunction for syngeneic islet graft using sodium 4-phenylbutyrate.
Fu, S-H; Chen, S-T; Hsu, B R-S
2005-05-01
Sodium 4-phenylbutyrate (4-SPB), an aromatic derivative of butyric acid, was examined to elucidate its effect on islet engraftment in a syngeneic transplantation model using C57BL/6 mice. Diabetic mice that received subrenal implantation of 150 islets on day 0 and oral administration of twice daily 4-SPB (500 mg/kg body weight) on days -2 through 28 displayed a significantly shorter duration of posttransplantation temporary hyperglycemia than diabetic mice that received islets in isotonic sodium chloride solution (NaCl), namely 16 +/- 2 (n = 12) vs 23 +/- 2 days (n = 7; P < .05). Four weeks after transplantation, the insulin content (IC) of grafts from mice treated with islets and 4-SPB was substantially higher than that of grafts from mice treated with islets and NaCl, namely 2.59 +/- 0.37 (n = 8) vs 1.36 +/- 0.36 mug (n = 13; P < .01). The IC of pancreatic remnants showed no significant difference between groups after 2 and 4 weeks of incubation. In vitro studies demonstrated that the net glucose-stimulated insulin secretion (GSIS) and the ratio of net GSIS to the IC of islets cultured with 4-SPB (1 mM) did not differ significantly from those cultured with NaCl. The lipopolysaccharide-stimulated secretions of IL-1beta, IL-10, and IFNgamma from peritoneal exudate monocytes were significantly reduced by co-incubation with 4-SPB (1 mM). In conclusion, our data suggest that daily administration of 4-SPB reduces primary nonfunction and enhances islet engraftment in a syngeneic mouse transplantation model.
C3aR and C5aR1 act as key regulators of human and mouse β-cell function.
Atanes, Patricio; Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Hawkes, Ross; Liu, Bo; Zhao, Min; Huang, Guo Cai; Persaud, Shanta J; Amisten, Stefan
2018-02-01
Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca 2+ ]i), ATP generation and apoptosis were assessed by standard techniques. C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca 2+ ]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.
Oxygenation of the Intraportally Transplanted Pancreatic Islet
2016-01-01
Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure (P) (in surrounding portal blood), and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF) of 14% and a function loss of 72% at a low external P. Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μm diameter) account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional. PMID:27872862
Oxygenation of the Intraportally Transplanted Pancreatic Islet.
Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K
2016-01-01
Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure ( P ) (in surrounding portal blood), and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF) of 14% and a function loss of 72% at a low external P . Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μ m diameter) account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional.
Regulation of xenogeneic porcine pancreatic islets.
Arcidiacono, Judith A; Evdokimov, Evgenij; Lee, Mark H; Jones, Jeff; Rudenko, Larisa; Schneider, Bruce; Snoy, Phillip J; Wei, Cheng-Hong; Wensky, Allen K; Wonnacott, Keith
2010-01-01
The use of xenogeneic porcine pancreatic islets has been shown to be a potentially promising alternative to using human allogeneic islets to treat insulin-dependent type 1 diabetes (T1D). This article provides an overview of the existing FDA regulatory framework that would be applied to the regulation of clinical trials utilizing xenogeneic porcine pancreatic islets to treat T1D. © 2010 John Wiley & Sons A/S.
Ghanaat-Pour, Hamedeh; Huang, Zhen; Lehtihet, Mikael; Sjöholm, Ake
2007-08-01
The spontaneously diabetic Goto-Kakizaki (GK) rat is frequently used as a model for human type 2 diabetes. Selective loss of glucose-sensitive insulin secretion is an early pathogenetic event in human type 2 diabetes, and such a defect also typifies islets from the GK rat. We investigated whether expression of specific glucose-regulated genes is disturbed in islets from GK rats when compared with Wistar rats. Large-scale gene expression analysis using Affymetrix microarrays and qRT-PCR measurements of mRNA species from normal and diabetic islets were performed after 48 h of culture at 3 or 20 mM glucose. Of the 2020 transcripts differentially regulated in diabetic GK islets when compared with controls, 1033 were up-regulated and 987 were down-regulated. We identified significant changes in islet mRNAs involved in glucose sensing, phosphorylation, incretin action, glucocorticoid handling, ion transport, mitogenesis, and apoptosis that clearly distinguish diabetic animals from controls. Such markers may provide clues to the pathogenesis of human type 2 diabetes and may be of predictive and therapeutical value in clinical settings in efforts aiming at conferring beta-cell protection against apoptosis, impaired regenerative capacity and functional suppression occurring in diabetes.
Meier, Daniel T; Entrup, Leon; Templin, Andrew T; Hogan, Meghan F; Samarasekera, Thanya; Zraika, Sakeneh; Boyko, Edward J; Kahn, Steven E
2015-08-01
Culture of isolated rodent islets is widely used in diabetes research to assess different endpoints, including outcomes requiring histochemical staining. As islet yields during isolation are limited, we determined the number of islets required to obtain reliable data by histology. We found that mean values for insulin-positive β-cell area/islet area, thioflavin S-positive amyloid area/islet area and β-cell apoptosis do not vary markedly when more than 30 islets are examined. Measurement variability declines as more islets are quantified, so that the variability of the coefficient of variation (CV) in human islet amyloid polypeptide (hIAPP) transgenic islets for β-cell area/islet area, amyloid area/islet area and β-cell apoptosis are 13.20% ± 1.52%, 10.03% ± 1.76% and 6.78% ± 1.53%, respectively (non-transgenic: 7.65% ± 1.17% β-cell area/islet area and 8.93% ± 1.56% β-cell apoptosis). Increasing the number of islets beyond 30 had marginal effects on the CV. Using 30 islets, 6 hIAPP-transgenic preparations are required to detect treatment effects of 14% for β-cell area/islet area, 30% for amyloid area/islet area and 23% for β-cell apoptosis (non-transgenic: 9% for β-cell area/islet area and 45% for β-cell apoptosis). This information will be of value in the design of studies using isolated islets to examine β cells and islet amyloid. © The Author(s) 2015.
Andersson, Eva-Marie; Heath, Nikki; Persson-kry, Anette; Collins, Richard; Hicks, Ryan; Dekker, Niek; Forslöw, Anna
2017-01-01
It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications. PMID:29117231
Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina
2017-01-01
Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352
Wang, Jingjing; Sun, Zhen; Gou, Wenyu; Adams, David B; Cui, Wanxing; Morgan, Katherine A; Strange, Charlie; Wang, Hongjun
2017-04-01
Islet cell transplantation has limited effectiveness because of an instant blood-mediated inflammatory reaction (IBMIR) that occurs immediately after cell infusion and leads to dramatic β-cell death. In intraportal islet transplantation models using mouse and human islets, we demonstrated that α-1 antitrypsin (AAT; Prolastin-C), a serine protease inhibitor used for the treatment of AAT deficiency, inhibits IBMIR and cytokine-induced inflammation in islets. In mice, more diabetic recipients reached normoglycemia after intraportal islet transplantation when they were treated with AAT compared with mice treated with saline. AAT suppressed blood-mediated coagulation pathways by diminishing tissue factor production, reducing plasma thrombin-antithrombin complex levels and fibrinogen deposition on islet grafts, which correlated with less graft damage and apoptosis. AAT-treated mice showed reduced serum tumor necrosis factor-α levels, decreased lymphocytic infiltration, and decreased nuclear factor (NF)-κB activation compared with controls. The potent anti-inflammatory effect of AAT is possibly mediated by suppression of c-Jun N-terminal kinase (JNK) phosphorylation. Blocking JNK activation failed to further reduce cytokine-induced apoptosis in β-cells. Taken together, AAT significantly improves islet graft survival after intraportal islet transplantation by mitigation of coagulation in IBMIR and suppression of cytokine-induced JNK and NF-κB activation. AAT-based therapy has the potential to improve graft survival in human islet transplantation and other cellular therapies on the horizon. © 2017 by the American Diabetes Association.
Quantitative Differential Expression Analysis Reveals Mir-7 As Major Islet MicroRNA
Bravo-Egana, Valia; Rosero, Samuel; Molano, R. Damaris; Pileggi, Antonello; Ricordi, Camillo; Domínguez-Bendala, Juan; Pastori, Ricardo L.
2008-01-01
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar >150-fold), mir-7 being the most abundant. A similarly high ratio for mir-7 was observed in human islets. The ratio islet/acinar for mir-375, a previously described islet miRNA, was <10, and is 2.5X more abundant in the islets than mir-7. Therefore, we conclude that mir-7 is the most abundant endocrine miRNA in islets while mir-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression. PMID:18086561
[Isolation, purification and primary culture of rat pancreatic beta-cells].
Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei
2009-01-01
To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.
Soluble donor DNA and islet injury after transplantation.
Gadi, Vijayakrishna K; Nelson, J Lee; Guthrie, Katherine A; Anderson, Colin C; Boespflug, Nicholas D; Redinger, Jeffrey W; Paul, Biswajit; Dinyari, Parastoo; Shapiro, A M James
2011-09-15
A large proportion of clinical islet transplant recipients fail to initially achieve or sustain meaningful independence from exogenous insulin use. We hypothesized that immediate allograft injury is a key constraint on independence from exogenous insulin use. Standard human leukocyte antigen genotyping was reviewed to identify nonshared polymorphisms between 21 prospectively recruited islet transplant recipients from a single institution and their respective donors. Human leukocyte antigen polymorphism-specific quantitative polymerase chain reaction was used to quantify donor DNA shed into blood by injured islets from serial sera acquired over the first 10 days postprocedure and examined for correlation with achievement of insulin independence. Nearly fourfold higher serum concentrations of donor DNA were detected in subjects whose grafts failed to generate insulin independence. The median for the average area under the curve in recipients who did and did not achieve insulin independence was 12 (range, 1-61) and 45 (range, 14-255) donor genome equivalents (gEq)-day/mL (p=0.03), respectively. These findings represent the first direct testing of allograft injury in humans undergoing islet cell transplantation. Injury to donor islets very soon after transplantation may represent an important barrier to achieving insulin independence other than adaptive immune responses targeting allografts at later times. In addition, soluble donor DNA merits further development as a quantifiable biomarker to evaluate new interventions aimed at mitigating immediate islet injury.
Bogdani, Marika; Johnson, Pamela Y.; Potter-Perigo, Susan; Nagy, Nadine; Day, Anthony J.; Bollyky, Paul L.
2014-01-01
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that is present in pancreatic islets, but little is known about its involvement in the development of human type 1 diabetes (T1D). We have evaluated whether pancreatic islets and lymphoid tissues of T1D and nondiabetic organ donors differ in the amount and distribution of HA and HA-binding proteins (hyaladherins), such as inter-α-inhibitor (IαI), versican, and tumor necrosis factor–stimulated gene-6 (TSG-6). HA was dramatically increased both within the islet and outside the islet endocrine cells, juxtaposed to islet microvessels in T1D. In addition, HA was prominent surrounding immune cells in areas of insulitis. IαI and versican were present in HA-rich areas of islets, and both molecules accumulated in diabetic islets and regions exhibiting insulitis. TSG-6 was observed within the islet endocrine cells and in inflammatory infiltrates. These patterns were only observed in tissues from younger donors with disease duration of <10 years. Furthermore, HA and IαI amassed in follicular germinal centers and in T-cell areas in lymph nodes and spleens in T1D patients compared with control subjects. Our observations highlight potential roles for HA and hyaladherins in the pathogenesis of diabetes. PMID:24677718
Dayeh, Tasnim; Volkov, Petr; Salö, Sofia; Hall, Elin; Nilsson, Emma; Olsson, Anders H.; Kirkpatrick, Clare L.; Wollheim, Claes B.; Eliasson, Lena; Rönn, Tina; Bacos, Karl; Ling, Charlotte
2014-01-01
Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3′UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼7%) and overrepresented in the open sea (∼60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D. PMID:24603685
Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets.
Cree, L M; Patel, S K; Pyle, A; Lynn, S; Turnbull, D M; Chinnery, P F; Walker, M
2008-08-01
Pancreatic beta cell function has been shown to decline with age in man. Depletion of mitochondrial DNA (mtDNA) copy number is associated with impaired insulin secretion in pancreatic beta cell lines, and decreased mtDNA copy number has been observed with age in skeletal muscle in man. We investigated whether mtDNA copy number decreases with age in human pancreatic beta cells, which might in turn contribute to the age-related decline in insulin secretory capacity. We quantified mtDNA copy number in isolated human islet preparations from 15 pancreas donors aged between 17 and 75 years. Islets (n = 20) were individually hand-picked and pooled from each donor isolate for the quantification of mtDNA copy number and deleted mtDNA (%), which were determined using real-time PCR methods. There was a significant negative correlation between mtDNA copy number and islet donor age (r = -0.53, p = 0.044). mtDNA copy number was significantly decreased in islet preparations from donors aged > or =50 years (n = 8) compared with those aged <50 years (n = 7) (median [interquartile range]: 418 [236-503] vs 596 [554-729] mtDNA copy number/diploid genome; p = 0.032). None of the islet preparations harboured high levels of deleted mtDNA affecting the major arc. Given the correlation between mtDNA content and respiratory chain activity, the age-related decrease in mtDNA copy number that we observed in human pancreatic islet preparations may contribute to the age-dependent decline in pancreatic beta cell insulin secretory capacity.
Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes
Shields, Emily J.; Lam, Carol J.; Cox, Aaron R.; Rankin, Matthew M.; Van Winkle, Thomas J.; Hess, Rebecka S.; Kushner, Jake A.
2015-01-01
The pathophysiology of canine diabetes remains poorly understood, in part due to enigmatic clinical features and the lack of detailed histopathology studies. Canine diabetes, similar to human type 1 diabetes, is frequently associated with diabetic ketoacidosis at onset or after insulin omission. However, notable differences exist. Whereas human type 1 diabetes often occurs in children, canine diabetes is typically described in middle age to elderly dogs. Many competing theories have been proposed regarding the underlying cause of canine diabetes, from pancreatic atrophy to chronic pancreatitis to autoimmune mediated β-cell destruction. It remains unclear to what extent β-cell loss contributes to canine diabetes, as precise quantifications of islet morphometry have not been performed. We used high-throughput microscopy and automated image processing to characterize islet histology in a large collection of pancreata of diabetic dogs. Diabetic pancreata displayed a profound reduction in β-cells and islet endocrine cells. Unlike humans, canine non-diabetic islets are largely comprised of β-cells. Very few β-cells remained in islets of diabetic dogs, even in pancreata from new onset cases. Similarly, total islet endocrine cell number was sharply reduced in diabetic dogs. No compensatory proliferation or lymphocyte infiltration was detected. The majority of pancreata had no evidence of pancreatitis. Thus, canine diabetes is associated with extreme β-cell deficiency in both new and longstanding disease. The β-cell predominant composition of canine islets and the near-total absence of β-cells in new onset elderly diabetic dogs strongly implies that similar to human type 1 diabetes, β-cell loss underlies the pathophysiology of canine diabetes. PMID:26057531
Barba-Gutierrez, D Alonso; Daneri-Navarro, A; Villagomez-Mendez, J Jesus Alejandro; Kanamune, J; Robles-Murillo, A Karina; Sanchez-Enriquez, S; Villafan-Bernal, J Rafael; Rivas-Carrillo, J D
2016-03-01
Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements. Copyright © 2016 Elsevier Inc. All rights reserved.
Kaddis, John S.; Hanson, Matthew S.; Cravens, James; Qian, Dajun; Olack, Barbara; Antler, Martha; Papas, Klearchos K.; Iglesias, Itzia; Barbaro, Barbara; Fernandez, Luis; Powers, Alvin C.; Niland, Joyce C.
2013-01-01
Preservation of cell quality during shipment of human pancreatic islets for use in laboratory research is a crucial, but neglected, topic. Mammalian cells, including islets, have been shown to be adversely affected by temperature changes in vitro and in vivo, yet protocols that control for thermal fluctuations during cell transport are lacking. To evaluate an optimal method of shipping human islets, an initial assessment of transportation conditions was conducted using standardized materials and operating procedures in 48 shipments sent to a central location by 8 pancreas-processing laboratories using a single commercial airline transporter. Optimization of preliminary conditions was conducted, and human islet quality was then evaluated in 2,338 shipments pre- and post-implementation of a finalized transportation container and standard operating procedures. The initial assessment revealed that the outside temperature ranged from a mean of −4.6±10.3°C to 20.9±4.8°C. Within-container temperature drops to or below 15°C occurred in 16 shipments (36%), while the temperature was found to be stabilized between 15–29°C in 29 shipments (64%). Implementation of an optimized transportation container and operating procedure reduced the number of within-container temperature drops (≤15°C) to 13% (n=37 of 289 winter shipments), improved the number desirably maintained between 15–29°C to 86% (n=250), but also increased the number reaching or exceeding 29°C to 1% (n=2; overall p<0.0001). Additionally, post-receipt quality ratings of excellent to good improved pre- vs. post- implementation of the standardized protocol, adjusting for pre-shipment purity/viability levels (p<0.0001). Our results show that extreme temperature fluctuations during transport of human islets, occurring when using a commercial airline transporter for long distance shipping, can be controlled using standardized containers, materials, and operating procedures. This cost-effective and pragmatic standardized protocol for the transportation of human islets can potentially be adapted for use with other mammalian cell systems, and is available online at: http://iidp.coh.org/sops.aspx. PMID:22889479
Hering, Bernhard J.; Clarke, William R.; Bridges, Nancy D.; Eggerman, Thomas L.; Alejandro, Rodolfo; Bellin, Melena D.; Chaloner, Kathryn; Czarniecki, Christine W.; Goldstein, Julia S.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Korsgren, Olle; Larsen, Christian P.; Luo, Xunrong; Markmann, James F.; Naji, Ali; Oberholzer, Jose; Posselt, Andrew M.; Rickels, Michael R.; Ricordi, Camillo; Robien, Mark A.; Senior, Peter A.; Shapiro, A.M. James; Stock, Peter G.; Turgeon, Nicole A.
2016-01-01
OBJECTIVE Impaired awareness of hypoglycemia (IAH) and severe hypoglycemic events (SHEs) cause substantial morbidity and mortality in patients with type 1 diabetes (T1D). Current therapies are effective in preventing SHEs in 50–80% of patients with IAH and SHEs, leaving a substantial number of patients at risk. We evaluated the effectiveness and safety of a standardized human pancreatic islet product in subjects in whom IAH and SHEs persisted despite medical treatment. RESEARCH DESIGN AND METHODS This multicenter, single-arm, phase 3 study of the investigational product purified human pancreatic islets (PHPI) was conducted at eight centers in North America. Forty-eight adults with T1D for >5 years, absent stimulated C-peptide, and documented IAH and SHEs despite expert care were enrolled. Each received immunosuppression and one or more transplants of PHPI, manufactured on-site under good manufacturing practice conditions using a common batch record and standardized lot release criteria and test methods. The primary end point was the achievement of HbA1c <7.0% (53 mmol/mol) at day 365 and freedom from SHEs from day 28 to day 365 after the first transplant. RESULTS The primary end point was successfully met by 87.5% of subjects at 1 year and by 71% at 2 years. The median HbA1c level was 5.6% (38 mmol/mol) at both 1 and 2 years. Hypoglycemia awareness was restored, with highly significant improvements in Clarke and HYPO scores (P > 0.0001). No study-related deaths or disabilities occurred. Five of the enrollees (10.4%) experienced bleeds requiring transfusions (corresponding to 5 of 75 procedures), and two enrollees (4.1%) had infections attributed to immunosuppression. Glomerular filtration rate decreased significantly on immunosuppression, and donor-specific antibodies developed in two patients. CONCLUSIONS Transplanted PHPI provided glycemic control, restoration of hypoglycemia awareness, and protection from SHEs in subjects with intractable IAH and SHEs. Safety events occurred related to the infusion procedure and immunosuppression, including bleeding and decreased renal function. Islet transplantation should be considered for patients with T1D and IAH in whom other, less invasive current treatments have been ineffective in preventing SHEs. PMID:27208344
Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.
Pasquali, Lorenzo; Gaulton, Kyle J; Rodríguez-Seguí, Santiago A; Mularoni, Loris; Miguel-Escalada, Irene; Akerman, İldem; Tena, Juan J; Morán, Ignasi; Gómez-Marín, Carlos; van de Bunt, Martijn; Ponsa-Cobas, Joan; Castro, Natalia; Nammo, Takao; Cebola, Inês; García-Hurtado, Javier; Maestro, Miguel Angel; Pattou, François; Piemonti, Lorenzo; Berney, Thierry; Gloyn, Anna L; Ravassard, Philippe; Skarmeta, José Luis Gómez; Müller, Ferenc; McCarthy, Mark I; Ferrer, Jorge
2014-02-01
Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.
Balamurugan, A N; Naziruddin, B; Lockridge, A; Tiwari, M; Loganathan, G; Takita, M; Matsumoto, S; Papas, K; Trieger, M; Rainis, H; Kin, T; Kay, T W; Wease, S; Messinger, S; Ricordi, C; Alejandro, R; Markmann, J; Kerr-Conti, J; Rickels, M R; Liu, C; Zhang, X; Witkowski, P; Posselt, A; Maffi, P; Secchi, A; Berney, T; O'Connell, P J; Hering, B J; Barton, F B
2014-11-01
The Collaborative Islet Transplant Registry (CITR) collects data on clinical islet isolations and transplants. This retrospective report analyzed 1017 islet isolation procedures performed for 537 recipients of allogeneic clinical islet transplantation in 1999-2010. This study describes changes in donor and islet isolation variables by era and factors associated with quantity and quality of final islet products. Donor body weight and BMI increased significantly over the period (p<0.001). Islet yield measures have improved with time including islet equivalent (IEQ)/particle ratio and IEQs infused. The average dose of islets infused significantly increased in the era of 2007-2010 when compared to 1999-2002 (445.4±156.8 vs. 421.3±155.4×0(3) IEQ; p<0.05). Islet purity and total number of β cells significantly improved over the study period (p<0.01 and <0.05, respectively). Otherwise, the quality of clinical islets has remained consistently very high through this period, and differs substantially from nonclinical islets. In multivariate analysis of all recipient, donor and islet factors, and medical management factors, the only islet product characteristic that correlated with clinical outcomes was total IEQs infused. This analysis shows improvements in both quantity and some quality criteria of clinical islets produced over 1999-2010, and these parallel improvements in clinical outcomes over the same period. © 2014 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.
Balamurugan, A N; Naziruddin, B; Lockridge, A; Tiwari, M; Loganathan, G; Takita, M; Matsumoto, S; Papas, K; Trieger, M; Rainis, H; Kin, T; Kay, T W; Wease, S; Messinger, S; Ricordi, C; Alejandro, R; Markmann, J; Kerr-Conti, J; Rickels, M R; Liu, C; Zhang, X; Witkowski, P; Posselt, A; Maffi, P; Secchi, A; Berney, T; O’Connell, P J; Hering, B J; Barton, F B
2014-01-01
The Collaborative Islet Transplant Registry (CITR) collects data on clinical islet isolations and transplants. This retrospective report analyzed 1017 islet isolation procedures performed for 537 recipients of allogeneic clinical islet transplantation in 1999–2010. This study describes changes in donor and islet isolation variables by era and factors associated with quantity and quality of final islet products. Donor body weight and BMI increased significantly over the period (p < 0.001). Islet yield measures have improved with time including islet equivalent (IEQ)/particle ratio and IEQs infused. The average dose of islets infused significantly increased in the era of 2007–2010 when compared to 1999–2002 (445.4 ± 156.8 vs. 421.3 ± 155.4 ×103 IEQ; p < 0.05). Islet purity and total number of β cells significantly improved over the study period (p < 0.01 and <0.05, respectively). Otherwise, the quality of clinical islets has remained consistently very high through this period, and differs substantially from nonclinical islets. In multivariate analysis of all recipient, donor and islet factors, and medical management factors, the only islet product characteristic that correlated with clinical outcomes was total IEQs infused. This analysis shows improvements in both quantity and some quality criteria of clinical islets produced over 1999–2010, and these parallel improvements in clinical outcomes over the same period. PMID:25278159
Noninvasive imaging of islet grafts using positron-emission tomography
NASA Astrophysics Data System (ADS)
Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.
2006-07-01
Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation
Lee, S; Takahashi, Y; Lee, K M; Mizuno, M; Nemeno, J G; Takebe, T; Lee, J I
2015-04-01
Organ donor scarcity remains a restricting factor for pancreatic islet transplantation. To date, limited information is available on the impact of long-distance transportation on transplantable pancreatic islets. The objective of this study was to assess the effects of transportation on the viability and function of murine pancreatic islet cells. The isolated murine pancreatic islets were transported from Japan to Korea with the use of commercial modes of transportation: subway and commercial airplane. After transportation, the islets were assessed by performing a viability assay and by evaluating the islets' insulin secretion in response to glucose stimulation. A comparative study was performed for evaluating the insulin secretory responses of transported and control islets (not transported). There was no evidence of contamination in the transported pancreatic islets. No significant differences were observed in the viability and functionality of the transported and control islet cells. These findings show the feasibility of pancreatic islet transportation from Japan to Korea. Our data could be used not only for the inter-Asian but also for global advancement of animal and human islet transportation methods and transplantation research. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu
2016-01-01
The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.
B7-H4 as a protective shield for pancreatic islet beta cells.
Sun, Annika C; Ou, Dawei; Luciani, Dan S; Warnock, Garth L
2014-12-15
Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes (T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell co-signaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin co-localization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1D. Future studies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1D.
Isolation of Mouse Pancreatic Islets of Langerhans.
Ramírez-Domínguez, Miriam
The aim of any pancreatic islet isolation is obtaining pure, viable and functional pancreatic islets, either for in vitro or in vivo purposes. The islets of Langerhans are complex microorgans with the important role of regulating glucose homeostasis. Imbalances in glucose homeostasis lead to diabetes, which is defined by the American Diabetes Association as a "group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both" (American Diabetes Association 2011). Currently, the rising demand of human islets is provoking a shortage of this tissue, limiting research and clinical practice on this field. In this scenario, it is essential to investigate and improve islet isolation procedures in animal models, while keeping in mind the anatomical and functional differences between species. This chapter discusses the main aspects of mouse islet isolation research, highlighting the critical factors and shortcomings to take into account for the selection and/or optimization of a mouse islet isolation protocol.
Liu, Shi-He; Rao, Donald D.; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard; Norman, Michael; Templeton, Nancy S.; DeMayo, Francesco J.; O'Malley, Bert; Sanchez, Robbi; Fisher, William E.; Brunicardi, F. Charles
2012-01-01
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a “drugable” target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNAPDX-1, was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNAhumanPDX-1 lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNAmousePDX-1 lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNAmousePDX-1 lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases. PMID:22905092
Epithelial to mesenchymal transition in human endocrine islet cells
Moreno-Amador, José Luis; Téllez, Noèlia; Marin, Sandra; Aloy-Reverté, Caterina; Semino, Carlos; Nacher, Montserrat
2018-01-01
Background β-cells undergo an epithelial to mesenchymal transition (EMT) when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells. Objective To investigate whether EMT takes place in the endocrine non-β cells of human islets. Methodology Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer. Results Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1) and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4). The endocrine non-β-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2). The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01), and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05). Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers. Conclusions In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a β-cell phenotype. PMID:29360826
The Current Status of Islet Transplantation and its Perspectives
Kobayashi, Naoya
2008-01-01
Transplantation of human pancreatic isolated islets can restore beta-cell function but it requires chronic immunosuppression. The outcome of islet transplantation mainly depends on both the quality of islet preparations, and the survival of the graft. The quality of islet preparations can be evaluated by the results of isolation, which determines the chance to achieve insulin independence. The survival of islet grafts is reflected by the amount of engrafted functional tissue that maintains metabolic control. Immunosuppressive therapy prevents the immunological rejection of grafts, but impairs their function and impedes their regenerative capacity. Therefore, the selection of high quality islet preparations and the reduction of toxic effects of immunosuppressive regimens might dramatically improve the outcomes. The application of stem cell therapy in islet transplantation may contribute to a better understanding of the mechanisms responsible for tissue homeostasis and immune tolerance. Xenogeneic islets may serve as an unlimited source if immune tolerance can be achieved. This may be a strategy to enable a substantial improvement in function while overcoming potentially deleterious risks. PMID:19099085
Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα.
Rutti, Sabine; Arous, Caroline; Schvartz, Domitille; Timper, Katharina; Sanchez, Jean-Charles; Dermitzakis, Emmanouil; Donath, Marc Y; Halban, Philippe A; Bouzakri, Karim
2014-10-01
We have previously shown the existence of a muscle-pancreas intercommunication axis in which CX3CL1 (fractalkine), a CX3C chemokine produced by skeletal muscle cells, could be implicated. It has recently been shown that the fractalkine system modulates murine β-cell function. However, the impact of CX3CL1 on human islet cells especially regarding a protective role against cytokine-induced apoptosis remains to be investigated. Gene expression was determined using RNA sequencing in human islets, sorted β- and non-β-cells. Glucose-stimulated insulin secretion (GSIS) and glucagon secretion from human islets was measured following 24 h exposure to 1-50 ng/ml CX3CL1. GSIS and specific protein phosphorylation were measured in rat sorted β-cells exposed to CX3CL1 for 48 h alone or in the presence of TNFα (20 ng/ml). Rat and human β-cell apoptosis (TUNEL) and rat β-cell proliferation (BrdU incorporation) were assessed after 24 h treatment with increasing concentrations of CX3CL1. Both CX3CL1 and its receptor CX3CR1 are expressed in human islets. However, CX3CL1 is more expressed in non-β-cells than in β-cells while its receptor is more expressed in β-cells. CX3CL1 decreased human (but not rat) β-cell apoptosis. CX3CL1 inhibited human islet glucagon secretion stimulated by low glucose but did not impact human islet and rat sorted β-cell GSIS. However, CX3CL1 completely prevented the adverse effect of TNFα on GSIS and on molecular mechanisms involved in insulin granule trafficking by restoring the phosphorylation (Akt, AS160, paxillin) and expression (IRS2, ICAM-1, Sorcin, PCSK1) of key proteins involved in these processes. We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.
Development of a novel digestion chamber for human and porcine islet isolation.
Gray, D W R; Sudhakaran, N; Titus, T T; McShane, P; Johnson, P
2004-05-01
The current technique of human pancreas digestion for islet isolation relies on selective distribution of collagenase delivered via the pancreatic duct to produce digestion and removal of peri-acinar fibrous tissue. However, the collagenase has relatively little effect on the interlobular fibrous tissue, which must therefore be broken down by mechanical means within the digestion chamber so as to release the contained acini and islets. The current way of achieving this in the Ricordi chamber is to place five or six stainless steel balls within the chamber and shake vigorously. The shaking presumably breaks down the interlobular fibrous tissue by a combination of shear force induced by the movement of tissue through the shaking process, assisted by numerous blows from the steel balls. Intuitively, one would expect some islets would be destroyed rather than released by such a battering. In an attempt to improve the efficiency of islet isolation we have designed a new digestion/filtration chamber that consists of a glass cylinder, sealed with Teflon plates holding in mesh filters at each end, secured in place by a central threaded tie-rod and external knurled nuts. A ring-shaped piston within the cylinder can be pushed up and down the travel by two rods passing out through sealed ports in the Teflon disk at one end and connected to an external handle. The handle is used to gently push the piston up and down the travel of the cylinder, which pushes the fluid and tissue through the central lumen of the ring-piston. A series of hooks attached to the central tie-rod catch the fibrous strands of the passing tissue; the shearing forces produced cause disruption by a process thought to be similar to teasing the tissue apart with fine forceps. A series of initial experiments with human pancreas showed the prototype to be too large, causing temperature control problems, and a redesigned smaller chamber was produced, maintaining the crucial design features. Experience processing five human pancreata has now demonstrated that in three of five pancreata the new chamber produced a good yield (>200,000 I.E.) of remarkably well separated and intact islets, the entire dispersion process being under 1 hour. However, in two isolations the collagenase digestion was poor, with few free islets. A copy of the new chamber (reserved for porcine work only) has been produced, as well as a copy of the Ricordi chamber. We have confirmed that the new chamber can isolate porcine islets in large numbers (>5000 islets/g pancreas [n = 2], but note that pig islets are small). These preliminary studies are sufficiently encouraging to justify further direct comparison with the Ricordi chamber for the purpose of animal and human islet isolation.
The Study of Non-Viral Nanoscale Delivery Systems for Islet Transplantation
NASA Astrophysics Data System (ADS)
Gutierrez, Diana
Due to safety concerns associated with using viral systems clinically to expand islet cells and make them available to many more patients, significant emphasis has been placed on producing a safe and effective non-viral delivery system for biological research and gene therapy. To obtain this goal, we propose the use of an innovative technology that utilizes gold nanoparticles (AuNPs) as a non-viral method of delivery. Our laboratory was one of the first to describe the use of AuNPs in human islets and observe AuNPs can penetrate into the core of islets to deliver a gene to the vast majority of the cells, without damaging the cell. Gold nanoparticles proved to be a biocompatible delivery system both in vitro and in vivo. Thus far, gene therapy and molecular biology have focused primarily on delivering DNA of a specific gene into cells. The risk of this approach is that the DNA can be permanently incorporated into the genome and lead to damages in the cell that could result in overexpression of cancerous tumor cells. This risk does not exist with the use of mRNA. Many researchers believe mRNA is too unstable to be used as a molecular tool to overexpress specific proteins. With advances in nanotechnology, and better understanding of the translation process, methods have been developed that allow for expression of specific proteins by intracellular delivery of protein-encoding mRNA. We used AuNPs conjugated to mCherry mRNA to establish a proof of concept of the feasibility of using AuNP-mRNA to achieve increased expression of a specific protein within cells. To do this, we conjugated mCherry mRNA to AuNPs and tested the feasibility for increasing delivery efficacy and preserve functionality of human pancreatic islets. We believe that with this novel technology we can create AuNPs that allow specific mRNA to enter islets and lead to the production of a specific protein within the cell, with the aim to induce beta cell proliferation. In a previous experiment with single cells, the highest amount of protein expression was observed after 24 hours incubation with mCherry conjugated AuNPs. Based on this, human islets were treated with 12 nm, 7 nm and 2 nm mCherry AuNPs for 24 hours. The expression of mCherry protein in human islets was analyzed by 3D image reconstruction of z-stack images acquired by confocal microscopy. A minimal amount of mCherry protein was expressed in human islets when treated with mCherry mRNA coupled to the 12 nm size AuNP. Decreasing the size of the AuNPs to 7 nm or 2 nm resulted in substantial increase in mCherry protein expression throughout human pancreatic islets when treated at concentrations of 20 nM and 50 nM with mCherry mRNA AuNPs for 24 hours. We used measurements of calcium influx, KCL and mitochondrial potential to determine the effect of AuNP-mCherry mRNA treatment on islet cell function. The area under the curve was computed for intracellular calcium influx of three different islet preparations. There was no statistically significance difference between (2 nm) 20 nM versus (7 nm) 20 nM, (2 nm) 20 nM versus (7 nm) 50 nM, (2 nm) 50 nM versus (7 nm) 20 nM, (2 nm) 50 nM versus (7 nm) 50 nM. For the area under the curve for the KCL there was no significant statistical difference between the groups. In addition, mitochondrial potential indices demonstrated similarity between the control group and mCherry mRNA AuNPs treated human pancreatic islets, there was no statistical difference between the three different sizes and concentrations when compared to the non-treated group. Taken together, AuNP did not impair islet function when concentration was increased. Although, the optimal size of AuNP that was easily seen to express mCherry protein was 7 nm, when human islet cells were treated with AuNP coupled to mRNA for E2F3 (the beta-cell proliferation inducing protein), to observe whether there was any sign of enhanced beta-cell proliferation, the 12 nm sized AuNP seemed to give a slight increase in beta-cell proliferation. Transmission electron microscopy (TEM) was used to determine where within the islets the AuNPs were localized. This validated that both the 12 nm and 7 nm size AuNPs crossed the cell membrane and were found within vesicles, mitochondria and in one case the insulin granules of the islets. A notable difference that was detected under TEM for the two size of AuNPs was that the 12nm appeared predominantly in clusters where as the 7nm AuNP was more evenly distributed within the cell. Further analysis with TEM may provide insight on how the size, concentration and kinetics of the AuNPs will influence protein expression and beta-cell expansion within human pancreatic islets. (Abstract shortened by UMI.).
Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes
Michels, Aaron W.; Landry, Laurie G.; McDaniel, Kristen A.; Yu, Liping; Campbell-Thompson, Martha; Kwok, William W.; Jones, Kenneth L.; Gottlieb, Peter A.; Kappler, John W.; Tang, Qizhi; Roep, Bart O.; Atkinson, Mark A.; Mathews, Clayton E.
2017-01-01
Type 1 diabetes results from chronic autoimmune destruction of insulin-producing β-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19–35, and two clones from separate donors responded to insulin B-chain amino acids 9–23 (B:9–23), which are known to be a critical self-antigen–driving disease progress in animal models of autoimmune diabetes. These B:9–23–specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9–23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment. PMID:27920090
Glenn, Sean T.; Jones, Craig A.; Sexton, Sandra; LeVea, Charles M.; Caraker, Susan M.; Hajduczok, George; Gross, Kenneth W.
2014-01-01
Efforts to model human pancreatic neuroendocrine tumors (PanNET) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene while classically associated with expression in the kidney is also expressed in many other extra-renal tissues including the pancreas. To induce tumorigenesis within renin specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon, furthermore an increased level of glucagon is found in the serum identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to lymph nodes and liver, mimicking human disease and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides a unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying co-operating mutations that are necessary for progression of disease. PMID:24292676
Glenn, S T; Jones, C A; Sexton, S; LeVea, C M; Caraker, S M; Hajduczok, G; Gross, K W
2014-12-11
Efforts to model human pancreatic neuroendocrine tumors (PanNETs) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene, although classically associated with expression in the kidney, is also expressed in many other extrarenal tissues including the pancreas. To induce tumorigenesis within rennin-specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon; furthermore, an increased level of glucagon is found in the serum, identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to the lymph nodes and the liver, mimicking human disease, and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides an unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying cooperating mutations that are necessary for progression of disease.
Spontaneous diabetes mellitus in captive Mandrillus sphinx monkeys: a case report.
Pirarat, N; Kesdangsakolwut, S; Chotiapisitkul, S; Assarasakorn, S
2008-06-01
Case history The two obese mandrills (Mandrillus sphinx) showed clinical signs of depression, anorexia, hyperglycemia, hypertriglyceridemia, glucosuria, proteinuria and ketonuria. Septic bed sore wounds were noted on both fore and hind limbs. Results Histopathological study revealed severe islet amyloidosis in both mandrills. Immunohistochemical study using polyclonal anti-cat amylin antibody confirmed derivation of the islet amyloid from islet amyloid polypeptide (IAPP). Cardiomyopathy and myocardial fibrosis were also evident. Conclusions The present study documents diabetes mellitus in two obese mandrills. Diabetes in these animals had features very similar type 2 diabetes mellitus of humans, including the development of severe, IAPP-derived islet amyloidosis. The mandrill may, therefore, serve as an animal model of human type 2 diabetes mellitus.
Quadrupole Magnetic Sorting of Porcine Islets of Langerhans
Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole
2009-01-01
Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179
Schive, Simen W.; Mirlashari, Mohammad Reza; Hasvold, Grete; Wang, Mengyu; Josefsen, Dag; Gullestad, Hans Petter; Korsgren, Olle; Foss, Aksel; Kvalheim, Gunnar; Scholz, Hanne
2017-01-01
Adipose-derived mesenchymal stem cells (ASCs) release factors beneficial for islets in vitro and protect against hyperglycemia in rodent models of diabetes. Oxygen tension has been shown to induce metabolic changes and alter ASCs’ release of soluble factors. The effects of hypoxia on the antidiabetic properties of ASCs have not been explored. To investigate this, we incubated human ASCs for 48 h in 21% (normoxia) or 1% O2 (hypoxia) and compared viability, cell growth, surface markers, differentiation capability, and soluble factors in the conditioned media (CM). Human islets were exposed to CM from ASCs incubated in either normoxia or hypoxia, and islet function and apoptosis after culture with or without proinflammatory cytokines were measured. To test hypoxic preconditioned ASCs’ islet protective effects in vivo, ASCs were incubated for 48 h in normoxia or hypoxia before being injected into Balb/c Rag 1–/– immunodeficient mice with streptozotocin-induced insulitis. Progression of diabetes and insulin content of pancreas were measured. We found that incubation in hypoxia was well tolerated by ASCs and that levels of VEGF-A, FGF-2, and bNGF were elevated in CM from ASCs incubated in hypoxia compared to normoxia, while levels of HGF, IL-8, and CXCL1 were reduced. CM from ASCs incubated in hypoxia significantly improved human islet function and reduced apoptosis after culture, and reduced cytokine-induced apoptosis. In our mouse model, pancreas insulin content was higher in both groups receiving ASCs compared to control, but the mice receiving preconditioned ASCs had lower random and fasting blood glucose, as well as improved oral glucose tolerance compared to untreated mice. In conclusion, our in vitro results indicate that the islet protective potential of ASCs improves in hypoxia, and we give insight into factors involved in this. Finally we show that hypoxic preconditioning potentiates ASCs’ antidiabetic effect in vivo. PMID:28713640
Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C
2017-11-01
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.
Lemos, Natália Emerim; de Almeida Brondani, Letícia; Dieter, Cristine; Rheinheimer, Jakeline; Bouças, Ana Paula; Bauermann Leitão, Cristiane; Crispim, Daisy; Bauer, Andrea Carla
2017-09-03
Pancreatic islet transplantation is an established treatment to restore insulin independence in type 1 diabetic patients. Its success rates have increased lately based on improvements in immunosuppressive therapies and on islet isolation and culture. It is known that the quality and quantity of viable transplanted islets are crucial for the achievement of insulin independence and some studies have shown that a significant number of islets are lost during culture time. Thus, in an effort to improve islet yield during culture period, researchers have tested a variety of additives in culture media as well as alternative culture devices, such as scaffolds. However, due to the use of different categories of additives or devices, it is difficult to draw a conclusion on the benefits of these strategies. Therefore, the aim of this systematic review was to summarize the results of studies that described the use of medium additives, scaffolds or extracellular matrix (ECM) components during human pancreatic islets culture. PubMed and Embase repositories were searched. Of 5083 articles retrieved, a total of 37 articles fulfilled the eligibility criteria and were included in the review. After data extraction, articles were grouped as follows: 1) "antiapoptotic/anti-inflammatory/antioxidant," 2) "hormone," 3) "sulphonylureas," 4) "serum supplements," and 5) "scaffolds or ECM components." The effects of the reviewed additives, ECM or scaffolds on islet viability, apoptosis and function (glucose-stimulated insulin secretion - GSIS) were heterogeneous, making any major conclusion hard to sustain. Overall, some "antiapoptotic/anti-inflammatory/antioxidant" additives decreased apoptosis and improved GSIS. Moreover, islet culture with ECM components or scaffolds increased GSIS. More studies are needed to define the real impact of these strategies in improving islet transplantation outcomes.
Jansson, L; Eizirik, D L; Pipeleers, D G; Borg, L A; Hellerström, C; Andersson, A
1995-08-01
Hyperglycemia-induced beta-cell dysfunction may be an important component in the pathogenesis of non-insulin-dependent diabetes mellitus. However, most available data in this field were obtained from rodent islets. To investigate the relevance of this hypothesis for human beta-cells in vivo, human pancreatic islets were transplanted under the renal capsule of nude mice. Experimental groups were chosen so that grafted islets were exposed to either hyper- or normoglycemia or combinations of these for 4 or 6 wk. Grafts of normoglycemic recipients responded with an increased insulin release to a glucose stimulus during perfusion, whereas grafts of hyperglycemic recipients failed to respond to glucose. The insulin content of the grafts in the latter groups was only 10% of those observed in controls. Recipients initially hyperglycemic (4 wk), followed by 2 wk of normoglycemia regained a normal graft insulin content, but a decreased insulin response to glucose remained. No ultrastructural signs of beta-cell damage were observed, with the exception of increased glycogen deposits in animals hyperglycemic at the time of killing. It is concluded that prolonged exposure to a diabetic environment induces a long-term secretory defect in human beta-cells, which is not dependent on the size of the islet insulin stores.
