HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F
2001-03-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.
Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells
Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.
2014-01-01
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234
Daher, Tamas; Tur, Mehmet Kemal; Brobeil, Alexander; Etschmann, Benjamin; Witte, Biruta; Engenhart-Cabillic, Rita; Krombach, Gabriele; Blau, Wolfgang; Grimminger, Friedrich; Seeger, Werner; Klussmann, Jens Peter; Bräuninger, Andreas; Gattenlöhner, Stefan
2018-06-01
In head and neck squamous cell carcinoma (HNSCC), the occurrence of concurrent lung malignancies poses a significant diagnostic challenge because metastatic HNSCC is difficult to discern from second primary lung squamous cell carcinoma (SCC). However, this differentiation is crucial because the recommended treatments for metastatic HNSCC and second primary lung SCC differ profoundly. We analyzed the origin of lung tumors in 32 patients with HNSCC using human papillomavirus (HPV) typing and targeted next generation sequencing of all coding exons of tumor protein 53 (TP53). Lung tumors were clearly identified as HNSCC metastases or second primary tumors in 29 patients, thus revealing that 16 patients had received incorrect diagnoses based on clinical and morphological data alone. The HPV typing and mutation analysis of all TP53 coding exons is a valuable diagnostic tool in patients with HNSCC and concurrent lung SCC, which can help to ensure that patients receive the most suitable treatment. © 2018 Wiley Periodicals, Inc.
Effect of Human and Sheep Lung Orientation on Primary Blast Injury Induced by Single Blast
2010-09-01
may be injured by m ore than one of these mechanisms in any given event. Primary blast in juries ( PBI ) are exclusively caused by the blast...overpressure. A PBI usually affects air-containing organs such as t he lung, ears and gastrointestinal tract. Secon dary blast injuries are caused by...orientation on blast injuries predicted in human and sheep models. From th is study, it is predicted that the greatest reduction in lung PBI may be
Primary lung abscess caused by Staphylococcus lugdunensis.
Chou, Deng-Wei; Lee, Chao-Tai
2017-11-01
Staphylococcus lugdunensis, a strain of coagulase-negative staphylococci, is part of the normal flora of human skin but can cause multiple infections at various sites. This microorganism has emerged as a major human pathogen. However, no study has reported primary lung abscess caused by S. lugdunensis. A 54-year-old alcoholic man without relevant past medical history was admitted because of primary lung abscesses. Empirical amoxicillin/clavulanate therapy was initially administered; however, the patient had persistent pleuritic chest pain and fever. He subsequently underwent resection of the lung abscess and removal of exudative pleural effusion on the fourth hospital day. Histopathologic examination confirmed the diagnosis of lung abscess, and colonies of gram-positive bacteria were identified. The culture specimen from the abscess was positive for S. lugdunensis, which was susceptible to amoxicillin/clavulanate, cefazolin, ciprofloxacin, clindamycin, erythromycin, oxacillin, teicoplanin, tetracycline, and vancomycin. Following resection and 3 weeks of amoxicillin/clavulanate therapy, the patient eventually recovered well without relapse. This case report is the first to describe S. lugdunensis as a cause of primary lung abscess; this microorganism should be considered a potential monomicrobial pathogen in primary lung abscess. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.
2001-01-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043
Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei
2014-01-01
The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.
NASA Astrophysics Data System (ADS)
Wimmer, G.
2008-01-01
In this paper we introduce two confidence and two prediction regions for statistical characterization of concentration measurements of product ions in order to discriminate various groups of persons for prospective better detection of primary lung cancer. Two MATLAB algorithms have been created for more adequate description of concentration measurements of volatile organic compounds in human breath gas for potential detection of primary lung cancer and for evaluation of the appropriate confidence and prediction regions.
Quantitative proteomics of bronchoalveolar lavage fluid in lung adenocarcinoma.
Almatroodi, Saleh A; McDonald, Christine F; Collins, Allison L; Darby, Ian A; Pouniotis, Dodie S
2015-01-01
The most commonly reported primary lung cancer subtype is adenocarcinoma, which is associated with a poor prognosis and short survival. Proteomic studies on human body fluids such as bronchoalveolar lavage fluid (BALF) have become essential methods for biomarker discovery, examination of tumor pathways and investigation of potential treatments. This study used quantitative proteomics to investigate the up-regulation of novel proteins in BALF from patients with primary lung adenocarcinoma in order to identify potential biomarkers. BALF samples from individuals with and without primary lung adenocarcinoma were analyzed using liquid chromatography-mass spectrometry. One thousand and one hundred proteins were identified, 33 of which were found to be consistently overexpressed in all lung adenocarcinoma samples compared to non-cancer controls. A number of overexpressed proteins have been previously shown to be related to lung cancer progression including S100-A8, annexin A1, annexin A2, thymidine phosphorylase and transglutaminase 2. The overexpression of a number of specific proteins in BALF from patients with primary lung adenocarcinoma may be used as a potential biomarker for lung adenocarcinoma. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer
Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William
2017-01-01
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048
Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya
2015-09-01
Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Sun, Qingzhu; Liu, Li; Mandal, Jyotshna; Molino, Antonio; Stolz, Daiana; Tamm, Michael; Lu, Shemin; Roth, Michael
2016-04-01
Tissue remodeling of sub-epithelial mesenchymal cells is a major pathology occurring in chronic obstructive pulmonary disease (COPD) and asthma. Fibroblasts, as a major source of interstitial connective tissue extracellular matrix, contribute to the fibrotic and inflammatory changes in these airways diseases. Previously, we described that protein arginine methyltransferase-1 (PRMT1) participates in airway remodeling in a rat model of pulmonary inflammation. In this study we investigated the mechanism by which PDGF-BB regulates PRMT1 in primary lung fibroblasts, isolated from human lung biopsies. Fibroblasts were stimulated with PDGF-BB for up-to 48h and the regulatory and activation of signaling pathways controlling PRMT1 expression were determined. PRMT1 was localized by immuno-histochemistry in human lung tissue sections and by immunofluorescence in isolated fibroblasts. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI1. ERK1/2 mitogen activated protein kinase (MAPK) was blocked by PD98059, p38 MAPK by SB203580, and STAT1 by small interference (si) RNA treatment. The results showed that PDGF-BB significantly increased PRMT1 expression after 1h lasting over 48h, through ERK1/2 MAPK and STAT1 signaling. The inhibition of ERK1/2 MAPK or of PRMT1 activity decreased PDGF-BB induced fibroblast proliferation, COX2 production, collagen-1A1 secretion, and fibronectin production. These findings suggest that PRMT1 is a central regulator of tissue remodeling and that the signaling sequence controlling its expression in primary human lung fibroblast is PDGF-ERK-STAT1. Therefore, PRMT1 presents a novel therapeutic and diagnostic target for the control of airway wall remodeling in chronic lung diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
An Investigation of Primary Student Teachers' Drawings of the Human Internal Organs
ERIC Educational Resources Information Center
Çakici, Yilmaz
2018-01-01
The aim of this study is to investigate primary student teachers' drawings of the human internal organs, e.g. location, size and presence of organs (heart, lungs, stomach, liver, kidneys, pancreas and intestines etc.) This research was conducted with 104 primary teacher candidates studying in the Faculty of Education at Trakya University during…
Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A
2012-12-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.
Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M
2017-10-15
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.
Živković, Nevenka Piskač; Petrovečki, Mladen; Lončarić, Čedna Tomasović; Nikolić, Igor; Waeg, Georg; Jaganjac, Morana; Žarković, Kamelija; Žarković, Neven
2017-04-01
The Aim of the study was to reveal if PET-CT analysis of primary and of secondary lung cancer could be related to the onset of lipid peroxidation in cancer and in surrounding non-malignant lung tissue. Nineteen patients with primary lung cancer and seventeen patients with pulmonary metastasis were involved in the study. Their lungs were analyzed by PET-CT scanning before radical surgical removal of the cancer. Specific immunohistochemistry for the major bioactive marker of lipid peroxidation, 4-hydroxynonenal (HNE), was done for the malignant and surrounding non-malignant lung tissue using genuine monoclonal antibody specific for the HNE-histidine adducts. Both the intensity of the PET-CT analysis and the HNE-immunohistochemistry were in correlation with the size of the tumors analyzed, while primary lung carcinomas were larger than the metastatic tumors. The intensity of the HNE-immunohistochemistry in the surrounding lung tissue was more pronounced in the metastatic than in the primary tumors, but it was negatively correlated with the cancer volume determined by PET-CT. The appearance of HNE was more pronounced in non-malignant surrounding tissue than in cancer or stromal cells, both in case of primary and metastatic tumors. Both PET-CT and HNE-immunohistochemistry reflect the size of the malignant tissue. However, lipid peroxidation of non-malignant lung tissue in the vicinity of cancer is more pronounced in metastatic than in primary malignancies and might represent the mechanism of defense against cancer, as was recently revealed also in case of human liver cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.
Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville
2006-01-01
Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.
Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E
2012-01-01
Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.
Primary cilia are increased in number and demonstrate structural abnormalities in human cancer.
Yasar, Binnaz; Linton, Kim; Slater, Christian; Byers, Richard
2017-07-01
Primary cilia play an important role in the regulation of cell signalling pathways and are thought to have a role in cancer but have seldom been studied in human cancer samples. Primary cilia were visualised by dual immunofluorescence for anti-CROCC (ciliary rootlet coiled-coil) and anti-tubulin in a range of human cancers (including carcinomas of stomach, pancreas, prostate, lung and colon, lobular and ductal breast cancers and follicular lymphoma) and in matched normal tissue (stomach, pancreas, lung, large and small intestines, breast and reactive lymph nodes) samples using a tissue microarray; their frequency, association with proliferation, was measured by Ki-67 staining and their structure was analysed. Compared with normal tissues, primary cilia frequency was significantly elevated in adenocarcinoma of the lung (2.75% vs 1.85%, p=0.016), adenocarcinoma of the colon (3.80% vs 2.43%, respectively, p=0.017), follicular lymphoma (1.18% vs 0.83%, p=0.003) and pancreatic adenocarcinoma (7.00% vs 5.26%, p=0.002); there was no statistically significant difference compared with normal control tissue for gastric and prostatic adenocarcinomas or for lobular and ductal breast cancers. Additionally, structural abnormalities of primary cilia were identified in cancer tissues, including elongation of the axoneme, multiple basal bodies and branching of the axoneme. Ki-67 scores ranged from 0.7% to 78.4% and showed no statistically significant correlation with primary cilia frequency across all tissues (p=0.1501). The results show upregulation of primary cilia and the presence of structural defects in a wide range of human cancer tissue samples demonstrating association of dysregulation of primary cilia with human cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.
2008-01-01
In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.
[Paraneoplastic syndromes. Associated with lung cancer].
Ochoa-Carrillo, Francisco Javier; Chávez-Mac Gregor, Mariana; Green-Renner, Dan; Green-Schneeweiss, León
2003-01-01
Paraneoplastic syndromes are disorders of host organ function occurring at a site remote from the primary tumor and its metastases. Paraneoplastic syndromes associated with primary lung cancer are not uncommon, have diverse initial manifestations, and epitomize the systemic nature of human malignant disease. The spectrum of clinical features in patients with paraneoplastic syndromes is very wide. Although diagnosis is often one of exclusion, improved understanding of the pathogenesis involved in some of these syndromes has provided another means of recognizing these disorders and perhaps treating affected patients. In this update, we review paraneoplastic syndromes associated with lung cancer, potential mechanisms, clinical manifestations, diagnosis, and treatment.