Jansson, L; Eizirik, D L; Pipeleers, D G; Borg, L A; Hellerström, C; Andersson, A
1995-01-01
Hyperglycemia-induced beta-cell dysfunction may be an important component in the pathogenesis of non-insulin-dependent diabetes mellitus. However, most available data in this field were obtained from rodent islets. To investigate the relevance of this hypothesis for human beta-cells in vivo, human pancreatic islets were transplanted under the renal capsule of nude mice. Experimental groups were chosen so that grafted islets were exposed to either hyper- or normoglycemia or combinations of these for 4 or 6 wk. Grafts of normoglycemic recipients responded with an increased insulin release to a glucose stimulus during perfusion, whereas grafts of hyperglycemic recipients failed to respond to glucose. The insulin content of the grafts in the latter groups was only 10% of those observed in controls. Recipients initially hyperglycemic (4 wk), followed by 2 wk of normoglycemia regained a normal graft insulin content, but a decreased insulin response to glucose remained. No ultrastructural signs of beta-cell damage were observed, with the exception of increased glycogen deposits in animals hyperglycemic at the time of killing. It is concluded that prolonged exposure to a diabetic environment induces a long-term secretory defect in human beta-cells, which is not dependent on the size of the islet insulin stores. Images PMID:7635965
Brunicardi, F C; Atiya, A; Stock, P; Kenmochi, T; Une, S; Benhamou, P Y; Watt, P C; Miyamato, M; Wantanabe, Y; Nomura, Y
1995-12-01
The University of California Islet Transplant Consortium was formed to evaluate the feasibility of performing clinical islet transplantation at different transplant centers by using a single centralized islet isolation laboratory. From July 1992 through February 1995 seven adult islet transplantations were performed, six allografts and one autograft. Once procured, human pancreata were brought to the UCLA-VA Islet Core Laboratory for islet isolation and purification, which were then transported to different centers for transplantation. Patients 1 through 3 received their transplants in Los Angeles, patient 4 received her islet transplant in Torrance, and patients 5 through 7 received their transplants in San Francisco. Although none of these patients achieved insulin independence, four of seven had functioning grafts longer than 6 months as indicated by circulating C-peptide level greater than 0.7 ng/ml. Furthermore, improved glucose control as shown by a decreased insulin requirement was seen in 57% (four of seven patients) of these patients. The ability to isolate islets at a single laboratory and transport them long distances to different centers was shown in patients 4 through 7. Islet transplantation can be performed with improvements in blood glucose control, and islets can be isolated at a centralized location and successfully transported to different centers for transplantation.
Kadam, Sachin; Govindasamy, Vijayendran; Bhonde, Ramesh
2012-01-01
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for allogeneic application in tissue engineering but have certain drawbacks. Therefore, mesenchymal stem cells (MSCs) derived from other adult tissue sources have been considered as an alternative. The human umbilical cord and placenta are easily available noncontroversial sources of human tissue, which are often discarded as biological waste, and their collection is noninvasive. These sources of MSCs are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs derived from umbilical cord and placenta are multipotent and have the ability to differentiate into various cell types crossing the lineage boundary towards endodermal lineage. The aim of this chapter is to provide a detailed reproducible cookbook protocol for the isolation, propagation, characterization, and differentiation of MSCs derived from human umbilical cord and placenta with special reference to harnessing their potential towards pancreatic/islet lineage for utilization as a cell therapy product. We show here that mesenchymal stromal cells can be extensively expanded from umbilical cord and placenta of human origin retaining their multilineage differentiation potential in vitro. Our report indicates that postnatal tissues obtained as delivery waste represent a rich source of mesenchymal stromal cells, which can be differentiated into functional islets employing three-stage protocol developed by our group. These islets could be used as novel in vitro model for screening hypoglycemics/insulin secretagogues, thus reducing animal experimentation for this purpose and for the future human islet transplantation programs to treat diabetes.
Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna
2016-11-11
Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.
Saini, D; Ramachandran, S; Nataraju, A; Benshoff, N; Liu, W; Desai, N; Chapman, W; Mohanakumar, T
2008-09-01
T-cell activation up-regulates CD30 resulting in an increase in serum soluble CD30 (sCD30). CD4+ T cells, a major source for sCD30, play a significant role in the pathogenesis of rejection. In this study, sCD30 was measured pre- and posttransplant in mouse islet allograft models and human islet allograft recipients. sCD30 was measured by ELISA in diabetic C57BL/6, CD4Knockout (KO) and CD8KO islet allograft recipients. sCD30 increased significantly prior to rejection (1.8 +/- 1 days) in 80% of allograft recipients. Sensitization with donor splenocytes, or a second graft, further increased sCD30 (282.5 +/- 53.5 for the rejecting first graft vs. 374.6 +/- 129 for the rejecting second graft) prior to rejection suggesting memory CD4+ T cells contribute to sCD30. CD4KO failed to reject islet allograft and did not demonstrate sCD30 increase. CD8KO showed elevated (227 +/- 107) sCD30 (1 day) prior to rejection. High pretransplant sCD30 (>20 U/ml) correlated with poor outcome in human islet allograft recipients. Further, increase in sCD30 posttransplant preceded (3-4 months) loss of islet function. We conclude that sCD30 is released from activated CD4 T cells prior to islet allograft rejection and monitoring sCD30 can be a valuable adjunct in the follow-up of islet transplant recipients.
Zhang, Yihua; Shen, Wenzheng; Hua, Jinlian; Lei, Anmin; Lv, Changrong; Wang, Huayan; Yang, Chunrong; Gao, Zhimin; Dou, Zhongying
2010-12-01
Bone marrow mesenchymal stem cells (BMSCs) have been reported to possess low immunogenicity and cause immunosuppression of recipients when allografted. They can differentiate into insulin-producing cells and may be a valuable source for islet formation. However, the extremely low differentiating rate of adult BMSCs toward insulin-producing cells and the insufficient insulin secretion of the differentiated BMSCs in vitro prevent their clinical use in diabetes treatment. Little is known about the potential of cell replacement therapy with human BMSCs. Previously, we isolated and identified human first-trimester fetal BMSCs (hfBMSCs). Under a novel four-step induction procedure established in this study, the hfBMSCs effectively differentiated into functional pancreatic islet-like cell clusters that contained 62 ± 14% insulin-producing cells, expressed a broad gene profile related to pancreatic islet β-cell development, and released high levels of insulin (2.245 ± 0.222 pmol/100 clusters per 30 min) and C-peptide (2.200 ± 0.468 pmol/100 clusters per 30 min) in response to 25 mmol/L glucose stimulus in vitro. The pancreatic islet-like cell clusters normalized the blood glucose level of diabetic model mice for at least 9 weeks when xenografted; blood glucose levels in these mice rose abnormally again when the grafts were removed. Examination of the grafts indicated that the transplanted cells survived in recipients and produced human insulin and C-peptide in situ. These results demonstrate that hfBMSCs derived from a human first-trimester abortus can differentiate into pancreatic islet-like cell clusters following an established four-step induction. The insulin-producing clusters present advantages in cell replacement therapy of type 1 diabetic model mice.
An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas.
Korsgren, Erik; Korsgren, Olle
2016-04-01
The lymphatic system is crucial for efficient immune surveillance and for the maintenance of a physiological pressure in the interstitial space. Even so, almost no information is available concerning the lymph drainage of the islets of Langerhans in the human pancreas. Immunohistochemical staining allowed us to distinguish lymphatic capillaries from blood capillaries. Almost no lymphatic capillaries were found within the islets in pancreatic biopsy specimens from subjects without diabetes or from subjects with type 1 or type 2 diabetes. Lymphatic capillaries were, however, found at the islet-exocrine interface, frequently located along blood capillaries and other fibrotic structures within or close to the islet capsule. Lymphatic capillaries were regularly found in the exocrine pancreas, with small lymphatic vessels located close to and around acini. Larger collecting lymphatic vessels were located in fibrotic septa between the exocrine lobules and adjacent to the ductal system of the pancreas. In summary, we report a pronounced deficiency of lymphatic capillaries in human islets, a finding with implications for immune surveillance and the regulation of interstitial fluid transport in the endocrine pancreas as well as for the pathophysiology of both type 1 and type 2 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Maintenance of Normoglycemia in Diabetic Mice by Subcutaneous Xenografts of Encapsulated Islets
NASA Astrophysics Data System (ADS)
Lacy, Paul E.; Hegre, Orion D.; Gerasimidi-Vazeou, Andriani; Gentile, Frank T.; Dionne, Keith E.
1991-12-01
The goal of islet transplantation in human diabetes is to maintain the islet grafts in the recipients without the use of immunosuppression. One approach is to encapsulate the donor islets in permselective membranes. Hollow fibers fabricated from an acrylic copolymer were used to encapsulate small numbers of rat islets that were immobilized in an alginate hydrogel for transplantation in diabetic mice. The fibers were biocompatible, prevented rejection, and maintained normoglycemia when transplanted intraperitoneally; hyperglycemia returned when the fibers were removed at 60 days. Normoglycemia was also maintained by subcutaneous implants that had an appropriately constructed outer surface on the fibers.
Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan
2016-11-01
Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.
Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James
2016-01-01
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220
Avgoustiniatos, E.S.; Hering, B.J.; Rozak, P.R.; Wilson, J.R.; Tempelman, L.A.; Balamurugan, A.N.; Welch, D.P.; Weegman, B.P.; Suszynski, T.M.; Papas, K.K.
2009-01-01
Prolonged anoxia has deleterious effects on islets. Gas-permeable cell culture devices can be used to minimize anoxia during islet culture and especially during shipment when elimination of gas-liquid interfaces is required to prevent the formation of damaging gas bubbles. Gas-permeable bags may have several drawbacks, such as propensity for puncture and contamination, difficult islet retrieval, and significantly lower oxygen permeability than silicone rubber membranes (SRM). We hypothesized that oxygen permeability of bags may be insufficient for islet oxygenation. We measured oxygen transmission rates through the membrane walls of three different types of commercially available bags and through SRM currently used for islet shipment. We found that the bag membranes have oxygen transmission rates per unit area about 100-fold lower than SRM. We solved the oxygen diffusion-reaction equation for 150-μm diameter islets seeded at 3000 islet equivalents per cm2, a density adequate to culture and ship an entire human or porcine islet preparation in a single gas-permeable device, predicting that about 40% of the islet volume would be anoxic at 22°C and about 70% would be anoxic at 37°C. Islets of larger size or islets accumulated during shipment would be even more anoxic. The model predicted no anoxia in islets similarly seeded in devices with SRM bottoms. We concluded that commercially available bags may not prevent anoxia during islet culture or shipment; devices with SRM bottoms are more suitable alternatives. PMID:18374080
Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo
2014-02-15
Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.
Smith, Kate E; Kelly, Amy C; Min, Catherine G; Weber, Craig S; McCarthy, Fiona M; Steyn, Leah V; Badarinarayana, Vasudeo; Stanton, J Brett; Kitzmann, Jennifer P; Strop, Peter; Gruessner, Angelika C; Lynch, Ronald M; Limesand, Sean W; Papas, Klearchos K
2017-11-01
Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.
Min, Byoung-Hoon; Shin, Jun-Seop; Kim, Jong-Min; Kang, Seong-Jun; Kim, Hyun-Je; Yoon, Il-Hee; Park, Su-Kyoung; Choi, Ji-Won; Lee, Min-Suk; Park, Chung-Gyu
2018-01-01
Pancreatic islet transplantation is currently proven as a promising treatment for type 1 diabetes patients with labile glycemic control and severe hypoglycemia unawareness. Upon islet transplantation, revascularization is essential for proper functioning of the transplanted islets. As IL-6 is important for endothelial cell survival and systemic inflammation related to xenograft, the effect of IL-6 receptor antagonist, tocilizumab, on revascularization of the transplanted islets was examined in pig to non-human primate islet xenotransplantation model. Also, the endothelial cell origin in a new vessel of the transplanted pig islets was determined. Pig islets were isolated from designated pathogen-free (DPF) SNU miniature pigs and transplanted via portal vein into five streptozotocin-induced diabetic monkeys. One group (n = 2, basal group) was treated with anti-thymoglobulin (ATG), anti-CD40 antibody (2C10R4), sirolimus, and tacrolimus, and the other group was additionally given tocilizumab on top of basal immunosuppression (n = 3, Tocilizumab group). To confirm IL-6 blocking effect, C-reactive protein (CRP) levels and serum IL-6 concentration were measured. Scheduled biopsy of the margin of the posterior segment right lobe inferior of the liver was performed at 3 weeks after transplantation to assess the degree of revascularization of the transplanted islets. Immunohistochemical staining using anti-insulin, anti-CD31 antibodies, and lectin IB4 was conducted to find the origin of endothelial cells in the islet graft. CRP significantly increased at 1~2 days after transplantation in Basal group, but not in Tocilizumab group, and higher serum IL-6 concentration was measured in latter group, showing the biological potency of tocilizumab. In Basal group, well-developed endothelial cells were observed on the peri- and intraislet area, whereas the number of CD31 + cells in the intraislet space was significantly reduced in Tocilizumab group. Finally, new endothelial cells in the pig islet graft were positive for CD31, but not for lectin IB4, suggesting that they are originated from the recipient monkey. Our results demonstrated that tocilizumab can delay revascularization of the transplanted islet, although this effect had no significant correlation to the overall islet graft survival. In the pig to NHP islet xenotransplantation model, the endothelial cells from recipient monkey form new blood vessels in and around pig islets. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The influence of immune system stimulation on encapsulated islet graft survival.
Orłowski, Tadeusz M; Godlewska, Ewa; Tarchalska, Magda; Kinasiewicz, Joanna; Antosiak, Magda; Sabat, Marek
2005-01-01
The aim of this study was to determine the influence activating of the recipient immune system on the function of microencapsulated islet xenografts. The skin of WAG or Fisher rats and WAG free or encapsulated (APA) Langerhans islets were transplanted to healthy or to streptozotocin diabetic BALB/c mice. Skin grafts were performed following the method of Billingham and Medawar. Rat islets were isolated from pancreas by the Lacy and Kostianovsy method and encapsulated with calcium alginate-poly-L-lysine-alginate according to the 3-step coating method of Sun. The transplantation of encapsulated WAG islets, despite activation of the host immune system, restored euglycemia for over 180 +/-100 days. A subsequent skin graft taken from the same donor was rejected in the second set mode, but euglycemia persisted. In diabetic recipients, impaired immune response was corrected by successful encapsulated islet transplantation. In diabetic mice, strong stimulation with 2-fold skin transplantation induced primary non-function of grafted islets despite their encapsulation. The survival of an islet xenograft depends on the level of activation of the recipient immune system. The immune response of diabetic mice was impaired, but increased after post-transplant restitution of euglycemia. Microencapsulation sufficiently protected grafted islets, and remission of diabetes was preserved. However, after strong specific or non-specific stimulation of the host immune system, non-function of xenografted islets developed despite their encapsulation. Therefore, islet graft recipients should avoid procedures which could stimulate their immune systems. If absolutely necessary, the graft should be protected by exogenous insulin therapy at that time.
Ferret islet amyloid polypeptide (IAPP): characterization of in vitro and in vivo amyloidogenicity.
Paulsson, Johan F; Benoit-Biancamano, Marie-Odile; Schäffer, Lauge; Dahl, Kirsten
2011-12-01
Diabetes in the domestic ferret (Mustela putorius furo) has previously been described and the purpose of this study was to evaluate if the ferret could serve as a model for the study of β-cell degeneration associated with formation of islet amyloid. The nucleotide and amino acid sequence of ferret islet amyloid polypeptide (IAPP) 1-37 was identified and the synthesized peptide was studied with regards to in vitro amyloidogenicity and potential cellular toxicity in a comparative approach to human, cat and the nonamyloidogenic rat IAPP. Ferret IAPP forms amyloid-like fibrils, but with a longer lag phase than human and cat IAPP and the aggregation process was shown to reduce cell viability of cultured β-cells, but with less potency than these two amyloidogenic counterparts. Immunohistochemistry of ferret pancreas confirmed IAPP expression in the islets of Langerhans, but no islet amyloid was found in a very limited sample size of one diabetic and five healthy ferrets. Islet amyloid has never been described in ferrets, and it is not possible to determine if it is due to lack of studies/material or to the fact that the ferret's life span is too short to present with such pathology.
Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K
2008-03-01
BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability.
Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K.
2010-01-01
Background A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO®13, SYTO®24 and SYBR®14 as possible alternatives to FDA. Results We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO®13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. Conclusions From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability. PMID:20814586
Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans
Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel
2013-01-01
Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999
TCF7L2 is a master regulator of insulin production and processing.
Zhou, Yuedan; Park, Soo-Young; Su, Jing; Bailey, Kathleen; Ottosson-Laakso, Emilia; Shcherbina, Liliya; Oskolkov, Nikolay; Zhang, Enming; Thevenin, Thomas; Fadista, João; Bennet, Hedvig; Vikman, Petter; Wierup, Nils; Fex, Malin; Rung, Johan; Wollheim, Claes; Nobrega, Marcelo; Renström, Erik; Groop, Leif; Hansson, Ola
2014-12-15
Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D. © The Author 2014. Published by Oxford University Press.
Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys.
Elliott, R B; Escobar, L; Calafiore, R; Basta, G; Garkavenko, O; Vasconcellos, A; Bambra, C
2005-01-01
Neonatal porcine islets within alginate microcapsules transplanted intraperitoneally (IP) or within semi-permeable macrocapsules (TheraCyte) and transplanted subcutaneously (SC) survive and reverse diabetes for up to 16 weeks in diabetic autoimmune nonobese diabetic (NOD) mice. The islets in microcapsules transplanted IP into nondiabetic cynomolgus monkeys survived for 8 weeks. Similar results were shown with islets transplanted in TheraCytes. Neither species showed adverse effects or evidence of infection with porcine endogenous retroviruses or other endemic pig viruses. Proof of principle is illustrated for successful xenotransplantation in humans.
Unraveling the role of the ghrelin gene peptides in the endocrine pancreas.
Granata, Riccarda; Baragli, Alessandra; Settanni, Fabio; Scarlatti, Francesca; Ghigo, Ezio
2010-09-01
The ghrelin gene peptides include acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob). AG, mainly produced by the stomach, exerts its central and peripheral effects through the GH secretagogue receptor type 1a (GHS-R1a). UAG, although devoid of GHS-R1a-binding affinity, is an active peptide, sharing with AG many effects through an unknown receptor. Ob was discovered as the G-protein-coupled receptor 39 (GPR39) ligand; however, its physiological actions remain unclear. The endocrine pancreas is necessary for glucose homeostasis maintenance. AG, UAG, and Ob are expressed in both human and rodent pancreatic islets from fetal to adult life, and the pancreas is the major source of ghrelin in the perinatal period. GHS-R1a and GPR39 expression has been shown in beta-cells and islets, as well as specific binding sites for AG, UAG, and Ob. Ghrelin colocalizes with glucagon in alpha-islet cells, but is also uniquely expressed in epsilon-islet cells, suggesting a role in islet function and development. Indeed, AG, UAG, and Ob regulate insulin secretion in beta-cells and isolated islets, promote beta-cell proliferation and survival, inhibit beta-cell and human islet cell apoptosis, and modulate the expression of genes that are essential in pancreatic islet cell biology. They even induce beta-cell regeneration and prevent diabetes in streptozotocin-treated neonatal rats. The receptor(s) mediating their effects are not fully characterized, and a signaling crosstalk has been suggested. The present review summarizes the newest findings on AG, UAG, and Ob expression in pancreatic islets and the role of these peptides on beta-cell development, survival, and function.
Goss, John A; Schock, Angela P; Brunicardi, F Charles; Goodpastor, Sarah E; Garber, Alan J; Soltes, George; Barth, Merle; Froud, Tatiana; Alejandro, Rodolfo; Ricordi, Camillo
2002-12-27
As a result of advances in both immunosuppressive protocols and pancreatic islet isolation techniques, insulin independence has recently been achieved in several patients with type 1 diabetes mellitus via pancreatic islet transplantation (PIT). Although the dissemination of immunosuppressive protocols is quite easy, transferring the knowledge and expertise required to isolate a large number of quality human islets for transplantation is a far greater challenge. Therefore, in an attempt to centralize the critical islet processing needed for islet transplantation and to avoid the development of another islet processing center, we have established a collaborative islet transplant program between two geographically distant transplant centers. Three consecutive patients with type 1 diabetes mellitus with a history of severe hypoglycemia and metabolic instability underwent PIT at the Methodist Hospital (TMH), Houston, Texas, using pancreatic islets. All pancreatic islets were isolated from pancreata procured in Houston and subsequently transported for isolation to the Human Islet Cell Processing Facility of the Diabetes Research Institute (DRI) at the University of Miami, Miami, Florida. Pancreatic islets were isolated at DRI after enzymatic ductal perfusion (Liberase-HI) by the automated method (Ricordi Chamber) using endotoxin-free and xenoprotein-free media. After purification, the islets were immediately transported back to TMH and transplanted via percutaneous transhepatic portal embolization. Immunosuppression consisted of sirolimus, tacrolimus, and daclizumab. After donor cross-clamp in Houston, donor pancreata arrived at DRI and the isolation process began within 6.5 hr in all cases (median, 5.4 hr; range, 4.8-6.5 hr). At the completion of the isolation process, the islets were immediately transported back to TMH and transplanted. All three patients attained sustained insulin independence after transplantation of 395,567, 394,381, and 563,206 pancreatic islet equivalents (IEQ), respectively. Despite insulin independence, the first two patients received less than 10,000 IEQ/kg; therefore, to increase their functional pancreatic islet reserve, they underwent a second islet transplant with 326,720 and 768,132 IEQ, respectively. Posttransplantation follow-up for these three patients is 4, 3, and 0.5 months, respectively. The mean glycosylated hemoglobin values have been dramatically reduced in the first two patients. In addition, the mean amplitude of glycemic excursions have also been reduced in all three recipients (patient 1: before transplantation 197 mg/dL vs. after transplantation 61 mg/dL; patient 2: before transplantation 202 mg/dL vs. after transplantation 52 mg/dL; patient 3: before transplantation 245 mg/dL vs. after transplantation 58 mg/dL) after PIT. All pancreatic islet allografts demonstrated the ability to respond to an in vitro glucose stimulus at the DRI before shipment and at TMH after shipment and final processing with a median stimulation index of 2.1 and 2.2, respectively. None of the transplant recipients have had a hyper- or hypoglycemic episode since PIT and no complications have occurred. These early data demonstrate that (1) pancreatic islets remain viable after shipment to remote transplant sites; (2) pancreatic islet isolation techniques and experience can be concentrated at a small number of regional facilities that could supply islets to remote transplant centers; and (3) insulin independence via PIT can be achieved using a remote pancreatic islet isolation center.
Motté, Evi; Szepessy, Edit; Suenens, Krista; Stangé, Geert; Bomans, Myriam; Jacobs-Tulleneers-Thevissen, Daniel; Ling, Zhidong; Kroon, Evert; Pipeleers, Daniel
2014-11-01
β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated. At posttransplant (PT) weeks 20-30, macroencapsulated huES implants presented higher glucose-responsive plasma C-peptide levels and a lower proinsulin-over-C-peptide ratio than human islet cell implants under the kidney capsule. Their ex vivo analysis showed the presence of single-hormone-positive α- and β-cells that exhibited rapid secretory responses to increasing and decreasing glucose concentrations, similar to isolated human islet cells. However, their insulin secretory amplitude was lower, which was attributed in part to a lower cellular hormone content; it was associated with a lower glucose-induced insulin biosynthesis, but not with lower glucagon-induced stimulation, which together is compatible with an immature functional state of the huES-derived β-cells at PT weeks 20-30. These data support the therapeutic potential of macroencapsulated huES implants but indicate the need for further functional analysis. Their comparison with clinical-grade human islet cell grafts sets references for future development and clinical translation. Copyright © 2014 the American Physiological Society.
Kitzmann, J P; Pepper, A R; Gala-Lopez, B; Pawlick, R; Kin, T; O'Gorman, D; Mueller, K R; Gruessner, A C; Avgoustiniatos, E S; Karatzas, T; Szot, G L; Posselt, A M; Stock, P G; Wilson, J R; Shapiro, A M; Papas, K K
2014-01-01
The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). IE were isolated from two manufacturing centers and shipped in 10-cm(2) surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm(2)), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1-3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag(+/-) mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function. Copyright © 2014 Elsevier Inc. All rights reserved.
Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan
2016-01-01
Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lablanche, Sandrine; Vantyghem, Marie-Christine; Kessler, Laurence; Wojtusciszyn, Anne; Borot, Sophie; Thivolet, Charles; Girerd, Sophie; Bosco, Domenico; Bosson, Jean-Luc; Colin, Cyrille; Tetaz, Rachel; Logerot, Sophie; Kerr-Conte, Julie; Renard, Eric; Penfornis, Alfred; Morelon, Emmanuel; Buron, Fanny; Skaare, Kristina; Grguric, Gwen; Camillo-Brault, Coralie; Egelhofer, Harald; Benomar, Kanza; Badet, Lionel; Berney, Thierry; Pattou, François; Benhamou, Pierre-Yves
2018-05-15
Islet transplantation is indicated for patients with type 1 diabetes with severe hypoglycaemia or after kidney transplantation. We did a randomised trial to assess the efficacy and safety of islet transplantation compared with insulin therapy in these patients. In this multicentre, open-label, randomised controlled trial, we randomly assigned (1:1) patients with type 1 diabetes at 15 university hospitals to receive immediate islet transplantation or intensive insulin therapy (followed by delayed islet transplantation). Eligible patients were aged 18-65 years and had severe hypoglycaemia or hypoglycaemia unawareness, or kidney grafts with poor glycaemic control. We used computer-generated randomisation, stratified by centre and type of patient. Islet recipients were scheduled to receive 11 000 islet equivalents per kg bodyweight in one to three infusions. The primary outcome was proportion of patients with a modified β-score (in which an overall score of 0 was not allocated when stimulated C-peptide was negative) of 6 or higher at 6 months after first islet infusion in the immediate transplantation group or 6 months after randomisation in the insulin group. The primary analysis included all patients who received the allocated intervention; safety was assessed in all patients who received islet infusions. This trial is registered with ClinicalTrials.gov, number NCT01148680, and is completed. Between July 8, 2010, and July 29, 2013, 50 patients were randomly assigned to immediate islet transplantation (n=26) or insulin treatment (n=24), of whom three (one in the immediate islet transplantation group and two in the insulin therapy group) did not receive the allocated intervention. Median follow-up was 184 days (IQR 181-186) in the immediate transplantation group and 185 days (172-201) in the insulin therapy group. At 6 months, 16 (64% [95% CI 43-82]) of 25 patients in the immediate islet transplantation group had a modified β-score of 6 or higher versus none (0% [0-15]) of the 22 patients in the insulin group (p<0·0001). At 12 months after first infusion, bleeding complications had occurred in four (7% [2-18]) of 55 infusions, and a decrease in median glomerular filtration rate from 90·5 mL/min (IQR 76·6-94·0) to 71·8 mL/min (59·0-89·0) was observed in islet recipients who had not previously received a kidney graft and from 63·0 mL/min (55·0-71·0) to 57·0 mL/min (45·5-65·1) in islet recipients who had previously received a kidney graft. For the indications assessed in this study, islet transplantation effectively improves metabolic outcomes. Although studies with longer-term follow-up are needed, islet transplantation seems to be a valid option for patients with severe, unstable type 1 diabetes who are not responding to intensive medical treatments. However, immunosuppression can affect kidney function, necessitating careful selection of patients. Programme Hospitalier de Recherche Clinique grant from the French Government. Copyright © 2018 Elsevier Ltd. All rights reserved.
Orłowski, Tadeusz; Godlewska, Ewa; Mościcka, Maria; Sitarek, Elzbieta
2003-12-01
To protect the allografts or xenografts against transplant rejection special semipermeable membranes are applied. So far, there are only a few studies on the influence of an immunoisolated graft on the recipient immune system. Therefore, the possibility that an intraperitoneally grafted alginate/poly L-lysine/alginate (APA) coated pancreatic islets graft can effectively sensitize the recipient and provoke second set phenomenon was studied. C3H male mice and male WAG rats were used as donors of full-thickness skin and of free or encapsulated islet intraperitoneal grafts. Male BALB/c mice served as recipients. Skin grafts were performed following the method of Billingham and Medawar. The length of the second skin graft survival time served as the criterion for the sensitizing capacity of the primary graft. APA encapsulation of islets delayed but has not prevented the development of the second set phenomenon. However, the second skin graft rejection time was significantly longer after grafting of encapsulated islets than after free islets transplantation. APA microencapsulation of intraperitoneally transplanted islets delayed but did not prevent the development of the second set phenomenon. Encapsulation does not ensure complete immunoisolation, but only creates "an artificially immunoprivileged site of transplantation."
He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank
2015-01-01
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. PMID:25682842
He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank
2015-04-01
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. © 2015 Anatomical Society.
Caballero, Francisco; Siniakowicz, Karolina; Hollister-Lock, Jennifer; Duran, Luisa; Katsuta, Hitoshi; Yamada, Takatsugu; Lei, Ji; Deng, Shaoping; Westermark, Gunilla T; Markmann, James; Bonner-Weir, Susan; Weir, Gordon C
2014-02-01
There is great interest in the potential of the human endocrine pancreas for regeneration by β-cell replication or neogenesis. Our aim was to explore this potential in adult human pancreases and in both islet and exocrine tissue transplanted into mice. The design was to examine pancreases obtained from cadaver donors, autopsies, and fresh surgical specimens and compare these findings with those obtained from islet and duct tissue grafted into the kidney. Islets and exocrine tissue were transplanted into normoglycemic ICR-SCID mice and studied 4 and 14 weeks later. β-Cell replication, as assessed by double staining for insulin and Ki67, was 0.22 ± 0.03% at 4 weeks and 0.13 ± 0.03% at 14 weeks. In contrast, no evidence of β-cell replication could be found in 11 cadaver donor and 10 autopsy pancreases. However, Ki67 staining of β-cells in frozen sections obtained at surgery was comparable to that found in transplanted islets. Evidence for neogenesis in transplanted pancreatic exocrine tissue was supported by finding β-cells within the duct epithelium and the presence of cells double stained for insulin and cytokeratin 19 (CK19). However, β-cells within the ducts never constituted more than 1% of the CK19-positive cells. With confocal microscopy, 7 of 12 examined cells expressed both markers, consistent with a neogeneic process. Mice with grafts containing islet or exocrine tissue were treated with various combinations of exendin-4, gastrin, and epidermal growth factor; none increased β-cell replication or stimulated neogenesis. In summary, human β-cells replicate at a low level in islets transplanted into mice and in surgical pancreatic frozen sections, but rarely in cadaver donor or autopsy pancreases. The absence of β-cell replication in many adult cadaver or autopsy pancreases could, in part, be an artifact of the postmortem state. Thus, it appears that adult human β-cells maintain a low level of turnover through replication and neogenesis.
Caballero, Francisco; Siniakowicz, Karolina; Jennifer-Hollister-Lock; Duran, Luisa; Katsuta, Hitoshi; Yamada, Takatsugu; Lei, Ji; Deng, Shaoping; Westermark, Gunilla T.; Markmann, James; Bonner-Weir, Susan; Weir, Gordon C.
2013-01-01
There is great interest in the potential of the human endocrine pancreas for regeneration by β-cell replication or neogenesis. Our aim was to explore this potential in adult human pancreases and in both islet and exocrine tissue transplanted into mice. The design was to examine pancreases obtained from cadaver donors, autopsies and fresh surgical specimens and compare these findings with those obtained from islet and duct tissue grafted into the kidney. Islets and exocrine tissue were transplanted into normoglycemic ICR/SCID mice and studied 4 and 14 wk later. β-cell replication as assessed by double staining for insulin and Ki67 was 0.22 ± 0.03 % at 4 wk and 0.13 ± 0.03 % at 14 wk. In contrast, no evidence of β-cell replication could be found in 11 cadaver donor and 10 autopsy pancreases. However, Ki67 staining of β-cells in frozen sections obtained at surgery was comparable to that found in transplanted islets. Evidence for neogenesis in transplanted pancreatic exocrine tissue was supported by finding β-cells within the duct epithelium, and the presence of cells double stained for insulin and cytokeratin 19 (CK19). However, β-cells within the ducts never constituted more than 1% of the CK19 positive cells. With confocal microscopy, 7 of 12 examined cells expressed both markers, consistent with a neogeneic process. Mice with grafts containing islet or exocrine tissue were treated with various combinations exendin-4, gastrin and epidermal growth factor; none increased β-cell replication or stimulated neogenesis. In summary, human β-cells replicate at a low level in islets transplanted into mice and in surgical pancreatic frozen sections but rarely in cadaver donor or autopsy pancreases. The absence of β-cell replication in many adult cadaver or autopsy pancreases could, in part, be an artifact of the postmortem state. Thus, it appears that adult human β-cells maintain a low level of turnover through replication and neogenesis. PMID:23321263
Sabek, Omaima M; Farina, Marco; Fraga, Daniel W; Afshar, Solmaz; Ballerini, Andrea; Filgueira, Carly S; Thekkedath, Usha R; Grattoni, Alessandro; Gaber, A Osama
2016-01-01
Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow-derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland) to support islet-like insulin-producing aggregates' survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland-islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy.
Sabek, Omaima M; Farina, Marco; Fraga, Daniel W; Afshar, Solmaz; Ballerini, Andrea; Filgueira, Carly S; Thekkedath, Usha R; Grattoni, Alessandro; Gaber, A Osama
2016-01-01
Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow–derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland) to support islet-like insulin-producing aggregates’ survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland—islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy. PMID:27152147
Candiello, Joseph; Grandhi, Taraka Sai Pavan; Goh, Saik Kia; Vaidya, Vimal; Lemmon-Kishi, Maya; Eliato, Kiarash Rahmani; Ros, Robert; Kumta, Prashant N; Rege, Kaushal; Banerjee, Ipsita
2018-05-25
Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells. In this study, we report specific engineering of regenerative islet organoids of precise size and cellular heterogeneity, using a novel hydrogel system, Amikagel. Amikagel facilitated controlled and spontaneous aggregation of human embryonic stem cell derived pancreatic progenitor cells (hESC-PP) into robust homogeneous spheroids. This platform further allowed fine control over the integration of multiple cell populations to produce heterogeneous spheroids, which is a necessity for complex organoid engineering. Amikagel induced hESC-PP spheroid formation enhanced pancreatic islet-specific Pdx-1 and NKX6.1 gene and protein expression, while also increasing the percentage of committed population. hESC-PP spheroids were further induced towards mature beta-like cells which demonstrated increased Beta-cell specific INS1 gene and C-peptide protein expression along with functional insulin production in response to in vitro glucose challenge. Further integration of hESC-PP with biologically relevant supporting endothelial cells resulted in multicellular organoids which demonstrated spontaneous maturation towards islet-specific INS1 gene and C-peptide protein expression along with a significantly developed extracellular matrix support system. These findings establish Amikagel -facilitated platform ideal for islet organoid engineering. Copyright © 2018. Published by Elsevier Ltd.
Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK
2014-01-01
Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089
Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A.; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T.; Simbolo, Michele; Asara, John M.; Bläker, Hendrik; Cantley, Lewis C.; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas
2016-01-01
Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation–enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. PMID:26446169
Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T; Simbolo, Michele; Asara, John M; Bläker, Hendrik; Cantley, Lewis C; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas
2015-12-01
Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation-enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. ©2015 American Association for Cancer Research.
Brereton, Melissa F.; Vergari, Elisa; Zhang, Quan
2015-01-01
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function. PMID:26216135
Mullooly, Niamh; Vernon, Wendy; Smith, David M; Newsholme, Philip
2014-03-01
Recent metabolic profiling studies have identified a correlation between branched-chain amino acid levels, insulin resistance associated with prediabetes and susceptibility to type 2 diabetes. Glucose and lipids in chronic excess have been reported to induce toxic effects in pancreatic β-cells, but the effect of elevated amino acid concentrations on primary islet cell function has not been investigated to date. The aim of this study was to investigate the effect of chronic exposure to various amino acids on islet cell function in vitro. Isolated rat islets were incubated over periods of 48 h with a range of concentrations of individual amino acids (0.1 μm to 10 mm). After 48 h, islets were assessed for glucose-dependent insulin secretion capacity, proliferation or islet cell apoptosis. We report that elevated levels of branched-chain amino acids have little effect on pancreatic islet cell function or viability; however, increased levels of the amino acid l-arginine were found to be β-cell toxic, causing a dose-dependent decrease in insulin secretion accompanied by a decrease in islet cell proliferation and an increase in islet cell apoptosis. These effects were not due to l-arginine-dependent increases in production of nitric oxide but arose through elicitation of the islet cell endoplasmic reticulum stress response. This novel finding indicates, for the first time, that the l-arginine concentration in vitro may impact negatively on islet cell function, thus indicating further complexity in relationship to in vivo susceptibility of β-cells to nutrient-induced dysfunction.
Pancreas preservation for pancreas and islet transplantation
Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.
2010-01-01
Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343
Giovannoni, Laurianne; Muller, Yannick D; Lacotte, Stéphanie; Parnaud, Géraldine; Borot, Sophie; Meier, Raphaël P H; Lavallard, Vanessa; Bédat, Benoît; Toso, Christian; Daubeuf, Bruno; Elson, Greg; Shang, Limin; Morel, Philippe; Kosco-Vilbois, Marie; Bosco, Domenico; Berney, Thierry
2015-01-01
Toll-like receptors are key players in sterile inflammation phenomena and can link the innate and adaptive immune systems by enhancing graft immunogenicity. They are also considered mediators of types 1 and 2 diabetes development. The aim of the present study was to assess the role of Toll-like receptor-4 (TLR4) in mediating the inflammatory and immune responses to pancreatic islets, thereby promoting inflammatory destruction and immune rejection of islet grafts. Experiments were conducted in murine and human in vitro systems and in vivo murine islet transplant models, using species-specific anti-TLR4 monoclonal antibodies. In vitro, mixed lymphocyte-islet reaction experiments were performed to assess T-cell activation and proliferation. In vivo, both a syngeneic (B6-to-B6) marginal mass islet transplant model to assess the impact of TLR4 blockade on islet engraftment and an allogeneic (DBA1-to-B6) model were used. In vitro TLR4 blockade decreased lipopolysaccharide-mediated β-cell apoptosis and T-cell activation and proliferation against allogeneic islets. In vivo, TLR4 blockade resulted in significantly better syngeneic marginal mass islet engraftment and in indefinite allogeneic islet graft survival. Tolerance was not observed because donor-specific skin graft rechallenge in nonrejecting animals resulted in rejection of both skin and islets, but without accelerated rejection as compared to naive animals. Taken together, our data indicate that TLR4 blockade leads to a significant improvement of syngeneic islet engraftment and of allogeneic islet graft survival. A mechanism of graft accommodation with concurrent inhibition of donor-specific immune memory is likely to be involved.
Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis
Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei
2016-01-01
Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436
Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh
2017-02-28
We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.
Song, Lili; Sun, Zhen; Kim, Do-Sung; Gou, Wenyu; Strange, Charlie; Dong, Huansheng; Cui, Wanxing; Gilkeson, Gary; Morgan, Katherine A; Adams, David B; Wang, Hongjun
2017-08-30
Chronic pancreatitis has surgical options including total pancreatectomy to control pain. To avoid surgical diabetes, the explanted pancreas can have islets harvested and transplanted. Immediately following total pancreatectomy with islet autotransplantation (TP-IAT), many islet cells die due to isolation and transplantation stresses. The percentage of patients remaining insulin free after TP-IAT is therefore low. We determined whether cotransplantation of adipose-derived mesenchymal stem cells (ASCs) from chronic pancreatitis patients (CP-ASCs) would protect islets after transplantation. In a marginal mass islet transplantation model, islets from C57BL/6 mice were cotransplanted with CP-ASCs into syngeneic streptozotocin-treated diabetic mice. Treatment response was defined by the percentage of recipients reaching normoglycemia, and by the area under the curve for glucose and c-peptide in a glucose tolerance test. Macrophage infiltration, β-cell apoptosis, and islet graft vasculature were measured in transplanted islet grafts by immunohistochemistry. mRNA expression profiling of 84 apoptosis-related genes in islet grafts transplanted alone or with CP-ASCs was measured by the RT 2 Profiler™ Apoptosis PCR Array. The impact of insulin-like growth factor-1 (IGF-1) on islet apoptosis was determined in islets stimulated with cytokines (IL-1β and IFN-γ) in the presence and absence of CP-ASC conditioned medium. CP-ASC-treated mice were more often normoglycemic compared to mice receiving islets alone. ASC cotransplantation reduced macrophage infiltration, β-cell death, suppressed expression of TNF-α and Bcl-2 modifying factor (BMF), and upregulated expressions of IGF-1 and TNF Receptor Superfamily Member 11b (TNFRSF11B) in islet grafts. Islets cultured in conditioned medium from CP-ASCs showed reduced cell death. This protective effect was diminished when IGF-1 was blocked in the conditioned medium by the anti-IGF-1 antibody. Cotransplantation of islets with ASCs from the adipose of chronic pancreatitis patients improved islet survival and islet function after transplantation. The effects are in part mediated by paracrine secretion of IGF-1, suppression of inflammation, and promotion of angiogenesis. ASCs from chronic pancreatitis patients have the potential to be used as a synergistic therapy to enhance the efficacy of islet transplantation following pancreatectomy.
Lack of Evidence for a Role of Islet Autoimmunity in the Aetiology of Canine Diabetes Mellitus
Landegren, Nils; Grimelius, Lars; von Euler, Henrik; Sundberg, Katarina; Lindblad-Toh, Kerstin; Lobell, Anna; Hedhammar, Åke; Andersson, Göran; Hansson-Hamlin, Helene; Lernmark, Åke; Kämpe, Olle
2014-01-01
Aims/Hypothesis Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D) and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. Methods Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. Results None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. Conclusions/Interpretations Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus. PMID:25153886
Clinical pancreatic islet transplantation.
Shapiro, A M James; Pokrywczynska, Marta; Ricordi, Camillo
2017-05-01
Clinical pancreatic islet transplantation can be considered one of the safest and least invasive transplant procedures. Remarkable progress has occurred in both the technical aspects of islet cell processing and the outcomes of clinical islet transplantation. With >1,500 patients treated since 2000, this therapeutic strategy has moved from a curiosity to a realistic treatment option for selected patients with type 1 diabetes mellitus (that is, those with hypoglycaemia unawareness, severe hypoglycaemic episodes and glycaemic lability). This Review outlines the techniques required for human islet isolation, in vitro culture before the transplant and clinical islet transplantation, and discusses indications, optimization of recipient immunosuppression and management of adjunctive immunomodulatory and anti-inflammatory strategies. The potential risks, long-term outcomes and advances in treatment after the transplant are also discussed to further move this treatment towards becoming a more widely available option for patients with type 1 diabetes mellitus and eventually a potential cure.
El Khatib, Moustafa M; Ohmine, Seiga; Jacobus, Egon J; Tonne, Jason M; Morsy, Salma G; Holditch, Sara J; Schreiber, Claire A; Uetsuka, Koji; Fusaki, Noemi; Wigle, Dennis A; Terzic, Andre; Kudva, Yogish C; Ikeda, Yasuhiro
2016-05-01
Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iPSCs) led to the formation of invasive teratocarcinoma-like tumors in more than 90% of immunodeficient mice. Moreover, removal of primary tumors from LV-iPSC progeny-transplanted hosts generated secondary and metastatic tumors. Combined transgene-free (TGF) reprogramming and elimination of residual pluripotent cells by enzymatic dissociation ensured tumor-free transplantation, ultimately enabling regeneration of type 1 diabetes-specific human islet structures in vivo. The incidence of tumor formation in TGF-iPSCs was titratable, depending on the oncogenic load, with reintegration of the cMYC expressing vector abolishing tumor-free transplantation. Thus, transgene-free cMYC-independent reprogramming and elimination of residual pluripotent cells are mandatory steps in achieving transplantation of iPSC progeny for customized and safe islet regeneration in vivo. Pluripotent stem cell therapy for diabetes relies on the safety as well as the quality of derived insulin-producing cells. Data from this study highlight prominent tumorigenic risks of induced pluripotent stem cell (iPSC) products, especially when reprogrammed with integrating vectors. Two major underlying mechanisms in iPSC tumorigenicity are residual pluripotent cells and cMYC overload by vector integration. This study also demonstrated that combined transgene-free reprogramming and enzymatic dissociation allows teratoma-free transplantation of iPSC progeny in the mouse model in testing the tumorigenicity of iPSC products. Further safety assessment and improvement in iPSC specification into a mature β cell phenotype would lead to safe islet replacement therapy for diabetes. ©AlphaMed Press.
Lee, GeonHui; Jun, Yesl; Jang, HeeYeong; Yoon, Junghyo; Lee, JaeSeo; Hong, MinHyung; Chung, Seok; Kim, Dong-Hwee; Lee, SangHoon
2018-01-01
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rhett, J Matthew; Wang, Hongjun; Bainbridge, Heather; Song, Lili; Yost, Michael J
2016-01-01
Total pancreatectomy and islet autotransplantation is a cutting-edge technique to treat chronic pancreatitis and postoperative diabetes. A major obstacle has been low islet cell survival due largely to the innate inflammatory response. Connexin43 (Cx43) channels play a key role in early inflammation and have proven to be viable therapeutic targets. Even if cell death due to early inflammation is avoided, insufficient vascularization is a primary obstacle to maintaining the viability of implanted cells. We have invented technologies targeting the inflammatory response and poor vascularization: a Cx43 mimetic peptide that inhibits inflammation and a novel prevascularized tissue engineered construct. We combined these technologies with isolated islets to create a prevascularized bioartificial pancreas that is resistant to the innate inflammatory response. Immunoconfocal microscopy showed that constructs containing islets express insulin and possess a vascular network similar to constructs without islets. Glucose stimulated islet-containing constructs displayed reduced insulin secretion compared to islets alone. However, labeling for insulin post-glucose stimulation revealed that the constructs expressed abundant levels of insulin. This discrepancy was found to be due to the expression of insulin degrading enzyme. These results suggest that the prevascularized bioartificial pancreas is potentially a tool for improving long-term islet cell survival in vivo.
Pepper, Andrew R.; Pawlick, Rena L.; Gala-Lopez, Boris
2016-01-01
ABSTRACT Clinical islet transplantation has routinely been demonstrated to be an efficacious means of restoring glycemic control in select patients with autoimmune diabetes. Notwithstanding marked progress and improvements, the broad-spectrum application of this treatment option is restricted by the complications associated with intrahepatic portal cellular infusion and the scarcity of human donor pancreata. Recent progress in stem cell biology has demonstrated that the potential to expand new β cells for clinical transplantation is now a reality. As such, research focus is being directed toward optimizing safe extrahepatic transplant sites to house future alternative β cell sources for clinical use. The present study expands on our previous development of a prevascularized subcutaneous device-less (DL) technique for cellular transplantation, by demonstrating long-term (>365 d) durable syngeneic murine islet graft function. Furthermore, histological analysis of tissue specimens collected immediately post-DL site creation and acutely post-human islet transplantation demonstrates that this technique results in close apposition of the neovascularized collagen to the transplanted cells without dead space, thereby avoiding hypoxic luminal dead-space. Murine islets transplanted into the DL site created by a larger luminal diameter (6-Fr.) (n = 11), reversed diabetes to the similar capacity as our standard DL method (5-Fr.)(n = 9). Furthermore, glucose tolerance testing did not differ between these 2 transplant groups (p > 0 .05). Taken together, this further refinement of the DL transplant approach facilitates a simplistic means of islet infusion, increases the transplant volume capacity and may provide an effective microenvironment to house future alternative β cell sources. PMID:27820660
Pepper, Andrew R; Bruni, Antonio; Pawlick, Rena L; Gala-Lopez, Boris; Rafiei, Yasmin; Wink, John; Kin, Tatsuya; Shapiro, A M James
2016-11-01
Clinical islet transplantation has routinely been demonstrated to be an efficacious means of restoring glycemic control in select patients with autoimmune diabetes. Notwithstanding marked progress and improvements, the broad-spectrum application of this treatment option is restricted by the complications associated with intrahepatic portal cellular infusion and the scarcity of human donor pancreata. Recent progress in stem cell biology has demonstrated that the potential to expand new β cells for clinical transplantation is now a reality. As such, research focus is being directed toward optimizing safe extrahepatic transplant sites to house future alternative β cell sources for clinical use. The present study expands on our previous development of a prevascularized subcutaneous device-less (DL) technique for cellular transplantation, by demonstrating long-term (>365 d) durable syngeneic murine islet graft function. Furthermore, histological analysis of tissue specimens collected immediately post-DL site creation and acutely post-human islet transplantation demonstrates that this technique results in close apposition of the neovascularized collagen to the transplanted cells without dead space, thereby avoiding hypoxic luminal dead-space. Murine islets transplanted into the DL site created by a larger luminal diameter (6-Fr.) (n = 11), reversed diabetes to the similar capacity as our standard DL method (5-Fr.)(n = 9). Furthermore, glucose tolerance testing did not differ between these 2 transplant groups (p > 0 .05). Taken together, this further refinement of the DL transplant approach facilitates a simplistic means of islet infusion, increases the transplant volume capacity and may provide an effective microenvironment to house future alternative β cell sources.
Ogihara, Takeshi; Chuang, Jen-Chieh; Vestermark, George L; Garmey, James C; Ketchum, Robert J; Huang, Xiaolun; Brayman, Kenneth L; Thorner, Michael O; Repa, Joyce J; Mirmira, Raghavendra G; Evans-Molina, Carmella
2010-02-19
Recent studies in rodent models suggest that liver X receptors (LXRs) may play an important role in the maintenance of glucose homeostasis and islet function. To date, however, no studies have comprehensively examined the role of LXRs in human islet biology. Human islets were isolated from non-diabetic donors and incubated in the presence or absence of two synthetic LXR agonists, TO-901317 and GW3965, under conditions of low and high glucose. LXR agonist treatment enhanced both basal and stimulated insulin secretion, which corresponded to an increase in the expression of genes involved in anaplerosis and reverse cholesterol transport. Furthermore, enzyme activity of pyruvate carboxylase, a key regulator of pyruvate cycling and anaplerotic flux, was also increased. Whereas LXR agonist treatment up-regulated known downstream targets involved in lipogenesis, we observed no increase in the accumulation of intra-islet triglyceride at the dose of agonist used in our study. Moreover, LXR activation increased expression of the genes encoding hormone-sensitive lipase and adipose triglyceride lipase, two enzymes involved in lipolysis and glycerolipid/free fatty acid cycling. Chronically, insulin gene expression was increased after treatment with TO-901317, and this was accompanied by increased Pdx-1 nuclear protein levels and enhanced Pdx-1 binding to the insulin promoter. In conclusion, our data suggest that LXR agonists have a direct effect on the islet to augment insulin secretion and expression, actions that should be considered either as therapeutic or unintended side effects, as these agents are developed for clinical use.
Skog, Oskar; Ingvast, Sofie; Korsgren, Olle
2014-10-01
Enteroviruses have been implicated in the etiology of type 1 diabetes, supported by immunoreactivity of enteroviral protein in islets, but presence of enteroviral genome has rarely been reported. Failure to detect enterovirus with RT-PCR has been attributed to the possible presence of PCR inhibitors and that only few cells are infected. The aim of this study was to evaluate strategies for detection of enterovirus in human islets. A scenario was modeled with defined infected islets among a large number of uninfected pancreatic cells and the sensitivity of immunohistochemistry and PCR for detection of enterovirus was evaluated. Enterovirus was detected with PCR when only one single human islet, infected in vitro with a low dose of virus, was mixed with an uninfected pancreatic biopsy. Enterovirus could not be detected by immunohistochemistry under the same conditions, demonstrating the superior sensitivity of PCR also in pancreatic tissue with only a small fraction of infected cells. In addition, we demonstrate that pancreatic cell culture supernatant does not cause degradation of enterovirus at 37°C, indicating that under normal culture conditions released virus is readily detectable. Utilizing PCR, the pancreases of two organ donors that died at onset of type 1 diabetes were found negative for enterovirus genome despite islet cells being positive using immunohistochemistry. These data suggest that PCR should be the preferred screening method for enterovirus in the pancreas and suggest cautious interpretation of immunostaining for enterovirus that cannot be confirmed with PCR. Copyright © 2014 Elsevier B.V. All rights reserved.
Corbin, Kathryn L.; Waters, Christopher D.; Shaffer, Brett K.; Verrilli, Gretchen M.
2016-01-01
Pulsatile insulin release is the primary means of blood glucose regulation. The loss of pulsatility is thought to be an early marker and possible factor in developing type 2 diabetes. Another early adaptation in islet function to compensate for obesity is increased glucose sensitivity (left shift) associated with increased basal insulin release. We provide evidence that oscillatory disruptions may be linked with overcompensation (glucose hypersensitivity) in islets from diabetes-prone mice. We isolated islets from male 4- to 5-week-old (prediabetic) and 10- to 12-week-old (diabetic) leptin-receptor-deficient (db/db) mice and age-matched heterozygous controls. After an overnight incubation in media with 11 mM glucose, we measured islet intracellular calcium in 5, 8, 11, or 15 mM glucose. Islets from heterozygous 10- to 12-week-old mice were quiescent in 5 mM glucose and displayed oscillations with increasing amplitude and/or duration in 8, 11, and 15 mM glucose, respectively. Islets from diabetic 10- to 12-week-old mice, in contrast, showed robust oscillations in 5 mM glucose that declined with increasing glucose. Similar trends were observed at 4–5-weeks of age. A progressive left shift in maximal insulin release was also observed in islets as db/db mice aged. Reducing glucokinase activity with 1 mM D-mannoheptulose restored oscillations in 11 mM glucose. Finally, overnight low-dose cytokine exposure negatively impacted oscillations preferentially in high glucose in diabetic islets compared with heterozygous controls. Our findings suggest the following: 1) islets from frankly diabetic mice can produce oscillations, 2) elevated sensitivity to glucose prevents diabetic mouse islets from producing oscillations in normal postprandial (11–15 mM glucose) conditions, and 3) hypersensitivity to glucose may magnify stress effects from inflammation or other sources. PMID:26943366
Shin, Jun-Seop; Min, Byoung-Hoon; Kim, Jong-Min; Kim, Jung-Sik; Yoon, Il Hee; Kim, Hyun Je; Kim, Yong-Hee; Jang, Jae Yool; Kang, Hee Jung; Lim, Dong-Gyun; Ha, Jongwon; Kim, Sang-Joon; Park, Chung-Gyu
2016-07-01
Islet allotransplantation is a promising way to treat some type 1 diabetic (T1D) patients with frequent hypoglycemic unawareness, and islet xenotransplantation is emerging to overcome the problem of donor organ shortage. Our recent study showing reproducible long-term survival of porcine islets in non-human primates (NHPs) allows us to examine whether autologous regulatory T-cell (Treg) infusion at peri-transplantation period would induce transplantation tolerance in xenotransplantation setting. Two diabetic rhesus monkeys were transplanted with porcine islets from wild-type adult Seoul National University (SNU) miniature pigs with immunosuppression by anti-thymoglobulin (ATG), cobra venom factor, anti-CD154 monoclonal antibody (mAb), and sirolimus. CD4(+) CD25(high) CD127(low) autologous regulatory T cells from the recipients were isolated, ex vivo expanded, and infused at the peri-transplantation period. Blood glucose and porcine C-peptide from the recipients were measured up to 1000 days. Maintenance immunosuppressants including a CD40-CD154 blockade were deliberately discontinued to confirm whether transplantation tolerance was induced by adoptively transferred Tregs. After pig islet transplantation via portal vein, blood glucose levels of diabetic recipients became normalized and maintained over 6 months while in immunosuppressive maintenance with a CD40-CD154 blockade and sirolimus. However, the engrafted pig islets in the long-term period were fully rejected by activated immune cells, particularly T cells, when immunosuppressants were stopped, showing a failure of transplantation tolerance induction by autologous Tregs. Taken together, autologous Tregs infused at the peri-transplantation period failed to induce transplantation tolerance in pig-to-NHP islet xenotransplantation setting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T
2006-01-01
Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.
Qian, Jingyi; Block, Gene D.; Colwell, Christopher S.; Matveyenko, Aleksey V.
2013-01-01
There is a correlation between circadian disruption, type 2 diabetes mellitus (T2DM), and islet failure. However, the mechanisms underlying this association are largely unknown. Pancreatic islets express self-sustained circadian clocks essential for proper β-cell function and survival. We hypothesized that exposure to environmental conditions associated with disruption of circadian rhythms and susceptibility to T2DM in humans disrupts islet clock and β-cell function. To address this hypothesis, we validated the use of Per-1:LUC transgenic rats for continuous longitudinal assessment of islet circadian clock function ex vivo. Using this methodology, we subsequently examined effects of the continuous exposure to light at night (LL) on islet circadian clock and insulin secretion in vitro in rat islets. Our data show that changes in the light–dark cycle in vivo entrain the phase of islet clock transcriptional oscillations, whereas prolonged exposure (10 weeks) to LL disrupts islet circadian clock function through impairment in the amplitude, phase, and interislet synchrony of clock transcriptional oscillations. We also report that exposure to LL leads to diminished glucose-stimulated insulin secretion due to a decrease in insulin secretory pulse mass. Our studies identify potential mechanisms by which disturbances in circadian rhythms common to modern life can predispose to islet failure in T2DM. PMID:23775768
Krickhahn, Mareike; Bühler, Christoph; Meyer, Thomas; Thiede, Arnulf; Ulrichs, Karin
2002-01-01
Clinical islet allotransplantation has become an increasingly efficient "routine" therapy in recent years. Shortage of human donor organs leads to porcine pancreatic islets as a potential source for islet xenotransplantation. Yet it is still very difficult to isolate sufficient numbers of intact porcine islets, particularly from young market pigs. In the following study islets were successfully isolated from retired breeders [4806 +/- 720 islet equivalents per gram organ (IEQ/g); n = 25; 2-3 years old; RB] and also from young hybrid pigs [2868 +/- 260 IEQ/g; n = 65; 4-6 months old; HY] using LiberasePI and a modified version of Ricordi's digestion-filtration technique. As expected, isolations from RB showed significantly better results (p < 0.002). A retrospective histological analysis of almost all donor pancreases showed that the majority of organs from RB (80%) contained mainly large islets (diameter > 200 microm), in contrast to only 35% of all pancreases from HY. Remarkably, the islet size in situ, regardless whether detected in RB or HY, strongly determined the isolation result. A donor organ with predominantly large islets resulted in significantly higher numbers of IEQs compared with a donor organ with predominantly small islets [RB(Large Islets): 5680 +/- 3,318 IEQ/g (n= 20); RB(Small Islets): 1353 +/- 427 IEQ/g (n = 5); p < 0.02]. In addition, isolation results were strongly influenced by the quality of the LiberasePI batch, and therefore single batch testing is invariably required. Purification was performed using Ficoll or OptiPrep density gradient centrifugation manually or in the COBE cell processor. Although islet purity was highest when OptiPrep was used, final islet yields did not differ between the different purification methods. Our study demonstrates that islet size in situ is an extremely critical parameter for highly successful islet isolation; consequently, we are now performing a morphological screening of each donor organ prior to the isolation process. Under these conditions highly successful isolations can reliably be performed even from young market pigs.
Pan, Xiaoming; Xue, Wujun; Li, Yang; Feng, Xinshun; Tian, Xiaohui; Ding, Chenguang
2011-12-15
Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (P<0.05). After transplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (P<0.05). The mean microvascular density in co-culture group was significantly higher than that in single islet group (P=0.04). Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.
Chen, Shuyuan; Bastarrachea, Raul A; Roberts, Brad J; Voruganti, V Saroja; Frost, Patrice A; Nava-Gonzalez, Edna J; Arriaga-Cazares, Hector E; Chen, Jiaxi; Huang, Pintong; DeFronzo, Ralph A; Comuzzie, Anthony G; Grayburn, Paul A
2014-01-01
Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass. PMID:24553120
Chen, Shuyuan; Bastarrachea, Raul A; Roberts, Brad J; Voruganti, V Saroja; Frost, Patrice A; Nava-Gonzalez, Edna J; Arriaga-Cazares, Hector E; Chen, Jiaxi; Huang, Pintong; DeFronzo, Ralph A; Comuzzie, Anthony G; Grayburn, Paul A
2014-01-01
Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass.
Naziruddin, Bashoo; Wease, Steve; Stablein, Donald; Barton, Franca B.; Berney, Thierry; Rickels, Michael R.; Alejandro, Rodolfo
2015-01-01
Pancreatic islet transplantation is a promising treatment option for patients severely affected with type 1 diabetes. This report from CITR presents pre- and post-transplant human leukocyte antigen (HLA) class I sensitization rates in islet alone transplantation. Data came from 303 recipients transplanted with islet alone between January 1999 and December 2008. HLA class I sensitization was determined by the presence of anti-HLA class I antibodies. Panel-reactive antibodies (PRA) from prior to islet infusion and at 6 months, and yearly post-transplant was correlated to measures of islet graft failure. The cumulative number of mismatched HLA alleles increased with each additional islet infusion from a median of 3 for one infusion to 9 for three infusions. Pre-transplant PRA was not predictive of islet graft failure. However, development of PRA ≥20% post-transplant was associated with 3.6 fold (p=.001) increased hazard ratio for graft failure. Patients with complete graft loss who had discontinued immunosuppression had significantly higher rate of PRA ≥ 20% compared to those with functioning grafts who remained on immunosuppression. Exposure to repeat HLA class I mismatch at second or third islet infusions resulted in less frequent development of de novo HLA class I antibodies when compared to increased class I mismatch. The development of HLA class I antibodies while on immunosuppression is associated with subsequent islet graft failure. The risk of sensitization may be reduced by minimizing the number of islet donors used per recipient, and in the absence of donor-specific anti-HLA antibodies, repeating HLA class I mismatches with subsequent islet infusions. PMID:22080832
Hani, Homayoun; Allaudin, Zeenathul Nazariah; Mohd-Lila, Mohd-Azmi; Sarsaifi, Kazhal; Rasouli, Mina; Tam, Yew Joon; Tengku-Ibrahim, Tengku-Azmi; Othman, Abas Mazni
2017-05-01
Dead islets replaced with viable islets are a promising offer to restore normal insulin production to a person with diabetes. The main reason for establishing a new islet source for transplantation is the insufficiency of human donor pancreas while using xenogeneic islets perhaps assists this problem. The expression of PDX1 is essential for the pancreas expansion. In mature β-cells, PDX1 has several critical roles such as glucose sensing, insulin synthesis, and insulin secretion. In this study, we aimed to evaluate the expression of pancreatic duodenal homeobox-1 (PDX1) in treated caprine islets in culture and to assess the protective effects of antioxidant factors on the PDX1 gene in cultured caprine islets. Purified islets were treated with serum-free, serum, IBMX, tocopherol, or IBMX and tocopherol media. Quantitative polymerase chain reaction and Western blotting were carried out to compare the expression levels of PDX1 in treated purified islets cultured with different media. Islets treated with IBMX/tocopherol exhibited the highest fold change in the relative expression of PDX1 on day 5 post-treatment (relative expression: 6.80±2.08), whereas serum-treated islets showed the lowest fold changes in PDX1 expression on day 5 post-treatment (0.67±0.36), as compared with the expression on day 1 post-treatment. Insulin production and viability tests of purified islets showed superiority of islet at supplemented serum-free media with IBMX/tocopherol compared to other cultures (53.875%±1.59%). Our results indicated that supplemented serum-free medium with tocopherol and IBMX enhances viability and PDX1 gene expression compared to serum-added and serum-free media. © 2017 The Authors. Xenotransplantation published by John Wiley & Sons Ltd.
Islet xenotransplantation from genetically engineered pigs.
Nagaraju, Santosh; Bottino, Rita; Wijkstrom, Martin; Hara, Hidetaka; Trucco, Massimo; Cooper, David K C
2013-12-01
Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.
Piemonti, Lorenzo; Everly, Matthew J.; Maffi, Paola; Scavini, Marina; Poli, Francesca; Nano, Rita; Cardillo, Massimo; Melzi, Raffaella; Mercalli, Alessia; Sordi, Valeria; Lampasona, Vito; Espadas de Arias, Alejandro; Scalamogna, Mario; Bosi, Emanuele; Bonifacio, Ezio; Secchi, Antonio; Terasaki, Paul I.
2013-01-01
Long-term clinical outcome of islet transplantation is hampered by the rejection and recurrence of autoimmunity. Accurate monitoring may allow for early detection and treatment of these potentially compromising immune events. Islet transplant outcome was analyzed in 59 consecutive pancreatic islet recipients in whom baseline and de novo posttransplant autoantibodies (GAD antibody, insulinoma-associated protein 2 antigen, zinc transporter type 8 antigen) and donor-specific alloantibodies (DSA) were quantified. Thirty-nine recipients (66%) showed DSA or autoantibody increases (de novo expression or titer increase) after islet transplantation. Recipients who had a posttransplant antibody increase showed similar initial performance but significantly lower graft survival than patients without an increase (islet autoantibodies P < 0.001, DSA P < 0.001). Posttransplant DSA or autoantibody increases were associated with HLA-DR mismatches (P = 0.008), induction with antithymocyte globulin (P = 0.0001), and pretransplant panel reactive alloantibody >15% in either class I or class II (P = 0.024) as independent risk factors and with rapamycin as protective (P = 0.006) against antibody increases. DSA or autoantibody increases after islet transplantation are important prognostic markers, and their identification could potentially lead to improved islet cell transplant outcomes. PMID:23274902
Wang, Ling-jia; Kissler, Hermann J; Wang, Xiaojun; Cochet, Olivia; Krzystyniak, Adam; Misawa, Ryosuke; Golab, Karolina; Tibudan, Martin; Grzanka, Jakub; Savari, Omid; Grose, Randall; Kaufman, Dixon B; Millis, Michael; Witkowski, Piotr
2015-01-01
Pancreatic islet mass, represented by islet equivalent (IEQ), is the most important parameter in decision making for clinical islet transplantation. To obtain IEQ, the sample of islets is routinely counted manually under a microscope and discarded thereafter. Islet purity, another parameter in islet processing, is routinely acquired by estimation only. In this study, we validated our digital image analysis (DIA) system developed using the software of Image Pro Plus for islet mass and purity assessment. Application of the DIA allows to better comply with current good manufacturing practice (cGMP) standards. Human islet samples were captured as calibrated digital images for the permanent record. Five trained technicians participated in determination of IEQ and purity by manual counting method and DIA. IEQ count showed statistically significant correlations between the manual method and DIA in all sample comparisons (r >0.819 and p < 0.0001). Statistically significant difference in IEQ between both methods was found only in High purity 100μL sample group (p = 0.029). As far as purity determination, statistically significant differences between manual assessment and DIA measurement was found in High and Low purity 100μL samples (p<0.005), In addition, islet particle number (IPN) and the IEQ/IPN ratio did not differ statistically between manual counting method and DIA. In conclusion, the DIA used in this study is a reliable technique in determination of IEQ and purity. Islet sample preserved as a digital image and results produced by DIA can be permanently stored for verification, technical training and islet information exchange between different islet centers. Therefore, DIA complies better with cGMP requirements than the manual counting method. We propose DIA as a quality control tool to supplement the established standard manual method for islets counting and purity estimation. PMID:24806436
Loganathan, Gopalakrishnan; Subhashree, Venugopal; Breite, Andrew G; Tucker, William W; Narayanan, Siddharth; Dhanasekaran, Maheswaran; Mokshagundam, SriPrakash; Green, Michael L; Hughes, Michael G; Williams, Stuart K; Dwulet, Francis E; McCarthy, Robert C; Balamurugan, Appakalai N
2018-02-01
A high number of human islets can be isolated by using modern purified tissue dissociation enzymes; however, this requires the use of >20 Wunsch units (WU)/g of pancreas for digestion. Attempts to reduce this dose have resulted in pancreas underdigestion and poor islet recovery but improved islet function. In this study, we achieved a high number of functional islets using a low dose of recombinant collagenase enzyme mixture (RCEM-1200 WU rC2 and 10 million collagen-degrading activity [CDA] U of rC1 containing about 209 mg of collagenase to digest a 100-g pancreas). The collagenase dose used in these isolations is about 42% of the natural collagenase enzyme mixture (NCEM) dose commonly used to digest a 100-g pancreas. Low-dose RCEM was efficient in digesting entire pancreases to obtain higher yield (5535 ± 830 and 2582 ± 925 islet equivalent/g, P < .05) and less undigested tissue (16.7 ± 5% and 37.8 ± 3%, P < .05) compared with low-dose NCEM (12WU/g). Additionally, low-dose RCEM islets retained better morphology (confirmed with scanning electron microscopy) and higher in vitro basal insulin release (2391 ± 1342 and 1778 ± 978 μU/mL; P < .05) compared with standard-dose NCEM. Nude mouse bioassay demonstrated better islet function for low-dose RCEM (area under the curve [AUC] 24 968) compared with low-dose (AUC-38 225) or standard-dose NCEM (AUC-38 685), P < .05. This is the first report indicating that islet function can be improved by using low-dose rC1rC2 (RCEM). © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Olsson, Anders H.; Volkov, Petr; Bacos, Karl; Dayeh, Tasnim; Hall, Elin; Nilsson, Emma A.; Ladenvall, Claes; Rönn, Tina; Ling, Charlotte
2014-01-01
Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans. PMID:25375650
Gerber, Philipp A; Hochuli, Michel; Benediktsdottir, Bara D; Zuellig, Richard A; Tschopp, Oliver; Glenck, Michael; de Rougemont, Olivier; Oberkofler, Christian; Spinas, Giatgen A; Lehmann, Roger
2018-01-01
The aim of this study was to assess safety and efficacy of islet transplantation after initial pancreas transplantation with subsequent organ failure. Patients undergoing islet transplantation at our institution after pancreas organ failure were compared to a control group of patients with pancreas graft failure, but without islet transplantation and to a group receiving pancreas retransplantation. Ten patients underwent islet transplantation after initial pancreas transplantation failed and were followed for a median of 51 months. The primary end point of HbA1c <7.0% and freedom of severe hypoglycemia was met by nine of 10 patients after follow-up after islet transplantation and in all three patients in the pancreas retransplantation group, but by none of the patients in the group without retransplantation (n = 7). Insulin requirement was reduced by 50% after islet transplantation. Kidney function (eGFR) declined with a rate of -1.0 mL ± 1.2 mL/min/1.73 m 2 per year during follow-up after islet transplantation, which tended to be slower than in the group without retransplantation (P = .07). Islet transplantation after deceased donor pancreas transplant failure is a method that can safely improve glycemic control and reduce the incidence of severe hypoglycemia and thus establish similar glycemic control as after initial pancreas transplantation, despite the need of additional exogenous insulin. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Al-Romaiyan, A; Liu, B; Docherty, R; Huang, G-C; Amiel, S; Persaud, S J; Jones, P M
2012-12-01
Traditional plant-based remedies such as Gymnema sylvestre (GS) extracts have been used to treat diabetes mellitus for many centuries. We have shown previously that a novel GS extract, OSA®, has a direct effect on insulin secretion but its mode of action has not been studied in detail Thus this study investigated the possible underlying mechanism(s) by which OSA® exerts its action. The effects of OSA® on [Ca(2+)]i and K(+) conductances were assessed by Ca(2+) microfluorimetry and electrophysiology in dispersed mouse islets and MIN6 β-cells, respectively. Isolated mouse (from 20 to 25 mice) and human (from 3 donors) islets, and MIN6 β-cells, were used to investigate whether the stimulatory effect of OSA® on insulin secretion was dependent on the presence of extracellular calcium and protein kinase activation. OSA ®-induced insulin secretion from mouse islets and MIN6 β-cells was inhibited by nifedipine, a voltage-gated Ca(2+) channel blocker, and by the removal of extracellular Ca(2+), respectively. OSA® did not affect the activities of KATP channels or voltage-dependent K(+) channels in MIN6 β-cells but it caused an increase in intracellular Ca(2+) ([Ca(2+)]i) concentrations in Fura-2-loaded mouse islet cells. The insulin secretagogue effect of OSA® was dependent, in part, on protein kinase activation since incubating mouse or human islets with staurosporine, a general protein kinase inhibitor, resulted in partial inhibition of OSA®-induced insulin secretion. Experiments using permeabilized, Ca(2+)-clamped MIN6 β-cells revealed a Ca(2+)-independent component action of OSA® at a late stage in the stimulus-response coupling pathway. OSA®-induced insulin secretion was unexpectedly associated with a decrease in intracellular cAMP levels. These data indicate that the GS isolate OSA® stimulates insulin secretion from mouse and human islets in vitro, at least in part as a consequence of Ca(2+) influx and protein kinase activation. © 2012 Blackwell Publishing Ltd.
Abnormal islet sphingolipid metabolism in type 1 diabetes.
Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten
2018-07-01
Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .
A common variant upstream of the PAX6 gene influences islet function in man.
Ahlqvist, E; Turrini, F; Lang, S T; Taneera, J; Zhou, Y; Almgren, P; Hansson, O; Isomaa, B; Tuomi, T; Eriksson, K; Eriksson, J G; Lyssenko, V; Groop, L
2012-01-01
Impaired glucose tolerance and impaired insulin secretion have been reported in families with PAX6 mutations and it is suggested that they result from defective proinsulin processing due to lack of prohormone convertase 1/3, encoded by PCSK1. We investigated whether a common PAX6 variant would mimic these findings and explored in detail its effect on islet function in man. A PAX6 candidate single nucleotide polymorphism (rs685428) was associated with fasting insulin levels in the Diabetes Genetics Initiative genome-wide association study. We explored its potential association with glucose tolerance and insulin processing and secretion in three Scandinavian cohorts (N = 8,897 individuals). In addition, insulin secretion and the expression of PAX6 and transcriptional target genes were studied in human pancreatic islets. rs685428 G allele carriers had lower islet mRNA expression of PAX6 (p = 0.01) and PCSK1 (p = 0.001) than AA homozygotes. The G allele was associated with increased fasting insulin (p (replication) = 0.02, p (all) = 0.0008) and HOMA-insulin resistance (p (replication) = 0.02, p (all) = 0.001) as well as a lower fasting proinsulin/insulin ratio (p (all) = 0.008) and lower fasting glucagon (p = 0.04) and gastric inhibitory peptide (GIP) (p = 0.05) concentrations. Arginine-stimulated (p = 0.02) insulin secretion was reduced in vivo, which was further reflected by a reduction of glucose- and potassium-stimulated insulin secretion (p = 0.002 and p = 0.04, respectively) in human islets in vitro. A common variant in PAX6 is associated with reduced PAX6 and PCSK1 expression in human islets and reduced insulin response, as well as decreased glucagon and GIP concentrations and decreased insulin sensitivity. These findings emphasise the central role of PAX6 in the regulation of islet function and glucose metabolism in man.
Crossan, Claire; Mourad, Nizar I; Smith, Karen; Gianello, Pierre; Scobie, Linda
2018-05-21
Subcutaneous implantation of a macroencapsulated patch containing human allogenic islets has been successfully used to alleviate type 1 diabetes mellitus (T1DM) in a human recipient without the need for immunosuppression. The use of encapsulated porcine islets to treat T1DM has also been reported. Although no evidence of pathogen transfer using this technology has been reported to date, we deemed it appropriate to determine if the encapsulation technology would prevent the release of virus, in particular, the porcine endogenous retrovirus (PERV). HEK293 (human epithelial kidney) and swine testis (ST) cells were co-cultured with macroencapsulated pig islets embedded in an alginate patch, macroencapsulated PK15 (swine kidney epithelial) cells embedded in an alginate patch and free PK15 cells. Cells and supernatant were harvested at weekly time points from the cultures for up to 60 days and screened for evidence of PERV release using qRT-PCR to detect PERV RNA and SG-PERT to detect reverse transcriptase (RT). No PERV virus, or evidence of PERV replication, was detected in the culture medium of HEK293 or pig cells cultured with encapsulated porcine islets. Increased PERV activity relative to the background was not detected in ST cells cultured with encapsulated PK15 cells. However, PERV was detected in 1 of the 3 experimental replicates of HEK293 cells cultured with encapsulated PK15 cells. Both HEK293 and ST cells cultured with free PK15 cells showed an increase in RT detection. With the exception of 1 replicate, there does not appear to be evidence of transmission of replication competent PERV from the encapsulated islet cells or the positive control PK15 cells across the alginate barrier. The detection of PERV would suggest the alginate barrier of this replicate may have become compromised, emphasizing the importance of quality control when producing encapsulated islet patches. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of an encapsulated stem cell-based therapy for diabetes.
Tomei, Alice Anna; Villa, Chiara; Ricordi, Camillo
2015-01-01
Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation.
Kluth, Oliver; Matzke, Daniela; Kamitz, Anne; Jähnert, Markus; Vogel, Heike; Scherneck, Stephan; Schulze, Matthias; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Joost, Hans-Georg; Schürmann, Annette
2015-09-01
Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.
Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation
Kamitz, Anne; Jähnert, Markus; Vogel, Heike; Scherneck, Stephan; Schulze, Matthias; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Joost, Hans-Georg; Schürmann, Annette
2015-01-01
Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice. PMID:26348837
Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck
2009-10-01
We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.
Striegel, Deborah A.; Hara, Manami; Periwal, Vipul
2015-01-01
Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets. PMID:26266953
Striegel, Deborah A; Hara, Manami; Periwal, Vipul
2015-08-01
Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.
Xiao, Mei; An, LiLong; Yang, XueYi; Ge, Xin; Qiao, Hai; Zhao, Ting; Ma, XiaoFei; Fan, JingZhuang; Zhu, MengYang; Dou, ZhongYing
2008-09-01
The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant transplantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1 x 10(9) mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with beta-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet-like clusters, as identified by dithizone staining, which expressed the transcription factor of the insulin and secreted the insulin and C-peptide. Furthermore, the transplantation of mhPSCs-induced pancreatic islets into the subcapsular region of the kidney in streptozotocin-induced diabetic rats could reduce blood glucose levels and prolong the life time.
Krishnan, Rahul; Ko, David; Foster, Clarence E; Liu, Wendy; Smink, A M; de Haan, Bart; De Vos, Paul; Lakey, Jonathan R T
2017-01-01
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Prediction of Marginal Mass Required for Successful Islet Transplantation
Papas, Klearchos K.; Colton, Clark K.; Qipo, Andi; Wu, Haiyan; Nelson, Rebecca A.; Hering, Bernhard J.; Weir, Gordon C.; Koulmanda, Maria
2013-01-01
Islet quality assessment methods for predicting diabetes reversal (DR) following transplantation are needed. We investigated two islet parameters, oxygen consumption rate (OCR) and OCR per DNA content, to predict transplantation outcome and explored the impact of islet quality on marginal islet mass for DR. Outcomes in immunosuppressed diabetic mice were evaluated by transplanting mixtures of healthy and purposely damaged rat islets for systematic variation of OCR/DNA over a wide range. The probability of DR increased with increasing transplanted OCR and OCR/DNA. On coordinates of OCR versus OCR/DNA, data fell into regions in which DR occurred in all, some, or none of the animals with a sharp threshold of around 150-nmol/min mg DNA. A model incorporating both parameters predicted transplantation outcome with sensitivity and specificity of 93% and 94%, respectively. Marginal mass was not constant, depended on OCR/DNA, and increased from 2,800 to over 100,000 islet equivalents/kg body weight as OCR/DNA decreased. We conclude that measurements of OCR and OCR/DNA are useful for predicting transplantation outcome in this model system, and OCR/DNA can be used to estimate the marginal mass required for reversing diabetes. Because human clinical islet preparations in a previous study had OCR/DNA values in the range of 100–150-nmol/min mg DNA, our findings suggest that substantial improvement in transplantation outcome may accompany increasedOCR/DNAin clinical islet preparations. PMID:20233002
Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.
Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji
2016-11-07
Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.
Thomas, J M; Contreras, J L; Smyth, C A; Lobashevsky, A; Jenkins, S; Hubbard, W J; Eckhoff, D E; Stavrou, S; Neville, D M; Thomas, F T
2001-06-01
The recent focus on islet transplantation as primary therapy for type 1 diabetes has heightened interest in the reversal of type 1 diabetes in preclinical models using minimal immunosuppression. Here, we demonstrated in a preclinical rhesus model a consistent reversal of all measured glycemic patterns of streptozotocin-induced type 1 diabetes. The model used single-donor islet transplantation with induction of operational tolerance. The term "operational tolerance" is used to indicate durable survival of single-donor major histocompatibility complex (MHC)-mismatched islet allografts without maintenance immunosuppressive therapy and without rejection or loss of functional islet mass or insulin secretory reserve. In this operational tolerance model, all immunosuppression was discontinued after day 14 posttransplant, and recipients recovered with excellent health. The operational tolerance induction protocol combined peritransplant anti-CD3 immunotoxin to deplete T-cells and 15-deoxyspergualin to arrest proinflammatory cytokine production and maturation of dendritic cells. T-cell deficiency was specific but temporary, in that T-cell-dependent responses in long-term survivors recovered to normal, and there was no evidence of increased susceptibility to infection. Anti-donor mixed lymphocyte reaction responses were positive in the long-term survivors, but all showed clear evidence of systemic T-helper 2 deviation, suggesting that an immunoregulatory rather than a deletional process underlies this operational tolerance model. This study provides the first evidence that operational tolerance can protect MHC nonhuman primate islets from rejection as well as loss of functional islet mass. Such an approach has potential to optimize individual recipient recovery from diabetes as well as permitting more widespread islet transplantation with the limited supply of donor islets.
Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage.
Lee, Jeong Seok; An, Seong Yeong; Kwon, Il Keun; Heo, Jung Sun
2014-10-01
Human periodontal ligament-derived stem cells (PDLSCs) demonstrate self-renewal capacity and multilineage differentiation potential. In this study, we investigated the transdifferentiation potential of human PDLSCs into pancreatic islet cells. To form three-dimensional (3D) clusters, PDLSCs were cultured in Matrigel with media containing differentiation-inducing agents. We found that after 6 days in culture, PDLSCs underwent morphological changes resembling pancreatic islet-like cell clusters (ICCs). The morphological characteristics of PDLSC-derived ICCs were further assessed using scanning electron microscopy analysis. Using reverse transcription-polymerase chain reaction analysis, we found that pluripotency genes were downregulated, whereas early endoderm and pancreatic differentiation genes were upregulated, in PDLSC-derived ICCs compared with undifferentiated PDLSCs. Furthermore, we found that PDLSC-derived ICCs were capable of secreting insulin in response to high concentrations of glucose, validating their functional differentiation into islet cells. Finally, we also performed dithizone staining, as well as immunofluorescence assays and fluorescence-activated cell sorting analysis for pancreatic differentiation markers, to confirm the differentiation status of PDLSC-derived ICCs. These results demonstrate that PDLSCs can transdifferentiate into functional pancreatic islet-like cells and provide a novel, alternative cell population for pancreatic repair. Copyright © 2014 John Wiley & Sons, Ltd.
A Method of Porcine Pancreatic Islet Isolation for Microencapsulation.
Kendall, William F; Opara, Emmanuel C
2017-01-01
Since the discovery of insulin by Banting and Best in 1921, the prognosis and treatment options for individuals with diabetes have improved. The development of various insulin types, various oral agents, and insulin pumps have improved the available medical options for individuals afflicted with diabetes. The current need for frequent blood glucose monitoring imposed by multiple daily insulin injections, result in significant life-style challenges for in individuals afflicted with Type 1 diabetes (T1D). In contrast the use of surgical interventions, such as whole organ pancreas transplantation (PT) requires less-intensive glucose monitoring while the organ is viable. Also, isolated human pancreatic islet transplantation (IT) holds similar promise as PT; however, the limited availability of human pancreata exacerbated by, the need for multiple pancreata per individual IT recipient, and issues with prolonged viability, still hamper widespread successful, and routine use of IT. The use of porcine pancreata holds promise as a viable alternative to human pancreas to significantly increase the volume of islets available to meet the needs of millions of patients afflicted with T1D. This chapter outlines our protocol utilized to reliably isolate and microencapsulate porcine islets.
The functional performance of microencapsulated human pancreatic islet-derived precursor cells.
Montanucci, Pia; Pennoni, Ilaria; Pescara, Teresa; Blasi, Paolo; Bistoni, Giovanni; Basta, Giuseppe; Calafiore, Riccardo
2011-12-01
We have examined long-term cultured, human islet-derived stem/precursor cells (hIPC). Whole human islets (HI) were obtained by multi-enzymatic digestion of cadaveric donor pancreases, plated on tissue flasks, and allowed to adhere and expand for several in vitro passages, in order to obtain hIPC. We detected specific stem cell markers (Oct-4, Sox-2, Nanog, ABCG2, Klf-4, CD117) in both intact HI and hIPC. Moreover, hIPC while retaining the expression of Glut-2, Pdx-1, CK-19, and ICA-512, started re-expressing Ngn3, thereby indicating acquisition of a specific pancreatic islet beta cell-oriented phenotype identity. The intrinsic plasticity of hIPC was documented by their ability to differentiate into various germ layer-derived cell phenotypes (ie, osteocytic, adipocytic and neural), including endocrine cells associated with insulin secretory capacity. To render hIPC suitable for transplantation we have enveloped them within our highly purified, alginate-based microcapsules. Upon intraperitoneal graft in NOD/SCID mice we have observed that the microcapsules acted as three-dimensional niches favouring post-transplant hIPC differentiation and acquisition of beta cell-like functional competence. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hauge-Evans, A C; Reers, C; Kerby, A; Franklin, Z; Amisten, S; King, A J; Hassan, Z; Vilches-Flores, A; Tippu, Z; Persaud, S J; Jones, P M
2014-10-01
Islets are innervated by parasympathetic nerves which release acetylcholine (ACh) to amplify glucose-induced insulin secretion, primarily via muscarinic M3 receptors (M3R). Here we investigate the consequence of chronic hyperglycaemia on islet M3R expression and secretory sensitivity of mouse islets to cholinergic receptor activation. The impact of hyperglycaemia was studied in (i) islets isolated from ob/ob mice, (ii) alginate-encapsulated mouse islets transplanted intraperitoneally into streptozotocin-induced diabetic mice and (iii) mouse and human islets maintained in vitro at 5.5 or 16 mmol/l glucose. Blood glucose levels were assessed by a commercial glucose meter, insulin content by RIA and M3R expression by qPCR and immunohistochemistry. M3R mRNA expression was reduced in both ob/ob islets and islets maintained at 16 mmol/l glucose for 3 days (68 and 50% control, respectively). In all three models of hyperglycaemia the secretory sensitivity to the cholinergic receptor agonist, carbachol, was reduced by 60-70% compared to control islets. Treatment for 72 h with the irreversible PKC activator, PMA, or the PKC inhibitor, Gö6983, did not alter islet M3R mRNA expression nor did incubation with the PI3K-inhibitor, LY294002, although enhancement of glucose-induced insulin secretion by LY294002 was reduced in islets maintained at 16 mmol/l glucose, as was mRNA expression of the PI3K regulatory subunit, p85α. Cholinergic regulation of insulin release is impaired in three experimental islet models of hyperglycaemia consistent with reduced expression of M3 receptors. Our data suggest that the receptor downregulation is a PKC- and PI3K-independent consequence of the hyperglycaemic environment, and they imply that M3 receptors could be potential targets in the treatment of type 2 diabetes. © 2014 John Wiley & Sons Ltd.
Yeh, Chun-Chieh; Wang, Ling-Jia; Mcgarrigle, James J.; Wang, Yong; Liao, Chien-Chang; Omami, Mustafa; Khan, Arshad; Nourmohammadzadeh, Mohammad; Mendoza-Elias, Joshua; Mccracken, Benjamin; Marchese, Enza; Barbaro, Barbara; Oberholzer, Jose
2017-01-01
This study investigates manufacturing procedures that affect islet isolation outcomes from donor pancreata standardized by the North American Islet Donor Score (NAIDS). Islet isolations performed at the University of Illinois, Chicago, from pancreata with NAIDS ≥65 were investigated. The research cohort was categorized into two groups based on a postpurification yield either greater than (group A) or less than (group B) 400,000 IEQ. Associations between manufacturing procedures and islet isolation outcomes were analyzed using multivariate logistic or linear regressions. A total of 119 cases were retrieved from 630 islet isolations performed since 2003. Group A is composed of 40 cases with an average postpurified yield of 570,098 IEQ, whereas group B comprised 79 cases with an average yield of 235,987 IEQ. One third of 119 cases were considered successful islet isolations that yielded >400,000 IEQ. The prepurified and postpurified islet product outcome parameters were detailed for future reference. The NAIDS (>80 vs. 65–80) [odds ratio (OR): 2.91, 95% confidence interval (CI): 1.27–6.70], cold ischemic time (≤10 vs. >10 h) (OR: 3.68, 95% CI: 1.61–8.39), and enzyme perfusion method (mechanical vs. manual) (OR: 2.38, 95% CI: 1.01–5.56) were independent determinants for postpurified islet yield ≥400,000 IEQ. The NAIDS (>80, p < 0.001), cold ischemic time (≤10 h, p < 0.05), increased unit of collagenase (p < 0.01), and pancreatic duct cannulation time (<30 min, p < 0.01) all independently correlated with better islet quantity parameters. Furthermore, cold ischemic time (≤10 h, p < 0.05), liberase MTF (p < 0.001), increased unit of collagenase (p < 0.05), duct cannulation time (<30 min, p < 0.05), and mechanical enzyme perfusion (p < 0.05) were independently associated with better islet morphology score. Analysis of islet manufacturing procedures from the pancreata with standardized quality is essential in identifying technical issues within islet isolation. Adequate processing duration in each step of islet isolation, using liberase MTF, and mechanical enzyme perfusion all affect isolation outcomes. PMID:27524672
The use of nicotinamide in the prevention of type 1 diabetes.
Elliott, R B; Pilcher, C C; Stewart, A; Fergusson, D; McGregor, M A
1993-11-30
Nicotinamide can protect the NOD mouse from diabetes if given early enough and in sufficient dose. The effect partly wanes with time. There is reduced islet inflammation. Similar protective effects can be demonstrated in quasi-experimental interventions in humans--both diabetes related and unrelated deemed at risk of developing diabetes by reason of having islet cell antibodies. Nicotinamide protects isolated islets in vitro from the toxicity of a number of agents, but only in doses that produce significant PARP inhibition, and increased intracellular levels of NAD. It is unlikely that the protective effect demonstrated in humans is due to significant PARP inhibition, as the levels of nicotinamide achieved with the doses used are too low. Other effects of the vitamin are more likely, e.g., increase in NAD pool size by de novo synthesis, or inhibition of free radical generation. The drug appears to be safe in the doses employed in humans.
Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate
Rulifson, Ingrid C.; Cao, Ping; Miao, Li; Kopecky, David; Huang, Linda; White, Ryan D.; Samayoa, Kim; Gardner, Jonitha; Wu, Xiaosu; Chen, Kui; Tsuruda, Trace; Homann, Oliver; Baribault, Helene; Yamane, Harvey; Carlson, Tim; Wiltzius, Jed; Li, Yang
2016-01-01
Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer’s disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia. PMID:26840340
Rady, Brian; Chen, Yanmei; Vaca, Pilar; Wang, Qian; Wang, Yong; Salmon, Patrick; Oberholzer, José
2013-01-01
The mechanisms that control proliferation, or lack thereof, in adult human β cells are poorly understood. Controlled induction of proliferation could dramatically expand the clinical application of islet cell transplantation and represents an important component of regenerative approaches to a functional cure of diabetes. Adult human β cells are particularly resistant to common proliferative targets and often dedifferentiate during proliferation. Here we show that expression of the transcription factor E2F3 has a role in regulating β-cell quiescence and proliferation. We found human islets have virtually no expression of the pro-proliferative G1/S transcription factors E2F1–3, but an abundance of inhibitory E2Fs 4–6. In proliferative human insulinomas, inhibitory E2Fs were absent, while E2F3 is expressed. Using this pattern as a “roadmap” for proliferation, we demonstrated that ectopic expression of nuclear E2F3 induced significant expansion of insulin-positive cells in both rat and human islets. These cells did not undergo apoptosis and retained their glucose-responsive insulin secretion, showing the ability to reverse diabetes in mice. Our results suggest that E2F4–6 may help maintain quiescence in human β cells and identify E2F3 as a novel target to induce proliferation of functional β cells. Refinement of this approach may increase the islets available for cell-based therapies and research and could provide important cues for understanding in vivo proliferation of β cells. PMID:23907129
A Stirred Microchamber for Oxygen Consumption Rate Measurements With Pancreatic Islets
Papas, Klearchos K.; Pisania, Anna; Wu, Haiyan; Weir, Gordon C.; Colton, Clark K.
2010-01-01
Improvements in pancreatic islet transplantation for treatment of diabetes are hindered by the absence of meaningful islet quality assessment methods. Oxygen consumption rate (OCR) has previously been used to assess the quality of organs and primary tissue for transplantation. In this study, we describe and characterize a stirred microchamber for measuring OCR with small quantities of islets. The device has a titanium body with a chamber volume of about 200 µL and is magnetically stirred and water jacketed for temperature control. Oxygen partial pressure (pO2) is measured by fluorescence quenching with a fiber optic probe, and OCR is determined from the linear decrease of pO2 with time. We demonstrate that measurements can be made rapidly and with high precision. Measurements with βTC3 cells and islets show that OCR is directly proportional to the number of viable cells in mixtures of live and dead cells and correlate linearly with membrane integrity measurements made with cells that have been cultured for 24 h under various stressful conditions. PMID:17497731
Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren
2004-09-01
Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.
Adaptation of pancreatic islet cyto-architecture during development
NASA Astrophysics Data System (ADS)
Striegel, Deborah A.; Hara, Manami; Periwal, Vipul
2016-04-01
Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.
Wang, Xiao Li; Hu, Pei; Guo, Xing Rong; Yan, Ding; Yuan, Yahong; Yan, Shi Rong; Li, Dong Sheng
2014-11-01
Human umbilical cord mesenchymal stromal cells (hUC-MSCs) hold great potential as a therapeutic candidate to treat diabetes, owing to their unlimited source and ready availability. In this study, we differentiated hUC-MSCs with in vitro-synthesized pancreatic-duodenal homebox 1 (PDX1) messenger (m)RNA into islet-like cell clusters. hUC-MSCs were confirmed by both biomarker detection and functional differentiation. In vitro-synthesized PDX1 messenger RNA can be transfected into hUC-MSCs efficiently. The upregulated expression of PDX1 protein can be detected 4 h after transfection and remains detectable for 36 h. The induction of islet-like structures was confirmed by means of morphology and dithizone staining. Reverse transcriptase-polymerase chain reaction results revealed the expression of some key pancreatic transcription factors, such as PDX1, NeuroD, NKX6.1, Glut-2 and insulin in islet-like cell clusters. Immunofluorescence analysis showed that differentiated cells express both insulin and C-peptide. Enzyme-linked immunosorbent assay analysis validated the insulin secretion of islet-like cell clusters in response to the glucose stimulation. Our results demonstrate the use of in vitro-synthesized PDX1 messenger RNA to differentiate hUC-MSCs into islet-like cells and pave the way toward the development of reprogramming and directed-differentiation methods for the expression of encoded proteins. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.
Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders
2016-10-01
The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.
Cirulli, V.; Crisa, L.; Beattie, G.M.; Mally, M.I.; Lopez, A.D.; Fannon, A.; Ptasznik, A.; Inverardi, L.; Ricordi, C.; Deerinck, T.; Ellisman, M.; Reisfeld, R.A.; Hayek, A.
1998-01-01
Cell adhesion molecules (CAMs) are important mediators of cell–cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell–cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783
Klaffschenkel, R A; Biesemeier, A; Waidmann, M; Northoff, H; Steurer, W; Königsrainer, A; Lembert, N
2007-01-01
During the isolation of human islets of Langerhans the digest has repeated direct contact with the ambient atmosphere. In order to fulfill GMP requirements in clinical applications, the entire cell preparation must be performed in clean room facilities. We hypothesized that the use of a closed system, which avoids the direct exposure of tissue to the atmosphere, would significantly ease the preparation procedure. To avoid the direct atmosphere exposure we tested a modification of the isolation and purification process by performing all islet preparation steps in a closed system. In this study we compared the isolation outcome of the traditional open preparation technique with the new closed system. Pancreata from 6-month-old hybrid pigs were procured in the local slaughterhouse. After digestion/filtration the digest was cooled, collected, and concentrated in centrifugation containers and purified thereafter in the COBE2991 by top loading (control). In the control group 502 +/- 253 IEQ per gram pancreas were purified. The total preparation time amounted to 12 h. In the closed system the digest was cooled and directly pumped into the COBE2991 for centrifugation followed by supernatant expelling. Bag filling, centrifugation, and expelling were repeated several times. Islets in pellet form were then purified by adding a gradient (bottom loading). Using this closed system 1098 +/- 489 IEQ per gram pancreas were purified with a total cell viability of 67 +/- 10% and a beta-cell viability of 41 +/- 13%. The total preparation time reduced to 6 h. After 24 h of cell culture the viability of beta-cells was still 56 +/- 10% and was only reduced after the addition of proapoptotic IL-1 and TNF-alpha to 40 +/- 4%, indicating that freshly isolated islets are not apoptotic. In conclusion, the closed system preparation is much faster, more effective, and less expensive than the traditional islet preparation. The closed system may be applicable for human islets preparations to restrict the need of clean room facilities for islet preparations to a minimum and may open the way for islet preparations without clean room demand.
Persufflation Improves Pancreas Preservation When Compared With the Two-Layer Method
Scott, W.E.; O'Brien, T.D.; Ferrer-Fabrega, J.; Avgoustiniatos, E.S.; Weegman, B.P.; Anazawa, T.; Matsumoto, S.; Kirchner, V.A.; Rizzari, M.D.; Murtaugh, M.P.; Suszynski, T.M.; Aasheim, T.; Kidder, L.S.; Hammer, B.E.; Stone, S.G.; Tempelman, L.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.
2010-01-01
Islet transplantation is emerging as a promising treatment for patients with type 1 diabetes. It is important to maximize viable islet yield for each organ due to scarcity of suitable human donor pancreata, high cost, and the high dose of islets required for insulin independence. However, organ transport for 8 hours using the two-layer method (TLM) frequently results in lower islet yields. Since efficient oxygenation of the core of larger organs (eg, pig, human) in TLM has recently come under question, we investigated oxygen persufflation as an alternative way to supply the pancreas with oxygen during preservation. Porcine pancreata were procured from non–heart-beating donors and preserved by either TLM or persufflation for 24 hours and fixed. Biopsies were collected from several regions of the pancreas, sectioned, stained with hematoxylin and eosin, and evaluated by a histologist. Persufflated tissues exhibited distended capillaries due to gas perfusion and significantly less autolysis/cell death than regions not exposed to persufflation or tissues exposed to TLM. The histology presented here suggests that after 24 hours of preservation, persufflation dramatically improves tissue health when compared with TLM. These results indicate the potential for persufflation to improve viable islet yields and extend the duration of preservation, allowing more donor organs to be utilized. PMID:20692396
Plasticity and Aggregation of Juvenile Porcine Islets in Modified Culture: Preliminary Observations.
Weegman, Bradley P; Taylor, Michael J; Baicu, Simona C; Mueller, Kate; O'brien, Timothy D; Wilson, John; Papas, Klearchos K
2016-10-01
Diabetes is a major health problem worldwide, and there is substantial interest in developing xenogeneic islet transplantation as a potential treatment. The potential to relieve the demand on an inadequate supply of human pancreata is dependent upon the efficiency of techniques for isolating and culturing islets from the source pancreata. Porcine islets are favored for xenotransplantation, but mature pigs (>2 years) present logistic and economic challenges, and young pigs (3-6 months) have not yet proven to be an adequate source. In this study, islets were isolated from 20 juvenile porcine pancreata (~3 months; 25 kg Yorkshire pigs) immediately following procurement or after 24 h of hypothermic machine perfusion (HMP) preservation. The resulting islet preparations were characterized using a battery of tests during culture in silicone rubber membrane flasks. Islet biology assessment included oxygen consumption, insulin secretion, histopathology, and in vivo function. Islet yields were highest from HMP-preserved pancreata (2,242 ± 449 IEQ/g). All preparations comprised a high proportion (>90%) of small islets (<100 μm), and purity was on average 63 ± 6%. Morphologically, islets appeared as clusters on day 0, loosely disaggregated structures at day 1, and transitioned to aggregated structures comprising both exocrine and endocrine cells by day 6. Histopathology confirmed both insulin and glucagon staining in cultures and grafts excised after transplantation in mice. Nuclear staining (Ki-67) confirmed mitotic activity consistent with the observed plasticity of these structures. Metabolic integrity was demonstrated by oxygen consumption rates = 175 ± 16 nmol/min/mg DNA, and physiological function was intact by glucose stimulation after 6-8 days in culture. In vivo function was confirmed with blood glucose control achieved in nearly 50% (8/17) of transplants. Preparation and culture of juvenile porcine islets as a source for islet transplantation require specialized conditions. These immature islets undergo plasticity in culture and form fully functional multicellular structures. Further development of this method for culturing immature porcine islets is expected to generate small pancreatic tissue-derived organoids termed "pancreatites," as a therapeutic product from juvenile pigs for xenotransplantation and diabetes research.
Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck
2009-01-01
OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358
Oxygenated thawing and rewarming alleviate rewarming injury of cryopreserved pancreatic islets.
Komatsu, Hirotake; Barriga, Alyssa; Medrano, Leonard; Omori, Keiko; Kandeel, Fouad; Mullen, Yoko
2017-05-06
Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism and better function among the conditions examined. Oxygenated thawing/rewarming alleviated islet volume loss, with the help of oxygenated culture. Copyright © 2017. Published by Elsevier Inc.
Novel immunological strategies for islet transplantation.
Tezza, Sara; Ben Nasr, Moufida; Vergani, Andrea; Valderrama Vasquez, Alessandro; Maestroni, Anna; Abdi, Reza; Secchi, Antonio; Fiorina, Paolo
2015-08-01
Islet transplantation has been demonstrated to improve glycometabolic control, to reduce hypoglycemic episodes and to halt the progression of diabetic complications. However, the exhaustion of islet function and the side effects related to chronic immunosuppression limit the spread of this technique. Consequently, new immunoregulatory protocols have been developed, with the aim to avoid the use of a life-time immunosuppression. Several approaches have been tested in preclinical models, and some are now under clinical evaluation. The development of new small molecules and new monoclonal or polyclonal antibodies is continuous and raises the possibility of targeting new costimulatory pathways or depleting particular cell types. The use of stem cells and regulatory T cells is underway to take advantage of their immunological properties and to induce tolerance. Xenograft islet transplantation, although having severe problems in terms of immunological compatibility, could theoretically provide an unlimited source of donors; using pigs carrying human immune antigens has showed indeed promising results. A completely different approach, the use of encapsulated islets, has been developed; synthetic structures are used to hide islet alloantigen from the immune system, thus preserving islet endocrine function. Once one of these strategies is demonstrated safe and effective, it will be possible to establish clinical islet transplantation as a treatment for patients with type 1 diabetes long before the onset of diabetic-related complications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shin, Jung-Youn; Jeong, Jee-Heon; Han, Jin; Bhang, Suk Ho; Jeong, Gun-Jae; Haque, Muhammad R.; Al-Hilal, Taslim A.; Noh, Myungkyung
2015-01-01
Although islet transplantation has been suggested as an alternative therapy for type 1 diabetes, there are efficiency concerns that are attributed to poor engraftment of transplanted islets. Hypoxic condition and delayed vasculogenesis induce necrosis and apoptosis of the transplanted islets. To overcome these limitations in islet transplantation, heterospheroids (HSs), which consist of rat islet cells (ICs) and human bone marrow-derived mesenchymal stem cells (hMSCs), were transplanted to the kidney and liver. The HSs cultured under the hypoxic condition system exhibited a significant increase in antiapoptotic gene expression in ICs. hMSCs in the HSs secreted angiogenic and antiapoptotic proteins. With the HS system, ICs and hMSCs were successfully located in the same area of the liver after transplantation of HSs through the portal vein, whereas the transplantation of islets and the dissociated hMSCs did not result in localization of transplanted ICs and hMSCs in the same area. HS transplantation resulted in an increase in angiogenesis at the transplantation area and a decrease in the apoptosis of transplanted ICs after transplantation into the kidney subcapsule compared with transplantation of islet cell clusters (ICCs). Insulin production levels of ICs were higher in the HS transplantation group compared with the ICC transplantation group. The HS system may be a more efficient transplantation method than the conventional methods for the treatment of type 1 diabetes. PMID:25344077
Demozay, Damien; Tsunekawa, Shin; Briaud, Isabelle; Shah, Ramila; Rhodes, Christopher J.
2011-01-01
OBJECTIVE Insulin receptor substrate-2 (IRS-2) plays an essential role in pancreatic islet β-cells by promoting growth and survival. IRS-2 turnover is rapid in primary β-cells, but its expression is highly regulated at the transcriptional level, especially by glucose. The aim was to investigate the molecular mechanism on how glucose regulates IRS-2 gene expression in β-cells. RESEARCH DESIGN AND METHODS Rat islets were exposed to inhibitors or subjected to adenoviral vector–mediated gene manipulations and then to glucose-induced IRS-2 expression analyzed by real-time PCR and immunoblotting. Transcription factor nuclear factor of activated T cells (NFAT) interaction with IRS-2 promoter was analyzed by chromatin immunoprecipitation assay and glucose-induced NFAT translocation by immunohistochemistry. RESULTS Glucose-induced IRS-2 expression occurred in pancreatic islet β-cells in vivo but not in liver. Modulating rat islet β-cell Ca2+ influx with nifedipine or depolarization demonstrated that glucose-induced IRS-2 gene expression was dependent on a rise in intracellular calcium concentration derived from extracellular sources. Calcineurin inhibitors (FK506, cyclosporin A, and a peptide calcineurin inhibitor [CAIN]) abolished glucose-induced IRS-2 mRNA and protein levels, whereas expression of a constitutively active calcineurin increased them. Specific inhibition of NFAT with the peptide inhibitor VIVIT prevented a glucose-induced IRS-2 transcription. NFATc1 translocation to the nucleus in response to glucose and association of NFATc1 to conserved NFAT binding sites in the IRS-2 promoter were demonstrated. CONCLUSIONS The mechanism behind glucose-induced transcriptional control of IRS-2 gene expression specific to the islet β-cell is mediated by the Ca2+/calcineurin/NFAT pathway. This insight into the IRS-2 regulation could provide novel therapeutic means in type 2 diabetes to maintain an adequate functional mass. PMID:21940781
Shapiro, A.M. James
2012-01-01
Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp. PMID:23804275
β-cell serotonin production is associated with female sex, old age, and diabetes-free condition.
Kim, Yeong Gi; Moon, Joon Ho; Kim, Kyuho; Kim, Hyeongseok; Kim, Juok; Jeong, Ji-Seon; Lee, Junguee; Kang, Shinae; Park, Joon Seong; Kim, Hail
2017-11-25
Serotonin is known to be present in pancreatic β-cells and to play several physiological roles, including insulin secretion, β-cell proliferation, and paracrine inhibition of α-cells. However, the serotonin production of different cell lines and islets has not been compared based on age, sex, and diabetes related conditions. Here, we directly compared the serotonin concentrations in βTC and MIN6 cell lines, as well as in islets from mice using ultra-performance liquid chromatography tandem mass spectrometry. The average serotonin concentration was 5-10 ng/mg protein in the islets of male and non-pregnant female mice. The serotonin level was higher in females than males at 8 weeks, although there was no difference at 1 year. Furthermore, we observed serotonin by immunofluorescence staining in the pancreatic tissues of mice and human. Serotonin was detected by immunofluorescence staining in a portion of β-cells from islets of old female mice, but not of male or young female mice. A similar pattern was observed in human pancreas as well. In humans, serotonin production in β-cells was associated with a diabetes-free condition. Thus, serotonin production in β-cells was associated with old age, female sex, and diabetes-free condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Saitoh, Sei; Ohno, Nobuhiko; Saitoh, Yurika; Terada, Nobuo; Shimo, Satoshi; Aida, Kaoru; Fujii, Hideki; Kobayashi, Tetsuro; Ohno, Shinichi
2018-01-01
Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets. PMID:29622846
Klymiuk, Nikolai; van Buerck, Lelia; Bähr, Andrea; Offers, Monika; Kessler, Barbara; Wuensch, Annegret; Kurome, Mayuko; Thormann, Michael; Lochner, Katharina; Nagashima, Hiroshi; Herbach, Nadja; Wanke, Rüdiger; Seissler, Jochen; Wolf, Eckhard
2012-06-01
Islet transplantation is a potential treatment for type 1 diabetes, but the shortage of donor organs limits its routine application. As potential donor animals, we generated transgenic pigs expressing LEA29Y, a high-affinity variant of the T-cell costimulation inhibitor CTLA-4Ig, under the control of the porcine insulin gene promoter. Neonatal islet cell clusters (ICCs) from INSLEA29Y transgenic (LEA-tg) pigs and wild-type controls were transplanted into streptozotocin-induced hyperglycemic NOD-scid IL2Rγ(null) mice. Cloned LEA-tg pigs are healthy and exhibit a strong β-cell-specific transgene expression. LEA-tg ICCs displayed the same potential to normalize glucose homeostasis as wild-type ICCs after transplantation. After adoptive transfer of human peripheral blood mononuclear cells, transplanted LEA-tg ICCs were completely protected from rejection, whereas reoccurrence of hyperglycemia was observed in 80% of mice transplanted with wild-type ICCs. In the current study, we provide the first proof-of-principle report on transgenic pigs with β-cell-specific expression of LEA29Y and their successful application as donors in a xenotransplantation model. This approach may represent a major step toward the development of a novel strategy for pig-to-human islet transplantation without side effects of systemic immunosuppression.
Wei, Jie; Ding, Dongxiao; Wang, Tao; Liu, Qiong; Lin, Yi
2017-12-01
Bisphenol A (BPA) can disrupt glucose homeostasis and impair pancreatic islet function; however, the mechanisms behind these effects are poorly understood. Male mice (4 wk old) were treated with BPA (50 or 500 μg/kg/d) for 8 wk. Whole-body glucose homeostasis, pancreatic islet morphology and function, and miR-338-mediated molecular signal transduction analyses were examined. We showed that BPA treatment led to a disruption of glucose tolerance and a compensatory increase of pancreatic islets insulin secretion and pancreatic and duodenal homeobox 1 ( Pdx1 ) expression in mice. Inhibition of Pdx1 reduced glucose-stimulated insulin secretion and ATP production in the islets of BPA-exposed mice. Based on primary pancreatic islets, we also confirmed that miR-338 regulated Pdx1 and thus contributed to BPA-induced insulin secretory dysfunction from compensation to decompensation. Short-term BPA exposure downregulated miR-338 through activation of G-protein-coupled estrogen receptor 1 (Gpr30), whereas long-term BPA exposure upregulated miR-338 through suppression of glucagon-like peptide 1 receptor (Glp1r). Taken together, our results reveal a molecular mechanism, whereby BPA regulates Gpr30/Glp1r to mediate the expression of miR-338, which acts to control Pdx1-dependent insulin secretion. The Gpr30/Glp1r-miR-338-Pdx1 axis should be represented as a novel mechanism by which BPA induces insulin secretory dysfunction in pancreatic islets.-Wei, J., Ding, D., Wang, T., Liu, Q., Lin, Y. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1. © FASEB.
Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability
2014-01-01
Background In the spinal cord, stereotypic patterns of transcription factor expression uniquely identify neuronal subtypes. These transcription factors function combinatorially to regulate gene expression. Consequently, a single transcription factor may regulate divergent development programs by participation in different combinatorial codes. One such factor, the LIM-homeodomain transcription factor Islet1, is expressed in the vertebrate spinal cord. In mouse, chick and zebrafish, motor and sensory neurons require Islet1 for specification of biochemical and morphological signatures. Little is known, however, about the role that Islet1 might play for development of electrical membrane properties in vertebrates. Here we test for a role of Islet1 in differentiation of excitable membrane properties of zebrafish spinal neurons. Results We focus our studies on the role of Islet1 in two populations of early born zebrafish spinal neurons: ventral caudal primary motor neurons (CaPs) and dorsal sensory Rohon-Beard cells (RBs). We take advantage of transgenic lines that express green fluorescent protein (GFP) to identify CaPs, RBs and several classes of interneurons for electrophysiological study. Upon knock-down of Islet1, cells occupying CaP-like and RB-like positions continue to express GFP. With respect to voltage-dependent currents, CaP-like and RB-like neurons have novel repertoires that distinguish them from control CaPs and RBs, and, in some respects, resemble those of neighboring interneurons. The action potentials fired by CaP-like and RB-like neurons also have significantly different properties compared to those elicited from control CaPs and RBs. Conclusions Overall, our findings suggest that, for both ventral motor and dorsal sensory neurons, Islet1 directs differentiation programs that ultimately specify electrical membrane as well as morphological properties that act together to sculpt neuron identity. PMID:25149090
Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.
2016-01-01
Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311
A preclinical evaluation of alternative site for islet allotransplantation
He, Sirong; Yuan, Yujia; Han, Pengfei; Wang, Dan; Chen, Younan; Liu, Jingping; Tian, Bole; Yang, Guang; Yi, Shounan; Gao, Fabao; Zhong, Zhihui; Li, Hongxia; Cheng, Jingqiu; Lu, Yanrong
2017-01-01
The bone marrow cavity (BMC) has recently been identified as an alternative site to the liver for islet transplantation. This study aimed to compare the BMC with the liver as an islet allotransplantation site in diabetic monkeys. Diabetes was induced in Rhesus monkeys using streptozocin, and the monkeys were then divided into the following three groups: Group1 (islets transplanted in the liver with immunosuppressant), Group 2 (islets transplanted in the tibial BMC), and Group 3 (islets transplanted in the tibial BMC with immunosuppressant). The C-peptide and blood glucose levels were preoperatively measured. An intravenous glucose tolerance test (IVGTT) was conducted to assess graft function, and complete blood cell counts were performed to assess cell population changes. Cytokine expression was measured using an enzyme-linked immune sorbent assay (ELISA) and MILLIPLEX. Five monkeys in Group 3 exhibited a significantly increased insulin-independent time compared with the other groups (Group 1: 78.2 ± 19.0 days; Group 2: 58.8 ± 17.0 days; Group 3: 189.6 ± 26.2 days) and demonstrated increases in plasma C-peptide 4 months after transplantation. The infusion procedure was not associated with adverse effects. Functional islets in the BMC were observed 225 days after transplantation using the dithizone (DTZ) and insulin/glucagon stains. Our results showed that allogeneic islets transplanted in the BMC of diabetic Rhesus monkeys remained alive and functional for a longer time than those transplanted in the liver. This study was the first successful demonstration of allogeneic islet engraftment in the BMC of non-human primates (NHPs). PMID:28358858
Girod, R; Le Goff, G
2006-05-01
The islets of Europa, Juan-de-Nova and Grande-Glorieuse are French territories isolated in the Mozambique Channel (Indian Ocean) which have remained relatively preserved from anthropization all along their history These three islets have been classified entire nature reserves from 1975 and are today inhabited only by a permanent military detachment of about fifteen men even if they occasionally greet technical and scientific staff. Sanitary and environmental issues brought about assessment of the present culicid fauna. The authors propose a synthesis of the culicid knowledge from the islets and make an inventory of new species. The role played by humans in importation of culicids is discussed as well as sanitary consequences of their adaptation to environment
Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes.
Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M; In't Veld, Peter; Glaser, Benjamin; Dor, Yuval
2017-02-01
β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin + cells, gastrin expression in humans with T2D occurs in both insulin + and somatostatin + cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. © 2017 by the American Diabetes Association.
Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes
Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M.; In’t Veld, Peter
2017-01-01
β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin+ cells, gastrin expression in humans with T2D occurs in both insulin+ and somatostatin+ cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. PMID:27864307
Reversible changes in pancreatic islet structure and function produced by elevated blood glucose
Brereton, Melissa F.; Iberl, Michaela; Shimomura, Kenju; Zhang, Quan; Adriaenssens, Alice E.; Proks, Peter; Spiliotis, Ioannis I.; Dace, William; Mattis, Katia K.; Ramracheya, Reshma; Gribble, Fiona M.; Reimann, Frank; Clark, Anne; Rorsman, Patrik; Ashcroft, Frances M.
2014-01-01
Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized. PMID:25145789
Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S; Whaley-Connell, Adam; Sowers, James R
2008-01-01
Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet-exocrine interface appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts-pancreatic stellate cells. Of importance, some pericyte cellular processes traverse both the connecting islet-exocrine interface and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal-incretin gut hormone axis, resulting in pancreatic insufficiency and glucagon-like peptide deficiency, which are known to exist in prediabetes and overt T2DM in humans.
Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima
2015-01-01
The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. PMID:25971976
Clinical application of microencapsulated islets: actual prospectives on progress and challenges.
Calafiore, Riccardo; Basta, Giuseppe
2014-04-01
After 25 years of intense pre-clinical work on microencapsulated intraperitoneal islet grafts into non-immunosuppressed diabetic recipients, the application of this procedure to patients with type 1 diabetes mellitus has been a significant step forward. This result, achieved in a few centers worldwide, underlies the safety of biopolymers used for microencapsulation. Without this advance, no permission for human application of microcapsules would have ever been obtained after years of purification technologies applied to the raw alginates. To improve safety of the encapsulated islet graft system, renewed efforts on the capsules' bioengineering, as well as on insulin-producing cells within the capsular membranes, are in progress. It is hoped that advances in these two critical aspects of the cell encapsulation technology will result in wider human application of this system. Copyright © 2013 Elsevier B.V. All rights reserved.
Age-Related Mitochondrial DNA Depletion and the Impact on Pancreatic Beta Cell Function
Nile, Donna L.; Brown, Audrey E.; Kumaheri, Meutia A.; Blair, Helen R.; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M.; Payne, Brendan; Chinnery, Patrick F.; Brown, Louise; Gunn, David A.; Walker, Mark
2014-01-01
Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes. PMID:25532126
Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.
Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark
2014-01-01
Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.
Liu, Bo; Asare-Anane, Henry; Al-Romaiyan, Altaf; Huang, Guocai; Amiel, Stephanie A; Jones, Peter M; Persaud, Shanta J
2009-01-01
Leaves of the Gymnema sylvestre (GS) plant have been used to treat diabetes mellitus for millennia, but the previously documented insulin secretagogue effects of GS extracts in vitro may be non-physiological through damage to the beta-cells. We have now examined the effects of a novel GS extract (termed OSA) on insulin secretion from the MIN6 beta-cell line and isolated human islets of Langerhans. Insulin secretion from MIN6 cells was stimulated by OSA in a concentration-dependent manner, with low concentrations (0.06-0.25 mg/ml) having no deleterious effects on MIN6 cell viability, while higher concentrations (> or = 0.5 mg/ml) caused increased Trypan blue uptake. OSA increased beta-cell Ca2+ levels, an effect that was mediated by Ca2+ influx through voltage-operated calcium channels. OSA also reversibly stimulated insulin secretion from isolated human islets and its insulin secretagogue effects in MIN6 cells and human islets were partially dependent on the presence of extracellular Ca2+. These data indicate that low concentrations of the GS isolate OSA stimulate insulin secretion in vitro, at least in part as a consequence of Ca2+ influx, without compromising beta-cell viability. Identification of the component of the OSA extract that stimulates regulated insulin exocytosis, and further investigation of its mode(s) of action, may provide promising lead targets for Type 2 diabetes therapy. 2009 S. Karger AG, Basel.
van de Bunt, Martijn; Lako, Majlinda; Barrett, Amy; Gloyn, Anna L.; Hansson, Mattias; McCarthy, Mark I.; Honoré, Christian
2016-01-01
ABSTRACT Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors, and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment, such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2, p-value = 4.9 × 10−5) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1, p-value = 8.6 × 10−5), showed transcriptional variation consistent with their known developmental roles. However, these analyses highlighted many other genes with stage-specific expression patterns, some of which may be novel drivers or markers of islet development. For example, the leptin receptor gene, LEPR, was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5, p-value = 2.0 × 10−12), suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes, including INS, ABCC8, and GLP1R, and enrichment of relevant GO-terms (e.g. “insulin secretion”; odds ratio = 4.2, p-value = 1.9 × 10−3): however, principal component analysis indicated that in vitro-differentiated cells were more immature than adult islets. Integration of the stage-specific expression information with genetic data from T2D genome-wide association studies revealed that 46 of 82 T2D-associated loci harbor genes present in at least one developmental stage, facilitating refinement of potential effector transcripts. Together, these data show that expression profiling in an iPSC islet development model can further understanding of islet biology and T2D pathogenesis. PMID:27246810
Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering
Rosa, Vinicius; Dubey, Nileshkumar; Islam, Intekhab; Min, Kyung-San; Nör, Jacques E.
2016-01-01
Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates). The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies. PMID:27313627
Pullen, Timothy J; da Silva Xavier, Gabriela; Kelsey, Gavin; Rutter, Guy A
2011-08-01
In pancreatic β cells, elevated glucose concentrations stimulate mitochondrial oxidative metabolism to raise intracellular ATP/ADP levels, prompting insulin secretion. Unusually low levels of expression of genes encoding the plasma membrane monocarboxylate transporter, MCT1 (SLC16A1), as well as lactate dehydrogenase A (LDHA) ensure that glucose-derived pyruvate is efficiently metabolized by mitochondria, while exogenous lactate or pyruvate is unable to stimulate metabolism and hence insulin secretion inappropriately. We show here that whereas DNA methylation at the Mct1 promoter is unlikely to be involved in cell-type-specific transcriptional repression, three microRNAs (miRNAs), miR-29a, miR-29b, and miR-124, selectively target both human and mouse MCT1 3' untranslated regions. Mutation of the cognate miR-29 or miR-124 binding sites abolishes the effects of the corresponding miRNAs, demonstrating a direct action of these miRNAs on the MCT1 message. However, despite reports of its expression in the mouse β-cell line MIN6, miR-124 was not detectably expressed in mature mouse islets. In contrast, the three isoforms of miR-29 are highly expressed and enriched in mouse islets. We show that inhibition of miR-29a in primary mouse islets increases Mct1 mRNA levels, demonstrating that miR-29 isoforms contribute to the β-cell-specific silencing of the MCT1 transporter and may thus affect insulin release.
Biomimetic silica encapsultation of living cells
NASA Astrophysics Data System (ADS)
Jaroch, David Benjamin
Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.
Cucak, Helena; Grunnet, Lars Groth; Rosendahl, Alexander
2014-01-01
Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates. On a detailed level, the islet resident macrophages increased fourfold compared with nondiabetic littermates, whereas a pronounced recruitment (eightfold) of a novel subset of macrophages (CD68+F4/80-) was observed. The majority of the CD68+F4/80+ but only 40% of the CD68+F4/80- islet macrophages expressed CD11b. Both islet-derived macrophage subsets expressed moderate MHC-II, high galectin-3, and low CD80/CD86 levels, suggesting the cells to be macrophages rather than DCs. On a functional level, the vast majority of the macrophages in the diabetic islets was of the proinflammatory, M1-like phenotype. The systemic immunity in diabetic animals was characterized by a low-grade inflammation with elevated cytokine levels and increase of splenic cytokine, producing CD68+F4/80- macrophages. In late-stage diabetes, the cytokine signature changed toward a TGF-β-dominated profile, coinciding with a significant increase of galectin-3-positive macrophages in the spleen. In summary, our results show that proinflammatory M1-like galectin-3+ CD80/CD86(low) macrophages invade diabetic islets. Moreover, the innate immunity matures in a diabetes-dependent manner from an initial proinflammatory toward a profibrotic phenotype, supporting the concept that T2D is an inflammatory disease.
Detection of microbial contamination during human islet isolation.
Kin, Tatsuya; Rosichuk, Shawn; Shapiro, A M James; Lakey, Jonathan R T
2007-01-01
Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n=157), after surface decontamination of the pancreas with antiseptic agents (n=89), from islet supernatant at the end of the isolation (n=104), and from islet supernatant as a final transplantable product after culture (n=53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs during processing even under cGMP conditions.
Detection of Microbial Contamination during Human Islet Isolation.
Kin, Tatsuya; Rosichuk, Shawn; Shapiro, A M James; Lakey, Jonathan R T
2007-01-01
Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n = 157), after surface decontamination of the pancreas with antiseptic agents (n = 89), from islet supernatant at the end of the isolation (n = 104), and from islet supernatant as a final transplantable product after culture (n = 53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs during processing even under cGMP conditions.
2015-01-01
Type 1 diabetes mellitus is caused by the autoimmune destruction of pancreatic beta (β) cells, resulting in severe insulin deficiency. Islet transplantation is a β-cell replacement therapeutic option that aims to restore glycemic control in patients with type 1 diabetes. The objective of this study was to determine the clinical effectiveness of islet transplantation in patients with type 1 diabetes, with or without kidney disease. We conducted a systematic review of the literature on islet transplantation for type 1 diabetes, including relevant health technology assessments, systematic reviews, meta-analyses, and observational studies. We used a two-step process: first, we searched for systematic reviews and health technology assessments; second, we searched primary studies to update the chosen health technology assessment. The Assessment of Multiple Systematic Reviews measurement tool was used to examine the methodological quality of the systematic reviews and health technology assessments. We assessed the quality of the body of evidence and the risk of bias according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. Our searched yielded 1,354 citations. One health technology assessment, 11 additional observational studies to update the health technology assessment, one registry report, and four guidelines were included; the observational studies examined islet transplantation alone, islet-after-kidney transplantation, and simultaneous islet-kidney transplantation. In general, low to very low quality of evidence exists for islet transplantation in patients with type 1 diabetes with difficult-to-control blood glucose levels, with or without kidney disease, for these outcomes: health-related quality of life, secondary complications of diabetes, glycemic control, and adverse events. However, high quality of evidence exists for the specific glycemic control outcome of insulin independence compared with intensive insulin therapy. For patients without kidney disease, islet transplantation improves glycemic control and diabetic complications for patients with type 1 diabetes when compared with intensive insulin therapy. However, results for health-related quality of life outcomes were mixed, and adverse events were increased compared with intensive insulin therapy. For patients with type 1 diabetes with kidney disease, islet-after-kidney transplantation or simultaneous islet-kidney transplantation also improved glycemic control and secondary diabetic complications, although the evidence was more limited for this patient group. Compared with intensive insulin therapy, adverse events for islet-after-kidney transplantation or simultaneous islet-kidney transplantation were increased, but were in general less severe than with whole pancreas transplantation. For patients with type 1 diabetes with difficult-to-control blood glucose levels, islet transplantation may be a beneficial β-cell replacement therapy to improve glycemic control and secondary complications of diabetes. However, there is uncertainty in the estimates of effectiveness because of the generally low to very low quality of evidence for all outcomes of interest.
Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease
Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien
2016-01-01
Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435
Phytonutrient genistein is a survival factor for pancreatic β-cells via GPR30-mediated mechanism.
Luo, Jing; Wang, Aihua; Zhen, Wei; Wang, Yao; Si, Hongwei; Jia, Zhenquan; Alkhalidy, Hana; Cheng, Zhiyong; Gilbert, Elizabeth; Xu, Bin; Liu, Dongmin
2018-05-12
We previously discovered that phytonutrient genistein rapidly activates cAMP signaling in β-cells and improves islet mass in diabetic mice. However, the mechanism underlying these actions of genistein is still unclear. Here, we show that pharmacological or molecular inhibition of Gαs blocked genistein-stimulated adenylate cyclase activity in plasma membrane and intracellular cAMP production in INS1 cells and islets. Further, genistein stimulation of cAMP generation was abolished in islets exposed to a specific GPR30 inhibitor G15 or islets from GPR30 deficient (GPR30-/-) mice. In vivo, dietary provision of genistein (0.5 g/kg diet) significantly mitigated streptozotocin-induced hyperglycemia in male WT mice, which was associated with improved blood insulin levels and pancreatic islet mass and survival, whereas these effects were absent in Gpr30-/- mice. Genistein treatment promoted survival of INS1 cells and human islets chronically exposed to palmitate and high glucose. At molecular level, genistein activated CREB phosphorylation and subsequently induced Bcl-2 expression, and knockdown of CREB diminished the protective effect of genistein on β-cells induced by lipoglucotoxicity. Finally, deletion of GPR30 in β-cells or islets ablated genistein-induced CREB phosphorylation and its cytoprotective effect. These findings demonstrate that genistein is a survival factor for β-cells via GPR30-initiated, Gαs-mediated activation of CREB. Copyright © 2018 Elsevier Inc. All rights reserved.
Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice
Nakayama, Maki; Castoe, Todd; Sosinowski, Tomasz; He, XiangLing; Johnson, Kelly; Haskins, Kathryn; Vignali, Dario A.A.; Gapin, Laurent; Pollock, David; Eisenbarth, George S.
2012-01-01
There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9–23 (insulin B:9–23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9–23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13–1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes. PMID:22315318
Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P
2016-02-12
Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qing; Che, Yongzhe; Li, Qiang
The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulatesmore » insulin secretion through regulating Ca{sup 2+} homeostasis.« less
Arifin, D.R.; Manek, S.; Call, E.; Arepally, A.; Bulte, J.W.M.
2012-01-01
Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444±21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-L-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mM barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3–4 weeks in vitro, with secreted human C-peptide levels of 0.2–160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. PMID:22444642
Saito, T; Anazawa, T; Gotoh, M; Uemoto, S; Kenmochi, T; Kuroda, Y; Satomi, S; Itoh, T; Yasunami, Y; Kitamoto, T; Mohri, S; Teraoka, S
2010-12-01
The potential for introducing transmissible spongiform encephalopathy (TSE) into islet cells was indicated by recognizing that Liberase HI is isolated from Clostridium histolyticum grown in media containing brain-heart infusion broth. A national team within the Japanese Pancreas and Islet Transplantation Association implemented an islet transplantation program in Japan using Liberase HI. The program comprised 65 islet isolations from non-heart-beating donors and 34 transplants into 18 patients. Herein, we have summarized how the Association followed these recipients over the long term. We established an ad hoc committee to follow recipients transplanted with islets isolated using Liberase HI after becoming informed of the associated dangers of using this enzyme. We also stopped islet transplantations using Liberase. The committee addressed the major concerns of the risk of the collagenase being contaminated with TSE and of the recipient follow-up. All recipients were examined by diffusion MRI and EEG and then scheduled for evaluation and follow-up by specialists in Creutzfeldt-Jakob disease (CJD). Bioassays of bovine spongiform encephalopathy prions in the enzyme proceeded using knock-in mice expressing bovine prion protein. These assays could detect contaminating prions at a dilution of 1 × 10(4). After inactivating its collagenase activity, Liberase HI was injected into the abdominal cavities of knock-in mice. Four months later, prion infectivity in Liberase HI was evaluated by immunohistochemical staining and Western blotting of spleen homogenates using anti-prion protein antibodies. Western blotting and immunohistochemical staining did not detect prions in Liberase HI. Diffusion MRI and EEG evaluations performed by CJD specialists confirmed that none of the transplanted recipients had CJD. Three years of follow-up revealed that none of the Japanese recipients of islet transplants developed CJD. Prion bioassays showed that the Liberase HI used to isolate islets for transplantation was free of infectious TSE prions. Copyright © 2010 Elsevier Inc. All rights reserved.
Comparison of the Ovary and Kidney as Sites for Islet Transplantation in Diabetic Rats.
Karakose, M; Pinarli, F A; Arslan, M S; Boyuk, G; Boztok, B; Albayrak, A; Ulus, A T; Cakal, E; Delibasi, T
2016-01-01
Currently, the most commonly used site for clinical islet transplantation is the liver although it is far from being an ideal site. Low oxygen tension and the induction of an inflammatory response impair islet implantation and lead to significant early loss of islet. The present study aimed to investigate and compare the efficacy of islet transplantation to the ovary and kidney subcapsule in diabetic rats. The study was performed with 3 groups of rats (control, ovary, and kidney subcapsule) including 6 Sprague female rats each. Diabetes model was created with the use of streptozotocin, and blood glucose levels of the rats were measured after 72 hours. Thirty days after the transplantation, blood samples were obtained from the rats, and then pancreas, kidney, and ovary specimens were fixed in 10% formaldehyde and the experiment completed. After staining with hematoxylin and eosin, the tissue samples were morphologically evaluated by a specialist histopathologist. Changes in mean blood glucose and C-peptide levels were statistically significant in the ovary and kidney subcapsule groups. Histologic examination revealed that granulosus insulin-bearing cells were detected in the islet grafts of both ovary and kidney subcapsule groups. The renal subcapsule group had inflammation signs on histologic examination. The islet cells of both ovary and renal subcapsule groups had no vacuolization. We showed that the ovary might be a new site for islet transplantation. Further research should be done on whether the initial results of this study can be reproduced in larger numbers of animal models and eventually in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Brar, Gurkirat S; Barrow, Breanne M; Watson, Matthew; Griesbach, Ryan; Choung, Edwina; Welch, Andrew; Ruzsicska, Bela; Raleigh, Daniel P; Zraika, Sakeneh
2017-08-01
Recent work has renewed interest in therapies targeting the renin-angiotensin system (RAS) to improve β-cell function in type 2 diabetes. Studies show that generation of angiotensin-(1-7) by ACE2 and its binding to the Mas receptor (MasR) improves glucose homeostasis, partly by enhancing glucose-stimulated insulin secretion (GSIS). Thus, islet ACE2 upregulation is viewed as a desirable therapeutic goal. Here, we show that, although endogenous islet ACE2 expression is sparse, its inhibition abrogates angiotensin-(1-7)-mediated GSIS. However, a more widely expressed islet peptidase, neprilysin, degrades angiotensin-(1-7) into several peptides. In neprilysin-deficient mouse islets, angiotensin-(1-7) and neprilysin-derived degradation products angiotensin-(1-4), angiotensin-(5-7), and angiotensin-(3-4) failed to enhance GSIS. Conversely, angiotensin-(1-2) enhanced GSIS in both neprilysin-deficient and wild-type islets. Rather than mediating this effect via activation of the G-protein-coupled receptor (GPCR) MasR, angiotensin-(1-2) was found to signal via another GPCR, namely GPCR family C group 6 member A (GPRC6A). In conclusion, in islets, intact angiotensin-(1-7) is not the primary mediator of beneficial effects ascribed to the ACE2/angiotensin-(1-7)/MasR axis. Our findings warrant caution for the concurrent use of angiotensin-(1-7) compounds and neprilysin inhibitors as therapies for diabetes. © 2017 by the American Diabetes Association.
Nie, Jia; Lilley, Brendan N; Pan, Y Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R; Han, Xiao; Shi, Yuguang
2013-07-01
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca(2+)-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells.
Nie, Jia; Lilley, Brendan N.; Pan, Y. Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R.
2013-01-01
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca2+-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells. PMID:23629625
Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance
Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.