Acute Lung Injury: Making Injured Lungs Perform Better and Rebuilding Healthy Lungs
2010-07-01
Informed consent will be obtained by the study coordinator/respiratory therapist from legally authorized representatives (defined as a subject’s...will be identified by the primary intensive care unit team, who will notify the study coordinator/respiratory therapist . The study coordinator is a...registered respiratory therapist with human subjects research training and qualifications for obtaining consent, clinical monitoring, arterial blood
Production and Assessment of Decellularized Pig and Human Lung Scaffolds
Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-01-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920
Production and assessment of decellularized pig and human lung scaffolds.
Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-09-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.
Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung
Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos
2016-01-01
Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210
Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung.
Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos
2016-03-01
Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor-homologous molecule expressed on T(H)2 cells) in regulating macrophages have not been elucidated to date. We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. In vitro studies, including migration, Ca(2+) flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca(2+) flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas
NASA Astrophysics Data System (ADS)
Wehinger, Andreas; Schmid, Alex; Mechtcheriakov, Sergei; Ledochowski, Maximilian; Grabmer, Christoph; Gastl, Guenther A.; Amann, Anton
2007-08-01
Background Determination of the diagnostic usefulness of proton transfer reaction mass spectrometry (PTR-MS) for detecting primary lung cancer through analysis of volatile organic compounds (VOCs) in exhaled human breath was demonstrated in this investigation. Unlike, for example, gas-chromatographic analyses, PTR-MS can be used without time-consuming preconcentration of the gas samples.Methods By means of PTR-MS, exhaled breath samples from primary lung cancer patients (n = 17) were analyzed and compared with both an overall control collective (controls total, n = 170) and three sub-collectives: hospital personnel (controls hospital, n = 35), age-matched persons (controls age, n = 25), and smokers (controls s, n = 60), respectively.Results Among the VOCs present at reasonably high concentrations, the ones leading to the product ion at m/z = 31 (VOC-31, tentatively protonated formaldehyde) and m/z = 43 (VOC-43, tentatively a fragment of protonated iso-propanol), were found at significantly higher concentrations in the breath gas of the primary lung cancer patients as compared to the healthy controls at the following median concentrations (with interquartile distance, iqr): For VOC-31 the median concentrations were 7.0 ppb (iqr, 15.5 ppb) versus 3.0 ppb (iqr, 1.9 ppb) with P < 10-4. For VOC-43 the median concentrations were 244.1 ppb (iqr, 236.2 ppb) versus 94.1 ppb (iqr, 55.2 ppb) with P < 10-6. The discriminative power between the two collectives was further assessed by ROC-curves obtained upon variation of the chosen threshold concentration and by Fisher's Quadratic Discriminant Method.Conclusions Within the limits of pilot study, VOC-31 and -43 were found to best discriminate between exhaled breath of primary lung cancer cases and healthy controls. Simple and time-saving breath gas analysis by PTR-MS makes this method attractive for a larger clinical evaluation. It may become a new valuable tool for diagnosing primary lung cancer.
Airoldi, Irma; Di Carlo, Emma; Cocco, Claudia; Caci, Emanuela; Cilli, Michele; Sorrentino, Carlo; Sozzi, Gabriella; Ferrini, Silvano; Rosini, Sandra; Bertolini, Giulia; Truini, Mauro; Grossi, Francesco; Galietta, Luis Juan Vicente; Ribatti, Domenico; Pistoia, Vito
2009-01-01
Background Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rβ2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. Methodology/Principal Findings Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rβ2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R+ neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/β2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/β2+ cells inhibited angiogenesis in vitro. Tumors formed by Calu6/β2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. Conclusions This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well known immune-modulatory properties of the cytokine and may provide a rational basis for the development of a clinical trial. PMID:19582164
A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis.
Bauer, Yasmina; Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali
2015-02-01
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat-human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1-treated primary human lung fibroblasts and transforming growth factor-β1-treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model-human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease.
A Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis
Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F.; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O.; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali
2015-01-01
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat–human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1–treated primary human lung fibroblasts and transforming growth factor-β1–treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model–human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease. PMID:25029475
Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia
2012-01-01
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521
INDUCTION OF DNA STRAND BREAKS BY TRIHALOMETHANES IN PRIMARY HUMAN LUNG EPITHELIAL CELLS
Abstract
Trihalomethanes (TEMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocyte...
Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew
2017-06-01
Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.
2012-01-01
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667
Powell, Joshua D.; Hutchison, Janine R.; Hess, Becky M.; ...
2015-07-30
Aims: To better understand the parameters that govern spore dissemination after lung exposure using in vitro cell systems. Methods and Results: We evaluated the kinetics of uptake, germination and proliferation of B. anthracis Sterne spores in association with human primary lung epithelial cells, Calu-3, and A549 cell lines. We also analyzed the influence of various cell culture media formulations related to spore germination. Conclusions: We found negligible spore uptake by epithelial cells, but germination and proliferation of spores in the extracellular environment was evident, and was appreciably higher in A549 and Calu-3 cultures than in primary epithelial cells. Additionally, ourmore » results revealed spores in association with primary cells submerged in cell culture media germinated 1 h« less
Ziegler, Verena; Henninger, Christian; Simiantonakis, Ioannis; Buchholzer, Marcel; Ahmadian, Mohammad Reza; Budach, Wilfried; Fritz, Gerhard
2017-01-01
Thoracic radiotherapy causes damage of normal lung tissue, which limits the cumulative radiation dose and, hence, confines the anticancer efficacy of radiotherapy and impacts the quality of life of tumor patients. Ras-homologous (Rho) small GTPases regulate multiple stress responses and cell death. Therefore, we investigated whether pharmacological targeting of Rho signaling by the HMG-CoA-reductase inhibitor lovastatin influences ionizing radiation (IR)-induced toxicity in primary human lung fibroblasts, lung epithelial and lung microvascular endothelial cells in vitro and subchronic mouse lung tissue damage following hypo-fractionated irradiation (4x4 Gy). The statin improved the repair of radiation-induced DNA double-strand breaks (DSBs) in all cell types and, moreover, protected lung endothelial cells from IR-induced caspase-dependent apoptosis, likely involving p53-regulated mechanisms. Under the in vivo situation, treatment with lovastatin or the Rac1-specific small molecule inhibitor EHT1864 attenuated the IR-induced increase in breathing frequency and reduced the percentage of γH2AX and 53BP1-positive cells. This indicates that inhibition of Rac1 signaling lowers IR-induced residual DNA damage by promoting DNA repair. Moreover, lovastatin and EHT1864 protected lung tissue from IR-triggered apoptosis and mitigated the IR-stimulated increase in regenerative proliferation. Our data document beneficial anti-apoptotic and genoprotective effects of pharmacological targeting of Rho signaling following hypo-fractionated irradiation of lung cells in vitro and in vivo. Rac1-targeting drugs might be particular useful for supportive care in radiation oncology and, moreover, applicable to improve the anticancer efficacy of radiotherapy by widening the therapeutic window of thoracic radiation exposure. PMID:28796249
Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders
2014-01-01
Background Although major concerns exist regarding the potential consequences of human exposure to nanoparticles (NP), no human toxicological data is currently available. To address this issue, we took welders, who present various adverse respiratory outcomes, as a model population of occupational exposure to NP. The aim of this study was to evaluate if welding fume-issued NP could be responsible, at least partially, in the lung alterations observed in welders. Methods A combination of imaging and material science techniques including ((scanning) transmission electron microscopy ((S)TEM), energy dispersive X-ray (EDX), and X-ray microfluorescence (μXRF)), was used to characterize NP content in lung tissue from 21 welders and 21 matched control patients. Representative NP were synthesized, and their effects on macrophage inflammatory secretome and migration were evaluated, together with the effect of this macrophage inflammatory secretome on human lung primary fibroblasts differentiation. Results Welding-related NP (Fe, Mn, Cr oxides essentially) were identified in lung tissue sections from welders, in macrophages present in the alveolar lumen and in fibrous regions. In vitro macrophage exposure to representative NP (Fe2O3, Fe3O4, MnFe2O4 and CrOOH) induced the production of a pro-inflammatory secretome (increased production of CXCL-8, IL-1ß, TNF-α, CCL-2, −3, −4, and to a lesser extent IL-6, CCL-7 and −22), and all but Fe3O4 NP induce an increased migration of macrophages (Boyden chamber). There was no effect of NP-exposed macrophage secretome on human primary lung fibroblasts differentiation. Conclusions Altogether, the data reported here strongly suggest that welding-related NP could be responsible, at least in part, for the pulmonary inflammation observed in welders. These results provide therefore the first evidence of a link between human exposure to NP and long-term pulmonary effects. PMID:24885771
Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.
Charest, Jonathan M; Okamoto, Tatsuya; Kitano, Kentaro; Yasuda, Atsushi; Gilpin, Sarah E; Mathisen, Douglas J; Ott, Harald C
2015-06-01
The primary treatment for end-stage lung disease is lung transplantation. However, donor organ shortage remains a major barrier for many patients. In recent years, techniques for maintaining lungs ex vivo for evaluation and short-term (<12 h) resuscitation have come into more widespread use in an attempt to expand the donor pool. In parallel, progress in whole organ engineering has provided the potential perspective of patient derived grafts grown on demand. As both of these strategies advance to more complex interventions for lung repair and regeneration, the need for a long-term organ culture system becomes apparent. Herein we describe a novel clinical scale bioreactor capable of maintaining functional porcine and human lungs for at least 72 h in isolated lung culture (ILC). The fully automated, computer controlled, sterile, closed circuit system enables physiologic pulsatile perfusion and negative pressure ventilation, while gas exchange function, and metabolism can be evaluated. Creation of this stable, biomimetic long-term culture environment will enable advanced interventions in both donor lungs and engineered grafts of human scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jones, Jace W; Jackson, Isabel L; Vujaskovic, Zeljko; Kaytor, Michael D; Kane, Maureen A
2017-12-01
Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.