2010-01-01
Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395
Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes
Wedgwood, Kyle C. A.; Richardson, Sarah J.; Morgan, Noel G.; Tsaneva-Atanasova, Krasimira
2016-01-01
Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective destruction of the insulin secreting beta cells in the pancreas during an inflammatory phase known as insulitis. Patients with T1D are typically dependent on the administration of externally provided insulin in order to manage blood glucose levels. Whilst technological developments have significantly improved both the life expectancy and quality of life of these patients, an understanding of the mechanisms of the disease remains elusive. Animal models, such as the NOD mouse model, have been widely used to probe the process of insulitis, but there exist very few data from humans studied at disease onset. In this manuscript, we employ data from human pancreases collected close to the onset of T1D and propose a spatio-temporal computational model for the progression of insulitis in human T1D, with particular focus on the mechanisms underlying the development of insulitis in pancreatic islets. This framework allows us to investigate how the time-course of insulitis progression is affected by altering key parameters, such as the number of the CD20+ B cells present in the inflammatory infiltrate, which has recently been proposed to influence the aggressiveness of the disease. Through the analysis of repeated simulations of our stochastic model, which track the number of beta cells within an islet, we find that increased numbers of B cells in the peri-islet space lead to faster destruction of the beta cells. We also find that the balance between the degradation and repair of the basement membrane surrounding the islet is a critical component in governing the overall destruction rate of the beta cells and their remaining number. Our model provides a framework for continued and improved spatio-temporal modeling of human T1D. PMID:28082906
He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan
2011-12-01
Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.
Carlsson, Per-Ola; Espes, Daniel; Sedigh, Amir; Rotem, Avi; Zimerman, Baruch; Grinberg, Helena; Goldman, Tali; Barkai, Uriel; Avni, Yuval; Westermark, Gunilla T; Carlbom, Lina; Ahlström, Håkan; Eriksson, Olof; Olerud, Johan; Korsgren, Olle
2017-12-29
Macroencapsulation devices provide the dual possibility of immunoprotecting transplanted cells while also being retrievable, the latter bearing importance for safety in future trials with stem cell-derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The βAir device solves this with an incorporated refillable oxygen tank. This phase 1 study evaluated the safety and efficacy of implanting the βAir device containing allogeneic human pancreatic islets into patients with type 1 diabetes. Four patients were transplanted with 1-2 βAir devices, each containing 155 000-180 000 islet equivalents (ie, 1800-4600 islet equivalents per kg body weight), and monitored for 3-6 months, followed by the recovery of devices. Implantation of the βAir device was safe and successfully prevented immunization and rejection of the transplanted tissue. However, although beta cells survived in the device, only minute levels of circulating C-peptide were observed with no impact on metabolic control. Fibrotic tissue with immune cells was formed in capsule surroundings. Recovered devices displayed a blunted glucose-stimulated insulin response, and amyloid formation in the endocrine tissue. We conclude that the βAir device is safe and can support survival of allogeneic islets for several months, although the function of the transplanted cells was limited (Clinicaltrials.gov: NCT02064309). © 2018 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of The American Society of Transplantation and the American Society of Transplant Surgeons.
Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima
2015-07-03
The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Phadnis, Smruti M; Joglekar, Mugdha V; Venkateshan, Vijayalakshmi; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R
2006-01-01
Fetal calf serum (FCS) is conventionally used for animal cell cultures due to its inherent growth-promoting activities. However animal welfare issues and stringent requirements for human transplantation studies demand a suitable alternative for FCS. With this view, we studied the effect of FCS, human AB serum (ABS), and human umbilical cord blood serum (UCBS) on murine islets of Langerhans and human bone marrow-derived mesenchymal-like cells (hBMCs). We found that there was no difference in morphology and functionality of mouse islets cultured in any of these three different serum supplements as indicated by insulin immunostaining. A comparative analysis of hBMCs maintained in each of these three different serum supplements demonstrated that UCBS supplemented media better supported proliferation of hBMCs. Moreover, a modification of adipogenic differentiation protocol using UCBS indicates that it can be used as a supplement to support differentiation of hBMCs into adipocytes. Our results demonstrate that UCBS not only is suitable for maintenance of murine pancreatic islets, but also supports attachment, propagation, and differentiation of hBMCs in vitro. We conclude that UCBS can serve as a better serum supplement for growth, maintenance, and differentiation of hBMCs, making it a more suitable supplement in cell systems that have therapeutic potential in human transplantation programs.
Rezania, Alireza; Bruin, Jennifer E.; Riedel, Michael J.; Mojibian, Majid; Asadi, Ali; Xu, Jean; Gauvin, Rebecca; Narayan, Kavitha; Karanu, Francis; O’Neil, John J.; Ao, Ziliang; Warnock, Garth L.
2012-01-01
Diabetes is a chronic debilitating disease that results from insufficient production of insulin from pancreatic β-cells. Islet cell replacement can effectively treat diabetes but is currently severely limited by the reliance upon cadaveric donor tissue. We have developed a protocol to efficiently differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population that further develops in vivo to mature pancreatic endocrine cells. Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes, and glycemia was initially controlled with exogenous insulin. As graft-derived insulin levels increased over time, diabetic mice were weaned from exogenous insulin and human C-peptide secretion was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant in immunodeficient rats. Throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to the developing human fetal pancreas. Our findings support the feasibility of using differentiated hESCs as an alternative to cadaveric islets for treating patients with diabetes. PMID:22740171
Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture
Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G. M.; Dobrzyn, Agnieszka; Harkany, Tibor
2015-01-01
Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R−/− islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis. PMID:26494286
Headen, Devon M.; Aubry, Guillaume; Lu, Hang
2014-01-01
Cell and islet microencapsulation in synthetic hydrogels provide an immunoprotective and cell-supportive microenvironment. A microfluidic strategy for the genaration of biofunctionalized, synthetic microgel particles with precise control over particle size and molecular permeability for cell and protein delivery is presented. These engineered capsules support high cell viability and function of encapsulated human stem cells and islets. PMID:24615922
Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.
Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund
2017-04-01
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Compensatory islet response to insulin resistance revealed by quantitative proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee
Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less
The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio
Suszynski, T.M.; Wildey, G.M.; Falde, E.J.; Cline, G.W.; Maynard, K. Stewart; Ko, N.; Sotiris, J.; Naji, A.; Hering, B.J.; Papas, K.K.
2009-01-01
Real-time, accurate assessment of islet viability is critical for avoiding transplantation of nontherapeutic preparations. Measurements of the intracellular ADP/ATP ratio have been recently proposed as useful prospective estimates of islet cell viability and potency. However, dead cells may be rapidly depleted of both ATP and ADP, which would render the ratio incapable of accounting for dead cells. Since the DNA of dead cells is expected to remain stable over prolonged periods of time (days), we hypothesized that use of the ATP/DNA ratio would take into account dead cells and may be a better indicator of islet cell viability than the ADP/ATP ratio. We tested this hypothesis using mixtures of healthy and lethally heat-treated (HT) rat insulinoma cells and human islets. Measurements of ATP/DNA and ADP/ATP from the known mixtures of healthy and HT cells and islets were used to evaluate how well these parameters correlated with viability. The results indicated that ATP and ADP were rapidly (within 1 hour) depleted in HT cells. The fraction of HT cells in a mixture correlated linearly with the ATP/DNA ratio, whereas the ADP/ADP ratio was highly scattered, remaining effectively unchanged. Despite similar limitations in both ADP/ADP and ATP/DNA ratios, in that ATP levels may fluctuate significantly and reversibly with metabolic stress, the results indicated that ATP/DNA was a better measure of islet viability than the ADP/ATP ratio. PMID:18374063
Compensatory islet response to insulin resistance revealed by quantitative proteomics
El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee; ...
2015-07-07
Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less
2015-01-01
Background Type 1 diabetes mellitus is caused by the autoimmune destruction of pancreatic beta (β) cells, resulting in severe insulin deficiency. Islet transplantation is a β-cell replacement therapeutic option that aims to restore glycemic control in patients with type 1 diabetes. The objective of this study was to determine the clinical effectiveness of islet transplantation in patients with type 1 diabetes, with or without kidney disease. Methods We conducted a systematic review of the literature on islet transplantation for type 1 diabetes, including relevant health technology assessments, systematic reviews, meta-analyses, and observational studies. We used a two-step process: first, we searched for systematic reviews and health technology assessments; second, we searched primary studies to update the chosen health technology assessment. The Assessment of Multiple Systematic Reviews measurement tool was used to examine the methodological quality of the systematic reviews and health technology assessments. We assessed the quality of the body of evidence and the risk of bias according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. Results Our searched yielded 1,354 citations. One health technology assessment, 11 additional observational studies to update the health technology assessment, one registry report, and four guidelines were included; the observational studies examined islet transplantation alone, islet-after-kidney transplantation, and simultaneous islet-kidney transplantation. In general, low to very low quality of evidence exists for islet transplantation in patients with type 1 diabetes with difficult-to-control blood glucose levels, with or without kidney disease, for these outcomes: health-related quality of life, secondary complications of diabetes, glycemic control, and adverse events. However, high quality of evidence exists for the specific glycemic control outcome of insulin independence compared with intensive insulin therapy. For patients without kidney disease, islet transplantation improves glycemic control and diabetic complications for patients with type 1 diabetes when compared with intensive insulin therapy. However, results for health-related quality of life outcomes were mixed, and adverse events were increased compared with intensive insulin therapy. For patients with type 1 diabetes with kidney disease, islet-after-kidney transplantation or simultaneous islet-kidney transplantation also improved glycemic control and secondary diabetic complications, although the evidence was more limited for this patient group. Compared with intensive insulin therapy, adverse events for islet-after-kidney transplantation or simultaneous islet-kidney transplantation were increased, but were in general less severe than with whole pancreas transplantation. Conclusions For patients with type 1 diabetes with difficult-to-control blood glucose levels, islet transplantation may be a beneficial β-cell replacement therapy to improve glycemic control and secondary complications of diabetes. However, there is uncertainty in the estimates of effectiveness because of the generally low to very low quality of evidence for all outcomes of interest. PMID:26644812
[Recent advances in the treatment of type 1 diabetes mellitus].
Schloot, N C; Roden, M; Bornstein, S R; Brendel, M D
2011-02-01
INTERVENTIONAL APPROACHES TO BETA CELL PRESERVATION: In a pilot study, initial attempts at primary prevention by preserving islet beta cells have been successful with highly hydrolyzed milk formula in children who are at high genetic risk of diabetes. Attempts at secondary prevention by intranasal application in children with a high-risk HLA genotype and positive islet autoantibodies have been disappointing. But in tertiary prevention anti-inflammatory, antigen-directed and T-cell targeted treatment has been partially successful in slowing down the destruction of beta cells. BIOLOGICAL BETA CELL SUBSTITUTION: Transplantation of a vascularised pancreas or islet cells results in disease regression and the prevention of secondary/tertiary complications of diabetes. A principal aim is the avoidance of frequent, severe hypoglycaemic episodes resulting from markedly reduced awareness of hypoglycaemia or its counter-regulation. © Georg Thieme Verlag KG Stuttgart · New York.
Aston-Mourney, Kathryn; Subramanian, Shoba L.; Zraika, Sakeneh; Samarasekera, Thanya; Meier, Daniel T.; Goldstein, Lynn C.
2013-01-01
The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve β-cell mass. However, sitagliptin also increases β-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated β-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing β-cell secretory demand and could therefore offset sitagliptin's potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and β-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, β-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced β-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates β-cell secretion without increasing amyloid formation and protects against amyloid-induced β-cell loss. This suggests a novel effect of sitagliptin to protect the β-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas. PMID:23736544
The human insulin mRNA is partly translated via a cap- and eIF4A-independent mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred, Rikard G., E-mail: Rikard.Fred@mcb.uu.se; Sandberg, Monica; Pelletier, Jerry
Highlights: {yields} The polypyrimidine tract binding protein binds to the 5'-UTR of the insulin mRNA. {yields} Insulin mRNA can be translated via a cap-independent mechanism. {yields} The fraction cap-independent insulin synthesis increases during conditions of stress. {yields} The {beta}-cell is able to uphold basal insulin biosynthesis under conditions of stress. -- Abstract: The aim of this study was to investigate whether cap-independent insulin mRNA translation occurs in human pancreatic islets at basal conditions, during stimulation at a high glucose concentration and at conditions of nitrosative stress. We also aimed at correlating cap-independent insulin mRNA translation with binding of the IRESmore » trans-acting factor polypyrimidine tract binding protein (PTB) to the 5'-UTR of insulin mRNA. For this purpose, human islets were incubated for 2 h in the presence of low (1.67 mM) or high glucose (16.7 mM). Nitrosative stress was induced by addition of 1 mM DETA/NO and cap-dependent mRNA translation was inhibited with hippuristanol. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. PTB affinity to insulin mRNA 5'-UTR was assessed by a magnetic micro bead pull-down procedure. We observed that in the presence of 1.67 mM glucose, approximately 70% of the insulin mRNA translation was inhibited by hippuristanol. Corresponding value from islets incubated at 16.7 mM glucose was 93%. DETA/NO treatment significantly decreased the translation of insulin by 85% in high glucose incubated islets, and by 50% at a low glucose concentration. The lowered insulin biosynthesis rates of DETA/NO-exposed islets were further suppressed by hippuristanol with 55% at 16.7 mM glucose but not at 1.67 mM glucose. Thus, hippuristanol-induced inhibition of insulin biosynthesis was less pronounced in DETA/NO-treated islets as compared to control islets. We observed also that PTB bound specifically to the insulin mRNA 5'-UTR in vitro, and that this binding corresponded well with rates of cap-independent insulin biosynthesis at the different conditions. In conclusion, our studies show that insulin biosynthesis is mainly cap-dependent at a high glucose concentration, but that the cap-independent biosynthesis of insulin can constitute as much as 40-100% of all insulin biosynthesis during conditions of nitrosative stress. These data suggest that the pancreatic {beta}-cell is able to uphold basal insulin synthesis at conditions of starvation and stress via a cap- and eIF4A-independent mechanism, possibly mediated by the binding of PTB to the 5'-UTR of the human insulin mRNA.« less
Ansari, Israr-ul H.; Longacre, Melissa J.; Stoker, Scott W.; Kendrick, Mindy A.; O’Neill, Lucas M.; Zitur, Laura J.; Fernandez, Luis A.; Ntambi, James M.; MacDonald, Michael J.
2017-01-01
Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ~ 50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion. PMID:28193492
Syring, Kristen E.; Boortz, Kayla A.; Oeser, James K.; Ustione, Alessandro; Platt, Kenneth A.; Shadoan, Melanie K.; McGuinness, Owen P.; Piston, David W.; Powell, David R.
2016-01-01
Polymorphisms in the SLC30A8 gene, which encodes the ZnT8 zinc transporter, are associated with altered susceptibility to type 2 diabetes (T2D), and SLC30A8 haploinsufficiency is protective against the development of T2D in obese humans. SLC30A8 is predominantly expressed in pancreatic islet β-cells, but surprisingly, multiple knockout mouse studies have shown little effect of Slc30a8 deletion on glucose tolerance or glucose-stimulated insulin secretion (GSIS). Multiple other Slc30a isoforms are expressed at low levels in pancreatic islets. We hypothesized that functional compensation by the Slc30a7 isoform, which encodes ZnT7, limits the impact of Slc30a8 deletion on islet function. We therefore analyzed the effect of Slc30a7 deletion alone or in combination with Slc30a8 on in vivo glucose metabolism and GSIS in isolated islets. Deletion of Slc30a7 alone had complex effects in vivo, impairing glucose tolerance and reducing the glucose-stimulated increase in plasma insulin levels, hepatic glycogen levels, and pancreatic insulin content. Slc30a7 deletion also affected islet morphology and increased the ratio of islet α- to β-cells. However, deletion of Slc30a7 alone had no effect on GSIS in isolated islets, whereas combined deletion of Slc30a7 and Slc30a8 abolished GSIS. These data demonstrate that the function of ZnT8 in islets can be unmasked by removal of ZnT7 and imply that ZnT8 may affect T2D susceptibility through actions in other tissues where it is expressed at low levels rather than through effects on pancreatic islet function. PMID:27754787
A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes
Serr, Isabelle; Scherm, Martin G.; Zahm, Adam M.; Schug, Jonathan; Flynn, Victoria K.; Hippich, Markus; Kälin, Stefanie; Becker, Maike; Achenbach, Peter; Nikolaev, Alexei; Gerlach, Katharina; Liebsch, Nicole; Loretz, Brigitta; Lehr, Claus-Michael; Kirchner, Benedikt; Spornraft, Melanie; Haase, Bettina; Segars, James; Küper, Christoph; Palmisano, Ralf; Waisman, Ari; Willis, Richard A.; Kim, Wan-Uk; Weigmann, Benno; Kaestner, Klaus H.; Ziegler, Anette-Gabriele; Daniel, Carolin
2018-01-01
Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)–mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)–mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity. PMID:29298866
Arifin, Dian R; Manek, Sameer; Call, Emma; Arepally, Aravind; Bulte, Jeff W M
2012-06-01
Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444 ± 21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-l-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mm barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3-4 weeks in vitro, with secreted human C-peptide levels of 0.2-160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Franko, Andras; Rodriguez Camargo, Diana C; Böddrich, Annett; Garg, Divita; Rodriguez Camargo, Andres; Rathkolb, Birgit; Janik, Dirk; Aichler, Michaela; Feuchtinger, Annette; Neff, Frauke; Fuchs, Helmut; Wanker, Erich E; Reif, Bernd; Häring, Hans-Ulrich; Peter, Andreas; Hrabě de Angelis, Martin
2018-01-18
The formation of amyloid fibrils by human islet amyloid polypeptide protein (hIAPP) has been implicated in pancreas dysfunction and diabetes. However, efficient treatment options to reduce amyloid fibrils in vivo are still lacking. Therefore, we tested the effect of epigallocatechin gallate (EGCG) on fibril formation in vitro and in vivo. To determine the binding of hIAPP and EGCG, in vitro interaction studies were performed. To inhibit amyloid plaque formation in vivo, homozygous (tg/tg), hemizygous (wt/tg), and control mice (wt/wt) were treated with EGCG. EGCG bound to hIAPP in vitro and induced formation of amorphous aggregates instead of amyloid fibrils. Amyloid fibrils were detected in the pancreatic islets of tg/tg mice, which was associated with disrupted islet structure and diabetes. Although pancreatic amyloid fibrils could be detected in wt/tg mice, these animals were non-diabetic. EGCG application decreased amyloid fibril intensity in wt/tg mice, however it was ineffective in tg/tg animals. Our data indicate that EGCG inhibits amyloid fibril formation in vitro and reduces fibril intensity in non-diabetic wt/tg mice. These results demonstrate a possible in vivo effectiveness of EGCG on amyloid formation and suggest an early therapeutical application.
Hummel, Sandra; Pflüger, Maren; Hummel, Michael; Bonifacio, Ezio; Ziegler, Anette-G.
2011-01-01
OBJECTIVE To determine whether delaying the introduction of gluten in infants with a genetic risk of islet autoimmunity is feasible, safe, and may reduce the risk of type 1 diabetes–associated islet autoimmunity. RESEARCH DESIGN AND METHODS A total of 150 infants with a first-degree family history of type 1 diabetes and a risk HLA genotype were randomly assigned to a first gluten exposure at age 6 months (control group) or 12 months (late-exposure group) and were followed 3 monthly until the age of 3 years and yearly thereafter for safety (for growth and autoantibodies to transglutaminase C [TGCAs]), islet autoantibodies to insulin, GAD, insulinoma-associated protein 2, and type 1 diabetes. RESULTS Adherence to the dietary-intervention protocol was reported from 70% of families. During the first 3 years, weight and height were similar in children in the control and late-exposure groups, as was the probability of developing TGCAs (14 vs. 4%; P = 0.1). Eleven children in the control group and 13 children in the late-exposure group developed islet autoantibodies (3-year risk: 12 vs. 13%; P = 0.6). Seven children developed diabetes, including four in the late-exposure group. No significant differences were observed when children were analyzed as per protocol on the basis of the reported first gluten exposure of the children. CONCLUSIONS Delaying gluten exposure until the age of 12 months is safe but does not substantially reduce the risk for islet autoimmunity in genetically at-risk children. PMID:21515839
Wojtusciszyn, Anne; Andres, Axel; Morel, Philippe; Charvier, Solange; Armanet, Mathieu; Toso, Christian; Choi, Yongwon; Bosco, Domenico; Berney, Thierry
2010-01-01
We explore herein the effect of TRANCE costimulatory pathway blockade on islet survival after allograft transplantation. Expression of TRANCE on murine C57BL/6 (B6) CD4+ T-cells after allogeneic activation was analysed by FACS. The effect of a TRANCE receptor fusion protein (TR-Fc) and anti-CD154 antibody (MR1) on B6 spleen cell proliferation after allogeneic activation was assessed by MLR. Three groups of B6 mice were transplanted with allogeneic islets (DBA2): Control; short-term TR-Fc-treatment (days 0–4); and prolonged TR-Fc-treatment (days -1–13). Donor-specific transfusion (DST) was performed at the time of islet transplantation in one independent experiment. Transplantectomy samples were analyzed by immunohistochemistry. TRANCE expression was upregulated in stimulated CD4+ T-cells in vitro. In MLR experiments, TR-Fc and MR1 both reduced spleen cell proliferation, but less than the combination of both molecules. Short course TR-Fc treatment did not prolong islet graft survival as compared to controls (10.6±1.9 vs 10.7±1.5 days) in contrast to prolonged treatment (20.7±3.2 days; p<0.05). After DST, primary non-function (PNF) was observed in half of control mice, but never in TR-Fc-treated mice. Immunofluorescence staining for Mac-1 showed a clear decrease in macrophage recruitment in the treated groups. TRANCE targeting may be an effective strategy for the prolongation of allogeneic islet graft survival, thanks to its inhibitory effects on costimulatory signals and macrophage recruitment. PMID:19453995
Pullen, Timothy J.; da Silva Xavier, Gabriela; Kelsey, Gavin; Rutter, Guy A.
2011-01-01
In pancreatic β cells, elevated glucose concentrations stimulate mitochondrial oxidative metabolism to raise intracellular ATP/ADP levels, prompting insulin secretion. Unusually low levels of expression of genes encoding the plasma membrane monocarboxylate transporter, MCT1 (SLC16A1), as well as lactate dehydrogenase A (LDHA) ensure that glucose-derived pyruvate is efficiently metabolized by mitochondria, while exogenous lactate or pyruvate is unable to stimulate metabolism and hence insulin secretion inappropriately. We show here that whereas DNA methylation at the Mct1 promoter is unlikely to be involved in cell-type-specific transcriptional repression, three microRNAs (miRNAs), miR-29a, miR-29b, and miR-124, selectively target both human and mouse MCT1 3′ untranslated regions. Mutation of the cognate miR-29 or miR-124 binding sites abolishes the effects of the corresponding miRNAs, demonstrating a direct action of these miRNAs on the MCT1 message. However, despite reports of its expression in the mouse β-cell line MIN6, miR-124 was not detectably expressed in mature mouse islets. In contrast, the three isoforms of miR-29 are highly expressed and enriched in mouse islets. We show that inhibition of miR-29a in primary mouse islets increases Mct1 mRNA levels, demonstrating that miR-29 isoforms contribute to the β-cell-specific silencing of the MCT1 transporter and may thus affect insulin release. PMID:21646425
Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells.
Almaça, Joana; Molina, Judith; Menegaz, Danusa; Pronin, Alexey N; Tamayo, Alejandro; Slepak, Vladlen; Berggren, Per-Olof; Caicedo, Alejandro
2016-12-20
In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT 1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT 1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity. Published by Elsevier Inc.
Structure and Thermodynamic Stability of Islet Amyloid Polypeptide Monomers and Small Aggregates
NASA Astrophysics Data System (ADS)
Chiu, Chi-Cheng; Singh, Sadanand; de Pablo, Juan
2013-03-01
Human islet amyloid polypeptide (hIAPP, also known as human amylin) is associated with the development of type II diabetes. It is known to form amyloid fibrils that are found in pancreatic islets. Pramlintide, a synthetic analog of hIAPP with three proline substitutions, is not amyloidogenic and has been applied in amylin replacement treatments. In this work, we use molecular simulations with advanced sampling techniques to examine the effect of these proline substitutions on hIAPP monomer conformations. We find that all three proline substitutions are required to attenuate the formation of β-sheets encountered in amylin. Furthermore, we investigate the formation of hIAPP dimers and trimers, and investigate how that process is affected by the presence of various additives. Our simulations show that hIAPP can form a β-sheet at the N-terminus and the C-terminus independently, in agreement with experimental observations. Our results provide valuable insights into the mechanism of hIAPP early aggregation and the design of fibril formation inhibitors.
Elgamal, Ruth M; Bell, Gillian I; Krause, Sarah C T; Hess, David A
2018-06-06
Cellular therapies are emerging as a novel treatment strategy for diabetes. Thus, the induction of endogenous islet regeneration in situ represents a feasible goal for diabetes therapy. Umbilical cord blood-derived hematopoietic progenitor cells (HPCs), isolated by high aldehyde dehydrogenase activity (ALDH hi ), have previously been shown to reduce hyperglycemia after intrapancreatic (iPan) transplantation into streptozotocin (STZ)-treated nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. However, these cells are rare and require ex vivo expansion to reach clinically applicable numbers for human therapy. Therefore, we investigated whether BMS 493, an inverse retinoic acid receptor agonist, could prevent retinoic acid-induced differentiation and preserve islet regenerative functions during expansion. After 6-day expansion, BMS 493-treated cells showed a twofold increase in the number of ALDH hi cells available for transplantation compared with untreated controls. Newly expanded ALDH hi cells showed increased numbers of CD34 and CD133-positive cells, as well as a reduction in CD38 expression, a marker of hematopoietic cell differentiation. BMS 493-treated cells showed similar hematopoietic colony-forming capacity compared with untreated cells, with ALDH hi subpopulations producing more colonies than low aldehyde dehydrogenase activity subpopulations for expanded cells. To determine if the secreted proteins of these cells could augment the survival and/or proliferation of β-cells in vitro, conditioned media (CM) from cells expanded with or without BMS 493 was added to human islet cultures. The total number of proliferating β-cells was increased after 3- or 7-day culture with CM generated from BMS 493-treated cells. In contrast to freshly isolated ALDH hi cells, 6-day expansion with or without BMS 493 generated progeny that were unable to reduce hyperglycemia after iPan transplantation into STZ-treated NOD/SCID mice. Further strategies to reduce retinoic acid differentiation during HPC expansion is required to expand ALDH hi cells without the loss of islet regenerative functions.
Reichart, B; Niemann, H; Chavakis, T; Denner, J; Jaeckel, E; Ludwig, B; Marckmann, G; Schnieke, A; Schwinzer, R; Seissler, J; Tönjes, R R; Klymiuk, N; Wolf, E; Bornstein, S R
2015-01-01
Solid organ and cell transplantation, including pancreatic islets constitute the treatment of choice for chronic terminal diseases. However, the clinical use of allogeneic transplantation is limited by the growing shortage of human organs. This has prompted us to initiate a unique multi-center and multi-team effort to promote translational research in xenotransplantation to bring xenotransplantation to the clinical setting. Supported by the German Research Foundation, an interdisciplinary group of surgeons, internal medicine doctors, diabetologists, material sciences experts, immunologists, cell biologists, virologists, veterinarians, and geneticists have established a collaborative research center (CRC) focusing on the biology of xenogeneic cell, tissue, and organ transplantation. A major strength of this consortium is the inclusion of members of the regulatory bodies, including the Paul-Ehrlich Institute (PEI), infection specialists from the Robert Koch Institute and PEI, veterinarians from the German Primate Center, and representatives of influential ethical and religious institutions. A major goal of this consortium is to promote islet xenotransplantation, based on the extensive expertise and experience of the existing clinical islet transplantation program. Besides comprehensive approaches to understand and prevent inflammation-mediated islet xenotransplant dysfunction [immediate blood-mediated inflammatory reaction (IBMIR)], we also take advantage of the availability of and experience with islet macroencapsulation, with the goal to improve graft survival and function. This consortium harbors a unique group of scientists with complementary expertise under a cohesive program aiming at developing new therapeutic approaches for islet replacement and solid organ xenotransplantation. © Georg Thieme Verlag KG Stuttgart · New York.
Krivova, Yuliya S; Proshchina, Alexandra E; Barabanov, Valeriy M; Barinova, Irina V; Saveliev, Sergey V
2018-02-01
Expression of the intermediate filament protein vimentin has been recently observed in the pancreatic islet β- and α-cells of humans with type 2 diabetes mellitus. It was suggested that the presence of vimentin in endocrine cells may indicate islet tissue renewal, or potentially represent the dedifferentiation of endocrine cells, which could contribute to the onset of type 2 diabetes or islet cell dysfunction. To analyze the expression of vimentin in pancreatic β- and α-cells of macrosomic infants of diabetic and nondiabetic mothers. Pancreatic samples of five macrosomic infants (gestational age 34-40weeks) from three diabetic and two nondiabetic mothers were compared to six control infants (32-40weeks, weight appropriate for gestational age) from normoglycemic mothers. Pancreatic autopsy samples were examined by double immunofluorescent labeling with antibodies against vimentin and either insulin or glucagon. Alterations in the endocrine pancreas were measured using morphometric methods, then data were statistically analyzed. In the pancreatic islets of macrosomic infants from diabetic and nondiabetic mothers, we observed vimentin-positive cells, some of which simultaneously contained insulin or glucagon. We also quantitatively showed that the presence of such cells was associated with hypertrophy and hyperplasia of the islets, and with an increase in β- and α-cell density. We speculate that the appearance of vimentin-positive islet cells may reflect induction of differentiation in response to the increased insulin demand, and vimentin may serve as an early marker of endocrine pancreas disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Yoshimura, Masashi; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Saji, Hideo
2016-06-15
While islet amyloid deposition comprising amylin is one of pathological hallmarks of type 2 diabetes mellitus (T2DM), no useful amylin-imaging probe has been reported. In this study, we evaluated two (99m)Tc-labeled pyridyl benzofuran derivatives as novel amylin-imaging probes using the newly established islet amyloid model mouse. Binding experiments in vitro demonstrated that [(99m)Tc]1 displayed a higher affinity for amylin aggregates than [(99m)Tc]2. Autoradiographic studies using human pancreas sections with T2DM revealed that [(99m)Tc]1 clearly labeled islet amyloid in T2DM pancreatic sections, while [(99m)Tc]2 did not. Although the initial uptake of [(99m)Tc]1 by the normal mouse pancreas was low (0.74%ID/g at 2 min post-injection), [(99m)Tc]1 showed higher retention in the model mouse pancreas than that of the normal mouse, and exhibited strong binding to amylin aggregates in the living pancreas of the model mice. These results suggest that [(99m)Tc]1 is a potential imaging probe targeting islet amyloids in the T2DM pancreas.
TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro
Toren-Haritan, Ginat; Efrat, Shimon
2015-01-01
In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD) cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT). Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ) pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA) against TGFβ Receptor 1 (TGFBR1, ALK5) transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion. PMID:26418361
Kirk, Kaitlyn; Hao, Ergeng; Lahmy, Reyhaneh; Itkin-Ansari, Pamela
2014-05-01
There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes. Copyright © 2014. Published by Elsevier B.V.
Presence of Human Herpesvirus 6B in the Pancreas of Subjects With and Without Type 1 Diabetes.
Ericsson, Maja; Skog, Oskar
The aims of this study were to investigate the presence of human herpesvirus 6 (HHV6) A and B in human pancreata and to search for signs of active infection in this organ of subjects with and without type 1 diabetes (T1D). Pancreata from brain-dead organ donors with and without T1D were examined for the presence of HHV6 genomic sequences by polymerase chain reaction (PCR), transcripts by reverse transcriptase-PCR, and protein by immunohistochemistry. Quantitative PCR of isolated pancreatic islets and exocrine cell clusters was used to determine the intrapancreatic location of HHV6 DNA. Human herpesvirus 6B genomic sequences were present in 1 of 2 donors who died of acute-onset T1D, 4 of 6 donors with long-standing T1D, and 9 of 12 nondiabetic donors. Higher copy numbers of HHV6B DNA were present in isolated islets than in exocrine tissue from the same donors. No signs of active HHV6 transcription were found. Human herpesvirus 6A was not present in any tested pancreas. The herein presented data demonstrate, for the first time, the presence of a latent HHV6B infection in the pancreas and islets of Langerhans. Whether this virus can contribute to disease in the pancreas remains to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Kunio; Konagaya, Shuhei; Turner, Alexander
Human pluripotent stem cells (hPSCs) are thought to be a promising cell-source solution for regenerative medicine due to their indefinite proliferative potential and ability to differentiate to functional somatic cells. However, issues remain with regard to achieving reproducible differentiation of cells with the required functionality for realizing human transplantation therapies and with regard to reducing the potential for bacterial or fungal contamination. To meet these needs, we have developed a closed-channel culture device and corresponding control system. Uniformly-sized spheroidal hPSCs aggregates were formed inside wells within a closed-channel and maintained continuously throughout the culture process. Functional islet-like endocrine cell aggregatesmore » were reproducibly induced following a 30-day differentiation protocol. Our system shows an easily scalable, novel method for inducing PSC differentiation with both purity and functionality. - Highlights: • A simple, closed-channel-based, semi-automatic culture system is proposed. • Uniform cell aggregate formation and culture is realized in microwell structure. • Functional islet cells are successfully induced following 30-plus-day protocol. • System requires no daily medium replacement and reduces contamination risk.« less
Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.
Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud
2014-07-01
Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.
Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad
2015-05-01
Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. Copyright © 2015 Elsevier B.V. All rights reserved.
Stijnen, P; Brouwers, B; Dirkx, E; Ramos-Molina, B; Van Lommel, L; Schuit, F; Thorrez, L; Declercq, J; Creemers, J W M
2016-06-01
The proprotein convertase 1/3 (PC1/3), encoded by proprotein convertase subtilisin/kexin type 1 (PCSK1), cleaves and hence activates several orexigenic and anorexigenic proproteins. Congenital inactivation of PCSK1 leads to obesity in human but not in mice. However, a mouse model harboring the hypomorphic mutation N222D is obese. It is not clear why the mouse models differ in phenotype. Gene expression analysis was performed with pancreatic islets from Pcsk1(N222D/N222D) mice. Subsequently, biosynthesis, maturation, degradation and activity were studied in islets, pituitary, hypothalamus and cell lines. Coimmunoprecipitation of PC1/3-N222D and human PC1/3 variants associated with obesity with the endoplasmic reticulum (ER) chaperone BiP was studied in cell lines. Gene expression analysis of islets of Pcsk1(N222D/N222D) mice showed enrichment of gene sets related to the proteasome and the unfolded protein response. Steady-state levels of PC1/3-N222D and in particular the carboxy-terminally processed form were strongly reduced in islets, pituitary and hypothalamus. However, impairment of substrate cleavage was tissue dependent. Proinsulin processing was drastically reduced, while processing of proopiomelanocortin (POMC) to adrenocorticotropic hormone (ACTH) in pituitary was only mildly impaired. Growth hormone expression and IGF-1 levels were normal, indicating near-normal processing of hypothalamic proGHRH. PC1/3-N222D binds to BiP and is rapidly degraded by the proteasome. Analysis of human PC1/3 obesity-associated mutations showed increased binding to BiP and prolonged intracellular retention for all investigated mutations, in particular for PC1/3-T175M, PC1/3-G226R and PC1/3-G593R. This study demonstrates that the hypomorphic mutation in Pcsk1(N222D) mice has an effect on catalytic activity in pancreatic islets, pituitary and hypothalamus. Reduced substrate processing activity in Pcsk1(N222D/N222D) mice is due to enhanced degradation in addition to reduced catalytic activity of the mutant. PC1/3-N222D binds to BiP, suggesting impaired folding and reduced stability. Enhanced BiP binding is also observed in several human obesity-associated PC1/3 variants, suggesting a common mechanism.
Cooper, E Jane; Hudson, Alan L; Parker, Christine A; Morgan, Noel G
2003-12-15
It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.
Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R
2017-10-05
As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion.
Mizgier, Maria L; Cataldo, Luis R; Gutierrez, Juan; Santos, José L; Casas, Mariana; Llanos, Paola; Contreras-Ferrat, Ariel E; Moro, Cedric; Bouzakri, Karim; Galgani, Jose E
2017-01-01
Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets ( p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.
Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity
Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel
2015-01-01
The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662
Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice.
Zhao, Tianxue; Luo, Deng; Sun, Yun; Niu, Xin; Wang, Yang; Wang, Chen; Jia, Weiping
2018-04-19
Human urine-derived stem cells (hUSCs) are a potential stem cell source for cell therapy. However, the effect of hUSCs on glucose metabolism regulation in type 1 diabetes was not clear. Therefore, the aim of the study was to evaluate whether hUSCs have protective effect on streptozotocin (STZ)-induced diabetes. hUSCs were extracted and cultivated with a special culture medium. Flow cytometry analysis was applied to detect cell surface markers. BALB/c male nude mice were either injected with high-dose STZ (HD-STZ) or multiple low-dose STZ (MLD-STZ). Serum and pancreatic insulin were measured, islet morphology and its vascularization were investigated. hUSCs highly expressed CD29, CD73, CD90 and CD146, and could differentiate into, at least, bone and fat in vitro. Transplantation of hUSCs into HD-STZ treated mice prolonged the median survival time and improved their blood glucose, and into those with MLD-STZ improved the glucose tolerance, islet morphology and increased the serum and pancreas insulin content. Furthermore, CD31 expression increased significantly in islets of BALB/c nude mice treated with hUSCs compared to those of un-transplanted MLD-STZ mice. hUSCs could improve the median survival time and glucose homeostasis in STZ-treated mice through promoting islet vascular regeneration and pancreatic beta-cell survival.
Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion
Cataldo, Luis R.; Gutierrez, Juan; Santos, José L.; Casas, Mariana; Contreras-Ferrat, Ariel E.; Moro, Cedric; Bouzakri, Karim
2017-01-01
Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets. PMID:28286777
Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin
Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.
2014-01-01
Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125
Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.
Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L
2013-04-01
In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.
Villa, Chiara; Manzoli, Vita; Abreu, Maria M.; Verheyen, Connor A.; Seskin, Michael; Najjar, Mejdi; Molano, R. Damaris; Torrente, Yvan; Ricordi, Camillo; Tomei, Alice A.
2017-01-01
Background Understanding the effects of capsule composition and transplantation site on graft outcomes of encapsulated islets will aid in the development of more effective strategies for islet transplantation without immunosuppression. Methods Here, we evaluated the effects of transplanting alginate (ALG)-based microcapsules (Micro) in the confined and well-vascularized epididymal fat pad (EFP) site, a model of the human omentum, as opposed to free-floating in the intraperitoneal cavity (IP) in mice. We also examined the effects of reinforcing ALG with polyethylene glycol (PEG). To allow transplantation in the EFP site, we minimized capsule size to 500 ± 17 μm. Unlike ALG, PEG resists osmotic stress, hence we generated hybrid microcapsules by mixing PEG and ALG (MicroMix) or by coating ALG capsules with a 15 ± 2 μm PEG layer (Double). Results We found improved engraftment of fully allogeneic BALB/c islets in Micro capsules transplanted in the EFP (median reversal time [MRT], 1 day) versus the IP site (MRT, 5 days; P < 0.01) in diabetic C57BL/6 mice and of Micro encapsulated (MRT, 8 days) versus naked (MRT, 36 days; P < 0.01) baboon islets transplanted in the EFP site. Although in vitro viability and functionality of islets within MicroMix and Double capsules were comparable to Micro, addition of PEG to ALG in MicroMix capsules improved engraftment of allogeneic islets in the IP site, but resulted deleterious in the EFP site, probably due to lower biocompatibility. Conclusions Our results suggest that capsule composition and transplant site affect graft outcomes through their effects on nutrient availability, capsule stability, and biocompatibility. PMID:27525644
Shimodahira, Makiko; Fujimoto, Shimpei; Mukai, Eri; Nakamura, Yasuhiko; Nishi, Yuichi; Sasaki, Mayumi; Sato, Yuichi; Sato, Hiroki; Hosokawa, Masaya; Nagashima, Kazuaki; Seino, Yutaka; Inagaki, Nobuya
2010-01-01
Rapamycin, an immunosuppressant used in human transplantation, impairs beta-cell function, but the mechanism is unclear. Chronic (24 h) exposure to rapamycin concentration dependently suppressed 16.7 mM glucose-induced insulin release from islets (1.65+/-0.06, 30 nM rapamycin versus 2.35+/-0.11 ng/islet per 30 min, control, n=30, P<0.01) without affecting insulin and DNA contents. Rapamycin also decreased alpha-ketoisocaproate-induced insulin release, suggesting reduced mitochondrial carbohydrate metabolism. ATP content in the presence of 16.7 mM glucose was significantly reduced in rapamycin-treated islets (13.42+/-0.47, rapamycin versus 16.04+/-0.46 pmol/islet, control, n=30, P<0.01). Glucose oxidation, which indicates the velocity of metabolism in the Krebs cycle, was decreased by rapamycin in the presence of 16.7 mM glucose (30.1+/-2.7, rapamycin versus 42.2+/-3.3 pmol/islet per 90 min, control, n=9, P<0.01). Immunoblotting revealed that the expression of complex I, III, IV, and V was not affected by rapamycin. Mitochondrial ATP production indicated that the respiratory chain downstream of complex II was not affected, but that carbohydrate metabolism in the Krebs cycle was reduced by rapamycin. Analysis of enzymes in the Krebs cycle revealed that activity of alpha-ketoglutarate dehydrogenase (KGDH), which catalyzes one of the slowest reactions in the Krebs cycle, was reduced by rapamycin (10.08+/-0.82, rapamycin versus 13.82+/-0.84 nmol/mg mitochondrial protein per min, control, n=5, P<0.01). Considered together, these findings indicate that rapamycin suppresses high glucose-induced insulin secretion from pancreatic islets by reducing mitochondrial ATP production through suppression of carbohydrate metabolism in the Krebs cycle, together with reduced KGDH activity.
Kitzmann, J P; Karatzas, T; Mueller, K R; Avgoustiniatos, E S; Gruessner, A C; Balamurugan, A N; Bellin, M D; Hering, B J; Papas, K K
2014-01-01
Replacement of β-cells with the use of isolated islet allotransplantation (IT) is an emerging therapy for type 1 diabetics with hypoglycemia unawareness. The current standard protocol calls for a 36-72-hour culture period before IT. We examined 13 clinical islet preparations with ≥2 purity fractions to determine the effect of culture on viability. After standard islet isolation and purification, pure islet fractions were placed at 37°C with 5% CO2 for 12-24 hours and subsequently moved to 22°C, whereas less pure fractions were cultured at 22°C for the entire duration. Culture density was targeted at a range of 100-200 islet equivalents (IEQ)/cm(2) adjusted for purity. Islets were assessed for purity (dithizone staining), quantity (pellet volume and DNA), and viability (oxygen consumption rate normalized to DNA content [OCR/DNA] and membrane integrity). Results indicated that purity was overestimated, especially in less pure fractions. This was evidenced by significantly larger observed pellet sizes than expected and tissue amount as quantified with the use of a dsDNA assay when available. Less pure fractions showed significantly lower OCR/DNA and membrane integrity compared with pure. The difference in viability between the 2 purity fractions may be due to a variety of reasons, including hypoxia, nutrient deficiency, toxic metabolite accumulation, and/or proteolytic enzymes released by acinar tissue impurities that are not neutralized by human serum albumin in the culture media. Current clinical islet culture protocols should be examined further, especially for less pure fractions, to ensure the maintenance of viability before transplantation. Even though relatively small, the difference in viability is important because the amount of dead or dying tissue introduced into recipients may be dramatically increased, especially with less pure preparations. Copyright © 2014 Elsevier Inc. All rights reserved.
Clinical porcine islet xenotransplantation under comprehensive regulation.
Matsumoto, S; Tan, P; Baker, J; Durbin, K; Tomiya, M; Azuma, K; Doi, M; Elliott, R B
2014-01-01
Xenotransplantation with porcine islets is a promising approach to overcome the shortage of human donors. This is the first report of phase 1/2a xenotransplantation study of encapsulated neonatal porcine islets under the current framework of regulations for xenotransplantation in New Zealand. Newborn piglets were anesthetized and bled, and the pancreata were removed with the use of sterile technique and processed. Encapsulated neonatal porcine islets were implanted with the use of laparoscopy into the peritoneal cavity of 14 patients with unstable type 1 diabetes without any immunosuppressive drugs. The patients received encapsulated islets of 5,000 (n = 4; group 1), 10,000 (n = 4; group 2), 15,000 (n = 4; group 3), or 20,000 (n = 2; group 4) islet equivalents per kg body weight. Outcome was determined from adverse event reports, HbA1c, total daily insulin dose, and frequency of unaware hypoglycemic events. To assess graft function, transplant estimated function (TEF) scores were calculated. Sufficient or marginal numbers of encapsulated neonatal porcine islets were transplanted into streptozotocin-induced diabetic B6 mice as an in vivo functional assay. There were 4 serious adverse events, of which 3 were considered to be possibly related to the procedure. Tests for porcine endogenous retrovirus DNA and RNA were all negative. The numbers of unaware hypoglycemia events were reduced after transplantation in all groups. Four of 14 patients attained HbA1c <7% compared with 1 at baseline. The average TEF scores were 0.17, 0.02, -0.01, and 0.08 in groups 1, 2, 3, and 4 respectively. The in vivo study demonstrated that a sufficient number of the transplanted group reversed diabetes with positive porcine C-peptide. Transplantation of encapsulated neonatal porcine islets was safe and was followed by a reduction in unaware hypoglycemia events in unstable type 1 diabetic patients. The mouse in vivo assessment data demonstrated certain graft function. Copyright © 2014 Elsevier Inc. All rights reserved.
Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets
Faleck, D. M.; Ali, K.; Roat, R.; Graham, M. J.; Crooke, R. M.; Battisti, R.; Garcia, E.; Ahima, R. S.
2010-01-01
The excess accumulation of lipids in islets is thought to contribute to the development of diabetes in obesity by impairing β-cell function. However, lipids also serve a nutrient function in islets, and fatty acids acutely increase insulin secretion. A better understanding of lipid metabolism in islets will shed light on complex effects of lipids on β-cells. Adipose differentiation-related protein (ADFP) is localized on the surface of lipid droplets in a wide range of cells and plays an important role in intracellular lipid metabolism. We found that ADFP was highly expressed in murine β-cells. Moreover, islet ADFP was increased in mice on a high-fat diet (3.5-fold of control) and after fasting (2.5-fold of control), revealing dynamic changes in ADFP in response to metabolic cues. ADFP expression was also increased by addition of fatty acids in human islets. The downregulation of ADFP in MIN6 cells by antisense oligonucleotide (ASO) suppressed the accumulation of triglycerides upon fatty acid loading (56% of control) along with a reduction in the mRNA levels of lipogenic genes such as diacylglycerol O-acyltransferase-2 and fatty acid synthase. Fatty acid uptake, oxidation, and lipolysis were also reduced by downregulation of ADFP. Moreover, the reduction of ADFP impaired the ability of palmitate to increase insulin secretion. These findings demonstrate that ADFP is important in regulation of lipid metabolism and insulin secretion in β-cells. PMID:20484013
Sant, Karilyn E.; Jacobs, Haydee M.; Xu, Jiali; Borofski, Katrina A.; Moss, Larry G.; Moss, Jennifer B.; Timme-Laragy, Alicia R.
2016-01-01
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease. PMID:28393070
Cataldo, L R; Mizgier, M L; Busso, D; Olmos, P; Galgani, J E; Valenzuela, R; Mezzano, D; Aranda, E; Cortés, V A; Santos, J L
2016-01-01
High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (-25%; p < 0.0001) and oleate (-43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.
NASA Astrophysics Data System (ADS)
Garcin, Manuel; Vendé-Leclerc, Myriam; Maurizot, Pierre; Le Cozannet, Gonéri; Robineau, Bernard; Nicolae-Lerma, Alexandre
2016-07-01
The question of the impacts of climate change and sea level rise on small islands is currently much discussed. The many thousands of Pacific islands in their different contexts (geodynamic, climatic, etc.) and the insufficient data available explain why it is difficult to clearly discern the specific role of climate change in the recent evolution of these islands. To address this question, we investigated the recent changes affecting 21 islets in New Caledonia's lagoon. These islets are either located on small patch-reefs inside the New Caledonia Island lagoon or lie directly on the barrier reef. Based on the studies we conducted (field surveys, reconstruction of changes in the islets over the last decades, shoreline changes) we were able to define a typology of the islets that includes 6 stages and a life expectancy index. Using the life expectancy index, we found that of the 21 islets studied, 19% are in a highly critical situation, meaning they are very likely to be endangered in the short term (within the next few years), 9.5% are in a critical situation, i.e., likely to disappear in the near future and very likely to disappear in the medium term (next few decades), 19% are evolving rapidly, which could lead to their disappearance in the medium term but not in the short term, 9.5% are not endangered in the short and medium term and 43% are not endangered at all (stable or accreting, large area, relatively higher altitude). In this context, the rise in sea level induced by climate change is an adverse factor which is likely to lower the resilience of the islets to erosion processes. Other factors like the degradation of the reef ecosystem due to variations in ocean salinity, temperature and acidity, lower sediment stocks on the beaches and foreshores, human visitors, coastal development and so on are other adverse factors that could modify the capacity for resilience of these islets. Due to their variety and sensitivity, New Caledonia's islets could thus serve as integrative indicators of environmental and climatic change for New Caledonia.
Sarmiento, Luis; Frisk, Gun; Anagandula, Mahesh; Hodik, Monika; Barchetta, Ilaria; Netanyah, Eitan; Cabrera-Rode, Eduardo; Cilio, Corrado M.
2017-01-01
Human enteroviruses (HEV), especially coxsackievirus serotype B (CVB) and echovirus (E), have been associated with diseases of both the exocrine and endocrine pancreas, but so far evidence on HEV infection in human pancreas has been reported only in islets and ductal cells. This study aimed to investigate the capability of echovirus strains to infect human exocrine and endocrine pancreatic cells. Infection of explanted human islets and exocrine cells with seven field strains of E6 caused cytopathic effect, virus titer increase and production of HEV protein VP1 in both cell types. Virus particles were found in islets and acinar cells infected with E6. No cytopathic effect or infectious progeny production was observed in exocrine cells exposed to the beta cell-tropic strains of E16 and E30. Endocrine cells responded to E6, E16 and E30 by upregulating the transcription of interferon-induced with helicase C domain 1 (IF1H1), 2′-5′-oligoadenylate synthetase 1 (OAS1), interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL10) and chemokine (C–C motif) ligand 5 (CCL5). Echovirus 6, but not E16 or E30, led to increased transcription of these genes in exocrine cells. These data demonstrate for the first time that human exocrine cells represent a target for E6 infection and suggest that certain HEV serotypes can replicate in human pancreatic exocrine cells, while the pancreatic endocrine cells are permissive to a wider range of HEV. PMID:28146100
β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.
Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin
2016-08-02
Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.
Respective effects of oxygen and energy substrate deprivation on beta cell viability.
Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric
2015-01-01
Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.
Weiss, Lola; Slavin, Shimon; Reich, Shoshana; Cohen, Patrizia; Shuster, Svetlana; Stern, Robert; Kaganovsky, Ella; Okon, Elimelech; Rubinstein, Ariel M.; Naor, David
2000-01-01
Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes. PMID:10618410
Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism
Morales-Scheihing, Diego; Salvadores, Natalia; Moreno-Gonzalez, Ines; Gonzalez, Cesar; Shahnawaz, Mohammad
2017-01-01
Although a large proportion of patients with type 2 diabetes (T2D) accumulate misfolded aggregates composed of the islet amyloid polypeptide (IAPP), its role in the disease is unknown. Here, we show that pancreatic IAPP aggregates can promote the misfolding and aggregation of endogenous IAPP in islet cultures obtained from transgenic mouse or healthy human pancreas. Islet homogenates immunodepleted with anti-IAPP–specific antibodies were not able to induce IAPP aggregation. Importantly, intraperitoneal inoculation of pancreatic homogenates containing IAPP aggregates into transgenic mice expressing human IAPP dramatically accelerates IAPP amyloid deposition, which was accompanied by clinical abnormalities typical of T2D, including hyperglycemia, impaired glucose tolerance, and a substantial reduction on β cell number and mass. Finally, induction of IAPP deposition and diabetic abnormalities were also induced in vivo by administration of IAPP aggregates prepared in vitro using pure, synthetic IAPP. Our findings suggest that some of the pathologic and clinical alterations of T2D might be transmissible through a similar mechanism by which prions propagate in prion diseases. PMID:28765400
Elliott, Amicia D.; Ustione, Alessandro
2014-01-01
The dysregulation of glucose-inhibited glucagon secretion from the pancreatic islet α-cell is a critical component of diabetes pathology and metabolic disease. We show a previously uncharacterized [Ca2+]i-independent mechanism of glucagon suppression in human and murine pancreatic islets whereby cAMP and PKA signaling are decreased. This decrease is driven by the combination of somatostatin, which inhibits adenylyl cyclase production of cAMP via the Gαi subunit of the SSTR2, and insulin, which acts via its receptor to activate phosphodiesterase 3B and degrade cytosolic cAMP. Our data indicate that both somatostatin and insulin signaling are required to suppress cAMP/PKA and glucagon secretion from both human and murine α-cells, and the combination of these two signaling mechanisms is sufficient to reduce glucagon secretion from isolated α-cells as well as islets. Thus, we conclude that somatostatin and insulin together are critical paracrine mediators of glucose-inhibited glucagon secretion and function by lowering cAMP/PKA signaling with increasing glucose. PMID:25406263
Risk factors for islet loss during culture prior to transplantation.
Kin, Tatsuya; Senior, Peter; O'Gorman, Doug; Richer, Brad; Salam, Abdul; Shapiro, Andrew Mark James
2008-11-01
Culturing islets can add great flexibility to a clinical islet transplant program. However, a reduction in the islet mass has been frequently observed during culture and its degree varies. The aim of this study was to identify the risk factors associated with a significant islet loss during culture. One-hundred and four islet preparations cultured in an attempt to use for transplantation constituted this study. After culture for 20 h (median), islet yield significantly decreased from 363 309 +/- 12 647 to 313 035 +/- 10 862 islet equivalent yield (IE) (mean +/- SE), accompanied by a reduction in packed tissue volume from 3.9 +/- 0.1 to 3.0 +/- 0.1 ml and islet index (IE/islet particle count) from 1.20 +/- 0.04 to 1.05 +/- 0.04. Culture did not markedly alter islet purity or percent of trapped islet. Morphology score and viability were significantly improved after culture. Of 104 islet preparations, 37 suffered a substantial islet loss (> 20%) over culture. Factors significantly associated with risk of islet loss identified by univariate analysis were longer cold ischemia time, two-layer method (TLM) preservation, lower islet purity, and higher islet index. Multivariate analysis revealed that independent predictors of islet loss were higher islet index and the use of TLM. This study provides novel information on the link between donor- isolation factors and islet loss during culture.
Halvorsen, Bente; Santilli, Francesca; Scholz, Hanne; Sahraoui, Afaf; Gulseth, Hanne L; Wium, Cecilie; Lattanzio, Stefano; Formoso, Gloria; Di Fulvio, Patrizia; Otterdal, Kari; Retterstøl, Kjetil; Holven, Kirsten B; Gregersen, Ida; Stavik, Benedicte; Bjerkeli, Vigdis; Michelsen, Annika E; Ueland, Thor; Liani, Rossella; Davi, Giovanni; Aukrust, Pål
2016-10-01
Activation of inflammatory pathways is involved in the pathogenesis of type 2 diabetes mellitus. On the basis of its role in vascular inflammation and in metabolic disorders, we hypothesised that the TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) could be involved in the pathogenesis of type 2 diabetes mellitus. Plasma levels of LIGHT were measured in two cohorts of type 2 diabetes mellitus patients (191 Italian and 40 Norwegian). Human pancreatic islet cells and arterial endothelial cells were used to explore regulation and relevant effects of LIGHT in vitro. Our major findings were: (1) in both diabetic cohorts, plasma levels of LIGHT were significantly raised compared with sex- and age-matched healthy controls (n = 32); (2) enhanced release from activated platelets seems to be an important contributor to the raised LIGHT levels in type 2 diabetes mellitus; (3) in human pancreatic islet cells, inflammatory cytokines increased the release of LIGHT and upregulated mRNA and protein levels of the LIGHT receptors lymphotoxin β receptor (LTβR) and TNF receptor superfamily member 14 (HVEM/TNFRSF14); (4) in these cells, LIGHT attenuated the insulin release in response to high glucose at least partly via pro-apoptotic effects; and (5) in human arterial endothelial cells, glucose boosted inflammatory response to LIGHT, accompanied by an upregulation of mRNA levels of HVEM (also known as TNFRSF14) and LTβR (also known as LTBR). Our findings show that patients with type 2 diabetes mellitus are characterised by increased plasma LIGHT levels. Our in vitro findings suggest that LIGHT may contribute to the progression of type 2 diabetes mellitus by attenuating insulin secretion in pancreatic islet cells and by contributing to vascular inflammation.
Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.
2010-01-01
OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098
Jeffery, N; Richardson, S; Beall, C; Harries, L W
2017-12-15
Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance. Copyright © 2017 Elsevier Inc. All rights reserved.
The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.
Yoon, Ji Sung; Moon, Jun Sung; Kim, Yong-Woon; Won, Kyu Chang; Lee, Hyoung Woo
2016-04-01
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.
The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36
2016-01-01
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36. PMID:27051238
Anti-Insulin Immune Responses Are Detectable in Dogs with Spontaneous Diabetes
Kim, Jong-Hyuk; Furrow, Eva; Ritt, Michelle G.; Utz, Paul J.; Robinson, William H.; Yu, Liping; Eckert, Andrea; Stuebner, Kathleen; O’Brien, Timothy D.; Steinman, Lawrence; Modiano, Jaime F.
2016-01-01
Diabetes mellitus occurs spontaneously in dogs. Although canine diabetes shares many features with human type-1 diabetes, there are differences that have cast doubt on the immunologic origin of the canine disease. In this study, we examined whether peripheral immune responses directed against islet antigens were present in dogs with diabetes. Routine diagnostics were used to confirm diabetic status, and serum samples from dogs with (N = 15) and without (N = 15) diabetes were analyzed for the presence of antibodies against islet antigens (insulin, glutamic acid decarboxylase, insulinoma-associated protein tyrosine phosphatase, and islet beta-cell zinc cation efflux transporter) using standard radioassays. Interferon-γ production from peripheral blood T cells stimulated by porcine insulin and by human insulin was tested using Elispot assays. Anti-insulin antibodies were detectable in a subset of diabetic dogs receiving insulin therapy. Pre-activated T cells and incipient insulin-reactive T cells in response to porcine or human insulin were identified in non-diabetic dogs and in dogs with diabetes. The data show that humoral and cellular anti-insulin immune responses are detectable in dogs with diabetes. This in turn provides support for the potential to ethically use dogs with diabetes to study the therapeutic potential of antigen-specific tolerance. PMID:27031512
Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.
Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey
2016-12-01
In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Betsholtz, C; Svensson, V; Rorsman, F; Engström, U; Westermark, G T; Wilander, E; Johnson, K; Westermark, P
1989-08-01
We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease.
Zanini, Cristina; Bruno, Stefania; Mandili, Giorgia; Baci, Denisa; Cerutti, Francesco; Cenacchi, Giovanna; Izzi, Leo; Camussi, Giovanni; Forni, Marco
2011-01-01
Background Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. Methodology/Principal Findings In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. Conclusions/Significance Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes. PMID:22194812
Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P
2015-01-01
We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672
Stock, P G; Ascher, N L; Platt, J L; Kaufman, D B; Chen, S; Field, M J; Sutherland, D E
1989-01-01
In vitro manipulation of pancreatic islets to decrease islet immunogenicity before transplantation has largely been directed at eliminating the major histocompatibility complex (MHC) class II-positive passenger leukocytes from the islets. The mixed islet-lymphocyte coculture (MILC) system was used to quantitate the efficacy of immunodepletion of MHC class II-positive cells from pancreatic islets in terms of reducing immunogenicity. With these experiments we compared the in vitro immunogenicity of MHC class II-depleted islets with untreated islets. B10.BR (H-2k) islets were treated with anti-Iak alloserum followed by complement. This treatment successfully eliminated MHC class II-positive cells from the islets, as demonstrated by indirect immunofluorescence techniques. Depleted islets generated slightly lower amounts of allospecific cytotoxic T-lymphocyte (CTL) activity when exposed to C57BL/6 (H-2b) splenocytes in the MILC than untreated control islets. Although the amount of CTL generated by the depleted islets was slightly less than that generated by untreated islets, there was significant stimulation of CTL by the MHC class II-depleted islets. Therefore, the presence or absence of MHC class II cells within the islet is unlikely to be the decisive factor contributing to islet immunogenicity.
Conlon, J M; Davis, M S; Falkmer, S; Thim, L
1987-11-02
The primary structures of three peptides from extracts from the pancreatic islets of the daddy sculpin (Cottus scorpius) and three analogous peptides from the islets of the flounder (Platichthys flesus), two species of teleostean fish, have been determined by automated Edman degradation. The structures of the flounder peptides were confirmed by fast-atom bombardment mass spectrometry. The peptides show strong homology to residues (49-60), (63-96) and (98-125) of the predicted sequence of preprosomatostatin II from the anglerfish (Lophius americanus). The amino acid sequences of the peptides suggest that, in the sculpin, prosomatostatin II is cleaved at a dibasic amino acid residue processing site (corresponding to Lys61-Arg62 in anglerfish preprosomatostatin II). The resulting fragments are further cleaved at monobasic residue processing sites (corresponding to Arg48 and Arg97 in anglerfish preprosomatostatin II). In the flounder the same dibasic residue processing site is utilised but cleavage at different monobasic sites takes place (corresponding to Arg50 and Arg97 in anglerfish preprosomatostatin II). A peptide identical to mammalian somatostatin-14 was also isolated from the islets of both species and is presumed to represent a cleavage product of prosomatostatin I.
WANG, HONGWU; QIU, XIAOYAN; NI, PING; QIU, XUERONG; LIN, XIAOBO; WU, WEIZHAO; XIE, LICHUN; LIN, LIMIN; MIN, JUAN; LAI, XIULAN; CHEN, YUNBIN; HO, GUYU; MA, LIAN
2014-01-01
Islet transplantation involves the transplantation of pancreatic islets from the pancreas of a donor to another individual. It has proven to be an effective method for the treatment of type 1 diabetes. However, islet transplantation is hampered by immune rejection, as well as the shortage of donor islets. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (HUMSCs) are an ideal cell source for use in transplantation due to their biological characteristics and their use does not provoke any ethical issues. In this study, we investigated the immunological characteristics of HUMSCs and their effects on lymphocyte proliferation and the secretion of interferon (IFN)-γ, and explored whether direct cell-to-cell interactions and soluble factors, such as IFN-γ were important for balancing HUMSC-mediated immune regulation. We transplanted HUMSCs into diabetic rats to investigate whether these cells can colonize in vivo and differentiate into pancreatic β-cells, and whether the hyperglycemia of diabetic rats can be improved by transplantation. Our results revealed that HUMSCs did not stimulate the proliferation of lymphocytes and did not induce allogeneic or xenogeneic immune cell responses. qRT-PCR demonstrated that the HUMSCs produced an immunosuppressive isoform of human leukocyte antigen (HLA-I) and did not express HLA-DR. Flow cytometry revealed that the HUMSCs did not express immune response-related surface antigens such as, CD40, CD40L, CD80 and CD86. IFN-γ secretion by human peripheral blood lymphocytes was reduced when the cells were co-cultured with HUMSCs. These results suggest that HUMSCs are tolerated by the host in an allogeneic transplant. We transplanted HUMSCs into diabetic rats, and the cells survived in the liver and pancreas. Hyperglycemia of the diabetic rats was improved and the destruction of pancreatic cells was partly repaired by HUMSC transplantation. Hyperglycemic improvement may be related to the immunomodulatory effects of HUMSCs. However, the exact mechanisms involved remain to be further clarified. PMID:24297321
Real-time assessment of encapsulated neonatal porcine islets prior to clinical xenotransplantation.
Kitzmann, Jennifer P; Law, Lee; Shome, Avik; Muzina, Marija; Elliott, Robert B; Mueller, Kate R; Schuurman, Henk-Jan; Papas, Klearchos K
2012-01-01
Porcine islet transplantation is emerging as an attractive option for the treatment of patients with type 1 diabetes, with the possibility of providing islets of higher and more consistent quality and in larger volumes than available from human pancreata. The use of encapsulated neonatal porcine islets (ENPI) is appealing because it can address islet supply limitations while reducing the need for anti-rejection therapy. Pre-transplant characterization of ENPI viability and potency is an essential component of the production process. We applied the validated assay for oxygen consumption rate normalized for DNA content (OCR/DNA) to characterize ENPI viability. ENPI of low viscosity and high m alginate were prepared according to standard methods and characterized at various culture time points up to 5 weeks. The OCR/DNA (nmol/min·mgDNA ± SEM) of ENPI (235 ± 10, n = 9) was comparable to that of free NPI (255 ± 14, n = 13). After encapsulation, NPI OCR/DNA was sustained over a culture period of up to 5 weeks. The average OCR/DNA of ENPI cultured longer than 9 days was higher than that of freshly encapsulated NPI. This is the first characterization of ENPI by a validated and more sensitive method for product viability. The NPI encapsulation process does not compromise viability as measured by OCR/DNA, and ENPI can be cultured for up to 5 weeks with maintenance of viability. ENPI meet or exceed current adult porcine islet product release criteria (established at the University of Minnesota) for preclinical xenotransplantation in terms of OCR/DNA. © 2012 John Wiley & Sons A/S.
Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.
Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt
2015-07-01
Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maschio, D. A.; Oliveira, R. B.; Santos, M. R.
The Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, plays a role in cell proliferation and differentiation in several tissues/organs. It has been recently described in humans a relationship between type 2 diabetes (T2DM) and mutation in the gene encoding the transcription factor TCF7L2 associated to the Wnt/β-catenin pathway. In the present study, we demonstrated that hyperplastic pancreatic islets from prediabetic mice fed a high-fat diet (HFD) for 60 d displayed nuclear translocation of active β-catenin associated with significant increases in protein content and gene expression of β-catenin as well as of cyclins D1, D2 and c-Myc (target genesmore » of the Wnt pathway) but not of Tcf7l2 (the transcription factor). Meanwhile, these alterations were not observed in pancreatic islets from 30 d HFD-fed mice, that do not display significant beta cell hyperplasia. These data suggest that the Wnt/β-catenin pathway is activated in pancreatic islets during prediabetes and may play a role in the induction of the compensatory beta cell hyperplasia observed at early phase of T2DM. - Highlights: • Exposure to high-fat diet for 60 days induced prediabetes and beta cell mass expansion. • Hyperplastic pancreatic islets displayed nuclear translocation of active β-catenin. • Hyperplastic islets showed increased expression of target genes of the Wnt/β-catenin pathway. • Wnt/β-catenin pathway is activated during compensatory beta cell hyperplasia in mice.« less
Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis
Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.
2015-01-01
Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632
Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.
Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko
2017-07-17
Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.
Automated separation of merged Langerhans islets
NASA Astrophysics Data System (ADS)
Švihlík, Jan; Kybic, Jan; Habart, David
2016-03-01
This paper deals with separation of merged Langerhans islets in segmentations in order to evaluate correct histogram of islet diameters. A distribution of islet diameters is useful for determining the feasibility of islet transplantation in diabetes. First, the merged islets at training segmentations are manually separated by medical experts. Based on the single islets, the merged islets are identified and the SVM classifier is trained on both classes (merged/single islets). The testing segmentations were over-segmented using watershed transform and the most probable back merging of islets were found using trained SVM classifier. Finally, the optimized segmentation is compared with ground truth segmentation (correctly separated islets).
Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Suh, Sunghwan; Bae, Ji Cheol; Lee, Jung Hee; Lee, Myung-Shik; Lee, Moon-Kyu; Kim, Kwang-Won; Kim, Jae Hyeon
2014-01-01
While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P < 0.05) and the number of hypointense spots larger than 1.758 mm(2) (P < 0.05) were higher in the PEGylated islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.
Intraportal islet oxygenation.
Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K
2014-05-01
Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.
Suszynski, Thomas M.; Avgoustiniatos, Efstathios S.
2014-01-01
Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO2), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. PMID:24876622
Raab, Jennifer; Haupt, Florian; Scholz, Marlon; Matzke, Claudia; Warncke, Katharina; Lange, Karin; Assfalg, Robin; Weininger, Katharina; Wittich, Susanne; Löbner, Stephanie; Beyerlein, Andreas; Nennstiel-Ratzel, Uta; Lang, Martin; Laub, Otto; Dunstheimer, Desiree; Bonifacio, Ezio; Achenbach, Peter; Winkler, Christiane; Ziegler, Anette-G
2016-01-01
Introduction Type 1 diabetes can be diagnosed at an early presymptomatic stage by the detection of islet autoantibodies. The Fr1da study aims to assess whether early staging of type 1 diabetes (1) is feasible at a population-based level, (2) prevents severe metabolic decompensation observed at the clinical manifestation of type 1 diabetes and (3) reduces psychological distress through preventive teaching and care. Methods and analysis Children aged 2–5 years in Bavaria, Germany, will be tested for the presence of multiple islet autoantibodies. Between February 2015 and December 2016, 100 000 children will be screened by primary care paediatricians. Islet autoantibodies are measured in capillary blood samples using a multiplex three-screen ELISA. Samples with ELISA results >97.5th centile are retested using reference radiobinding assays. A venous blood sample is also obtained to confirm the autoantibody status of children with at least two autoantibodies. Children with confirmed multiple islet autoantibodies are diagnosed with pre-type 1 diabetes. These children and their parents are invited to participate in an education and counselling programme at a local diabetes centre. Depression and anxiety, and burden of early diagnosis are also assessed. Results Of the 1027 Bavarian paediatricians, 39.3% are participating in the study. Overall, 26 760 children have been screened between February 2015 and November 2015. Capillary blood collection was sufficient in volume for islet autoantibody detection in 99.46% of the children. The remaining 0.54% had insufficient blood volume collected. Of the 26 760 capillary samples tested, 0.39% were positive for at least two islet autoantibodies. Discussion Staging for early type 1 diabetes within a public health setting appears to be feasible. The study may set new standards for the early diagnosis of type 1 diabetes and education. Ethics dissemination The study was approved by the ethics committee of Technische Universität München (Nr. 70/14). PMID:27194320
Raab, Jennifer; Haupt, Florian; Scholz, Marlon; Matzke, Claudia; Warncke, Katharina; Lange, Karin; Assfalg, Robin; Weininger, Katharina; Wittich, Susanne; Löbner, Stephanie; Beyerlein, Andreas; Nennstiel-Ratzel, Uta; Lang, Martin; Laub, Otto; Dunstheimer, Desiree; Bonifacio, Ezio; Achenbach, Peter; Winkler, Christiane; Ziegler, Anette-G
2016-05-18
Type 1 diabetes can be diagnosed at an early presymptomatic stage by the detection of islet autoantibodies. The Fr1da study aims to assess whether early staging of type 1 diabetes (1) is feasible at a population-based level, (2) prevents severe metabolic decompensation observed at the clinical manifestation of type 1 diabetes and (3) reduces psychological distress through preventive teaching and care. Children aged 2-5 years in Bavaria, Germany, will be tested for the presence of multiple islet autoantibodies. Between February 2015 and December 2016, 100 000 children will be screened by primary care paediatricians. Islet autoantibodies are measured in capillary blood samples using a multiplex three-screen ELISA. Samples with ELISA results >97.5th centile are retested using reference radiobinding assays. A venous blood sample is also obtained to confirm the autoantibody status of children with at least two autoantibodies. Children with confirmed multiple islet autoantibodies are diagnosed with pre-type 1 diabetes. These children and their parents are invited to participate in an education and counselling programme at a local diabetes centre. Depression and anxiety, and burden of early diagnosis are also assessed. Of the 1027 Bavarian paediatricians, 39.3% are participating in the study. Overall, 26 760 children have been screened between February 2015 and November 2015. Capillary blood collection was sufficient in volume for islet autoantibody detection in 99.46% of the children. The remaining 0.54% had insufficient blood volume collected. Of the 26 760 capillary samples tested, 0.39% were positive for at least two islet autoantibodies. Staging for early type 1 diabetes within a public health setting appears to be feasible. The study may set new standards for the early diagnosis of type 1 diabetes and education. The study was approved by the ethics committee of Technische Universität München (Nr. 70/14). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kreutter, Guillaume; Kassem, Mohamad; El Habhab, Ali; Baltzinger, Philippe; Abbas, Malak; Boisrame-Helms, Julie; Amoura, Lamia; Peluso, Jean; Yver, Blandine; Fatiha, Zobairi; Ubeaud-Sequier, Geneviève; Kessler, Laurence; Toti, Florence
2017-11-01
Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H 2 O 2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eM aPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H 2 O 2 -treated rat islets with increased viability (62% versus 48% H 2 O 2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R
2015-11-01
In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.
Glycogen metabolism in the glucose-sensing and supply-driven β-cell.
Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter
2016-12-01
Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.
The effect of curcumin on insulin release in rat-isolated pancreatic islets.
Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T
2010-08-01
Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.
The Role of Estrogens in Pancreatic Islet Physiopathology.
Mauvais-Jarvis, Franck; Le May, Cedric; Tiano, Joseph P; Liu, Suhuan; Kilic-Berkmen, Gamze; Kim, Jun Ho
2017-01-01
In rodent models of insulin-deficient diabetes, 17β-estradiol (E2) protects pancreatic insulin-producing β-cells against oxidative stress, amyloid polypeptide toxicity, gluco-lipotoxicity, and apoptosis. Three estrogen receptors (ERs)-ERα, ERβ, and the G protein-coupled ER (GPER)-have been identified in rodent and human β-cells. This chapter describes recent advances in our understanding of the role of ERs in islet β-cell function, nutrient homeostasis, survival from pro-apoptotic stimuli, and proliferation. We discuss why and how ERs represent potential therapeutic targets for the maintenance of functional β-cell mass.
Lablanche, Sandrine; David-Tchouda, Sandra; Margier, Jennifer; Schir, Edith; Wojtusciszyn, Anne; Borot, Sophie; Kessler, Laurence; Morelon, Emmanuel; Thivolet, Charles; Pattou, François; Vantyghem, Marie Christine; Berney, Thierry; Benhamou, Pierre-Yves
2017-02-20
Islet transplantation may be an appropriate treatment option for patients with severely unstable type 1 diabetes experiencing major glucose variability with severe hypoglycaemia despite intensive insulin therapy. Few data are available on the costs associated with islet transplantation in relation to its benefits. The STABILOT study proposes to assess the economic impact of islet transplantation in comparison with the current best medical treatment defined as sensor-augmented pump (SAP) therapy. The trial will adopt an open-label, randomised, multicentred design. The study will include 30 patients with severely unstable type 1 diabetes. Eligible participants will be 18-65 years old, with type 1 diabetes duration >5 years, a negative basal or stimulated C-peptide, and severe instability defined by persistent, recurrent and disabling severe hypoglycaemia, despite optimised medical treatment. Participants will be randomised into two groups: one group with immediate registration for islet transplantation, and one group with delayed registration for 1 year while patients receive SAP therapy. The primary endpoint will be the incremental cost-utility ratio at 1 year between islet transplantation and SAP therapy. Perspectives of both the French Health Insurance System and the hospitals will be retained. Ethical approval has been obtained at all sites. The trial has been approved by ClinicalTrials.gov (Trial registration ID NCT02854696). All participants will sign a free and informed consent form before randomisation. Results of the study will be communicated during national and international meetings in the field of diabetes and transplantation. A publication will be sought in journals usually read by physicians involved in diabetes care, transplantation and internal medicine. NCT02854696; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Culina, Slobodan; Lalanne, Ana Ines; Afonso, Georgia; Cerosaletti, Karen; Pinto, Sheena; Sebastiani, Guido; Kuranda, Klaudia; Nigi, Laura; Eugster, Anne; Østerbye, Thomas; Maugein, Alicia; McLaren, James E; Ladell, Kristin; Larger, Etienne; Beressi, Jean-Paul; Lissina, Anna; Appay, Victor; Davidson, Howard W; Buus, Søren; Price, David A; Kuhn, Matthias; Bonifacio, Ezio; Battaglia, Manuela; Caillat-Zucman, Sophie; Dotta, Francesco; Scharfmann, Raphael; Kyewski, Bruno; Mallone, Roberto; Carel, Jean-Claude; Tubiana-Rufi, Nadia; Martinerie, Laetitia; Poidvin, Amélie; JacqzAigrain, Evelyne; Corvez, Laurence; Berruer, Véronique; Gautier, Jean-François; Baz, Baz; Haddadi, Nassima; Andreelli, Fabrizio; Amouyal, Chloé; Jaqueminet, Sophie; Bourron, Olivier; Dasque, Eric; Hartemann, Agnès; Lemoine-Yazigi, Amal; Dubois-Laforgue, Danièle; Travert, Florence; Feron, Marilyne; Rolland, Patrice; Vignali, Valérie; Marre, Michel; Chanson, Philippe; Briet, Claire; Guillausseau, Pierre-Jean; Ait-Bachir, Leila; Collet, Carole; Beziaud, Frédéric; Desforges-Bullet, Virginie; Petit-Aubert, Gwenaelle; Christin-Maitre, Sophie; Fève, Bruno; Vatier, Camille; Bourcigaux, Nathalie; Lautridou, Céline; Lahlou, Najiba; Bakouboula, Prissile; Elie, Caroline; Morel, Hélène; Treluyer, Jean-Marc; Gagnerault, Marie-Claude; Maillard, Claire; Jones, Anna
2018-02-02
The human leukocyte antigen-A2 (HLA-A2)-restricted zinc transporter 8 186-194 (ZnT8 186-194 ) and other islet epitopes elicit interferon-γ secretion by CD8 + T cells preferentially in type 1 diabetes (T1D) patients compared with controls. We show that clonal ZnT8 186-194 -reactive CD8 + T cells express private T cell receptors and display equivalent functional properties in T1D and healthy individuals. Ex vivo analyses further revealed that CD8 + T cells reactive to ZnT8 186-194 and other islet epitopes circulate at similar frequencies and exhibit a predominantly naïve phenotype in age-matched T1D and healthy donors. Higher frequencies of ZnT8 186-194 -reactive CD8 + T cells with a more antigen-experienced phenotype were detected in children versus adults, irrespective of disease status. Moreover, some ZnT8 186-194 -reactive CD8 + T cell clonotypes were found to cross-recognize a Bacteroides stercoris mimotope. Whereas ZnT8 was poorly expressed in thymic medullary epithelial cells, variable thymic expression levels of islet antigens did not modulate the peripheral frequency of their cognate CD8 + T cells. In contrast, ZnT8 186-194 -reactive cells were enriched in the pancreata of T1D patients versus nondiabetic and type 2 diabetic individuals. Thus, islet-reactive CD8 + T cells circulate in most individuals but home to the pancreas preferentially in T1D patients. We conclude that the activation of this common islet-reactive T cell repertoire and progression to T1D likely require defective peripheral immunoregulation and/or a proinflammatory islet microenvironment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y
2013-03-01
Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.
Janette Williams, S; Huang, Han-Hung; Kover, Karen; Moore, Wayne; Berkland, Cory; Singh, Milind; Smirnova, Irina V; MacGregor, Ronal
2010-01-01
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter >150 µm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter <100 µm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 µm/min in small islets and 2.8 µm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150 µm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets. PMID:20885858
Tissue-specific alternative splicing of TCF7L2
Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J.; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L.; Erdos, Michael R.; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P.; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S.; Hall, Jennifer L.
2009-01-01
Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174. PMID:19602480
Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C
2010-11-01
Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.
Matveyenko, Aleksey V.; Georgia, Senta; Bhushan, Anil
2010-01-01
Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant. PMID:20587750
NASA Astrophysics Data System (ADS)
Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.
2016-06-01
Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.
Neiman, Daniel; Moss, Joshua; Hecht, Merav; Magenheim, Judith; Piyanzin, Sheina; Shapiro, A M James; de Koning, Eelco J P; Razin, Aharon; Cedar, Howard; Shemer, Ruth; Dor, Yuval
2017-12-19
DNA methylation at promoters is an important determinant of gene expression. Earlier studies suggested that the insulin gene promoter is uniquely unmethylated in insulin-expressing pancreatic β-cells, providing a classic example of this paradigm. Here we show that islet cells expressing insulin, glucagon, or somatostatin share a lack of methylation at the promoters of the insulin and glucagon genes. This is achieved by rapid demethylation of the insulin and glucagon gene promoters during differentiation of Neurogenin3 + embryonic endocrine progenitors, regardless of the specific endocrine cell-type chosen. Similar methylation dynamics were observed in transgenic mice containing a human insulin promoter fragment, pointing to the responsible cis element. Whole-methylome comparison of human α- and β-cells revealed generality of the findings: genes active in one cell type and silent in the other tend to share demethylated promoters, while methylation differences between α- and β-cells are concentrated in enhancers. These findings suggest an epigenetic basis for the observed plastic identity of islet cell types, and have implications for β-cell reprogramming in diabetes and diagnosis of β-cell death using methylation patterns of circulating DNA. Copyright © 2017 the Author(s). Published by PNAS.
Bryant, Jane; Hlavaty, Kelan A; Zhang, Xiaomin; Yap, Woon-Teck; Zhang, Lei; Shea, Lonnie D; Luo, Xunrong
2014-10-01
Human islet cell transplantation is a promising treatment for type 1 diabetes; however, long-term donor-specific tolerance to islet allografts remains a clinically unmet goal. We have previously shown that recipient infusions of apoptotic donor splenocytes chemically treated with 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide (donor ECDI-SP) can mediate long-term acceptance of full major histocompatibility complex (MHC)-mismatched murine islet allografts without the use of immunosuppression. In this report, we investigated the use of poly(lactide-co-glycolide) (PLG) particles in lieu of donor ECDI-SP as a synthetic, cell-free carrier for delivery of donor antigens for the induction of transplant tolerance in full MHC-mismatched murine allogeneic islet transplantation. Infusions of donor antigen-coupled PLG particles (PLG-dAg) mediated tolerance in ∼20% of recipient mice, and the distribution of cellular uptake of PLG-dAg within the spleen was similar to that of donor ECDI-SP. PLG-dAg mediated the contraction of indirectly activated T cells but did not modulate the direct pathway of allorecognition. Combination of PLG-dAg with a short course of low dose immunosuppressant rapamycin at the time of transplant significantly improved the tolerance efficacy to ∼60%. Furthermore, altering the timing of PLG-dAg administration to a schedule that is more feasible for clinical transplantation resulted in equal tolerance efficacy. Thus, the combination therapy of PLG-dAg infusions with peritransplant rapamycin represents a clinically attractive, biomaterials-based and cell-free method for inducing long-term donor-specific tolerance for allogeneic cell transplantation, such as for allogeneic islet transplantation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ueberberg, Sandra; Meier, Juris J.; Waengler, Carmen; Schechinger, Wolfgang; Dietrich, Johannes W.; Tannapfel, Andrea; Schmitz, Inge; Schirrmacher, Ralf; Köller, Manfred; Klein, Harald H.; Schneider, Stephan
2009-01-01
OBJECTIVE Noninvasive determination of pancreatic β-cell mass in vivo has been hampered by the lack of suitable β-cell–specific imaging agents. This report outlines an approach for the development of novel ligands homing selectively to islet cells in vivo. RESEARCH DESIGN AND METHODS To generate agents specifically binding to pancreatic islets, a phage library was screened for single-chain antibodies (SCAs) on rat islets using two different approaches. 1) The library was injected into rats in vivo, and islets were isolated after a circulation time of 5 min. 2) Pancreatic islets were directly isolated, and the library was panned in the islets in vitro. Subsequently, the identified SCAs were extensively characterized in vitro and in vivo. RESULTS We report the generation of SCAs that bind highly selective to either β- or α-cells. These SCAs are internalized by target cells, disappear rapidly from the vasculature, and exert no toxicity in vivo. Specific binding to β- or α-cells was detected in cell lines in vitro, in rats in vivo, and in human tissue in situ. Electron microscopy demonstrated binding of SCAs to the endoplasmatic reticulum and the secretory granules. Finally, in a biodistribution study the labeling intensity derived from [125I]-labeled SCAs after intravenous administration in rats strongly predicted the β-cell mass and was inversely related to the glucose excursions during an intraperitoneal glucose tolerance test. CONCLUSIONS Our data provide strong evidence that the presented SCAs are highly specific for pancreatic β-cells and enable imaging and quantification in vivo. PMID:19592622
Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco
2009-01-01
β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551
Antigen recognition in the islets changes with progression of autoimmune islet infiltration
Lindsay, Robin S.; Corbin, Kaitlin; Mahne, Ashley; Levitt, Bonnie E.; Gebert, Matthew J.; Wigton, Eric J.; Bradley, Brenda J.; Haskins, Kathryn; Jacobelli, Jordan; Tang, Qizhi; Krummel, Matthew F.; Friedman, Rachel S.
2014-01-01
In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention since immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis. To understand how T cell stimulation evolves through the process of islet infiltration we analyzed the dynamics of T cell movement and interactions within individual islets of spontaneously autoimmune non-obese diabetic (NOD) mice. Using both intra-vital and explanted 2-photon islet imaging, we defined a correlation between increased islet infiltration and increased T cell motility. Early T cell arrest was antigen dependent and due, at least in part, to antigen recognition through sustained interactions with CD11c+ antigen presenting cells (APCs). As islet infiltration progressed, T cell motility became antigen-independent, with a loss of T cell arrest and sustained interactions with CD11c+ APCs. These studies suggest that the autoimmune T cell response in the islets may be temporarily dampened during the course of islet infiltration and disease progression. PMID:25505281
Clarkin, Claire E; King, Aileen J; Dhadda, Paramjeet; Chagastelles, Pedro; Nardi, Nance; Wheeler-Jones, Caroline P; Jones, Peter M
2013-03-01
Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation. Copyright © 2013 AlphaMed Press.
Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument
2013-02-21
Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation inmore » ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.« less
Pancreas anatomy and surgical procedure for pancreatectomy in rhesus monkeys.
Zhang, Yi; Fu, Lan; Lu, Yan-Rong; Guo, Zhi-Guang; Zhang, Zhao-Da; Cheng, Jing-Qiu; Hu, Wei-Ming; Liu, Xu-Bao; Mai, Gang; Zeng, Yong; Tian, Bo-Le
2011-12-01
The aim of this study was to investigate the pancreas anatomy and surgical procedure for harvesting pancreas for islet isolation while performing pancreatectomy to induce diabetes in rhesus monkeys. The necropsy was performed in three cadaveric monkeys. Two monkeys underwent the total pancreatectomy and four underwent partial pancreatectomy (70-75%). The greater omentum without ligament to transverse colon, the cystic artery arising from the proper hepatic artery and the branches supplying the paries posterior gastricus from the splenic artery were observed. For pancreatectomy, resected pancreas can be used for islet isolation. Diabetes was not induced in the monkeys undergoing partial pancreatectomy (70-75%). Pancreas anatomy in rhesus monkeys is not the same as in human. Diabetes can be induced in rhesus monkeys by total but not partial pancreatectomy (70-75%). Resected pancreas can be used for islet isolation while performing pancreatectomy to induce diabetes. © 2011 John Wiley & Sons A/S.
Schludi, Belinda; Moin, Abu Saleh Md; Montemurro, Chiara; Gurlo, Tatyana; Matveyenko, Aleksey V.; Kirakossian, David; Dawson, David W.; Dry, Sarah M.; Butler, Peter C.; Butler, Alexandra E.
2017-01-01
Pancreatitis is more frequent in type 2 diabetes mellitus (T2DM), although the underlying cause is unknown. We tested the hypothesis that ongoing β cell stress and apoptosis in T2DM induces ductal tree proliferation, particularly the pancreatic duct gland (PDG) compartment, and thus potentially obstructs exocrine outflow, a well-established cause of pancreatitis. PDG replication was increased 2-fold in human pancreas from individuals with T2DM, and was associated with increased pancreatic intraepithelial neoplasia (PanIN), lesions associated with pancreatic inflammation and with the potential to obstruct pancreatic outflow. Increased PDG replication in the prediabetic human-IAPP-transgenic (HIP) rat model of T2DM was concordant with increased β cell stress but preceded metabolic derangement. Moreover, the most abundantly expressed chemokines released by the islets in response to β cell stress in T2DM, CXCL1, -4, and -10, induced proliferation in human pancreatic ductal epithelium. Also, the diabetes medications reported as potential modifiers for the risk of pancreatitis in T2DM modulated PDG proliferation accordingly. We conclude that chronic stimulation and proliferation of the PDG compartment in response to islet inflammation in T2DM is a potentially novel mechanism that serves as a link to the increased risk for pancreatitis in T2DM and may potentially be modified by currently available diabetes therapy. PMID:28679961
A replacement for islet equivalents with improved reliability and validity.
Huang, Han-Hung; Ramachandran, Karthik; Stehno-Bittel, Lisa
2013-10-01
Islet equivalent (IE), the standard estimate of isolated islet volume, is an essential measure to determine the amount of transplanted islet tissue in the clinic and is used in research laboratories to normalize results, yet it is based on the false assumption that all islets are spherical. Here, we developed and tested a new easy-to-use method to quantify islet volume with greater accuracy. Isolated rat islets were dissociated into single cells, and the total cell number per islet was determined by using computer-assisted cytometry. Based on the cell number per islet, we created a regression model to convert islet diameter to cell number with a high R2 value (0.8) and good validity and reliability with the same model applicable to young and old rats and males or females. Conventional IE measurements overestimated the tissue volume of islets. To compare results obtained using IE or our new method, we compared Glut2 protein levels determined by Western Blot and proinsulin content via ELISA between small (diameter≤100 μm) and large (diameter≥200 μm) islets. When normalized by IE, large islets showed significantly lower Glut2 level and proinsulin content. However, when normalized by cell number, large and small islets had no difference in Glut2 levels, but large islets contained more proinsulin. In conclusion, normalizing islet volume by IE overestimated the tissue volume, which may lead to erroneous results. Normalizing by cell number is a more accurate method to quantify tissue amounts used in islet transplantation and research.
Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P
2015-12-01
We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
Pharmacological strategies for protection of extrahepatic islet transplantation.