Hirahata, Mio; Osaki, Mitsuhiko; Kanda, Yusuke; Sugimoto, Yui; Yoshioka, Yusuke; Kosaka, Nobuyoshi; Takeshita, Fumitaka; Fujiwara, Tomohiro; Kawai, Akira; Ito, Hisao; Ochiya, Takahiro; Okada, Futoshi
2016-05-01
Despite recent improvements in the therapy for osteosarcoma, 30-40% of osteosarcoma patients die of this disease, mainly due to its lung metastasis. We have previously reported that intravenous injection of miR-143 significantly suppresses lung metastasis of human osteosarcoma cells (143B) in a mouse model. In this study, we examined the biological role and mechanism of miR-143 in the metastasis of human osteosarcoma cells. We identified plasminogen activator inhibitor-1 (PAI-1) as a direct target gene of miR-143. To determine the role of PAI-1 in human osteosarcoma cells, siRNA was transfected into 143B cells for knockdown of PAI-1 expression. An in vitro study showed that downregulation of PAI-1 suppressed cell invasion activity, but not proliferation. Moreover, injection of PAI-1 siRNA into a primary lesion in the osteosarcoma mouse model inhibited lung metastasis compared to control siRNA-injected mice, without influencing the proliferative activity of the tumor cells. Subsequent examination using 143B cells revealed that knockdown of PAI-1 expression resulted in downregulation of the expression and secretion of matrix metalloproteinase-13 (MMP-13), which is also a target gene of miR-143 and a proteolytic enzyme that regulates tumor-induced osteolysis. Immunohistochemical analysis using clinical samples showed that higher miR-143 expressing cases showed poor expression of PAI-1 in the primary tumor cells. All such cases belonged to the lung metastasis-negative group. Moreover, the frequency of lung metastasis-positive cases was significantly higher in PAI-1 and MMP-13 double-positive cases than in PAI-1 or MMP-13 single-positive or double-negative cases (P < 0.05). These results indicated that PAI-1, a target gene of miR-143, regulates invasion and lung metastasis via enhancement of MMP-13 expression and secretion in human osteosarcoma cells, suggesting that these molecules could be potential therapeutic target genes for preventing lung metastasis in osteosarcoma patients. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
Krawic, Casey; Luczak, Michal W; Zhitkovich, Anatoly
2017-09-18
Inhalation of soluble chromium(VI) is firmly linked with higher risks of lung cancer in humans. However, comparative studies in rats have found a high lung tumorigenicity for moderately soluble chromates but no tumors for highly soluble chromates. These major species differences remain unexplained. We investigated the impact of extracellular reducers on responses of human and rat lung epithelial cells to different Cr(VI) forms. Extracellular reduction of Cr(VI) is a detoxification process, and rat and human lung lining fluids contain different concentrations of ascorbate and glutathione. We found that reduction of chromate anions in simulated lung fluids was principally driven by ascorbate with only minimal contribution from glutathione. The addition of 500 μM ascorbate (∼rat lung fluid concentration) to culture media strongly inhibited cellular uptake of chromate anions and completely prevented their cytotoxicity even at otherwise lethal doses. While proportionally less effective, 50 μM extracellular ascorbate (∼human lung fluid concentration) also decreased uptake of chromate anions and their cytotoxicity. In comparison to chromate anions, uptake and cytotoxicity of respirable particles of moderately soluble CaCrO 4 and SrCrO 4 were much less sensitive to suppression by extracellular ascorbate, especially during early exposure times and in primary bronchial cells. In the absence of extracellular ascorbate, chromate anions and CaCrO 4 /SrCrO 4 particles produced overall similar levels of DNA double-stranded breaks, with less soluble particles exhibiting a slower rate of breakage. Our results indicate that a gradual extracellular dissolution and a rapid internalization of calcium chromate and strontium chromate particles makes them resistant to detoxification outside the cells, which is extremely effective for chromate anions in the rat lung fluid. The detoxification potential of the human lung fluid is significant but much lower and insufficient to provide a threshold-type dose dependence for soluble chromates.
RATIONALE: Ozone (Os) isa ubiquitous air pollutant that has been shown to have a detrimental effect on human health. Controlled exposure studies in humans have demonstrated that acute exposure to 03 results in reversible reduction in lung function immediately post-exposure, incre...
Expression of TMPRSS4 in non-small cell lung cancer and its modulation by hypoxia
NGUYEN, TRI-HUNG; WEBER, WILLIAM; HAVARI, EVIS; CONNORS, TIMOTHY; BAGLEY, REBECCA G.; McLAREN, RAJASHREE; NAMBIAR, PRASHANT R.; MADDEN, STEPHEN L.; TEICHER, BEVERLY A.; ROBERTS, BRUCE; KAPLAN, JOHANNE; SHANKARA, SRINIVAS
2012-01-01
Overexpression of TMPRSS4, a cell surface-associated transmembrane serine protease, has been reported in pancreatic, colorectal and thyroid cancers, and has been implicated in tumor cell migration and metastasis. Few reports have investigated both TMPRSS4 gene expression levels and the protein products. In this study, quantitative RT-PCR and protein staining were used to assess TMPRSS4 expression in primary non-small cell lung carcinoma (NSCLC) tissues and in lung tumor cell lines. At the transcriptional level, TMPRSS4 message was significantly elevated in the majority of human squamous cell and adenocarcinomas compared with normal lung tissues. Staining of over 100 NSCLC primary tumor and normal specimens with rabbit polyclonal anti-TMPRSS4 antibodies confirmed expression at the protein level in both squamous cell and adenocarcinomas with little or no staining in normal lung tissues. Human lung tumor cell lines expressed varying levels of TMPRSS4 mRNA in vitro. Interestingly, tumor cell lines with high levels of TMPRSS4 mRNA failed to show detectable TMPRSS4 protein by either immunoblotting or flow cytometry. However, protein levels were increased under hypoxic culture conditions suggesting that hypoxia within the tumor microenvironment may upregulate TMPRSS4 protein expression in vivo. This was supported by the observation of TMPRSS4 protein in xenograft tumors derived from the cell lines. In addition, staining of human squamous cell carcinoma samples for carbonic anhydrase IX (CAIX), a hypoxia marker, showed TMPRSS4 positive cells adjacent to CAIX positive cells. Overall, these results indicate that the cancer-associated TMPRSS4 protein is overexpressed in NSCLC and may represent a potential therapeutic target. PMID:22692880
A reevaluation of CD22 expression in human lung cancer.
Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S
2014-01-01
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Hutchison, Janine R.; Hess, Becky M.
Aims: To better understand the parameters that govern spore dissemination after lung exposure using in vitro cell systems. Methods and Results: We evaluated the kinetics of uptake, germination and proliferation of B. anthracis Sterne spores in association with human primary lung epithelial cells, Calu-3, and A549 cell lines. We also analyzed the influence of various cell culture media formulations related to spore germination. Conclusions: We found negligible spore uptake by epithelial cells, but germination and proliferation of spores in the extracellular environment was evident, and was appreciably higher in A549 and Calu-3 cultures than in primary epithelial cells. Additionally, ourmore » results revealed spores in association with primary cells submerged in cell culture media germinated 1 h« less
Measurement of Flow Patterns and Dispersion in the Human Airways
NASA Astrophysics Data System (ADS)
Fresconi, Frank E.; Prasad, Ajay K.
2006-03-01
A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.
LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Zhang, Hui; Sweezey, Neil B; Kaplan, Feige
2015-02-15
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological Society.
Jassam, Samah A; Maherally, Zaynah; Smith, James R; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L; Pilkington, Geoffrey J
2016-05-01
CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non-small cell lung cancer (NSCLC). CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.
Jassam, Samah A.; Maherally, Zaynah; Smith, James R.; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.
2016-01-01
Background CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non–small cell lung cancer (NSCLC). Methods CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. Results CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. Conclusion This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E. PMID:26472821
Arsenic (As) is classified as a known human carcinogen with primary targets of urinary bladder (UB), skin and lung. The most prevalent source of As exposure in humans is drinking water contaminated with inorganic As (iAs), and millions of people worldwide are exposed to drinking ...
Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.
2014-01-01
Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression and pathway-specific injury, and explore why some genes apparently exhibit neutral (hTBM, HLA-E) or inconclusive (CD39) effects, GalTKO, hCD46, HO-1, hCD55, and hEPCR modifications were associated with significant lung xenograft protection. This analysis supports the hypothesis that multiple genetic modifications targeting different known mechanisms of xenograft injury will be required to optimize lung xenograft survival. PMID:25470239
miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.
Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang
2017-02-01
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.
Calvo, A; Catena, R; Noble, MS; Carbott, D; Gil-Bazo, I; Gonzalez-Moreno, O; Huh, J-I; Sharp, R; Qiu, T-H; Anver, MR; Merlino, G; Dickson, RB; Johnson, MD; Green, JE
2009-01-01
Metastasis is the primary cause of death in patients with breast cancer. Overexpression of c-myc in humans correlates with metastases, but transgenic mice only show low rates of micrometastases. We have generated transgenic mice that overexpress both c-myc and vascular endothelial growth factor (VEGF) (Myc/VEGF) in the mammary gland, which develop high rates of pulmonary macrometastases. Gene expression profiling revealed a set of deregulated genes in Myc/VEGF tumors compared to Myc tumors associated with the increased metastatic phenotype. Cross-comparisons between this set of genes with a human breast cancer lung metastasis gene signature identified five common targets: tenascin-C (TNC), matrix metalloprotease-2, collagen-6-A1, mannosidase-α-1A and HLA-DPA1. Signaling blockade or knockdown of TNC in MDA-MB-435 cells resulted in a significant impairment of cell migration and anchorage-independent cell proliferation. Mice injected with clonal MDA-MB-435 cells with reduced expression of TNC demonstrated a significant decrease (P < 0.05) in (1) primary tumor growth; (2) tumor relapse after surgical removal of the primary tumor and (3) incidence of lung metastasis. Our results demonstrate that VEGF induces complex alterations in tissue architecture and gene expression. The TNC signaling pathway plays an important role in mammary tumor growth and metastases, suggesting that TNC may be a relevant target for therapy against metastatic breast cancer. PMID:18504437
Donnem, Tom; Hu, Jiangting; Ferguson, Mary; Adighibe, Omanma; Snell, Cameron; Harris, Adrian L; Gatter, Kevin C; Pezzella, Francesco
2013-08-01
Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10-30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.
PATHOLOGY of POST PRIMARY TUBERCULOSIS of the LUNG: AN ILLUSTRATED CRITICAL REVIEW
Hunter, Robert L.
2011-01-01
Post primary tuberculosis occurs in immunocompetent adults, is restricted to the lungs and accounts for 80% of all clinical cases and nearly 100% of transmission of infection. The supply of human tissues with post primary tuberculosis plummeted with the introduction of antibiotics decades before the flowering of research using molecular methods in animal models. Unfortunately, the paucity of human tissues prevented validation of the models. As a result, it is a paradigm of contemporary research that caseating granulomas are the characteristic lesion of all tuberculosis and that cavities form when they erode into bronchi. This differs from descriptions of the preantibiotic era when many investigators had access to thousands of cases. They reported that post primary tuberculosis begins as an exudative reaction: a tuberculous lipid pneumonia of foamy alveolar macrophages that undergoes caseation necrosis and fragmentation to produce cavities. Granulomas in post primary disease arise only in response to old caseous pneumonia and produce fibrosis, not cavities. We confirmed and extended these observations with study of 104 cases of untreated tuberculosis. In addition, studies of the lungs of infants and immunosuppressed adults revealed a second type of tuberculous pneumonia that seldom produces cavities. Since the concept that cavities arise from caseating granulomas was supported by studies of animals infected with Mycobacterium bovis, we investigated its pathology. We found that M. bovis does not produce post primary tuberculosis in any species. It only produces an aggressive primary tuberculosis that can develop small cavities by erosion of caseating granulomas. Consequently, a key unresolved question in the pathogenesis of tuberculosis is identification of the mechanisms by which Mycobacterium tuberculosis establish a localized safe haven in alveolar macrophages in an otherwise solidly immune host where it can develop conditions for formation of cavities and transmission to new hosts. PMID:21733755
A Re-evaluation of CD22 Expression by Human Lung Cancer
Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.
2014-01-01
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821
NASA Astrophysics Data System (ADS)
Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.
1997-10-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.
Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng
2017-01-01
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258
Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng
2017-05-01
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the intestinal cell kinase (ICK) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. © 2017 Federation of European Biochemical Societies.
Sayah, David M; Mallavia, Beñat; Liu, Fengchun; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; DerHovanessian, Ariss; Ross, David J; Lynch, Joseph P; Saggar, Rajan; Ardehali, Abbas; Ware, Lorraine B; Christie, Jason D; Belperio, John A; Looney, Mark R
2015-02-15
Primary graft dysfunction (PGD) causes early mortality after lung transplantation and may contribute to late graft failure. No effective treatments exist. The pathogenesis of PGD is unclear, although both neutrophils and activated platelets have been implicated. We hypothesized that neutrophil extracellular traps (NETs) contribute to lung injury in PGD in a platelet-dependent manner. To study NETs in experimental models of PGD and in lung transplant patients. Two experimental murine PGD models were studied: hilar clamp and orthotopic lung transplantation after prolonged cold ischemia (OLT-PCI). NETs were assessed by immunofluorescence microscopy and ELISA. Platelet activation was inhibited with aspirin, and NETs were disrupted with DNaseI. NETs were also measured in bronchoalveolar lavage fluid and plasma from lung transplant patients with and without PGD. NETs were increased after either hilar clamp or OLT-PCI compared with surgical control subjects. Activation and intrapulmonary accumulation of platelets were increased in OLT-PCI, and platelet inhibition reduced NETs and lung injury, and improved oxygenation. Disruption of NETs by intrabronchial administration of DNaseI also reduced lung injury and improved oxygenation. In bronchoalveolar lavage fluid from human lung transplant recipients, NETs were more abundant in patients with PGD. NETs accumulate in the lung in both experimental and clinical PGD. In experimental PGD, NET formation is platelet-dependent, and disruption of NETs with DNaseI reduces lung injury. These data are the first description of a pathogenic role for NETs in solid organ transplantation and suggest that NETs are a promising therapeutic target in PGD.
Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing
2016-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333
Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A
2017-11-23
The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.
Triple synchronous primary lung cancer: a case report and review of the literature.
Kashif, Muhammad; Ayyadurai, Puvanalingam; Thanha, Luong; Khaja, Misbahuddin
2017-09-01
Multiple primary lung cancer may present in synchronous or metachronous form. Synchronous multiple primary lung cancer is defined as multiple lung lesions that develop at the same time, whereas metachronous multiple primary lung cancer describes multiple lung lesions that develop at different times, typically following treatment of the primary lung cancer. Patients with previously treated lung cancer are at risk for developing metachronous lung cancer, but with the success of computed tomography and positron emission tomography, the ability to detect both synchronous and metachronous lung cancer has increased. We present a case of a 63-year-old Hispanic man who came to our hospital for evaluation of chest pain, dry cough, and weight loss. He had recently been diagnosed with adenocarcinoma in the right upper lobe, with a poorly differentiated carcinoma favoring squamous cell cancer based on bronchoalveolar lavage of the right lower lobe for which treatment was started. Later, bronchoscopy incidentally revealed the patient to have an endobronchial lesion that turned out to be mixed small and large cell neuroendocrine lung cancer. Our patient had triple synchronous primary lung cancers that histologically were variant primary cancers. Triple synchronous primary lung cancer management continues to be a challenge. Our patient's case suggests that multiple primary lung cancers may still occur at a greater rate than can be detected by high-resolution computed tomography.
Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang
2014-01-01
Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.
Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang
2014-01-01
Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301
Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M
2014-01-01
Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.
Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro; Shinkai, Tetsu; Kubo, Yoshiro; Sugawara, Yoshifumi; Inoue, Takeshi; Sakai, Shinya; Aono, Shoji; Takahashi, Tadaaki; Semba, Takatoshi; Uwatsu, Kotaro
2010-02-01
The optimal dose of stereotactic body radiotherapy (SBRT) for metastatic lung tumors has not been clarified. Local control rates of metastatic lung tumors treated with SBRT of 48 Gy in four fractions, which is one of the common dose schedules for Stage I primary lung cancer in Japan, were examined. Between 2006 and 2008, 12 metastatic lung tumors (colorectal cancer, 7; others, 5) in 10 patients and 56 lesions of Stage I primary lung cancer (T1, 43; T2, 13) in 52 patients were treated with SBRT of 48 Gy in four fractions at the isocenter. Two-year overall survival rates were 86% for patients with metastatic lung tumors and 96% for patients with Stage I primary lung cancer (P = 0.4773). One- and 2-year local control rates were 48% and 25% for metastatic lung tumors, and 91% and 88% for Stage I primary lung cancer, respectively (P < 0.0001). The local control rates after SBRT of 48 Gy in four fractions were significantly worse in metastatic lung tumors compared with Stage I primary lung cancer. In SBRT, metastatic lung tumors should be clearly differentiated from primary lung cancer and should be given higher doses.
Survival in patients with metachronous second primary lung cancer.
Ha, Duc; Choi, Humberto; Chevalier, Cory; Zell, Katrina; Wang, Xiao-Feng; Mazzone, Peter J
2015-01-01
Four to 10% of patients with non-small cell lung cancer subsequently develop a metachronous second primary lung cancer. The decision to perform surveillance or screening imaging for patients with potentially cured lung cancer must take into account the outcomes expected when detecting metachronous second primaries. To assess potential survival differences between patients with metachronous second primary lung cancer compared to matched patients with first primary lung cancer. We retrospectively reviewed patients diagnosed with lung cancer at the Cleveland Clinic (2006-2010). Metachronous second primary lung cancer was defined as lung cancer diagnosed after a 4-year, disease-free interval from the first lung cancer, or if there were two different histologic subtypes diagnosed at different times. Patients with first primary lung cancer diagnosed in the same time period served as control subjects. Propensity score matching was performed using age, sex, smoking history, histologic subtype, and collaborative stage, with a 1:3 case-control ratio. Survival analyses were performed by Cox proportional hazards modeling and Kaplan-Meier estimates. Forty-four patients met criteria for having a metachronous second primary lung cancer. There were no statistically significant differences between case subjects and control subjects in prognostic variables. The median survival time and 2-year overall survival rate for the metachronous second primary group, compared with control subjects, were as follows: 11.8 versus 18.4 months (P = 0.18) and 31.0 versus 40.9% (P = 0.28). The survival difference was largest in those with stage I metachronous second primaries (median survival time, 26.8 vs. 60.4 mo, P = 0.09; 2-year overall survival, 56.3 vs. 71.2%, P = 0.28). Patients with stage I metachronous second primary lung cancer may have worse survival than those who present with a first primary lung cancer. This could influence the benefit-risk balance of screening the high-risk cohort with a previously treated lung cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, F.L.; Park, J.F.; Dagle, G.E.
1993-06-01
In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 ofmore » 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.« less
Mallavia, Beñat; Liu, Fengchun; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; DerHovanessian, Ariss; Ross, David J.; Lynch III, Joseph P.; Saggar, Rajan; Ardehali, Abbas; Ware, Lorraine B.; Christie, Jason D.; Belperio, John A.; Looney, Mark R.
2015-01-01
Rationale: Primary graft dysfunction (PGD) causes early mortality after lung transplantation and may contribute to late graft failure. No effective treatments exist. The pathogenesis of PGD is unclear, although both neutrophils and activated platelets have been implicated. We hypothesized that neutrophil extracellular traps (NETs) contribute to lung injury in PGD in a platelet-dependent manner. Objectives: To study NETs in experimental models of PGD and in lung transplant patients. Methods: Two experimental murine PGD models were studied: hilar clamp and orthotopic lung transplantation after prolonged cold ischemia (OLT-PCI). NETs were assessed by immunofluorescence microscopy and ELISA. Platelet activation was inhibited with aspirin, and NETs were disrupted with DNaseI. NETs were also measured in bronchoalveolar lavage fluid and plasma from lung transplant patients with and without PGD. Measurements and Main Results: NETs were increased after either hilar clamp or OLT-PCI compared with surgical control subjects. Activation and intrapulmonary accumulation of platelets were increased in OLT-PCI, and platelet inhibition reduced NETs and lung injury, and improved oxygenation. Disruption of NETs by intrabronchial administration of DNaseI also reduced lung injury and improved oxygenation. In bronchoalveolar lavage fluid from human lung transplant recipients, NETs were more abundant in patients with PGD. Conclusions: NETs accumulate in the lung in both experimental and clinical PGD. In experimental PGD, NET formation is platelet-dependent, and disruption of NETs with DNaseI reduces lung injury. These data are the first description of a pathogenic role for NETs in solid organ transplantation and suggest that NETs are a promising therapeutic target in PGD. PMID:25485813
Deposition of ultrafine (nano) particles in the human lung.
Asgharian, Bahman; Price, Owen T
2007-10-01
Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.
28 CFR 79.64 - Proof of primary lung cancer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...
28 CFR 79.64 - Proof of primary lung cancer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...
28 CFR 79.64 - Proof of primary lung cancer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...
28 CFR 79.64 - Proof of primary lung cancer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...
28 CFR 79.64 - Proof of primary lung cancer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...
Goto, Taichiro; Hirotsu, Yosuke; Mochizuki, Hitoshi; Nakagomi, Takahiro; Shikata, Daichi; Yokoyama, Yujiro; Oyama, Toshio; Amemiya, Kenji; Okimoto, Kenichiro; Omata, Masao
2017-05-09
In cases of multiple lung cancers, individual tumors may represent either a primary lung cancer or both primary and metastatic lung cancers. Treatment selection varies depending on such features, and this discrimination is critically important in predicting prognosis. The present study was undertaken to determine the efficacy and validity of mutation analysis as a means of determining whether multiple lung cancers are primary or metastatic in nature. The study involved 12 patients who underwent surgery in our department for multiple lung cancers between July 2014 and March 2016. Tumor cells were collected from formalin-fixed paraffin-embedded tissues of the primary lesions by using laser capture microdissection, and targeted sequencing of 53 lung cancer-related genes was performed. In surgically treated patients with multiple lung cancers, the driver mutation profile differed among the individual tumors. Meanwhile, in a case of a solitary lung tumor that appeared after surgery for double primary lung cancers, gene mutation analysis using a bronchoscopic biopsy sample revealed a gene mutation profile consistent with the surgically resected specimen, thus demonstrating that the tumor in this case was metastatic. In cases of multiple lung cancers, the comparison of driver mutation profiles clarifies the clonal origin of the tumors and enables discrimination between primary and metastatic tumors.
Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun
2017-01-01
Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.
Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun
2017-01-01
Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768
28 CFR 79.45 - Proof of primary lung cancer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.54 - Proof of primary lung cancer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.54 - Proof of primary lung cancer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.45 - Proof of primary lung cancer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.45 - Proof of primary lung cancer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.45 - Proof of primary lung cancer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.54 - Proof of primary lung cancer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.54 - Proof of primary lung cancer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.45 - Proof of primary lung cancer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
28 CFR 79.54 - Proof of primary lung cancer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...
2014-01-01
Background Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Methods Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 106 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. Results ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. Conclusion These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs. PMID:24612486
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Ralf; Koenig, Wolfgang
2006-07-05
We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants ofmore » human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.« less
Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav
2013-01-01
Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181
Cai, Xiongwei; Xiao, Ting; James, Sharon Y; Da, Jiping; Lin, Dongmei; Liu, Yu; Zheng, Yang; Zou, Shuangmei; Di, Xuebing; Guo, Suping; Han, Naijun; Lu, Yong-Jie; Cheng, Shujun; Gao, Yanning; Zhang, Kaitai
2009-09-01
The small protein, HSPC300 (haematopoietic stem/progenitor cell protein 300), is associated with reorganization of actin filaments and cell movement, but its activity has not been reported in human cancer cells. Here, we investigated the association of HSPC300 expression with clinical features of lung squamous cell carcinoma. High levels of HSPC300 protein were detected in 84.1% of tumour samples, and in 30.8% of adjacent morphologically normal tissues. The number of primary tumours with elevated HSPC300 levels was significantly higher in primary tumours with lymph node metastases as opposed to those without, and also in tumours from patients with more advanced disease. HSPC300 modulates the morphology and motility of cells, as siRNA knockdown caused the reorganization of actin filaments, decreased the formation of pseudopodia, and inhibited the migration of a lung cancer cell line. We further showed that HSPC300 interacted with the WAVE2 protein, and HSPC300 silencing resulted in the degradation of WAVE2 in vitro. HSPC300 and WAVE2 were co-expressed in approximately 85.7% of primary tumours with lymph node metastases. We hypothesize that HSPC300 is associated with metastatic potential of lung squamous cell carcinoma through its interaction with WAVE2.
I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.