Omori, K; Komatsu, H; Rawson, J; Mullen, Y
2015-06-01
The safety and effectiveness of islet transplantation has been proven through world-wide trials. However, acute and chronic islet loss has hindered the ultimate objective of becoming a widely used treatment option for type 1 diabetes. A large islet loss is attributed, in part, to the liver being a less-than-optimal site for transplantation. Over half of the transplanted islets are destroyed shortly after transplantation due to direct exposure to blood and non-specific inflammation. Successfully engrafted islets are continuously exposed to the liver micro-environment, a unique immune system, low oxygen tension, toxins and high glucose, which is toxic to islets, leading to premature islet dysfunction/death. Investigations have continued to search for alternate sites to transplant islets that provide a better environment for prolonged function and survival. This article gathers courses and conditions that lead to islet loss, from organ procurement through islet transplantation, with special emphasis on hypoxia, oxidative stress, and antigen non-specific inflammation, and reviews strategies using pharmacological agents that have shown effectiveness in protecting islets, including a new treatment approach utilizing siRNA. Pharmacological agents that support islet survival and promote β-cell proliferation are also included. Treatment of donor pancreata and/or islets with these agents should increase the effectiveness of islets transplanted into extrahepatic sites. Furthermore, the development of methods designed to release these agents over an extended period, will further increase their efficacy. This requires the combined efforts of both islet transplant biologists and bioengineers.
Fission of pancreatic islets during postnatal growth of the mouse
Seymour, Philip A; Bennett, William R; Slack, Jonathan M W
2004-01-01
A cell composition analysis was made of the pancreatic islets in postnatal H253 mice. This line has a lacZ insertion on the X chromosome so that in female hemizygotes 50% of cells should be positive for β-galactosidase and 50% negative. Immediately after birth, the islets were of a heterogeneous cell composition. However, by 4 weeks some islets have become homogeneous. This suggests that islets progress towards monoclonality in a similar way to the intestinal crypts and stomach gastric glands. Pancreatic islets may therefore represent ‘structural proliferative units’ in the overall histological organization of the pancreas. Reduction of genetic heterogeneity might arise from cell turnover, fission of islets or both. Analysis of the cell composition of the X-inactivation mosaic mice also provides the first clear evidence for islet fission in pancreatic development. Irregularly shaped islets resembling dumb-bells, with a characteristic neck of α-cells, were observed with decreasing frequency with increasing age. Three-dimensional reconstruction confirmed their resemblance to conjoined islets. The cell composition analysis showed: (1) the relatedness of the two sides of a dumb-bell islet is significantly higher than between two non-dumb-bell islets and (2) the relatedness of two randomly selected islets decreases as the distance between them increases. This suggests that dumb-bell islets are in a state of fission rather than fusion, and that islet fission is a mode of islet production in the postnatal pancreas. PMID:15032917
The MafA Transcription Factor Becomes Essential to Islet β-Cells Soon After Birth
Hang, Yan; Yamamoto, Tsunehiko; Benninger, Richard K.P.; Brissova, Marcela; Guo, Min; Bush, Will; Piston, David W.; Powers, Alvin C.; Magnuson, Mark; Thurmond, Debbie C.; Stein, Roland
2014-01-01
The large Maf transcription factors, MafA and MafB, are expressed with distinct spatial–temporal patterns in rodent islet cells. Analysis of Mafa−/− and pancreas-specific Mafa∆panc deletion mutant mice demonstrated a primary role for MafA in adult β-cell activity, different from the embryonic importance of MafB. Our interests here were to precisely define when MafA became functionally significant to β-cells, to determine how this was affected by the brief period of postnatal MafB production, and to identify genes regulated by MafA during this period. We found that islet cell organization, β-cell mass, and β-cell function were influenced by 3 weeks of age in MafaΔpanc mice and compromised earlier in MafaΔpanc;Mafb+/− mice. A combination of genome-wide microarray profiling, electron microscopy, and metabolic assays were used to reveal mechanisms of MafA control. For example, β-cell replication was produced by actions on cyclin D2 regulation, while effects on granule docking affected first-phase insulin secretion. Moreover, notable differences in the genes regulated by embryonic MafB and postnatal MafA gene expression were found. These results not only clearly define why MafA is an essential transcriptional regulator of islet β-cells, but also why cell maturation involves coordinated actions with MafB. PMID:24520122
Ganic, Elvira; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Artner, Isabella
2015-12-25
Lack or dysfunction of insulin producing β cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet β cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic β cells suggesting that loss of Mao contributes to β cell dysfunction. MaoB expression was also reduced in β cells of MafA-deficient mice, a mouse model for β cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human β cells. These findings demonstrate that regulation of monoamine levels by Mao activity in β cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the β cell dysfunction in type 2 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart
2013-01-01
Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm-1 band assigned to disulfide bridges in insulin, and the 1552 cm-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603
Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Shim, Wooyoung; Choi, Jin Myung; Yoo, Dongkyeom; Hwang, Yong Hwa; Lee, Jung Hee; Lee, Dong Yun; Kim, Jae Hyeon
2015-06-01
There is a clinical need for an alternative labeling agent for magnetic resonance imaging (MRI) in islet transplantation. We aimed to evaluate the feasibility of islet MRI using ferumoxytol, which is the only clinically-available ultrasmall superparamagnetic iron oxide. We compared islet function and viability of control islets and islets labeled with ferumoxytol and/or a heparin-protamine complex (HPF). Efficacy of ferumoxytol labeling was assessed in both ex vivo and in vivo models. Labeling for 48 h with HPF, but not up to 800 μg/mL ferumoxytol, deranged ex vivo islet viability and function. The T2∗ relaxation time was optimal when islets were labeled with 800 μg/mL of ferumoxytol for 48 h. Prussian blue stain, iron content assay, transmission electron microscopy (TEM) supported internalization of ferumoxytol particles. However, the labeling intensity in the ex vivo MRI of islets labeled with ferumoxytol was much weaker than that of islets labeled with ferucarbotran. In syngeneic intraportal islet transplantation, there was a correlation between the total area of visualized islets and the transplanted islet mass. In conclusion, islet MRI using ferumoxytol was feasible in terms of in vitro and in vivo efficacy and safety. However, the weak labeling efficacy is still a hurdle for the clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo
2016-01-01
We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more durable mixed chimerism may be necessary for induction of islet allograft tolerance.
Foster, Eric D; Bridges, Nancy D; Feurer, Irene D; Eggerman, Thomas L; Hunsicker, Lawrence G; Alejandro, Rodolfo
2018-05-01
Attaining glycemic targets without severe hypoglycemic events (SHEs) is a challenging treatment goal for patients with type 1 diabetes complicated by impaired awareness of hypoglycemia (IAH). The CIT Consortium Protocol 07 (CIT-07) trial showed islet transplantation to be an effective treatment for subjects with IAH and intractable SHEs. We evaluated health-related quality of life (HRQOL), functional health status, and health utility before and after pancreatic islet transplantation in CIT-07 trial participants. Four surveys, the Diabetes Distress Scale (DDS), the Hypoglycemic Fear Survey (HFS), the Short Form 36 Health Survey (SF-36), and the EuroQoL 5 Dimensions (EQ-5D), were administered repeatedly before and after islet transplantation. Summary statistics and longitudinal modeling were used to describe changes in survey scores from baseline and to characterize change in relation to a minimally important difference (MID) threshold of half an SD. Improvements in condition-specific HRQOL met the MID threshold. Reductions from baseline in the DDS total score and its four DDS subscales (all P ≤ 0.0013) and in the HFS total score and its two subscales (all P < 0.0001) were observed across all time points. Improvements were observed after both 1 and 2 years for the EQ-5D visual analog scale (both P < 0.0001). In CIT-07, 87.5% of the subjects achieved the primary end point of freedom from SHE along with glycemic control (HbA 1c <7% [<53 mmol/mol]) at 1 year post-initial islet transplantation. The same subjects reported consistent, statistically significant, and clinically meaningful improvements in condition-specific HRQOL as well as self-assessments of overall health. © 2018 by the American Diabetes Association.
Salvage Islet Auto Transplantation After Relaparatomy.
Balzano, Gianpaolo; Nano, Rita; Maffi, Paola; Mercalli, Alessia; Melzi, Raffaelli; Aleotti, Francesca; Gavazzi, Francesca; Berra, Cesare; De Cobelli, Francesco; Venturini, Massimo; Magistretti, Paola; Scavini, Marina; Capretti, Giovanni; Del Maschio, Alessandro; Secchi, Antonio; Zerbi, Alessandro; Falconi, Massimo; Piemonti, Lorenzo
2017-10-01
To assess feasibility, safety, and metabolic outcome of islet auto transplantation (IAT) in patients undergoing completion pancreatectomy because of sepsis or bleeding after pancreatic surgery. From November 2008 to October 2016, approximately 22 patients were candidates to salvage IAT during emergency relaparotomy because of postpancreatectomy sepsis (n = 11) or bleeding (n = 11). Feasibility, efficacy, and safety of salvage IAT were compared with those documented in a cohort of 36 patients who were candidate to simultaneous IAT during nonemergency preemptive completion pancreatectomy through the pancreaticoduodenectomy. The percentage of candidates that received the infusion of islets was significantly lower in salvage IAT than simultaneous IAT (59.1% vs 88.9%, P = 0.008), mainly because of a higher rate of inadequate islet preparations. Even if microbial contamination of islet preparation was significantly higher in candidates to salvage IAT than in those to simultaneous IAT (78.9% vs 20%, P < 0.001), there was no evidence of a higher rate of complications related to the procedure. Median follow-up was 5.45 ± 0.52 years. Four (36%) of 11 patients reached insulin independence, 6 patients (56%) had partial graft function, and 1 patient (9%) had primary graft nonfunction. At the last follow-up visit, median fasting C-peptide was 0.43 (0.19-0.93) ng/mL; median insulin requirement was 0.38 (0.04-0.5) U/kg per day, and median HbA1c was 6.6% (5.9%-8.1%). Overall mortality, in-hospital mortality, metabolic outcome, graft survival, and insulin-free survival after salvage IAT were not different from those documented after simultaneous IAT. Our data demonstrate the feasibility, efficacy, and safety of salvage IAT after relaparotomy.
Enhancing engraftment of islets using perioperative sodium 4-phenylbutyrate.
Hsu, Brend Ray-Sea; Chen, Szu-Tah; Fu, Shin-Huei
2006-12-20
Primary nonfunction (PNF) adversely impacts islet transplantation. In addition to determining whether sodium 4-phenylbutyrate (4-SPB), an anti-inflammatory agent, reduces PNF, this study investigates how 4-SPB affects PNF. Streptozotocin-induced diabetic C57BL/6 mice, that received 75 syngeneic islets underneath left subrenal space, were fed twice daily of either 4-SPB at 500 mg/kg body weight or isotonic saline (NaCl) from 2 days before through 7 days after transplantation. The graft was removed at days 3, 10 and 84 following transplantation. At 68 h following transplantation, serum levels of interleukin-1beta (IL-1beta) were 2.2+/-0.4 and 0.4+/-0.2 pmol/L (n=6, p<0.005) for NaCl and 4-SPB groups, respectively. Graft genetic expression of IL-1beta was significantly suppressed in 4-SPB group (p<0.01). At day 10, the blood glucose levels were 22.7+/-1.0 and 17.1+/-1.7 mmol/L (n=12, p<0.05) and graft insulin contents (IC) were 35.0+/-8.3 and 107.6+/-29.7 pmol (n=12, p<0.05) for NaCl and 4-SPB groups, respectively. Moreover, the 4-SPB group had a shorter temporary hyperglycemia (15+/-2, n=21 vs. 25+/-2 days, n=19, p=0.001) and a higher cumulative cure rate of diabetes (p<0.001) than the NaCl group. In-vitro studies indicated that 4-SPB did not impact the islets function. These experimental results demonstrated that perioperative administration of 4-SPB decreased serum level and graft genetic expression of IL-1beta and attenuated PNF, which enhanced islet engraftment in a syngeneic transplantation mouse model.
Yamaguchi, Yohko; Chen, Yu; Shimoda, Masayuki; Yoshimatsu, Gumpei; Unno, Michiaki; Sumi, Shoichiro; Ohki, Rieko
2017-01-01
Islet transplantation is a useful cell replacement therapy that can restore the glycometabolic function of severe diabetic patients. It is known that many transplanted islets failed to engraft, and thus, new approaches for overcoming graft loss that may improve the outcome of future clinical islet transplantations are necessary. Pleckstrin homology-like domain family A, member 3 (PHLDA3) is a known suppressor of neuroendocrine tumorigenicity, yet deficiency of this gene increases islet proliferation, prevents islet apoptosis, and improves their insulin-releasing function without causing tumors. In this study, we examined the potential use of PHLDA3-deficient islets in transplantation. We observed that: 1) transplanting PHLDA3-deficient islets into diabetic mice significantly improved their glycometabolic condition, 2) the improved engraftment of PHLDA3-deficient islets resulted from increased cell survival during early transplantation, and 3) Akt activity was elevated in PHLDA3-deficient islets, especially under hypoxic conditions. Thus, we determined that PHLDA3-deficient islets are more resistant against stresses induced by islet isolation and transplantation. We conclude that use of islets with suppressed PHLDA3 expression could be a novel and promising treatment for improving engraftment and consequent glycemic control in islet transplantation. PMID:29121094
Bruni, Antonio; Pepper, Andrew R.; Gala-Lopez, Boris; Pawlick, Rena; Abualhassan, Nasser; Crapo, James D.; Piganelli, Jon D.; Shapiro, A. M. James
2016-01-01
ABSTRACT Islet transplantation is a highly effective treatment for stabilizing glycemic control for select patients with type-1 diabetes. Despite improvements to clinical transplantation, single-donor transplant success has been hard to achieve routinely, necessitating increasing demands on viable organ availability. Donation after circulatory death (DCD) may be an alternative option to increase organ availability however, these organs tend to be more compromised. The use of metalloporphyrin anti-inflammatory and antioxidant (MnP) compounds previously demonstrated improved in vivo islet function in preclinical islet transplantation. However, the administration of MnP (BMX-001) in a DCD islet isolation and transplantation model has yet to be established. In this study, murine donors were subjected to a 15-min warm ischemic (WI) period prior to isolation and culture with or without MnP. Subsequent to one-hour culture, islets were assessed for in vitro viability and in vivo function. A 15-minute WI period significantly reduced islet yield, regardless of MnP-treatment relative to yields from standard isolation. MnP-treated islets did not improve islet viability compared to DCD islets alone. MnP-treatment did significantly reduce the presence of extracellular reactive oxygen species (ROS) (p < 0 .05). Marginal, syngeneic islets (200 islets) transplanted under the renal capsule exhibited similar in vivo outcomes regardless of WI or MnP-treatment. DCD islet grafts harvested 7 d post-transplant exhibited sustained TNF-α and IL-10, while MnP-treated islet-bearing grafts demonstrated reduced IL-10 levels. Taken together, 15-minute WI in murine islet isolation significantly impairs islet yield. DCD islets do indeed demonstrate in vivo function, though MnP therapy was unable to improve viability and engraftment outcomes. PMID:27220256
Assessing the effect of immunosuppression on engraftment of pancreatic islets
Vallabhajosyula, Prashanth; Hirakata, Atsushi; Shimizu, Akira; Okumi, Masayoshi; Tchipashvili, Vaja; Hong, Hanzhou; Yamada, Kazuhiko; Sachs, David H.
2013-01-01
Objective In addition to ischemia and immunologic factors, immunosuppressive drugs have been suggested as a possible contributing factor to the loss of functional islets following allogeneic islet cell transplantation. Using our previously described islet-kidney transplantation model in miniature swine, we studied whether an islet toxic triple-drug immunosuppressive regimen (cyclosporine + azathioprine + prednisone) affects the islet engraftment process and thus long-term islet function. Design and Methods Donor animals underwent partial pancreatectomy, autologous islet preparation and injection of these islets under the autologous kidney capsule to prepare an islet-kidney (IK). Experimental animals received daily triple drug immunosuppression during the islet engraftment period. Control animals did not receive any immunosuppression during this period. Four to eight weeks later, these engrafted IK were transplanted across a minor histocompatibility mismatched barrier into pancreatectomized, nephrectomized recipient animals at an islet dose of ~ 4500 islet equivalents (IE)/kg recipient weight. Cyclosporine was administered for 12 days to the recipients to induce tolerance of the IK grafts and the animals were followed long-term. Results Diabetes was corrected by IK transplantation in all pancreatectomized recipients on both the control (n=3) and the experimental (n=4) arms of the study and all animals showed normal glucose regulation over the follow-up period. Intravenous glucose tolerance tests performed at 1, 2, > 3 months post-IK transplant showed essentially equivalent glycemic control in both control and experimental animals. Conclusion In this pre-clinical, in vivo large animal model of islet transplantation, the effect of triple drug immunosuppression on islet function does not negatively affect islet engraftment, as assessed by the long-term function of engrafted islets. PMID:23883972
Bruni, Antonio; Pepper, Andrew R; Gala-Lopez, Boris; Pawlick, Rena; Abualhassan, Nasser; Crapo, James D; Piganelli, Jon D; Shapiro, A M James
2016-07-03
Islet transplantation is a highly effective treatment for stabilizing glycemic control for select patients with type-1 diabetes. Despite improvements to clinical transplantation, single-donor transplant success has been hard to achieve routinely, necessitating increasing demands on viable organ availability. Donation after circulatory death (DCD) may be an alternative option to increase organ availability however, these organs tend to be more compromised. The use of metalloporphyrin anti-inflammatory and antioxidant (MnP) compounds previously demonstrated improved in vivo islet function in preclinical islet transplantation. However, the administration of MnP (BMX-001) in a DCD islet isolation and transplantation model has yet to be established. In this study, murine donors were subjected to a 15-min warm ischemic (WI) period prior to isolation and culture with or without MnP. Subsequent to one-hour culture, islets were assessed for in vitro viability and in vivo function. A 15-minute WI period significantly reduced islet yield, regardless of MnP-treatment relative to yields from standard isolation. MnP-treated islets did not improve islet viability compared to DCD islets alone. MnP-treatment did significantly reduce the presence of extracellular reactive oxygen species (ROS) (p < 0 .05). Marginal, syngeneic islets (200 islets) transplanted under the renal capsule exhibited similar in vivo outcomes regardless of WI or MnP-treatment. DCD islet grafts harvested 7 d post-transplant exhibited sustained TNF-α and IL-10, while MnP-treated islet-bearing grafts demonstrated reduced IL-10 levels. Taken together, 15-minute WI in murine islet isolation significantly impairs islet yield. DCD islets do indeed demonstrate in vivo function, though MnP therapy was unable to improve viability and engraftment outcomes.
Papas, Klearchos K; Karatzas, Theodore; Berney, Thierry; Minor, Thomas; Pappas, Paris; Pattou, François; Shaw, James; Toso, Christian; Schuurman, Henk-Jan
2012-01-01
Recently, initiatives have been undertaken to establish an islet transplantation program in Athens, Greece. A major hurtle is the high cost associated with the establishment and maintenance of a clinical-grade islet manufacturing center. A collaboration was established with the University Hospitals of Geneva, Switzerland, to enable remote islet cell manufacturing with an established and validated fully operational team. However, remote islet manufacturing requires shipment of the pancreas from the procurement to the islet manufacturing site (in this case from anywhere in Greece to Geneva) and then shipment of the islets from the manufacturing site to the transplant site (from Geneva to Athens). To address challenges related to cold ischemia time of the pancreas and shipment time of islets, a collaboration was initiated with the University of Arizona, Tucson, USA. An international workshop was held in Athens, December 2011, to mark the start of this collaborative project. Experts in the field presented in three main sessions: [1] Islet transplantation: state-of-the-art, and the “network approach”; [2] Technical aspects of clinical islet transplantation and outcomes; and [3] Islet manufacturing – from the donated pancreas to the islet product. This manuscript presents a summary of the workshop. PMID:23330863
Cai, Qing; Brissova, Marcela; Reinert, Rachel B.; Pan, Fong Cheng; Brahmachary, Priyanka; Jeansson, Marie; Shostak, Alena; Radhika, Aramandla; Poffenberger, Greg; Quaggin, Susan E.; Jerome, W. Gray; Dumont, Daniel J.; Powers, Alvin C.
2012-01-01
There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a “tet-on” inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the β cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and β cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and β cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in β cell proliferation and β cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in β cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in β cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that 1) increased EC number does not promote, but actually impairs β cell proliferation and islet formation; 2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; 3) Angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization. PMID:22546694
Napoli, R; Davalli, A M; Hirshman, M F; Weitgasser, R; Weir, G C; Horton, E S
1996-01-01
Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats. PMID:8617870
Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa
2015-01-15
Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. Copyright © 2014. Published by Elsevier Inc.
Huang, S-H; Lin, G-J; Chien, M-W; Chu, C-H; Yu, J-C; Chen, T-W; Hueng, D-Y; Liu, Y-L; Sytwu, H-K
2013-03-01
Decoy receptor 3 (DcR3) blocks both Fas ligand- and LIGHT-induced pancreatic β-cell damage in autoimmune diabetes. Heme oxygenase 1 (HO-1) possesses antiapoptotic, anti-inflammatory, and antioxidative effects that protect cells against various forms of attack by the immune system. Previously, we have demonstrated that transgenic islets overexpressing DcR3 or murine HO-1 (mHO-1) exhibit longer survival times than nontransgenic islets in syngeneic islet transplantation. In this study, we evaluated whether DcR3 and mHO-1 double-transgenic islets of NOD mice could provide better protective effects and achieve longer islet graft survival than DcR3 or mHO-1 single-transgenic islets after islet transplantation. We generated DcR3 and mHO-1 double-transgenic NOD mice that specifically overexpress DcR3 and HO-1 in islets. Seven hundred islets isolated from double-transgenic, single-transgenic, or nontransgenic NOD mice were syngeneically transplanted into the kidney capsules of newly diabetic female recipients. Unexpectedly, there was no significant difference in the survival time between double-transgenic or nontransgenic NOD islet grafts, and the survival times of double-transgenic NOD islet grafts were even shorter than those of DcR3 or mHO-1 single-transgenic islets. Our data indicate that transplantation of double-transgenic islets that coexpress HO-1 and DcR3 did not result in a better outcome. On the contrary, this strategy even caused an adverse effect in syngeneic islet transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.
Cutfield, J F; Cutfield, S M; Carne, A; Emdin, S O; Falkmer, S
1986-07-01
Insulin from the principal islets of the teleost fish, Cottus scorpius (daddy sculpin), has been isolated and sequenced. Purification involved acid/alcohol extraction, gel filtration, and reverse-phase high-performance liquid chromatography to yield nearly 1 mg pure insulin/g wet weight islet tissue. Biological potency was estimated as 40% compared to porcine insulin. The sculpin insulin crystallised in the absence of zinc ions although zinc is known to be present in the islets in significant amounts. Two other hormones, glucagon and pancreatic polypeptide, were copurified with the insulin, and an N-terminal sequence for pancreatic polypeptide was determined. The primary structure of sculpin insulin shows a number of sequence changes unique so far amongst teleost fish. These changes occur at A14 (Arg), A15 (Val), and B2 (Asp). The B chain contains 29 amino acids and there is no N-terminal extension as seen with several other fish. Presumably as a result of the amino acid substitutions, sculpin insulin does not readily form crystals containing zinc-insulin hexamers, despite the presence of the coordinating B10 His.
[Islet isolation outcome is influenced by pancreas preparation method].
Pokrywczyńska, Marta; Drewa, Tomasz; Cieślak, Zaneta
2008-09-01
Pancreatic islet transplantation is a treatment method for type I diabetes. Its outcome is influenced by numerous factors, islet quantity and function being important ones of them. was to estimate the influence of pancreas preparation method on the outcome of islet isolation in rat. 6 pancreata harvested from Lewis rats were used in this research. Pancreatic duct was cannulated and pancreas was injected with 1 mg/ml collagenase P solution (Sigma) and then excised. After cutting into smaller fragments, it was digested in collagenase P solution for 15-20 min. Enzyme activity was then stopped by adding dilution medium. Heterogenous cell suspension was centrifuged in density gradient (Gradisol) to isolate islets. Pancreatic islets were collected and islet equivalent was calculated. Islet purity degree was estimated as islet cells to all cells, including exocrine, ratio. Islet viability was estimated using propidium iodide and fluorescein diacetate staining. Photographic documentation was made. Proper islet morphology, highest number and viability was obtained when pancreas was excised properly (isolation 3 and 4). Pancreas preparation method is one of which influences on islet isolation outcome.
Lai, En Yin; Jansson, Leif; Patzak, Andreas; Persson, A Erik G
2007-01-01
Pancreatic islets possess an autonomous mechanism of blood flow regulation, independent of that of the exocrine pancreas. To study islet vascular regulation without confounding effects of the exocrine blood vessels, we have developed a technique enabling us to isolate single pancreatic islets and then to perfuse them using their endogenous vasculature for distribution of the medium. This made it possible to directly study the vascular reactivity of islet arterioles to different substances. We confirmed that control of islet blood flow is mainly located at the precapillary level. As expected, administration of angiotensin II and l-nitro-arginine methyl ester contracted islet arterioles, whereas nitric oxide and adenosine dilated them. d-glucose, the main insulin secretagogue, had a selective dilating effect on smooth muscle in islet arterioles but not in glomerular afferent arterioles. The response to glucose was amplified in islet arterioles from diabetic animals, indicating enhanced islet blood perfusion in diabetes. This newly developed technique for perfusing isolated pancreatic islets will provide new insights into islet perfusion control and its possible contributions to the pathogenesis of type 2 diabetes.
... First successful pancreas transplant in a human. 1994: Experiments with islet transplantation begin. 1999: "Edmonton protocol" results ... initial results in 2000. Though complex, the Edmonton experiments managed to succeed where so many others had ...
Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells.
Borg, Danielle J; Welzel, Petra B; Grimmer, Milauscha; Friedrichs, Jens; Weigelt, Marc; Wilhelm, Carmen; Prewitz, Marina; Stißel, Aline; Hommel, Angela; Kurth, Thomas; Freudenberg, Uwe; Bonifacio, Ezio; Werner, Carsten
2016-10-15
Intrahepatic transplantation of allogeneic pancreatic islets offers a promising therapy for type 1 diabetes. However, long-term insulin independency is often not achieved due to severe islet loss shortly after transplantation. To improve islet survival and function, extrahepatic biomaterial-assisted transplantation of pancreatic islets to alternative sites has been suggested. Herein, we present macroporous, star-shaped poly(ethylene glycol) (starPEG)-heparin cryogel scaffolds, covalently modified with adhesion peptides, for the housing of pancreatic islets in three-dimensional (3D) co-culture with adherent mesenchymal stromal cells (MSC) as accessory cells. The implantable biohybrid scaffolds provide efficient transport properties, mechanical protection, and a supportive extracellular environment as a desirable niche for the islets. MSC colonized the cryogel scaffolds and produced extracellular matrix proteins that are important components of the natural islet microenvironment known to facilitate matrix-cell interactions and to prevent cellular stress. Islets survived the seeding procedure into the cryogel scaffolds and secreted insulin after glucose stimulation in vitro. In a rodent model, intact islets and MSC could be visualized within the scaffolds seven days after subcutaneous transplantation. Overall, this demonstrates the potential of customized macroporous starPEG-heparin cryogel scaffolds in combination with MSC to serve as a multifunctional islet supportive carrier for transplantation applications. Diabetes results in the insufficient production of insulin by the pancreatic β-cells in the islets of Langerhans. Transplantation of pancreatic islets offers valuable options for treating the disease; however, many transplanted islets often do not survive the transplantation or die shortly thereafter. Co-transplanted, supporting cells and biomaterials can be instrumental for improving islet survival, function and protection from the immune system. In the present study, islet supportive hydrogel sponges were explored for the co-transplantation of islets and mesenchymal stromal cells. Survival and continued function of the supported islets were demonstrated in vitro. The in vivo feasibility of the approach was shown by transplantation in a mouse model. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B
2015-08-01
Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kalwat, Michael A.; Yoder, Stephanie M.; Wang, Zhanxiang; Thurmond, Debbie C.
2012-01-01
Human islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ~80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release. PMID:23246867
Linning, Katrina D; Tai, Mei-Hui; Madhukar, Burra V; Chang, C C; Reed, Donald N; Ferber, Sarah; Trosko, James E; Olson, L Karl
2004-10-01
The limited availability of transplantable human islets has stimulated the development of methods needed to isolate adult pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation. The objective of this study was to determine whether modulation of intracellular redox state with N-acetyl-L-cysteine (NAC) would allow for the propagation of pancreatic stem/progenitor cells from adult human pancreatic tissue. Cells were propagated from human pancreatic tissue using a serum-free, low-calcium medium supplemented with NAC and tested for their ability to differentiate when cultured under different growth conditions. Human pancreatic cell (HPC) cultures coexpressed alpha-amylase, albumin, vimentin, and nestin. The HPC cultures, however, did not express other genes associated with differentiated pancreatic exocrine, duct, or endocrine cells. A number of transcription factors involved in endocrine cell development including Beta 2, Islet-1, Nkx6.1, Pax4, and Pax6 were expressed at variable levels in HPC cultures. In contrast, pancreatic duodenal homeobox factor 1 (Pdx-1) expression was extremely low and at times undetectable. Overexpression of Pdx-1 in HPC cultures stimulated somatostatin, glucagon, and carbonic anhydrase expression but had no effect on insulin gene expression. HPC cultures could form 3-dimensional islet-like cell aggregates, and this was associated with expression of somatostatin and glucagon but not insulin. Cultivation of HPCs in a differentiation medium supplemented with nicotinamide, exendin-4, and/or LY294002, an inhibitor of phosphatidylinositol-3 kinase, stimulated expression of insulin mRNA and protein. These data support the use of intracellular redox modulation for the enrichment of pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation.
Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges.
Sneddon, Julie B; Tang, Qizhi; Stock, Peter; Bluestone, Jeffrey A; Roy, Shuvo; Desai, Tejal; Hebrok, Matthias
2018-06-01
Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies. Copyright © 2018. Published by Elsevier Inc.
Oura, Tetsu; Ko, Dicken S.C.; Boskovic, Svjetlan; O'Neil, John J.; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R. Neal; Cosimi, A. B.; Kawai, Tatsuo
2016-01-01
Background We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC-mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. Methods A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that includes low dose total body and thymic irradiation, horse ATG (Atgam), six doses of anti-CD154 monoclonal antibody (mAb) and a one month course of cyclosporine (CyA) (Islet-A). In Islet-B, anti-CD8 mAb was administered in place of CyA. In Islet-C, two recipients were treated with Islet-B but without Atgam. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and bone marrow transplantation (Kidney-A) following the same conditioning regimen used in Islet-A. Results The majority of Kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned Islet/BM recipients (Islet-A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to calcineurin inhibitor (CNI) toxicity, three recipients were treated with anti-CD8 mAb in place of CNI. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet-C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Conclusion Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CNI-free regimen that includes anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more durable mixed chimerism may be necessary for induction of islet allograft tolerance. PMID:26337731
Yin, Nina; Chen, Tao; Yu, Yuling; Han, Yongming; Yan, Fei; Zheng, Zhou; Chen, Zebin
2016-12-01
Successful islet isolation is crucial for islet transplantation and cell treatment for type 1 diabetes. Current isolation methods are able to obtain 500-1,000 islets per rat, which results in a waste of ≥50% of total islets. In the present study, a facile mechanical shaking method for improving islet yield (up to 1,500 per rat) was developed and summarized, which was demonstrated to be more effective than the existing well-established stationary method. The present results showed that isolated islets have a maximum yield of 1,326±152 when shaking for 15 min for the fully-cannulated pancreas. For both fully-cannulated and half-cannulated pancreas in the presence of rat DNAse inhibitor, the optimal shaking time was amended to 20 min with a further increased yield of 1,344±134 and 1,286±124 islets, respectively. Furthermore, the majority of the isolated islets were morphologically intact with a well-defined surface and almost no central necrotic zone, which suggested that the condition of islets obtained via the mechanical shaking method was consistent with the stationary method. Islet size distribution was also calculated and it was demonstrated that islets from the stationary method exhibited the same size distribution as the non-cannulated group, which had more larger islets than the fully-cannulated and half-cannulated groups isolated via the shaking method. In addition, the results of glucose challenge showed that the refraction index of each group was >2.5, which indicated the well-preserved function of isolated islets. Furthermore, the transplanted islets exhibited a therapeutic effect after 1 day of transplantation; however, they failed to control blood glucose levels after ~7 days of transplantation. In conclusion, these results demonstrated that the facile mechanical shaking method may markedly improve the yield of rat islet isolation, and in vitro and in vivo investigation demonstrated the well-preserved function of isolated islets in the control of blood glucose. Therefore, the facile mechanical shaking method may be an alternative improved procedure to obtain higher islet yield for islet preparation and transplantation in the treatment of type 1 diabetes.
King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M
2015-01-01
Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.
Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H
Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice
Serr, Isabelle; Fürst, Rainer W.; Achenbach, Peter; Scherm, Martin G.; Gökmen, Füsun; Haupt, Florian; Sedlmeier, Eva-Maria; Knopff, Annette; Shultz, Leonard; Willis, Richard A.; Ziegler, Anette-Gabriele; Daniel, Carolin
2016-01-01
Immune tolerance is executed partly by Foxp3+regulatory T (Treg) cells, which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3+Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here, using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice, we provide direct evidence for human autoantigen-specific Foxp3+Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4+T cells and demonstrate efficient human insulin-specific Foxp3+Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable, show increased expression of Treg signature genes such as Foxp3, CTLA4, IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3+Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3+Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D. PMID:26975663
Weegman, Bradley P; Kumar Sajja, Venkata Sunil; Suszynski, Thomas M; Rizzari, Michael D; Scott Iii, William E; Kitzmann, Jennifer P; Mueller, Kate R; Hanley, Thomas R; Kennedy, David J; Todd, Paul W; Balamurugan, Appakalai N; Hering, Bernhard J; Papas, Klearchos K
2016-01-01
Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.
Kumar Sajja, Venkata Sunil; Rizzari, Michael D.; Scott III, William E.; Kitzmann, Jennifer P.; Kennedy, David J.; Todd, Paul W.; Balamurugan, Appakalai N.; Hering, Bernhard J.
2016-01-01
Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation. PMID:27843954
Papas, Klearchos K; Karatzas, Theodore; Berney, Thierry; Minor, Thomas; Pappas, Paris; Pattou, François; Shaw, James; Toso, Christian; Schuurman, Henk-Jan
2013-01-01
Recently, initiatives have been undertaken to establish an islet transplantation program in Athens, Greece. A major hurdle is the high cost associated with the establishment and maintenance of a clinical-grade islet manufacturing center. A collaboration was established with the University Hospitals of Geneva, Switzerland, to enable remote islet cell manufacturing with an established and validated fully operational team. However, remote islet manufacturing requires shipment of the pancreas from the procurement to the islet manufacturing site (in this case from anywhere in Greece to Geneva) and then shipment of the islets from the manufacturing site to the transplant site (from Geneva to Athens). To address challenges related to cold ischemia time of the pancreas and shipment time of islets, a collaboration was initiated with the University of Arizona, Tucson, USA. An international workshop was held in Athens, December 2011, to mark the start of this collaborative project. Experts in the field presented in three main sessions: (i) islet transplantation: state-of-the-art and the "network approach"; (ii) technical aspects of clinical islet transplantation and outcomes; and (iii) islet manufacturing - from the donated pancreas to the islet product. This manuscript presents a summary of the workshop. © 2013 John Wiley & Sons A/S.
The role of endothelial cells on islet function and revascularization after islet transplantation.
Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David
2016-01-02
Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.
Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation
Narayanan, Siddharth; Loganathan, Gopalakrishnan; Dhanasekaran, Maheswaran; Tucker, William; Patel, Ankit; Subhashree, Venugopal; Mokshagundam, SriPrakash; Hughes, Michael G; Williams, Stuart K; Balamurugan, Appakalai N
2017-01-01
The intra-islet microvasculature is a critical interface between the blood and islet endocrine cells governing a number of cellular and pathophysiological processes associated with the pancreatic tissue. A growing body of evidence indicates a strong functional and physical interdependency of β-cells with endothelial cells (ECs), the building blocks of islet microvasculature. Intra-islet ECs, actively regulate vascular permeability and appear to play a role in fine-tuning blood glucose sensing and regulation. These cells also tend to behave as “guardians”, controlling the expression and movement of a number of important immune mediators, thereby strongly contributing to the physiology of islets. This review will focus on the molecular signalling and crosstalk between the intra-islet ECs and β-cells and how their relationship can be a potential target for intervention strategies in islet pathology and islet transplantation. PMID:28507914
Akt/p27kip1 Pathway Is Not Involved in Human Insulinoma Tumorigenesis
de Lima, Andrea Paes; Garibaldi, Paula; Rubio, Maria de los Milagros; García, Florencia; Kral, Marta; Bruno, Oscar D.
2018-01-01
Insulinomas are pancreatic neuroendocrine tumors (pNET), usually benign. Akt/p27kip1 is an intracellular pathway overexpressed in many pNET. There are no data regarding its expression in human insulinomas. We aimed to investigate the expression of Akt and p27kip1 in 24 human insulinomas and to compare them to their expression in normal surrounding islets. Staining was performed on embedded paraffin tissue using polyclonal antibodies against total Akt, p-Akt, p27kip1, and pp27kip1. p-Akt was the predominant form in insulinomas; they presented lower Akt and p-Akt expression than normal islets in 83.3% and 87.5% of tumors, respectively. p27kip1 and pp27kip1 were mainly cytoplasmic in both insulinomas and normal tissue. Cytoplasmic pp27kip1 staining was higher in insulinomas and surprisingly nearly half of the insulinomas also presented nuclear p27kip1 (p = 0.029). No differences were observed in the subcellular localization of p27kip1 and activation of Akt between benign and malignant insulinomas. The low expression of Akt seen in insulinomas might explain the usual benign behavior of this type of pNET. Cytoplasmic p27kip1 in both insulinomas and normal islet cells could reflect the low rate of replication of beta cells, while nuclear p27kip1 would seem to indicate stabilization and nuclear anchoring of the cyclin D-Cdk4 complex. Our data seem to suggest that the Akt pathway is not involved in human insulinoma tumorigenesis. PMID:29853883
Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; Meredith, Tamika DeShea; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G
2017-11-01
Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.
Islet organogenesis, angiogenesis and innervation.
Cerf, Marlon E
2011-11-01
The pancreas is characterized by a major component, an exocrine and ductal system involved in digestion, and a minor component, the endocrine islets represented by islet micro-organs that tightly regulate glucose homoeostasis. Pancreatic organogenesis is strictly co-ordinated by transcription factors that are expressed sequentially to yield functional islets capable of maintaining glucose homoeostasis. Angiogenesis and innervation complete islet development, equipping islets to respond to metabolic demands. Proper regulation of this triad of processes during development is critical for establishing functional islets.
Casares, Sofia; Lin, Marvin; Zhang, Nan; Teijaro, John R; Stoica, Cristina; McEvoy, Robert; Farber, Donna L; Bona, Constantin; Brumeanu, Teodor D
2008-06-27
Transplantation of pancreatic islets showed a tremendous progress over the years as a promising, new therapeutic strategy in patients with type 1 diabetes. However, additional immunosuppressive drug therapy is required to prevent rejection of engrafted islets. The current immunosuppressive therapies showed limited success in maintaining long-term islet survival as required to achieve insulin independence in type 1 diabetes, and they induce severe adverse effects. Herein, we analyzed the effects of a soluble peptide-major histocompatibility complex (MHC) class II chimera aimed at devising an antigen-specific therapy for suppression of anti-islet T cell responses and to improve the survival of pancreatic islets transplants. Pancreatic islets from transgenic mice expressing the hemagglutinin antigen in the beta islets under the rat insulin promoter (RIP-HA) were grafted under the kidney capsule of diabetic, double transgenic mice expressing hemagglutinin in the pancreas and T cells specific for hemagglutinin (RIP-HA, TCR-HA). The recipient double transgenic mice were treated or not with the soluble peptide-MHC II chimera, and the progression of diabetes, graft survival, and T cell responses to the grafted islets were analyzed. The peptide-MHC II chimera protected syngeneic pancreatic islet transplants against the islet-reactive CD4 T cells, and prolonged the survival of transplanted islets. Protection of transplanted islets occurred by polarization of antigen-specific memory CD4 T cells toward a Th2 anti-inflammatory response. The peptide-MHC II chimera approach is an efficient and specific therapeutic approach to suppress anti-islet T cell responses and provides a long survival of pancreatic grafted islets.
Islets of Langerhans in the parakeet, Psittacula krameri.
Gupta, Y K; Kumar, S
1980-01-01
The pancreatic gland of Psittacula krameri is divisible into 4 lobes i.e. dorsal, ventral, third and splenic. The endocrine part is composed of alpha 1-, alpha 2- and beta-cells. The islets are of 4 kinds viz., alpha islets (having alpha 1- and alpha 2-cells), beta islets (having beta- and alpha 1-cells), pure beta islets (consisting of beta-cells exclusively) and mixed islets (with beta-, alpha 1- and alpha 2-cells). The distribution of alpha islets is mostly restricted to the splenic and third lobes whereas the beta islets are found in all 4 lobes. Though the alpha islets are only few in the dorsal lobe, their size is best developed in the third and dorsal lobes. Sometimes beta and alpha islets are present in very close proximity but their cells never mingle. An interesting feature was the complete absence of alpha islets from the ventral lobe.A relative abundance of alpha 2- cells in this bird seems to be associated with its comparatively higher blood glucose level and frugivorous habit. Tinctorial reactions suggest that the insulin content of the endocrine pancreas is low. There were no seasonal changes in the islet tissue of P. krameri.
Sörenby, Anne K; Kumagai-Braesch, Makiko; Sharma, Amit; Hultenby, Kjell R; Wernerson, Annika M; Tibell, Annika B
2008-07-27
Islet graft survival inside macroencapsulation devices is suboptimal. We hypothesized that induction of neovascularization by preimplantation of devices would improve the physiological conditions, thereby lowering the number of islets required for cure. Several rat islets were transplanted to TheraCyte immunoprotective devices implanted subcutaneously in diabetic athymic mice. Cure rates in the groups with preimplanted devices were significantly better than in those with freshly implanted devices (375 islets: 8/8 vs. 1/6, P=0.003; 125 islets: 6/6 vs. 0/7, P=0.001). Morphometric evaluations of the 125 islet groups showed higher fractional and absolute volumes of endocrine tissue in the group with preimplanted devices (P<0.001 and P=0.035, respectively). In the following dose titration study, using preimplanted devices, as low as 50 islets cured diabetic mice (100% cure, n=6). We conclude that preimplantation significantly lowers the curative dose of macroencapsulated islets to levels resembling those of free islets transplanted under the renal capsule.
Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.
Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki
2015-01-01
The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.
Glucose diffusion in pancreatic islets of Langerhans.
Bertram, R; Pernarowski, M
1998-01-01
We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose. PMID:9545035
Vallabhajosyula, Prashanth; Hirakata, Atsushi; Weiss, Matthew; Griesemer, Adam; Shimizu, Akira; Hong, Hanzhou; Habertheuer, Andreas; Tchipashvili, Vaja; Yamada, Kazuhiko; Sachs, David H
2017-11-01
In islet transplantation, in addition to immunologic and ischemic factors, the diabetic/hyperglycemic state of the recipient has been proposed, although not yet validated, as a possible cause of islet toxicity, contributing to islet loss during the engraftment period. Using a miniature swine model of islet transplantation, we have now assessed the effect of a persistent state of hyperglycemia on islet engraftment and subsequent function. An islet-kidney (IK) model previously described by our laboratory was utilized. Three experimental donor animals underwent total pancreatectomy and autologous islet transplantation underneath the renal capsule to prepare an IK at a load of ≤1,000 islet equivalents (IE)/kg donor weight, leading to a chronic diabetic state during the engraftment period (fasting blood glucose >250 mg/dL). Three control donor animals underwent partial pancreatectomy (sufficient to maintain normoglycemia during islet engraftment period) and IK preparation. As in vivo functional readout for islet engraftment, the IKs were transplanted across an immunologic minor or class I mismatch barrier into diabetic, nephrectomized recipients at an islet load of ∼4,500 IE/kg recipient weight. A 12-d course of cyclosporine was administered for tolerance induction. All experimental donors became diabetic and showed signs of end organ injury, while control donors maintained normoglycemia. All recipients of IK from both experimental and control donors achieved glycemic control over long-term follow-up, with reversal of diabetic nephropathy and with similar glucose tolerance tests. In this preclinical, large animal model, neither islet engraftment nor subsequent long-term islet function after transplantation appear to be affected by the diabetic state.
Hughes, Amy; Mohanasundaram, Daisy; Kireta, Svjetlana; Jessup, Claire F; Drogemuller, Chris J; Coates, P Toby H
2013-03-15
The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life. We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed. Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (P<0.05, log-rank [Mantel-Cox] test). Antiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.
Wang, Dan; Ding, Xiaoming; Xue, Wujun; Zheng, Jin; Tian, Xiaohui; Li, Yang; Wang, Xiaohong; Song, Huanjin; Liu, Hua; Luo, Xiaohui
2017-01-01
It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines. PMID:27909715
Qi, Meirigeng; Valiente, Luis; McFadden, Brian; Omori, Keiko; Bilbao, Shiela; Juan, Jemily; Rawson, Jeffrey; Scott, Stephen; Ferreri, Kevin; Mullen, Yoko; El-Shahawy, Mohamed; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H
2015-05-01
We evaluated three commercially available enzymes for pancreatic digestion by comparing key parameters during the islet isolation process, as well as islet quality post-isolation. Retrospectively compared and analyzed islet isolations from pancreata using three different enzyme groups: Liberase HI (n=63), Collagenase NB1/Neutral Protease (NP) (n=43), and Liberase Mammalian Tissue Free Collagenase/Thermolysin (MTF C/T) (n=115). A standardized islet isolation and purification method was used. Islet quality assessment was carried out using islet count, viability, in vitro glucose-stimulated insulin secretion (GSIS), glucose-stimulated oxygen consumption rate (ΔOCR), and in vivo transplantation model in mice. Donor characteristics were not significantly different among the three enzyme groups used in terms of age, sex, hospital stay duration, cause of death, body mass index (BMI), hemoglobin A1c (HbA1c), cold ischemia time (CIT), and pancreas weight. Digestion efficacy (percentage of digested tissue by weight) was significantly higher in the Liberase MTF C/T group (73.5 ± 1.5 %) when compared to the Liberase HI group (63.6 ± 2.3 %) (p<0.001) and the Collagenase NB1/NP group (61.7 ± 2.9%) (p<0.001). The stimulation index for GSIS was significantly higher in the Liberase MTF C/T group (5.3 ± 0.5) as compared to the Liberase HI (2.9 ± 0.2) (p<0.0001) and the Collagenase NB1/NP (3.6 ± 2.9) (p=0.012) groups. Furthermore, the Liberase MTF C/T enzymes showed the highest success rate of transplantation in diabetic NOD Scid mice (65%), which was significantly higher than the Liberase HI (42%, p=0.001) and the Collagenase NB1/NP enzymes (41%, p<0.001). Liberase MTF C/T is superior to Liberase HI and Collagenase NB1/NP in terms of digestion efficacy and glucose-stimulated insulin secretion in vitro . Moreover, Liberase MTF C/T had a significantly higher success rate of transplantation in diabetic NOD Scid mice compared to Liberase HI and Collagenase NB1/NP enzymes.
Characterization of Erg K+ Channels in α- and β-Cells of Mouse and Human Islets*
Hardy, Alexandre B.; Fox, Jocelyn E. Manning; Giglou, Pejman Raeisi; Wijesekara, Nadeeja; Bhattacharjee, Alpana; Sultan, Sobia; Gyulkhandanyan, Armen V.; Gaisano, Herbert Y.; MacDonald, Patrick E.; Wheeler, Michael B.
2009-01-01
Voltage-gated eag-related gene (Erg) K+ channels regulate the electrical activity of many cell types. Data regarding Erg channel expression and function in electrically excitable glucagon and insulin producing cells of the pancreas is limited. In the present study Erg1 mRNA and protein were shown to be highly expressed in human and mouse islets and in α-TC6 and Min6 cells α- and β-cell lines, respectively. Whole cell patch clamp recordings demonstrated the functional expression of Erg1 in α- and β-cells, with rBeKm1, an Erg1 antagonist, blocking inward tail currents elicited by a double pulse protocol. Additionally, a small interference RNA approach targeting the kcnh2 gene (Erg1) induced a significant decrease of Erg1 inward tail current in Min6 cells. To investigate further the role of Erg channels in mouse and human islets, ratiometric Fura-2 AM Ca2+-imaging experiments were performed on isolated α- and β-cells. Blocking Erg channels with rBeKm1 induced a transient cytoplasmic Ca2+ increase in both α- and β-cells. This resulted in an increased glucose-dependent insulin secretion, but conversely impaired glucagon secretion under low glucose conditions. Together, these data present Erg1 channels as new mediators of α- and β-cell repolarization. However, antagonism of Erg1 has divergent effects in these cells; to augment glucose-dependent insulin secretion and inhibit low glucose stimulated glucagon secretion. PMID:19690348
Dall'Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita
2017-03-07
At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Conse - quently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood.
Comparison of volume estimation methods for pancreatic islet cells
NASA Astrophysics Data System (ADS)
Dvořák, JiřÃ.; Å vihlík, Jan; Habart, David; Kybic, Jan
2016-03-01
In this contribution we study different methods of automatic volume estimation for pancreatic islets which can be used in the quality control step prior to the islet transplantation. The total islet volume is an important criterion in the quality control. Also, the individual islet volume distribution is interesting -- it has been indicated that smaller islets can be more effective. A 2D image of a microscopy slice containing the islets is acquired. The input of the volume estimation methods are segmented images of individual islets. The segmentation step is not discussed here. We consider simple methods of volume estimation assuming that the islets have spherical or ellipsoidal shape. We also consider a local stereological method, namely the nucleator. The nucleator does not rely on any shape assumptions and provides unbiased estimates if isotropic sections through the islets are observed. We present a simulation study comparing the performance of the volume estimation methods in different scenarios and an experimental study comparing the methods on a real dataset.
Oxygen-permeable microwell device maintains islet mass and integrity during shipping
Rojas-Canales, Darling M; Waibel, Michaela; Forget, Aurelien; Penko, Daniella; Nitschke, Jodie; Harding, Fran J; Delalat, Bahman; Blencowe, Anton; Loudovaris, Thomas; Grey, Shane T; Thomas, Helen E; Kay, Thomas W H; Drogemuller, Chris J; Voelcker, Nicolas H; Coates, Patrick T
2018-01-01
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20–40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping. PMID:29483160
Oxygen-permeable microwell device maintains islet mass and integrity during shipping.
Rojas-Canales, Darling M; Waibel, Michaela; Forget, Aurelien; Penko, Daniella; Nitschke, Jodie; Harding, Fran J; Delalat, Bahman; Blencowe, Anton; Loudovaris, Thomas; Grey, Shane T; Thomas, Helen E; Kay, Thomas W H; Drogemuller, Chris J; Voelcker, Nicolas H; Coates, Patrick T
2018-03-01
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20-40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping. © 2018 The authors.
Chan, Pei-Chi; Wang, Ya-Chin; Chen, Yi-Ling; Hsu, Wan-Ning; Tian, Yu-Feng; Hsieh, Po-Shiuan
2017-11-01
Elevations in C-reactive protein (CRP) levels are positively correlated with the progress of type 2 diabetes mellitus. However, the effect of CRP on pancreatic insulin secretion is unknown. Here, we showed that purified human CRP impaired insulin secretion in isolated mouse islets and NIT-1 insulin-secreting cells in dose- and time-dependent manners. CRP increased NADPH oxidase-mediated ROS (reactive oxygen species) production, which simultaneously promoted the production of nitrotyrosine (an indicator of RNS, reactive nitrogen species) and TNFα, to diminish cell viability, insulin secretion in islets and insulin-secreting cells. These CRP-mediated detrimental effects on cell viability and insulin secretion were significantly reversed by adding NAC (a potent antioxidant), apocynin (a selective NADPH oxidase inhibitor), L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor), aminoguanidine (a selective iNOS inhibitor), PDTC (a selective NFκB inhibitor) or Enbrel (an anti-TNFα fusion protein). However, CRP-induced ROS production failed to change after adding L-NAME, aminoguanidine or PDTC. In isolated islets and NIT-1 cells, the elevated nitrotyrosine contents by CRP pretreatment were significantly suppressed by adding L-NAME but not PDTC. Conversely, CRP-induced increases in TNF-α production were significantly reversed by administration of PDTC but not L-NAME. In addition, wild-type mice treated with purified human CRP showed significant decreases in the insulin secretion index (HOMA-β cells) and the insulin stimulation index in isolated islets that were reversed by the addition of L-NAME, aminoguanidine or NAC. It is suggested that CRP-activated NADPH-oxidase redox signaling triggers iNOS-mediated RNS and NFκB-mediated proinflammatory cytokine production to cause β cell damage in state of inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation
Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter
2011-01-01
Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120
Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun
2016-11-01
Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.
Beneficial effect of D-allose for isolated islet culture prior to islet transplantation.
Kashiwagi, Hirotaka; Asano, Eisuke; Noguchi, Chisato; Sui, Li; Hossain, Akram; Akamoto, Shintaro; Okano, Keiichi; Tokuda, Masaaki; Suzuki, Yasuyuki
2016-01-01
Pretransplant restoration of islets damaged during isolation remains to be solved. In this study, we examined the effect of D-allose on islets isolated from rat pancreata prior to islet transplantation. Rat islets isolated from fresh pancreata were cultured overnight in Roswell Park Memorial Institute 1640 solution in the absence (group 1) or presence (group 2) of D-allose. Then we assessed stimulation index of insulin, and cure rate after islet transplantation to diabetic nude mice. We also measured malondialdehyde level and caspase 3 activity of islets after the overnight culture for assessment of the oxidative stress and the apoptosis. D-allose significantly improved insulin secretion of islets. The stimulation index in group 2 was significantly higher than in group 1. Cure rate after transplantation in group 2 was higher than in group 1 especially in the first week. The malondialdehyde level in group 2 was significantly lower than in group 1. But the caspase 3 activities in both groups did not differ. D-allose treatment of isolated islet culture prior to transplantation restored islet function and increased successful transplant rate. The results of this study suggested that D-allose improved function of damaged islets through its anti-oxidative activity. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Shan, Zhongyan; Xu, Baohui; Mikulowska-Mennis, Anna; Michie, Sara A
2014-05-01
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease characterized by the destruction of insulin-producing β cells in the pancreatic islets. The migration of T cells from blood vessels into pancreas is critical for the development of islet inflammation and β cell destruction in T1D. To define the roles of C-C chemokine receptor type 7 (CCR7) in recruitment of T cells into islets, we used laser capture microdissection to isolate tissue from inflamed islets of nonobese diabetic (NOD) mice and uninflamed islets of BALB/c and young NOD mice. RT-PCR analyses detected mRNAs for CCR7 and its chemokine ligands CCL19 (ELC; MIP-3β) and CCL21 (SLC) in captures from inflamed, but not from uninflamed, islets. Immunohistology studies revealed that high endothelial venules in inflamed islets co-express CCL21 protein and MAdCAM-1 (an adhesion molecule that recruits lymphocytes into islets). Desensitization of lymphocyte CCR7 blocked about 75 % of T cell migration from the bloodstream into inflamed islets, but had no effect on B cell migration into islets. These results indicate that CCR7 and its ligands are important in the recruitment of T cells into inflamed islets and thus in the pathogenesis of T1D.
Knight, K R; Uda, Y; Findlay, M W; Brown, D L; Cronin, K J; Jamieson, E; Tai, T; Keramidaris, E; Penington, A J; Rophael, J; Harrison, L C; Morrison, W A
2006-03-01
We have developed a chamber model of islet engraftment that optimizes islet survival by rapidly restoring islet-extracellular matrix relationships and vascularization. Our aim was to assess the ability of syngeneic adult islets seeded into blood vessel-containing chambers to correct streptozotocin-induced diabetes in mice. Approximately 350 syngeneic islets suspended in Matrigel extracellular matrix were inserted into chambers based on either the splenic or groin (epigastric) vascular beds, or, in the standard approach, injected under the renal capsule. Blood glucose was monitored weekly for 7 weeks, and an intraperitoneal glucose tolerance test performed at 6 weeks in the presence of the islet grafts. Relative to untreated diabetic animals, glycemic control significantly improved in all islet transplant groups, strongly correlating with islet counts in the graft (P<0.01), and with best results in the splenic chamber group. Glycemic control deteriorated after chambers were surgically removed at week 8. Immunohistochemistry revealed islets with abundant insulin content in grafts from all groups, but with significantly more islets in splenic chamber grafts than the other treatment groups (P<0.05). It is concluded that hyperglycemia in experimental type 1 diabetes can be effectively treated by islets seeded into a vascularized chamber functioning as a "pancreatic organoid."
Mohammadi Ayenehdeh, Jamal; Niknam, Bahareh; Hashemi, Seyed Mahmoud; Rahavi, Hossein; Rezaei, Nima; Soleimani, Masoud; Tajik, Nader
2017-07-01
Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functional islets and transplantation are crucial. The present study has introduced an experimental model that overcomes some critical issues in islet transplantation, including in situ pancreas perfusion by digestive enzymes through common bile duct. In comparison with conventional methods, we inflated the pancreas in Petri dishes with only 1 ml collagenase type XI solution, which was followed by hand-picking isolation or Ficoll gradient separation to purify the islets. Then we used a hydrogel composite in which the islets were embedded and transplanted into the peritoneal cavity of the streptozotocin-induced diabetic C57BL/6 mice. As compared to the yield of the classical methods, in our modified technique, the mean yield of isolation was about 130-200 viable islets/mouse pancreas. In vitro glucose-mediated insulin secretion assay indicated an appropriate response in isolated islets. In addition, data from in vivo experiments revealed that the allograft remarkably maintained blood glucose levels under 400 mg/dl and hydrogel composite prevents the passage of immune cells. In the model presented here, the rapid islet isolation technique and the application of biomimetic hydrogel wrapping of islets could facilitate islet transplantation procedures.
Sequential kidney/islet transplantation using prednisone-free immunosuppression.
Kaufman, Dixon B; Baker, Marshall S; Chen, Xiaojuan; Leventhal, Joseph R; Stuart, Frank P
2002-08-01
Islet transplantation is becoming established as a treatment option for type I diabetes in select patients. Individuals with type I diabetes who have previously received a successful kidney allograft may be good candidates for islet transplantation. They have already assumed the risks of chronic immunosuppression, so the added procedural risk of a subsequent islet transplant would be minimal. Furthermore, because of the preimmunosuppressed state it is possible that islet-after-kidney transplantation may result in a more efficient early islet engraftment. Consequently, insulin independence might be achieved with significantly fewer islets than the approximately 8-10,000 islet equivalents/kg/b.w. currently required. A mass that usually demands two or more cadaveric donors. A case of successful islet-after-kidney transplantation is described using the steroid-free Edmonton immunosuppression protocol. Characteristics of the final islet product are: a) islet equivalents: 265,888 (4100 islet equivalents/kg/b.w.); b) islet purity: 75-80%; c) viability: >95% (trypan blue exclusion); and d) mean islet potency (static low-high glucose challenge): 4.16 +/- 1.91-fold increase. Post-transplant the patient's hypoglycemic episodes abated. Exogenous insulin requirements were eliminated at week 12 post-transplant as basal and Ensure (Abbott Laboratories, Abbott Park, IL, USA) oral glucose stimulated C-peptide levels peaked and stabilized. Twenty-four-hour continuous glucose monitoring confirmed moment-to-moment glycemic control, and periodic nonfasting finger stick glucose determinations over the next month confirmed glycemia was controlled. Hemoglobin A1c levels declined from a pretransplant level of 6.9% to 5.3%. Renal allograft function remained changed.
Selective Osmotic Shock for Islet Isolation in the Cadaveric Canine Pancreas.
Thompson, Elizabeth M; Sollinger, Jennifer L; Opara, Emmanuel C; Adin, Christopher A
2018-03-01
Currently, islet isolation is performed using harsh collagenases that cause nonspecific injury to both islets and exocrine tissue, negatively affecting the outcome of cell transplantation. We evaluated a novel islet isolation protocol utilizing high concentrations of glucose to cause selective osmotic shock (SOS). Islets have a membrane glucose transporter that allows adaptation to changes in glucose concentrations while exocrine tissue can be selectively destroyed by these osmolar shifts. Canine pancreata were obtained within 15 min after euthanasia from animals ( n = 6) euthanized for reasons unrelated to this study. Each pancreas was divided into 4 segments that were randomized to receive 300 mOsm glucose for 20 min (group 1), 600 mOsm for 20 min (group 2), 300 mOsm for 40 min (group 3), or 600 mOsm for 40 min (group 4). Islet yield, purity, and viability were compared between groups. Mean ± standard error of the mean islet yield for groups 1 to 4 was 428 ± 159, 560 ± 257, 878 ± 443, and 990 ± 394 islet equivalents per gram, respectively. Purity ranged from 37% to 45% without the use of density gradient centrifugation and was not significantly different between groups. Islet cell viability was excellent overall (89%) and did not differ between treatment protocol. Islet function was best in groups treated with 300 mOsm of glucose (stimulation index [SI] = 3.3), suggesting that the lower concentration of glucose may be preferred for use in canine islet isolation. SOS provides a widely available means for researchers to isolate canine islets for use in islet transplantation or in studies of canine islet physiology.
Micro-fabricated scaffolds lead to efficient remission of diabetes in mice.
Buitinga, Mijke; Assen, Frank; Hanegraaf, Maaike; Wieringa, Paul; Hilderink, Janneke; Moroni, Lorenzo; Truckenmüller, Roman; van Blitterswijk, Clemens; Römer, Gert-Willem; Carlotti, Françoise; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart
2017-08-01
Despite the clinical success of intrahepatic islet transplantation in treating type 1 diabetes, factors specific to this transplantation site hinder long-term insulin independence. The adoption of alternative, extravascular sites likely improve islet survival and function, but few locations are able to sufficiently confine islets in order to facilitate engraftment. This work describes a porous microwell scaffold with a well-defined pore size and spacing designed to guarantee islet retention at an extrahepatic transplantation site and facilitate islet revascularization. Three techniques to introduce pores were characterized: particulate leaching; solvent casting on pillared wafers; and laser drilling. Our criteria of a maximum pore diameter of 40 μm were best achieved via laser drilling. Transplantation studies in the epididymal fat of diabetic mice elucidated the potential of this porous scaffold platform to restore blood glucose levels and facilitate islet engraftment. Six out of eight mice reverted to stable normoglycemia with a mean time to remission of 6.2 ± 3.2 days, which was comparable to that of the gold standard of renal subcapsular islet grafts. In contrast, when islets were transplanted in the epididymal fat pad without a microwell scaffold, only two out of seven mice reverted to stable normoglycemia. Detailed histological evaluation four weeks after transplantation found a comparable vascular density in scaffold-seeded islets, renal subcapsular islets and native pancreatic islets. However, the vascularization pattern in scaffold-seeded islets was more inhomogeneous compared to native pancreatic islets with a higher vascular density in the outer shell of the islets compared to the inner core. We also observed a corresponding decrease in the beta-cell density in the islet core. Despite this, our data indicated that islets transplanted in the microwell scaffold platform were able to maintain a viable beta-cell population and restore glycemic control. Furthermore, we demonstrated that the microwell scaffold platform facilitated detailed analysis at a subcellular level to correlate design parameters with functional physiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Importance of oestrogen receptors to preserve functional β-cell mass in diabetes.
Tiano, Joseph P; Mauvais-Jarvis, Franck
2012-02-14
Protecting the functional mass of insulin-producing β cells of the pancreas is a major therapeutic challenge in patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM). The gonadal hormone 17β-oestradiol (E2) is involved in reproductive, bone, cardiovascular and neuronal physiology. In rodent models of T1DM and T2DM, treatment with E2 protects pancreatic β cells against oxidative stress, amyloid polypeptide toxicity, lipotoxicity and apoptosis. Three oestrogen receptors (ERs)--ERα, ERβ and the G protein-coupled ER (GPER)--have been identified in rodent and human β cells. Whereas activation of ERα enhances glucose-stimulated insulin biosynthesis, reduces islet toxic lipid accumulation and promotes β-cell survival from proapoptotic stimuli, activation of ERβ increases glucose-stimulated insulin secretion. However, activation of GPER protects β cells from apoptosis, raises glucose-stimulated insulin secretion and lipid homeostasis without affecting insulin biosynthesis. Oestrogens are also improving islet engraftment in rodent models of pancreatic islet transplantation. This Review describes developments in the role of ERs in islet insulin biosynthesis and secretion, lipid homeostasis and survival. Moreover, we discuss why and how enhancing ER action in β cells without the undesirable effect of general oestrogen therapy is a therapeutic avenue to preserve functional β-cell mass in patients with diabetes mellitus.
Tolerance of Vascularized Islet-Kidney Transplants in Rhesus Monkeys
Pathiraja, Vimukthi; Villani, Vincenzo; Tasaki, Masayuki; Matar, Abraham J.; Duran-Struuck, Raimon; Yamada, Rei; Moran, Shannon G.; Clayman, Eric S.; Hanekamp, John; Shimizu, Akira; Sachs, David H.; Huang, Christene A.; Yamada, Kazuhiko
2016-01-01
We have previously reported that transplantation (Tx) of prevascularized donor islets as composite Islet-Kidneys (IK) reversed diabetic hyperglycemia in both miniature swine and baboons. In order to enhance this strategy's potential clinical applicability, we have now combined this approach with hematopoietic stem cells (HSC) Tx in an attempt to induce tolerance in non-human primates. IKs were prepared by isolating islets from 70% partial pancreatectomies and injecting them beneath the autologous renal capsule of five rhesus monkey donors at least 3 months before allogeneic IKTx. HSCTx was performed following mobilization and leukapheresis of the donors, and conditioning of the recipients with total body irradiation, T-cell depletion and cyclosporine. One IK was harvested for histologic analysis and four were transplanted into diabetic recipients. IKTx was performed either 20–22 (n=3) or 208 (n=1) days after HSCTx. All animals accepted IKs without rejection. All recipients required >20 U/day of insulin before IKTx to maintain less than 200mg/dl, whereas after IKTx 3 animals required minimal doses of insulin (1–3 U/day) and one animal was insulin-free. These results constitute a proof-of-principle that this IK tolerance strategy may provide a cure for both end-stage renal disease and diabetes without the need for immunosuppression. PMID:27376692
A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice
Vergani, Andrea; D'Addio, Francesca; Jurewicz, Mollie; Petrelli, Alessandra; Watanabe, Toshihiko; Liu, Kaifeng; Law, Kenneth; Schuetz, Christian; Carvello, Michele; Orsenigo, Elena; Deng, Shaoping; Rodig, Scott J.; Ansari, Javeed M.; Staudacher, Carlo; Abdi, Reza; Williams, John; Markmann, James; Atkinson, Mark; Sayegh, Mohamed H.; Fiorina, Paolo
2010-01-01
OBJECTIVE To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent allo- and autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes. PMID:20805386
Earth Observations taken by the Expedition 20 crew
2009-07-01
ISS020-E-016279 (1 July 2009) --- Millennium Island is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Millennium Island ? known as Caroline Island prior to 2000 ? is located at the southern end of the Line Islands in the South Pacific Ocean. This uninhabited island is part of the Republic of Kiribati, an island nation comprised of 32 atolls (including Millennium Island) and one raised coral island. Millennium Island is formed from a number of smaller islets built on coral reefs. The coral reefs grew around a now-submerged volcanic peak, leaving a ring of coral around an inner lagoon. The islands above the waterline are composed primarily of limestone rock and sand derived from the reefs. At a maximum height of approximately 6 m above sea level, Millennium Island has been identified as being at great risk from sea level rise by the United Nations. The islets of Millennium Island are readily visible in this photograph as irregular green vegetated areas surrounding the inner lagoon. The shallow lagoon waters are a lighter blue than the deeper surrounding ocean water; tan linear ?fingers? within the lagoon are the tops of corals. The two largest islets are Nake Islet and South Islet, located at the north and south ends of Millennium Island respectively. The ecosystem of Millennium Island is considered to be relatively pristine despite periods of human habitation, guano mining, and agricultural activities, and the island has been recommended as both a World Heritage site and Biosphere Reserve.
Deletion of the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Results in Impaired Insulin Secretion
Pound, Lynley D.; Sarkar, Suparna; Benninger, Richard K. P.; Wang, Yingda; Suwanichkul, Adisak; Shadoan, Melanie K.; Printz, Richard L.; Oeser, James K.; Lee, Catherine E.; Piston, David W.; McGuinness, Owen P.; Hutton, John C.; Powell, David R.; O’Brien, Richard M.
2010-01-01
Synopsis The Slc30a8 gene encodes the islet-specific zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Polymorphic variants in amino acid 325 of human ZnT-8 are associated with altered susceptibility to type 2 diabetes and ZnT-8 autoantibody epitope specificity changes in type 1 diabetes. To assess the physiological importance of ZnT-8, mice carrying a Slc30a8 exon 3 deletion were analyzed histologically and phenotyped for energy metabolism and pancreatic hormone secretion. No gross anatomical or behavioral changes or differences in body weight were observed between wild type and ZnT-8 −/− mice and ZnT-8 −/− mouse islets were indistinguishable from wild type in terms of their numbers, size and cellular composition. However, total zinc content was markedly reduced in ZnT-8 −/− mouse islets, as evaluated both by Timm’s histochemical staining of pancreatic sections and direct measurements in isolated islets. Blood glucose levels were unchanged in 16 week old, 6 hr fasted animals of either gender, however, plasma insulin concentrations were reduced in both female (~31%) and male (~47%) ZnT-8 −/− mice. Intraperitoneal glucose tolerance tests demonstrated no impairment in glucose clearance in male ZnT-8 −/− mice but glucose-stimulated insulin secretion from isolated islets was reduced ~33% relative to wild type littermates. In summary, Slc30a8 gene deletion is accompanied by a modest impairment in insulin secretion without major alterations in glucose metabolism. PMID:19450229
Tiano, Joseph P.; Delghingaro-Augusto, Viviane; Le May, Cedric; Liu, Suhuan; Kaw, Meenakshi K.; Khuder, Saja S.; Latour, Martin G.; Bhatt, Surabhi A.; Korach, Kenneth S.; Najjar, Sonia M.; Prentki, Marc; Mauvais-Jarvis, Franck
2011-01-01
The failure of pancreatic β cells to adapt to an increasing demand for insulin is the major mechanism by which patients progress from insulin resistance to type 2 diabetes (T2D) and is thought to be related to dysfunctional lipid homeostasis within those cells. In multiple animal models of diabetes, females demonstrate relative protection from β cell failure. We previously found that the hormone 17β-estradiol (E2) in part mediates this benefit. Here, we show that treating male Zucker diabetic fatty (ZDF) rats with E2 suppressed synthesis and accumulation of fatty acids and glycerolipids in islets and protected against β cell failure. The antilipogenic actions of E2 were recapitulated by pharmacological activation of estrogen receptor α (ERα) or ERβ in a rat β cell line and in cultured ZDF rat, mouse, and human islets. Pancreas-specific null deletion of ERα in mice (PERα–/–) prevented reduction of lipid synthesis by E2 via a direct action in islets, and PERα–/– mice were predisposed to islet lipid accumulation and β cell dysfunction in response to feeding with a high-fat diet. ER activation inhibited β cell lipid synthesis by suppressing the expression (and activity) of fatty acid synthase via a nonclassical pathway dependent on activated Stat3. Accordingly, pancreas-specific deletion of Stat3 in mice curtailed ER-mediated suppression of lipid synthesis. These data suggest that extranuclear ERs may be promising therapeutic targets to prevent β cell failure in T2D. PMID:21747171
Lewis, Eli C; Blaabjerg, Lykke; Størling, Joachim; Ronn, Sif G; Mascagni, Paolo; Dinarello, Charles A; Mandrup-Poulsen, Thomas
2011-01-01
In type 1 diabetes, inflammatory and immunocompetent cells enter the islet and produce proinflammatory cytokines such as interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); each contribute to β-cell destruction, mediated in part by nitric oxide. Inhibitors of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25–2.5 mg/kg. Serum nitrite levels returned to nondiabetic values, islet function improved and glucose clearance increased from 14% (STZ) to 50% (STZ + ITF2357). In vitro, at 25 and 250 nmol/L, ITF2357 increased islet cell viability, enhanced insulin secretion, inhibited MIP-1α and MIP-2 release, reduced nitric oxide production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFα and IFNγ at an IC50 of 25–50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1β plus IFNγ, apoptosis was reduced by 50% (P < 0.01). Thus at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors β-cell survival during inflammatory conditions. PMID:21193899
Trevino, Michelle B.; Machida, Yui; Hallinger, Daniel R.; Garcia, Eden; Christensen, Aaron; Dutta, Sucharita; Peake, David A.; Ikeda, Yasuhiro
2015-01-01
Elevation of circulating fatty acids (FA) during fasting supports postprandial (PP) insulin secretion that is critical for glucose homeostasis and is impaired in diabetes. We tested our hypothesis that lipid droplet (LD) protein perilipin 5 (PLIN5) in β-cells aids PP insulin secretion by regulating intracellular lipid metabolism. We demonstrated that PLIN5 serves as an LD protein in human islets. In vivo, Plin5 and triglycerides were increased by fasting in mouse islets. MIN6 cells expressing PLIN5 (adenovirus [Ad]-PLIN5) and those expressing perilipin 2 (PLIN2) (Ad-PLIN2) had higher [3H]FA incorporation into triglycerides than Ad-GFP control, which support their roles as LD proteins. However, Ad-PLIN5 cells had higher lipolysis than Ad-PLIN2 cells, which increased further by 8-Br-cAMP, indicating that PLIN5 facilitates FA mobilization upon cAMP stimulation as seen postprandially. Ad-PLIN5 in islets enhanced the augmentation of glucose-stimulated insulin secretion by FA and 8-Br-cAMP in G-protein–coupled receptor 40 (GPR40)- and cAMP-activated protein kinase–dependent manners, respectively. When PLIN5 was increased in mouse β-cells in vivo, glucose tolerance after an acute exenatide challenge was improved. Therefore, the elevation of islet PLIN5 during fasting allows partitioning of FA into LD that is released upon refeeding to support PP insulin secretion in cAMP- and GPR40-dependent manners. PMID:25392244
PROGRESS IN CLINICAL ENCAPSULATED ISLET XENOTRANSPLANTATION
Cooper, David K.C.; Matsumoto, Shinichi; Abalovich, Adrian; Itoh, Takeshi; Mourad, Nizar I.; Gianello, Pierre R; Wolf, Eckhard; Cozzi, Emanuele
2016-01-01
At the 2015 combined congress of the CTS, IPITA, and IXA, a symposium was held to discuss recent progress in pig islet xenotransplantation. The presentations focused on 5 major topics – (i) the results of 2 recent clinical trials of encapsulated pig islet transplantation, (ii) the inflammatory response to encapsulated pig islets, (iii) methods to improve the secretion of insulin by pig islets, (iv) genetic modifications to the islet-source pigs aimed to protect the islets from the primate immune and/or inflammatory responses, and (v) regulatory aspects of clinical pig islet xenotransplantation. Trials of microencapsulated porcine islet transplantation to treat unstable type 1 diabetic patients have been associated with encouraging preliminary results. Further advances to improve efficacy may include (i) transplantation into a site other than the peritoneal cavity, which might result in better access to blood, oxygen, and nutrients; (ii) the development of a more biocompatible capsule and/or the minimization of a foreign body reaction; (iii) pig genetic modification to induce a greater secretion of insulin by the islets, and/or to reduce the immune response to islets released from damaged capsules; and (iv) reduction of the inflammatory response to the capsules/islets by improvements in the structure of the capsules and/or in genetic-engineering of the pigs and/or in some form of drug therapy. Ethical and regulatory frameworks for islet xenotransplantation are already available in several countries, and there is now a wider international perception of the importance of developing an internationally-harmonized ethical and regulatory framework. PMID:27482959
Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S.; Whaley-Connell, Adam; Sowers, James R.
2009-01-01
Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet exocrine interface (IEI) appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts – pancreatic stellate cells. Importantly, some pericyte cellular processes traverse both the connecting IEI and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal – incretin gut hormone axis resulting in pancreatic insufficiency and glucagon like peptide deficiency known to exist in prediabetes and overt T2DM in humans. PMID:19040593
MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets
Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L.
2013-01-01
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels. In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology. PMID:23383059
MicroRNA expression in alpha and beta cells of human pancreatic islets.
Klein, Dagmar; Misawa, Ryosuke; Bravo-Egana, Valia; Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L
2013-01-01
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology.
Vaithilingam, Vijayaganapathy; Kollarikova, Gabriella; Qi, Meirigeng; Lacik, Igor; Oberholzer, Jose; Guillemin, Gilles J; Tuch, Bernard E
2011-01-01
Pericapsular fibrotic overgrowth (PFO) may be attributed to an immune response against microcapsules themselves or to antigen shedding through microcapsule pores from encapsulated islet tissue. Modification of microcapsules aimed at reducing pore size should prevent PFO and improve graft survival. This study investigated the effect of increased gelling time (20 vs. 2 min) in barium chloride on intrinsic properties of alginate microcapsules and tested their biocompatibility in vivo. Prolonged gelling time affected neither permeability nor size of the microcapsules. However, prolonged gelling time for 20 min produced brittle microcapsules compared to 2 min during compression test. Encapsulation of human islets in both types of microcapsules affected neither islet viability nor function. The presence of PFO when transplanted into a large animal model such as baboon and its absence in small animal models such as rodents suggest that the host immune response towards alginate microcapsules is species rather than alginate specific.
Briant, Linford J B; Dodd, Michael S; Chibalina, Margarita V; Rorsman, Nils J G; Johnson, Paul R V; Carmeliet, Peter; Rorsman, Patrik; Knudsen, Jakob G
2018-06-12
Glucagon, the principal hyperglycemic hormone, is secreted from pancreatic islet α cells as part of the counter-regulatory response to hypoglycemia. Hence, secretory output from α cells is under high demand in conditions of low glucose supply. Many tissues oxidize fat as an alternate energy substrate. Here, we show that glucagon secretion in low glucose conditions is maintained by fatty acid metabolism in both mouse and human islets, and that inhibiting this metabolic pathway profoundly decreases glucagon output by depolarizing α cell membrane potential and decreasing action potential amplitude. We demonstrate, by using experimental and computational approaches, that this is not mediated by the K ATP channel, but instead due to reduced operation of the Na + -K + pump. These data suggest that counter-regulatory secretion of glucagon is driven by fatty acid metabolism, and that the Na + -K + pump is an important ATP-dependent regulator of α cell function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
O’Kell, Allison L.; Wasserfall, Clive; Catchpole, Brian; Davison, Lucy J.; Hess, Rebecka S.; Kushner, Jake A.
2017-01-01
Despite decades of research in humans and mouse models of disease, substantial gaps remain in our understanding of pathogenic mechanisms underlying the development of type 1 diabetes. Furthermore, translation of therapies from preclinical efforts capable of delaying or halting β-cell destruction has been limited. Hence, a pressing need exists to identify alternative animal models that reflect human disease. Canine insulin deficiency diabetes is, in some cases, considered to follow autoimmune pathogenesis, similar to NOD mice and humans, characterized by hyperglycemia requiring lifelong exogenous insulin therapy. Also similar to human type 1 diabetes, the canonical canine disorder appears to be increasing in prevalence. Whereas islet architecture in rodents is distinctly different from humans, canine pancreatic endocrine cell distribution is more similar. Differences in breed susceptibility alongside associations with MHC and other canine immune response genes parallel that of different ethnic groups within the human population, a potential benefit over NOD mice. The impact of environment on disease development also favors canine over rodent models. Herein, we consider the potential for canine diabetes to provide valuable insights for human type 1 diabetes in terms of pancreatic histopathology, impairment of β-cell function and mass, islet inflammation (i.e., insulitis), and autoantibodies specific for β-cell antigens. PMID:28533295
Lowney, J K; Frisella, M M; Lairmore, T C; Doherty, G M
1998-12-01
Islet cell tumor (ICT) metastasis is one of the potentially lethal outcomes of multiple endocrine neoplasia type 1 (MEN 1). Management of ICT in patients with MEN 1 is controversial; some advocate resection based on biochemical evidence of progression, whereas others use tumor size to predict the risk of metastasis and the need for resection. This study correlates the size of primary ICT with the presence of metastases. Forty-eight patients with MEN 1 with ICT, from 34 kindreds followed up in our multiple endocrine neoplasia program, were evaluated; 43 of the 48 have been explored for ICT. Metastases to the lymph nodes and liver were documented. Thirty-three percent of patients with pancreatic tumors less than 1 cm in greatest diameter had metastatic disease at surgery and in follow-up, whereas 34.8% of patients with tumors greater than 2 cm in diameter had metastases to lymph nodes or liver. The 2 patients with liver metastases each had primary tumors greater than 2 cm. Follow-up revealed subsequent metastasis in 1 patient. The size of primary tumors in MEN 1 does not correlate with metastatic potential. This is not a good criterion for exploration. Continued follow-up of these patients will be necessary to define the effect of operation on the course of ICT in MEN 1.
The project will result in the rapid assessment of chemicals for adverse effects on the development of gametes, adipocytes, and islet B-cells; and on the adipocyte and B-cell endocrine signaling function in human and murine embryonic stem cells. Based on the data, hierarchical...
Caton, P W; Kieswich, J; Yaqoob, M M; Holness, M J; Sugden, M C
2011-12-01
Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD(+) biosynthesis, exists as intracellular NAMPT (iNAMPT) and extracellular NAMPT (eNAMPT). eNAMPT, secreted from adipose tissue, promotes insulin secretion. Administration of nicotinamide mononucleotide (NMN), a product of the eNAMPT reaction, corrects impaired islet function in Nampt ( +/- ) mice. One of its potential targets is the NAD(+)-dependent deacetylase sirtuin 1. We hypothesised that altered NAMPT activity might contribute to the suppression of islet function associated with inflammation, and aimed to determine whether NMN could improve cytokine-mediated islet dysfunction. Acute effects of NMN on cytokine-mediated islet dysfunction were examined in islets incubated with TNFα and IL1β, and in mice fed a fructose-rich diet (FRD) for 16 weeks. Changes in iNAMPT, eNAMPT and inflammation levels were determined in FRD-fed mice. FRD-fed mice displayed markedly lower levels of circulating eNAMPT, with impaired insulin secretion and raised islet expression of Il1b. NMN administration lowered Il1b expression and restored suppressed insulin secretion in FRD-fed mice. NMN also restored insulin secretion in islets cultured with pro-inflammatory cytokines. The changes in islet function corresponded with changes in key markers of islet function and differentiation. The anti-inflammatory effects of NMN were partially blocked by inhibition of sirtuin 1. Chronic fructose feeding causes severe islet dysfunction in mice. Onset of beta cell failure in FRD-fed mice may occur via lowered secretion of eNAMPT, leading to increased islet inflammation and impaired beta cell function. Administration of exogenous NMN to FRD-fed mice corrects inflammation-induced islet dysfunction. Modulation of this pathway may be an attractive target for amelioration of islet dysfunction associated with inflammation.
Rat pancreatic islet size standardization by the "hanging drop" technique.
Cavallari, G; Zuellig, R A; Lehmann, R; Weber, M; Moritz, W
2007-01-01
Rejection and hypoxia are the main factors that limit islet engraftment in the recipient liver in the immediate posttransplant period. Recently authors have reported a negative relationship of graft function and islet size, concluding that small islets are superior to large islets. Islets can be dissociated into single cells and reaggregated into so called "pseudoislets," which are functionally equivalent to intact islets but exhibit reduced immunogenicity. The aim of our study was develop a technique that enabled one to obtain pseudoislets of defined, preferably small, dimensions. Islets were harvested from Lewis rats by the collagenase digestion procedure. After purification, the isolated islets were dissociated into single cells by trypsin digestion. Fractions with different cell numbers were seeded into single drops onto cell culture dishes, which were inverted and incubated for 5 to 8 days under cell culture conditions. Newly formed pseudoislets were analyzed for dimension, morphology, and cellular composition. The volume of reaggregated pseudoislets strongly correlated with the cell number (r(2) = .995). The average diameter of a 250-cell aggregate was 95 +/- 8 microm (mean +/- SD) compared with 122 +/- 46 microm of freshly isolated islets. Islet cell loss may be minimized by performing reaggregation in the presence of medium glucose (11 mmol/L) and the GLP-1 analogue Exendin-4. Morphology, cellular composition, and architecture of reaggregated islets were comparable to intact islets. The "hanging drop" culture method allowed us to obtain pseudoislets of standardized size and regular shape, which did not differ from intact islets in terms of cellular composition or architecture. Further investigations are required to minimize cell loss and test in vivo function of transplanted pseudoislets.
Hire, Kelly; Hering, Bernhard; Bansal-Pakala, Pratima
2010-08-01
Despite advances in islet transplantation, challenges remain in monitoring for anti-islet immune responses. Soluble CD30 (sCD30) has been investigated as a predictor of acute rejection in kidney, lung, and heart transplantation as well as in a single study in human islet cell recipients. In this study, sCD30 levels were retrospectively assessed in 19 allograft recipients treated with three different immunosuppression induction therapies. Soluble CD30 levels were assessed at pre-transplant; early post-transplant (day 4-day 7); one-month post-transplant; and late post-transplant (day 90-day 120) and then correlated with eventual graft outcomes at 1-year follow-up. Results showed no correlation between mean serum sCD30 levels at any point in time pre- or post-transplant and graft function at 1-year follow-up. However, analysis demonstrated that mean sCD30 levels at day 28 or day 90-day 120 decreased from pre-transplant levels in recipients with long-term islet allograft function compared to recipients with partial or non-graft function (a decrease of 43.6+/-25.6% compared to 16.7+/-35.2%, p<0.05). In another finding, immunosuppression with the ATG protocol led to a greater reduction in sCD30 levels post-transplant overall. A larger reduction post-transplant correlated with full graft function. The results demonstrate that a relative reduction in sCD30 levels post-transplant may be applicable as a biomarker to monitor graft function in islet allograft recipients. Additionally, knowledge of the impact of various immunosuppression protocols on the timing and extent of changes in post-transplant sCD30 levels could aid in patient-specific tailoring of immunosuppression. Copyright © 2010 Elsevier B.V. All rights reserved.
Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng
2016-08-01
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
van der Meulen, Talitha; Xie, Ruiyu; Kelly, Olivia G.; Vale, Wylie W.; Sander, Maike; Huising, Mark O.
2012-01-01
The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. PMID:23251699
Classification of microscopy images of Langerhans islets
NASA Astrophysics Data System (ADS)
Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára
2014-03-01
Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.
Current Status of Islet Cell Transplantation
Ichii, Hirohito; Ricordi, Camillo
2013-01-01
Despite substantial advances in islet isolation methods and immunosuppressive protocol, pancreatic islet cell transplantation remains an experimental procedure currently limited to the most severe cases of type 1 diabetes mellitus (T1DM). The objectives of this treatment are to prevent severe hypoglycemic episodes in patients with hypoglycemia unawareness, and to achieve a more physiological metabolic control. Insulin independence and long term-graft function with improvement of quality of life have been obtained in several international islet transplant centers. However, experimental trials of islet transplantation clearly highlighted several obstacles that remain to be overcome before the procedure could be proposed to a much larger patient population. This review provides a brief historical perspective of islet transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, and outlines current challenges and future directions in clinical islet transplantation. PMID:19110649
Wright, J R; Xu, B-Y
2014-07-01
In clinical islet transplantation, isolated islets are embolized into the liver via the portal vein (PV); however, up to 70% of the islets are lost in the first few days after transplantation (i.e., too quickly to be mediated by the adaptive immune system). Part of early loss is due to instant blood-mediated inflammatory reaction, an immune/thrombotic process caused by islets interacting with complement. We have shown that glucose toxicity (GT) also plays a critical role based upon the observation that islets embolized into the PVs of diabetic athymic mice are rapidly lost but, if recipients are not diabetic, the islet grafts persist. Using donor islets resistant to the β-cell toxin streptozotocin, we have shown that intraportal islets engrafted in non-diabetic athymic mice for as little as 3 days will maintain normoglycemia when streptozotocin is administered destroying the recipient's native pancreas β-cells. What is the mechanism of GT in β-cells? Chronic exposure to hyperglycemia over-exerts β-cells and their electron transport chains leak superoxide radicals during aerobic metabolism. Here we reinterpret old data and present some compelling new data supporting a new model of early intraportal islet graft loss. We hypothesize that diabetes stimulates overproduction of superoxide in both the β-cells of the islet grafts and the endothelial cells lining the intraportal microvasculature adjacent to where the embolized islets become lodged. This double dose of oxidant damage stresses both the islets, which are highly susceptible to free radicals because of inherent low levels of scavenging enzymes, and the adjacent hepatic endothelial cells. This, superimposed upon localized endothelial damage caused by embolization, precipitates inflammation and coagulation which further damages islet grafts. Based upon this model, we predict that pre-exposing islets to sub-lethal hyperoxia should up-regulate islet free radical scavenging enzyme levels and promote initial engraftment; reinterpretation of 30 years old "passenger leukocyte" data and preliminary new data support this. Other data suggests that pre-exposure of recipients to hyperoxia could up-regulate antioxidant enzymes in the hepatic endothelium. The combination of both effects could markedly enhance early intraportal islet graft survival and engraftment. Finally, if our model is correct, current in vitro and in vivo tests used to test batches of harvested islets for viability and function prior to transplantation are poorly conceived (n.b., it is already well-known that results using these tests often do not predict clinical islet transplantation success) and a different testing paradigm is suggested. Copyright © 2014 Elsevier Ltd. All rights reserved.