NASA Astrophysics Data System (ADS)
Jafari, Farhad
The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the echo characteristics on each patient group and their pulmonary pathology is made. It is concluded that the technique may provide a potential tool in detecting pulmonary abnormalities. More controlled patient studies, however, are indicated as necessary to determine the sensitivity of the ultrasound technique.
Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia
Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.
2012-01-01
Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150
A 3D human tissue-engineered lung model to study influenza A infection.
Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather
2018-05-05
Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten
2017-12-01
Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.
Stueckle, Todd A; Davidson, Donna C; Derk, Ray; Wang, Peng; Friend, Sherri; Schwegler-Berry, Diane; Zheng, Peng; Wu, Nianqiang; Castranova, Vince; Rojanasakul, Yon; Wang, Liying
2017-06-01
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 μg/cm 2 to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NH x ). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NH x possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NH x -exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.
Conte, Enrico; Gili, Elisa; Fagone, Evelina; Fruciano, Mary; Iemmolo, Maria; Vancheri, Carlo
2014-07-16
Pirfenidone is an orally active small molecule that has been shown to inhibit the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis. Although pirfenidone exhibits well documented antifibrotic and antiinflammatory activities, in vitro and in vivo, its molecular targets and mechanisms of action have not been elucidated. In this study, we investigated the effects of pirfenidone on proliferation, TGF-β-induced differentiation and fibrogenic activity of primary human lung fibroblasts (HLFs). Pirfenidone reduced fibroblast proliferation and attenuated TGF-β-induced α-smooth muscle actin (SMA) and pro-collagen (Col)-I mRNA and protein levels. Importantly, pirfenidone inhibited TGF-β-induced phosphorylation of Smad3, p38, and Akt, key factors in the TGF-β pathway. Together, these results demonstrate that pirfenidone modulates HLF proliferation and TGF-β-mediated differentiation into myofibroblasts by attenuating key TGF-β-induced signaling pathways. Copyright © 2014 Elsevier B.V. All rights reserved.
[Survival Strategies of Aspergillus in the Human Body].
Tashiro, Masato; Izumikawa, Koichi
2017-01-01
The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.
Perioperative detection of circulating tumour cells in patients with lung cancer.
Chudasama, Dimple; Burnside, Nathan; Beeson, Julie; Karteris, Emmanouil; Rice, Alexandra; Anikin, Vladimir
2017-08-01
Lung cancer is a leading cause of mortality and despite surgical resection a proportion of patients may develop metastatic spread. The detection of circulating tumour cells (CTCs) may allow for improved prediction of metastatic spread and survival. The current study evaluates the efficacy of the ScreenCell® filtration device, to capture, isolate and propagate CTCs in patients with primary lung cancer. Prior to assessment of CTCs, the present study detected cancer cells in a proof-of-principle- experiment using A549 human lung carcinoma cells as a model. Ten patients (five males and five females) with pathologically diagnosed primary non-small cell lung cancer undergoing surgical resection, had their blood tested for CTCs. Samples were taken from a peripheral vessel at the baseline, from the pulmonary vein draining the lobe containing the tumour immediately prior to division, a further central sample was taken following completion of the resection, and a final peripheral sample was taken three days post-resection. A significant increase in CTCs was observed from baseline levels following lung manipulation. No association was able to be made between increased levels of circulating tumour cells and survival or the development of metastatic deposits. Manipulation of the lung during surgical resection for non-small cell lung carcinoma results in a temporarily increased level of CTCs; however, no clinical impact for this increase was observed. Overall, the study suggests the ScreenCell® device has the potential to be used as a CTC isolation tool, following further work, adaptations and improvements to the technology and validation of results.
Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott
2013-01-01
Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408
Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.
2011-01-01
The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675
Lung cells support osteosarcoma cell migration and survival.
Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard
2017-01-25
Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline phosphatase staining. Lung endothelial HULEC-5a cells are attractants for OS cell migration, proliferation, and survival. The SJSA-1 osteosarcoma cell line demonstrated greater metastatic potential than Saos-2 and U-2 cells. ALDH appears to be involved in the interaction between lung and OS cells, and ALP may be a valuable biomarker for monitoring functional OS changes during metastasis.
Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.
Ma, Yunxia; Chen, Yuan; Petersen, Iver
2017-04-01
Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.
Li, Dongqi; He, Chuanchun; Xia, Yaoxiong; Du, Yaxi; Zhang, Jing
2018-04-23
Pembrolizumab has significantly improved outcomes in patients with advanced non-small cell lung cancer. Combining programmed death-1 inhibitor with stereotactic body radiotherapy showed a slight toxicity and good benefits in recent clinical trials. However, patients infected with human immunodeficiency virus were excluded from most trials because it was assumed that their anti-tumor immunity was compromised compared with immunocompetent patients. In June 2016, a 52-year-old Chinese man presented with human immunodeficiency virus and lung adenocarcinoma (T1bN3M1b). From November 2016 to December 2016, systemic chemotherapy and palliative radiotherapy for bone metastasis of femoral neck were carried out, but the tumor progressed. In January 2017, after immunochemistry detection of programmed death-1 and programmed death-ligand 1 expression (both > 50%), pembrolizumab was started. Three weeks after pembrolizumab, we combined stereotactic body radiotherapy for the primary lung tumor. He received no comfort and his CD4 lymphocyte count was stable. Human immunodeficiency virus-ribonucleic acid remained below the limits of detection. In March 2017, after three cycles of pembrolizumab and 5 weeks of stereotactic body radiotherapy therapy, he suddenly presented with palpitations. Emergency computed tomography scanning showed massive pericardial effusion and interstitial pneumonia. So we interrupted the pembrolizumab use and initiated treatment with prednisolone 1 mg/kg; however, the tumor progressed. Then, his CD4 lymphocyte count declined. Finally he died in June 2017 due to dyscrasia. Pembrolizumab combined with SBRT therapy for patients with human immunodeficiency virus infection and non-small cell lung cancer may lead to serious immune-related adverse events and more clinical trials are needed.
Long non-coding RNAs may serve as biomarkers in breast cancer combined with primary lung cancer
Mao, Weimin; Chen, Bo; Yang, Shifeng; Ding, Xiaowen; Zou, Dehong; Mo, Wenju; He, Xiangming; Zhang, Xiping
2017-01-01
Long non-coding RNAs (lncRNAs) have been shown to play important regulatory role in certain type of cancers biology, including breast and lung cancers. However, the lncRNA expression in breast cancer combined with primary lung cancer remains unknown. In this study, databases of the Cancer Genome Atlas (TCGA) and the lncRNA profiler of contained candidate 192 lncRNAs were utilized. 11 lncRNAs were differentially expressed in breast cancer, 9 candidate lncRNAs were differentially expressed in lung cancer. In order to find the aberrant expression of lncRNAs in breast cancer combined with primary lung cancer, seven samples of primary breast cancer and lung cancer were studied for the expression of selected lncRNAs. The results showed that SNHG6 and NEAT1 were reversely expressed in breast cancer combined with primary lung cancer compared with primary breast or lung cancer. In addition, a significant correlation of lncRNAs was found in the patients whose age was above 56 in breast cancer. What's more, PVT1 expression was negatively correlated with the pathological stage, and the level of ER, PR, HER2, p53 in breast cancer. Furthermore, lncRNA expression did not have significant relationship with the 5-year survival of patients with breast cancer combined with primary lung cancer. The findings revealed that PVT1, SNHG6, NEAT1 may serve as a prognostic marker for breast cancer combined with primary lung cancer. Therefore, these lncRNAs are potential molecular indicators in the diagnosis and prognosis of cancer in the future. PMID:28938549
In Vitro Toxicity of Silver Nanoparticles in Human Lung Epithelial Cells
2009-03-01
software from the particle distributions measured and the polydispersity index (PdI) given is a measure of the size ranges present in the solution...Transmission Electron Microscopy Figure 22 shows the TEM primary particles size and distribution determined from measurement of over 100 particles from...nm uncoated. (B) Ag 80 nm uncoated. (C) Ag 10 nm coated. (D) Ag 80 nm coated Table 4 shows the TEM primary particles size and distribution
Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis
Pardo, Annie; Gibson, Kevin; Cisneros, José; Richards, Thomas J; Yang, Yinke; Becerril, Carina; Yousem, Samueal; Herrera, Iliana; Ruiz, Victor; Selman, Moisés; Kaminski, Naftali
2005-01-01
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. Methods and Findings Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. Conclusions Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease. PMID:16128620
Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases.
Aldhahrani, Adil; Verdon, Bernard; Ward, Chris; Pearson, Jeffery
2017-01-01
Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B). The immortalised human bronchial epithelial cell line (BEAS-2B) was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL)-8, IL-6 and granulocyte-macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L -1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L -1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo . This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.
Cell signaling molecules as drug targets in lung cancer: an overview.
Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa
2011-07-01
Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.
Somatic mutations affect key pathways in lung adenocarcinoma
Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.
2009-01-01
Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947
Zierenberg-Ripoll, A; Pollard, R E; Stewart, S L; Allstadt, S D; Barrett, L E; Gillem, J M; Skorupski, K A
2018-06-01
To estimate prevalence of exposure to environmental tobacco smoke and other environmental toxins in dogs with primary lung tumours and to analyse association between exposure and lung tumour development. In this case-control study, an owner survey was developed to collect data on patient characteristics, general health care and environmental exposures. Dogs diagnosed with primary lung carcinomas formed the Case group. Dogs diagnosed with mast cell tumours served as Control Group 1 and dogs diagnosed with neurologic disease served as Control Group 2. Associations between diagnosis of primary lung tumour and patient and environmental exposure variables were analysed using bivariate and multivariate statistical methods. A total of 1178 owner surveys were mailed and 470 surveys were returned and included in statistical analysis, including 135 Cases, 169 dogs in Control Group 1 and 166 dogs in Control Group 2. An association between exposure to second-hand smoke and prevalence of primary lung cancer was not identified in this study. Second-hand smoke is associated with primary lung cancer in people but a definitive association has not been found in dogs. The results of this study suggest that tobacco smoke exposure may not be associated with primary lung cancer development in dogs but study limitations may have precluded detection of an association. © 2017 British Small Animal Veterinary Association.
Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing
2014-01-01
Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guckenberger, Matthias; Klement, Rainer J; Allgäuer, Michael; Andratschke, Nicolaus; Blanck, Oliver; Boda-Heggemann, Judit; Dieckmann, Karin; Duma, Marciana; Ernst, Iris; Ganswindt, Ute; Hass, Peter; Henkenberens, Christoph; Holy, Richard; Imhoff, Detlef; Kahl, Henning K; Krempien, Robert; Lohaus, Fabian; Nestle, Ursula; Nevinny-Stickel, Meinhard; Petersen, Cordula; Semrau, Sabine; Streblow, Jan; Wendt, Thomas G; Wittig, Andrea; Flentje, Michael; Sterzing, Florian
2016-03-01
To evaluate whether local tumor control probability (TCP) in stereotactic body radiotherapy (SBRT) varies between lung metastases of different primary cancer sites and between primary non-small cell lung cancer (NSCLC) and secondary lung tumors. A retrospective multi-institutional (n=22) database of 399 patients with stage I NSCLC and 397 patients with 525 lung metastases was analyzed. Irradiation doses were converted to biologically effective doses (BED). Logistic regression was used for local tumor control probability (TCP) modeling and the second-order bias corrected Akaike Information Criterion was used for model comparison. After median follow-up of 19 months and 16 months (n.s.), local tumor control was observed in 87.7% and 86.7% of the primary and secondary lung tumors (n.s.), respectively. A strong dose-response relationship was observed in the primary NSCLC and metastatic cohort but dose-response relationships were not significantly different: the TCD90 (dose to achieve 90% TCP; BED of maximum planning target volume dose) estimates were 176 Gy (151-223) and 160 Gy (123-237) (n.s.), respectively. The dose-response relationship was not influenced by the primary cancer site within the metastatic cohort. Dose-response relationships for local tumor control in SBRT were not different between lung metastases of various primary cancer sites and between primary NSCLC and lung metastases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Environmental exposure to arsenic is a major public health concern. Epidemiological studies have demonstrated a strong correlation between levels of arsenic in drinking water and incidence of cancers of skin, lung, bladder and peripheral and cerebro vascular diseases. Despite eno...
2012-01-01
Background The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis. Methods Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC). Results Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 103 cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples. Conclusions Tumorspheres isolated under defined culture conditions from patient core biopsies were tumorigenic when transplanted into the mammary fat pad of NUDE mice, and metastasized to multiple mouse organs. Micrometastases in mouse organs demonstrated a dormancy period prior to outgrowth of macrometastases. The development of macrometastases with organ-specific phenotypic distinctions provides a superior model for the investigation of organ-specific effects on metastatic cancer cell survival and growth. PMID:22233382
Dallol, Ashraf; Forgacs, Eva; Martinez, Alonso; Sekido, Yoshitaka; Walker, Rosemary; Kishida, Takeshi; Rabbitts, Pamela; Maher, Eamonn R; Minna, John D; Latif, Farida
2002-05-02
The human homologue of the Drosophila Roundabout gene DUTT1 (Deleted in U Twenty Twenty) or ROBO1 (Locus Link ID 6091), a member of the NCAM family of receptors, was recently cloned from the lung cancer tumour suppressor gene region 2 (LCTSGR2 or U2020 region) at 3p12. DUTT1 maps within a region of overlapping homozygous deletions characterized in both small cell lung cancer lines (SCLC) and in a breast cancer line. In this report we (a) defined the genomic organization of the DUTT1 gene, (b) performed mutation and expression analysis of DUTT1 in lung, breast and kidney cancers, (c) identified tumour specific promoter region methylation of DUTT1 in human cancers. The gene was found to contain 29 exons and spans at least 240 kb of genomic sequence. The 5' region contains a CpG island, and the poly(A)(+) tail has an atypical 5'-GATAAA-3' signal. We analysed DUTT1 for mutations in lung, breast and kidney cancers, no inactivating mutations were detected by PCR-SSCP. However, seven germline missense changes were found and characterized. DUTT1 expression was not detectable in one out of 18 breast tumour lines analysed by RT-PCR. Bisulfite sequencing of the promoter region of DUTT1 gene in the HTB-19 breast tumour cell line (not expressing DUTT1) showed complete hypermethylation of CpG sites within the promoter region of the DUTT1 gene (-244 to +27 relative to the translation start site). The expression of DUTT1 gene was reactivated in HTB-19 after treatment with the demethylating agent 5-aza-2'-deoxycytidine. The same region was also found to be hypermethylated in six out of 32 (19%) primary invasive breast carcinomas and eight out of 44 (18%) primary clear cell renal cell carcinomas (CC-RCC) and in one out of 26 (4%) primary NSCLC tumours. Furthermore 80% of breast and 75% of CC-RCC tumours showing DUTT1 methylation had allelic losses for 3p12 markers hence obeying Knudson's two hit hypothesis. Our findings suggest that DUTT1 warrants further analysis as a candidate for the tumour suppressor gene (TSG) at 3p12, a region defined by hemi and homozygous deletions and functional analysis.
Ferret lung transplant: an orthotopic model of obliterative bronchiolitis.
Sui, H; Olivier, A K; Klesney-Tait, J A; Brooks, L; Tyler, S R; Sun, X; Skopec, A; Kline, J; Sanchez, P G; Meyerholz, D K; Zavazava, N; Iannettoni, M; Engelhardt, J F; Parekh, K R
2013-02-01
Obliterative bronchiolitis (OB) is the primary cause of late morbidity and mortality following lung transplantation. Current animal models do not reliably develop OB pathology. Given the similarities between ferret and human lung biology, we hypothesized an orthotopic ferret lung allograft would develop OB. Orthotopic left lower lobe transplants were successfully performed in 22 outbred domestic ferrets in the absence of immunosuppression (IS; n = 5) and presence of varying IS protocols (n = 17). CT scans were performed to evaluate the allografts. At intervals between 3-6 months the allografts were examined histologically for evidence of acute/chronic rejection. IS protects allografts from acute rejection and early graft loss. Reduction of IS dosage by 50% allowed development of controlled rejection. Allografts developed infiltrates on CT and classic histologic acute rejection and lymphocytic bronchiolitis. Cycling of IS, to induce repeated episodes of controlled rejection, promoted classic histologic hallmarks of OB including fibrosis-associated occlusion of the bronchiolar airways in all allografts of long-term survivors. In conclusion, we have developed an orthotopic lung transplant model in the ferret with documented long-term functional allograft survival. Allografts develop acute rejection and lymphocytic bronchiolitis, similar to humans. Long-term survivors develop histologic changes in the allografts that are hallmarks of OB. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Murakami, Takashi; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Hoffman, Robert M
2017-03-01
We have previously reported that caffeine can enhance chemotherapy efficacy of bone and soft tissue sarcoma via cell-cycle perturbation. Valproic acid has histone deacetylase (HDAC) inhibitory activity. We have also reported the anti-tumor efficacy of combination treatment with caffeine and valproic acid against osteosarcoma primary tumors in a cell-line orthotopic mouse model. In this study, we performed combination treatment of caffeine and valproic acid on osteosarcoma cell lines in vitro and in spontaneous and experimental lung metastasis mouse models of osteosarcoma. Survival of 143B-RFP human osteosarcoma cells after exposure to caffeine and valproic acid for 72 hours was determined using the WST-8 assay. IC 50 values and combination indices were calculated. Mouse models of primary osteosarcoma and spontaneous lung metastasis were obtained by orthotopic intra-tibial injection of 143B-RFP cells. Valproic acid, caffeine, and combination of both drugs were administered from day 7, five times a week, for four weeks. Six weeks after orthotopic injection, lung samples were excised and observed with a fluorescence imaging system. A mouse model of experimental lung metastasis was obtained by tail vein injection of 143B-RFP cells. The mice were treated with these agents from day 0, five times a week for four weeks. Both caffeine and valproic acid caused concentration-dependent cell kill in vitro. Synergistic efficacy of the combination treatment was observed. In the spontaneous lung-metastasis model, the number of lung metastasis was 9.0±2.6 in the untreated group (G1); 10.8±2.9 in the caffeine group (G2); 10.0±3.1 in the valproic-acid group (G3); and 3.0±1.1 in the combination group (G4); (p=6.78E-5 control vs. combination; p=0.006 valproic acid vs. combination; p=0.003 caffeine vs. combination). In the experimental lung-metastasis model, the combination group significantly reduced lung metastases and improved overall survival (p=0.0005). Efficacy of the combination of caffeine and valproic acid was observed in vitro and in spontaneous and experimental lung-metastasis mouse models of osteosarcoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Straub, Timothy M.
For over thirty years immortalized lung cells have enabled researchers to elucidate lung-pathogen molecular interactions. However, over the last five years numerous commercial companies are now providing affordable, ready-to-use primary lung cells for use in research laboratories. Despite advances in primary cell culture, studies using immortalized lung cells still dominate the recent scientific literature. In this paper, we highlight recent influenza and anthrax studies using in vitro primary lung tissue models and how these models are providing better predictive outcomes for when extrapolated to in vivo observations.
Powell, Joshua D.; Straub, Timothy M.
2018-01-17
For over thirty years immortalized lung cells have enabled researchers to elucidate lung-pathogen molecular interactions. However, over the last five years numerous commercial companies are now providing affordable, ready-to-use primary lung cells for use in research laboratories. Despite advances in primary cell culture, studies using immortalized lung cells still dominate the recent scientific literature. In this paper, we highlight recent influenza and anthrax studies using in vitro primary lung tissue models and how these models are providing better predictive outcomes for when extrapolated to in vivo observations.
Essone, Jean Claude Biteghe Bi; N'Dilimabaka, Nadine; Ondzaga, Julien; Lekana-Douki, Jean Bernard; Mba, Dieudonné Nkoghe; Deloron, Philippe; Mazier, Dominique; Gay, Frédrérick; Touré Ndouo, Fousseyni S
2017-06-27
Plasmodium falciparum infection can progress unpredictably to severe forms including respiratory distress and cerebral malaria. The mechanisms underlying the variable natural course of malaria remain elusive. The cerebral microvascular endothelial cells-D3 and lung endothelial cells both from human were cultured separately and challenged with P. falciparum field isolates taken directly from malaria patients or 3D7 strain (in vitro maintained culture). The capacity of these P. falciparum isolates to induce endothelial cell apoptosis via cytoadherence or not was then assessed. Overall, 27 P. falciparum isolates were collected from patients with uncomplicated malaria (n = 25) or severe malaria (n = 2). About half the isolates (n = 17) were able to bind brain endothelial cells (12 isolates, 44%) or lung endothelial cells (17 isolates, 63%) or both (12 isolates, 44%). Sixteen (59%) of the 27 isolates were apoptogenic for brain and/or lung endothelial cells. The apoptosis stimulus could be cytoadherence, direct cell-cell contact without cytoadherence, or diffusible soluble factors. While some of the apoptogenic isolates used two stimuli (direct contact with or without cytoadherence, plus soluble factors) to induce apoptosis, others used only one. Among the 16 apoptogenic isolates, eight specifically targeted brain endothelial cells, one lung endothelial cells, and seven both. These results indicate that the brain microvascular cell line was more susceptible to apoptosis triggered by P. falciparum than the primary pulmonary endothelial cells and may have relevance to host-parasite interaction.
Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease.
Bertuzzi, Margherita; Hayes, Gemma E; Icheoku, Uju J; van Rhijn, Norman; Denning, David W; Osherov, Nir; Bignell, Elaine M
2018-01-08
Respiratory epithelia fulfil multiple roles beyond that of gaseous exchange, also acting as primary custodians of lung sterility and inflammatory homeostasis. Inhaled fungal spores pose a continual antigenic, and potentially pathogenic, challenge to lung integrity against which the human respiratory mucosa has developed various tolerance and defence strategies. However, respiratory disease and immune dysfunction frequently render the human lung susceptible to fungal diseases, the most common of which are the aspergilloses, a group of syndromes caused by inhaled spores of Aspergillus fumigatus . Inhaled Aspergillus spores enter into a multiplicity of interactions with respiratory epithelia, the mechanistic bases of which are only just becoming recognized as important drivers of disease, as well as possible therapeutic targets. In this mini-review we examine current understanding of Aspergillus -epithelial interactions and, based upon the very latest developments in the field, we explore two apparently opposing schools of thought which view epithelial uptake of Aspergillus spores as either a curative or disease-exacerbating event.
CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy.
Tuscano, Joseph M; Kato, Jason; Pearson, David; Xiong, Chengyi; Newell, Laura; Ma, Yunpeng; Gandara, David R; O'Donnell, Robert T
2012-11-01
Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasis and extended overall survival. The finding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti-CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. ©2012 AACR.
Human Lung Small Airway-on-a-Chip Protocol.
Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E
2017-01-01
Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.
Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
Sheahan, Timothy P.; Sims, Amy C.; Graham, Rachel L.; Menachery, Vineet D.; Gralinski, Lisa E.; Case, James B.; Leist, Sarah R.; Pyrc, Krzysztof; Feng, Joy Y.; Trantcheva, Iva; Bannister, Roy; Park, Yeojin; Babusis, Darius; Clarke, Michael O.; Mackman, Richard L.; Spahn, Jamie E.; Palmiotti, Christopher A.; Siegel, Dustin; Ray, Adrian S.; Cihlar, Tomas; Jordan, Robert; Denison, Mark R.; Baric, Ralph S.
2017-01-01
Emerging viral infections are difficult to control as heterogeneous members periodically cycle in and out of humans and zoonotic hosts, complicating the development of specific antiviral therapies and vaccines. Coronaviruses (CoVs) have a proclivity to spread rapidly into new host species causing severe disease. SARS-CoV and MERS-CoV successively emerged causing severe epidemic respiratory disease in immunologically naïve human populations throughout the globe. Broad-spectrum therapies capable of inhibiting CoV infections would address an immediate unmet medical need and could be invaluable in the treatment of emerging and endemic CoV infections. Here we show that a nucleotide prodrug GS-5734, currently in clinical development for treatment of Ebola virus disease, can inhibit SARS-CoV and MERS-CoV replication in multiple in vitro systems including primary human airway epithelial cell cultures with submicromolar IC50 values. GS-5734 was also effective against bat-CoVs, prepandemic bat-CoVs and circulating contemporary human CoV in primary human lung cells, thus demonstrating broad-spectrum anti-CoV activity. In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic administration of GS-5734 significantly reduced lung viral load and improved clinical signs of disease as well as respiratory functions. These data provide substantive evidence that GS-5734 may prove effective against endemic MERS-CoV in the Middle East, circulating human CoV, and possibly most importantly, emerging CoV of the future. PMID:28659436
Practical use of advanced mouse models for lung cancer.
Safari, Roghaiyeh; Meuwissen, Ralph
2015-01-01
To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.
A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.
Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R
2015-10-05
Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.
Corvini, Michael; Koorji, Alysha; Sgroe, Erica; Nguyen, Uyen
2018-06-01
Signet ring cell carcinoma, a subtype of adenocarcinoma, is a rare cause of primary lung cancer. The authors report a case of primary lung signet ring cell carcinoma presenting as a cavitary Pancoast tumor in a 32-year-old male smoker. Beyond the rarity of primary lung signet ring cell carcinoma itself, the youth of the patient, his smoking status, the presence of cavitation, and the location of the tumor in the superior sulcus make it especially atypical.
CONTEXT: N02 and 03 are ubiquitous air toxicants capable of inducing lung damage to the respiratory epithelium. Due to their oxidizing capabilities, these pollutants have been proposed to target specific biological pathways, but few publications have compared the pathways activat...
Zhang, Shirong; Wu, Kan; Feng, Jianguo; Wu, Zhibing; Deng, Qinghua; Guo, Chao; Xia, Bing; Zhang, Jing; Huang, Haixiu; Zhu, Lucheng; Zhang, Ke; Shen, Binghui; Chen, Xufeng; Ma, Shenglin
2016-10-18
Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expression profiles and the responses of these invasive cancer cells to treatments of ionizing radiation and chemotherapeutic agents. The subpopulation of highly invasive NSCLC cells showed epigenetic signatures of epithelial-mesenchymal transition, cancer cell stemness, increased DNA damage repair and cell survival signaling. We also investigated the epigenetic therapy potential of suberoylanilide hydroxamic acid (SAHA) on invasive cancer cells, and found that SAHA suppresses cancer cell invasiveness and sensitizes cancer cells to treatments of IR and chemotherapeutic agents. Our results provide guidelines for identification of metastatic predictors and for clinical management of NSCLC. This study also suggests a beneficial clinical potential of SAHA as a chemotherapeutic agent for NSCLC patients.
Molina-Molina, M; Machahua-Huamani, C; Vicens-Zygmunt, V; Llatjós, R; Escobar, I; Sala-Llinas, E; Luburich-Hernaiz, P; Dorca, J; Montes-Worboys, A
2018-04-27
Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.
NASA Astrophysics Data System (ADS)
Fresconi, Frank; Prasad, Ajay
2006-11-01
A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of steady and oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF allowed visualization of the time-dependent deformation of a passive tracer and also quantified convective dispersion through the usage of a transport profile.
A microengineered model of RBC transfusion-induced pulmonary vascular injury.
Seo, Jeongyun; Conegliano, David; Farrell, Megan; Cho, Minseon; Ding, Xueting; Seykora, Thomas; Qing, Danielle; Mangalmurti, Nilam S; Huh, Dongeun
2017-06-13
Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.
Goodwin, Jodi; Tinckam, Kathryn; denHollander, Neal; Haroon, Ayesha; Keshavjee, Shaf; Cserti-Gazdewich, Christine M
2010-09-01
It is unknown the extent to which transfusion-related acute lung injury (TRALI) contributes to primary graft dysfunction (PGD), the leading cause of death after lung transplantation. In this case of suspected transfusion-associated acute bilateral graft injury in a 61-year-old idiopathic pulmonary fibrosis patient, recipient sera from before and after transplantation/transfusion, as well as the sera of 22 of the 24 implicated blood donors, were individually screened by Luminex bead assay for the presence of human leukocyte antigen (HLA) antibodies, with recipient and lung donor HLA typing to explore for cognate relationships. A red-cell-unit donor-source anti-Cw6 antibody, cognate with the HLA type of the recipient, was identified. This is the second reported case of TRALI in the setting of lung transplantation, and the first to show an associated interaction between donor antibodies (in a low-plasma volume product) with recipient leukocytes (rather than graft antigens); therefore, it should be considered in the differential diagnosis of PGD. Copyright 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Sweeney, Sinbad; Berhanu, Deborah; Misra, Superb K.; Thorley, Andrew J.; Valsami-Jones, Eugenia; Tetley, Teresa D.
2015-01-01
Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT. PMID:25780270
Salomon, Johanna J; Muchitsch, Viktoria E; Gausterer, Julia C; Schwagerus, Elena; Huwer, Hanno; Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten
2014-03-03
The lack of a well characterized, continuously growing in vitro model of human distal lung epithelial phenotype constitutes a serious limitation in the area of inhalation biopharmaceutics, particularly in the context of transepithelial transport studies. Here, we investigated if a human lung adenocarcinoma cell line, NCl-H441, has potential to serve as an in vitro model of human distal lung epithelium. The development of barrier properties was studied by immunocytochemistry (ICC) against the junction proteins zonula occludens protein 1 (ZO-1) and E-cadherin and measurement of transepithelial electrical resistance (TEER). Moreover, transport studies with the paracellular marker compounds fluorescein sodium and fluorescein isothiocyanate (FITC)-labeled dextrans of molecular weights ranging from 4 to 70 kDa were carried out. The expression of P-glycoprotein (P-gp; ABCB1) and organic cation transporters (OCT/Ns; SLC22A1-A5) was investigated by ICC and immunoblot. P-gp function was assessed by monolayer release and bidirectional transport studies using rhodamine 123 (Rh123) and the inhibitors verapamil and LY335979. Uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)) was measured, in order to assess organic cation transporter function in vitro. Furthermore, the inhibitory potential of several organic cations on ASP(+) uptake was studied. NCl-H441 cells, when grown under liquid-covered conditions, formed confluent, electrically tight monolayers with peak TEER values of approximately 1000 Ω·cm(2), after 8-12 days in culture. These monolayers were able to differentiate paracellularly transported substrates according to their molecular weight. Presence of P-gp, OCT1, OCT2, OCT3, OCTN1, and OCTN2 was confirmed by Western blot and ICC and was similar to data from freshly isolated human alveolar epithelial cells in primary culture. Rh123 release from NCI-H441 monolayers was time-dependent and showed low, albeit significant attenuation by both inhibitors. In transport studies, Rh123 exhibited net secretion, which again was inhibitable by bona fide P-gp modulators. The uptake of ASP(+) was time- and temperature-dependent with Km = 881.2 ± 195.3 μM and Vmax = 2.07 ± 0.26 nmol/min/mg protein. TEA, amantadine, quinidine, and verapamil significantly inhibited ASP(+) uptake into NCl-H441 cells, whereas the effect of d- and l-carnitine and ergothioneine, two OCTN substrates, was less pronounced. NCl-H441 cells are the first cell line of human distal lung epithelial origin with the ability to form monolayers with appreciable barrier properties. Moreover, drug transporter expression and activity in NCl-H441 cells was consistent with what has been reported for human alveolar epithelial cells in primary culture.
Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis.
Lutz, Dennis; Gazdhar, Amiq; Lopez-Rodriguez, Elena; Ruppert, Clemens; Mahavadi, Poornima; Günther, Andreas; Klepetko, Walter; Bates, Jason H; Smith, Bradford; Geiser, Thomas; Ochs, Matthias; Knudsen, Lars
2015-02-01
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
The role of carotenoids on the risk of lung cancer.
Epstein, Kenneth R
2003-02-01
Smoking prevention and cessation remain the primary methods of reducing the incidence of lung cancer. The limited success of efforts towards smoking cessation have led to increasing interest in the role of nutrition in lung cancer prevention. One class of nutrients that has attracted attention as potential chemopreventive agents is the carotenoids, especially beta-carotene, due to their antioxidant properties. In vitro, carotenoids exert antioxidant functions and inhibit carcinogen-induced neoplastic transformation, inhibit plasma membrane lipid oxidation, and cause upregulated expression of connexin 43. These in vitro results suggest that carotenoids have intrinsic cancer chemopreventive action in humans. Many cohort and case-control study data have shown an inverse relationship between fruit and vegetable consumption and lung cancer, although several more recent studies have cast doubt on these findings. Different effects of various dietary nutrients on lung cancer risk have been observed. Several prospective intervention trials were undertaken to examine the effect of supplementation on the risk of lung cancer. Some of these studies demonstrated an increased incidence and mortality from lung cancer in those receiving supplementation. Many hypotheses have emerged as to the reasons for these findings. Copyright 2003, Elsevier Science (USA). All rights reserved.
Wallace, Alison M.; Hardigan, Andrew; Geraghty, Patrick; Salim, Shaneeza; Gaffney, Adam; Thankachen, Jincy; Arellanos, Leo; D'Armiento, Jeanine M.; Foronjy, Robert F.
2012-01-01
Protein phosphatase 2A (PP2A) is the primary serine-threonine phosphatase of eukaryotic cells, and changes in its activity have been linked to neoplastic and neurodegenerative diseases. However, the role of PP2A in noncancerous lung diseases such as chronic obstructive pulmonary disease (COPD) has not been previously examined. This study determined that PP2A activity was significantly increased in the lungs of advanced emphysema subjects compared with age-matched controls. Furthermore, we found that cigarette smoke exposure increases PP2A activity in mouse lung in vivo and in primary human small airway epithelial (SAE) cells in vitro. In mice, intratracheal transfection of PP2A protein prior to cigarette smoke exposure prevented acute smoke–induced lung inflammation. Conversely, inhibiting PP2A activity during smoke exposure exacerbated inflammatory responses in the lung. To further determine how PP2A modulates the responses to cigarette smoke in the lung, enzyme levels were manipulated in SAE cells using protein transfection and short hairpin RNA (shRNA) techniques. Increasing PP2A activity in SAE cells via PP2A protein transfection downregulated cytokine expression and prevented the induction of proteases following cigarette smoke extract (CSE) treatment. Conversely, decreasing enzymatic activity by stably transfecting SAE cells with shRNA for the A subunit of PP2A exacerbated these smoke-mediated responses. This study establishes that PP2A induction by cigarette smoke modulates immune and proteolytic responses to cigarette smoke exposure. Together, these findings suggest that manipulation of PP2A activity may be a plausible means to treat COPD and other inflammatory diseases. PMID:22223484
Huang, Yu-Ting; Lan, Qiang; Lorusso, Girieca; Duffey, Nathalie; Rüegg, Curzio
2017-02-07
Matricellular proteins play multiple roles in primary tumor growth, local invasion and tumor angiogenesis. However, their contribution to metastasis and the putative mechanisms involved are less well characterized. In ER-negative human breast cancer, elevated expression levels of the matricellular protein Cysteine-rich angiogenic inducer 61 (CYR61) are associated with more aggressive progression. Here, we investigated the role of CYR61 in breast cancer lung metastasis using the triple negative human breast cancer cell lines MDA-MB-231 and SUM159. Silencing of CYR61 significantly decreased lung metastasis from tumors orthotopically implanted in pre-irradiated or naive mammary tissue and upon tail vein injection. Constitutive CYR61 silencing impaired cancer cell extravasation to the lung during the first 24 hours after tail vein injection. In contrast, CYR61 inducible silencing starting 24 hours after cancer cell injection had no impact on lung metastasis formation. In vitro experiments revealed that CYR61 silencing decreased cancer cell transendothelial migration and motility, reduced CYR61 levels present at the cell surface and sensitized cancer cells to anoikis. Furthermore, we demonstrate that CYR61-dependent cell survival under non-adhesive conditions relied, at least partially, on β1 integrin ligation and AMPKα signaling while it was independent of AKT, FAK and ERK1/2 activation. Our data provide the first evidence that CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and protecting from anoikis during initial seeding to the lung. The uncovered CYR61-β1 integrin-AMPKα axis may serve as a potential therapeutic target to prevent breast cancer metastasis to the lung.
Jassam, Samah A.; Maherally, Zaynah; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.
2017-01-01
Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell–brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells (p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell–brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (p < 0.001), highlighting the role of CD15s–CD62E interaction in brain metastasis. PMID:28698503
Jassam, Samah A; Maherally, Zaynah; Smith, James R; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L; Pilkington, Geoffrey J
2017-07-10
Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell-brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells ( p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell-brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions ( p < 0.001), highlighting the role of CD15s-CD62E interaction in brain metastasis.
Dulek, Daniel E.; Newcomb, Dawn C.; Toki, Shinji; Goliniewska, Kasia; Cephus, Jacqueline; Reiss, Sara; Bates, John T.; Crowe, James E.; Boyd, Kelli L.; Moore, Martin L.; Zhou, Weisong
2014-01-01
ABSTRACT Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4−/− mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4−/− mice and used STAT1−/− mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4−/− mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4−/− mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4−/− mice compared to WT mice. Following secondary challenge, WT and STAT4−/− mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4−/− mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge. IMPORTANCE STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV-induced lung Th2 or Th17 immune responses. These findings suggest that STAT4 expression may influence lung immunity and severity of illness following primary and secondary RSV infections. PMID:24920804
Exploring Situational Awareness in Diagnostic Errors in Primary Care
Singh, Hardeep; Giardina, Traber Davis; Petersen, Laura A.; Smith, Michael; Wilson, Lindsey; Dismukes, Key; Bhagwath, Gayathri; Thomas, Eric J.
2013-01-01
Objective Diagnostic errors in primary care are harmful but poorly studied. To facilitate understanding of diagnostic errors in real-world primary care settings using electronic health records (EHRs), this study explored the use of the Situational Awareness (SA) framework from aviation human factors research. Methods A mixed-methods study was conducted involving reviews of EHR data followed by semi-structured interviews of selected providers from two institutions in the US. The study population included 380 consecutive patients with colorectal and lung cancers diagnosed between February 2008 and January 2009. Using a pre-tested data collection instrument, trained physicians identified diagnostic errors, defined as lack of timely action on one or more established indications for diagnostic work-up for lung and colorectal cancers. Twenty-six providers involved in cases with and without errors were interviewed. Interviews probed for providers' lack of SA and how this may have influenced the diagnostic process. Results Of 254 cases meeting inclusion criteria, errors were found in 30 (32.6%) of 92 lung cancer cases and 56 (33.5%) of 167 colorectal cancer cases. Analysis of interviews related to error cases revealed evidence of lack of one of four levels of SA applicable to primary care practice: information perception, information comprehension, forecasting future events, and choosing appropriate action based on the first three levels. In cases without error, the application of the SA framework provided insight into processes involved in attention management. Conclusions A framework of SA can help analyze and understand diagnostic errors in primary care settings that use EHRs. PMID:21890757
Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced differentiation of pulmonary fibroblasts
Baarsma, Hoeke A; Engelbertink, Lilian HJM; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib AM; Gosens, Reinoud
2013-01-01
Background Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β1-induced myofibroblast differentiation is currently largely unknown. Purpose To determine the contribution of GSK-3 signalling in TGF-β1-induced myofibroblast differentiation. Experimental Approach We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Results Stimulation of MRC5 and primary human lung fibroblasts with TGF-β1 resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β1-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β1-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. Conclusion and Implication We demonstrate that GSK-3 signalling regulates TGF-β1-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. PMID:23297769
Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study
Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying
2016-01-01
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201’s cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799
Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.
Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying
2016-01-01
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.
Biological and statistical approaches to predicting human lung cancer risk from silica.
Kuempel, E D; Tran, C L; Bailer, A J; Porter, D W; Hubbs, A F; Castranova, V
2001-01-01
Chronic inflammation is a key step in the pathogenesis of particle-elicited fibrosis and lung cancer in rats, and possibly in humans. In this study, we compute the excess risk estimates for lung cancer in humans with occupational exposure to crystalline silica, using both rat and human data, and using both a threshold approach and linear models. From a toxicokinetic/dynamic model fit to lung burden and pulmonary response data from a subchronic inhalation study in rats, we estimated the minimum critical quartz lung burden (Mcrit) associated with reduced pulmonary clearance and increased neutrophilic inflammation. A chronic study in rats was also used to predict the human excess risk of lung cancer at various quartz burdens, including mean Mcrit (0.39 mg/g lung). We used a human kinetic lung model to link the equivalent lung burdens to external exposures in humans. We then computed the excess risk of lung cancer at these external exposures, using data of workers exposed to respirable crystalline silica and using Poisson regression and lifetable analyses. Finally, we compared the lung cancer excess risks estimated from male rat and human data. We found that the rat-based linear model estimates were approximately three times higher than those based on human data (e.g., 2.8% in rats vs. 0.9-1% in humans, at mean Mcrit lung burden or associated mean working lifetime exposure of 0.036 mg/m3). Accounting for variability and uncertainty resulted in 100-1000 times lower estimates of human critical lung burden and airborne exposure. This study illustrates that assumptions about the relevant biological mechanism, animal model, and statistical approach can all influence the magnitude of lung cancer risk estimates in humans exposed to crystalline silica.
Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma.
Uchida, Akifumi; Samukawa, Takuya; Kumamoto, Tomohiro; Ohshige, Masahiro; Hatanaka, Kazuhito; Nakamura, Yoshihiro; Mizuno, Keiko; Higashimoto, Ikkou; Sato, Masami; Inoue, Hiromasa
2017-12-12
It is crucial to develop novel diagnostic approaches for determining if peripheral lung nodules are malignant, as such nodules are frequently detected due to the increased use of chest computed tomography scans. To this end, we evaluated levels of napsin A in epithelial lining fluid (ELF), since napsin A has been reported to be an immunohistochemical biomarker for histological diagnosis of primary lung adenocarcinoma. In consecutive patients with indeterminate peripheral lung nodules, ELF samples were obtained using a bronchoscopic microsampling (BMS) technique. The levels of napsin A and carcinoembryonic antigen (CEA) in ELF at the nodule site were compared with those at the contralateral site. A final diagnosis of primary lung adenocarcinoma was established by surgical resection. We performed BMS in 43 consecutive patients. Among patients with primary lung adenocarcinoma, the napsin A levels in ELF at the nodule site were markedly higher than those at the contralateral site, while there were no significant differences in CEA levels. Furthermore, in 18 patients who were undiagnosed by bronchoscopy and finally diagnosed by surgery, the napsin A levels in ELF at the nodule site were identically significantly higher than those at the contralateral site. In patients with non-adenocarcinoma, there were no differences in napsin A levels in ELF. The area under the receiver operator characteristic curve for identifying primary lung adenocarcinoma was 0.840 for napsin A and 0.542 for CEA. Evaluation of napsin A levels in ELF may be useful for distinguishing primary lung adenocarcinoma.
Lung Cancer Screening with Low-Dose Computed Tomography for Primary Care Providers
Richards, Thomas B.; White, Mary C.; Caraballo, Ralph S.
2015-01-01
This review provides an update on lung cancer screening with low-dose computed tomography (LDCT) and its implications for primary care providers. One of the unique features of lung cancer screening is the potential complexity in patient management if an LDCT scan reveals a small pulmonary nodule. Additional tests, consultation with multiple specialists, and follow-up evaluations may be needed to evaluate whether lung cancer is present. Primary care providers should know the resources available in their communities for lung cancer screening with LDCT and smoking cessation, and the key points to be addressed in informed and shared decision-making discussions with patients. PMID:24830610
Brain metastasis detection by resonant Raman optical biopsy method
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.
2014-03-01
Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.
Polster, K; Walker, A; Fildes, J; Entwistle, G; Yonan, N; Hutchinson, I V; Leonard, C T
2005-06-01
Survival following lung transplantation is less than 50% at 5 years, mainly due to immune-mediated chronic rejection. Recently a novel subset of T cells, CD4-veCD8-ve CD30+ve, so-called double negative (DN) CD30+ve T cells, has been described and shown to be responsible for tolerance in an animal model of skin transplantation. We investigated 18 lung transplant recipients for the presence of DN CD30+ve T cells in resting peripheral blood and also following in vitro stimulation of recipient peripheral blood mononuclear cells (PBMCs) with donor spleen cells. Small percentages (0.2% to 6%) of DN T cells are detectable in resting PBMCs of human transplant patients (n = 18), but these did not correlate with allograft function, acute rejection episodes, HLA mismatch, or CMV status. On repeated stimulation of recipient PBMCs (two exposures) in vitro by donor spleen cells (2:1 ratio stimulators to responders) the percentage of DN CD30+ve T cells within the lymphocyte pool correlated with preservation of allograft lung function (both for FEV(1), P = .009, and FEF(25-75), P = .036) and was inversely correlated with grade of chronic rejection. On repeated exposure of recipient PBMCs to donor spleen cells with a 1:1 ratio the percentage of DN CD30+ve T cells correlated with the number of acute rejection episodes of grade 2 or greater. The total number of HLA mismatches correlated with the percentage DN CD30+ve T cells present after primary stimulation of recipient PBMCs with donor spleen cells (1:1 ratio). The number of mismatches at the B locus inversely correlated with the percentage of DN CD30+ve T cells after primary stimulation of recipient PBMCs with donor spleen cells (1:1 ratio; P = .031, n = 18). Percentages of DN CD30+ve T cells present following repeated stimulation of recipient PBMCs by donor spleen cells correlated with preservation of graft function following lung transplantation.
Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R; Stuehr, Dennis J; Panda, Koustubh
2016-07-19
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.
Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R.; Stuehr, Dennis J.
2016-01-01
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage. PMID:27382160
Smits, Jacqueline M A; Melman, Sonja; Mertens, Bart J A; Laufer, Gunther; Persijn, Guido G; Van Raemdonck, Dirk
2003-12-15
Despite its reduced benefit for a single recipient, the transplantation of two single-lung allografts as opposed to one bilateral lung transplant has the indisputable advantage of maximizing the number of patients that benefit from a single donor. In the period 1997 to 1999, 90 paired single-lung transplants (SLTx) from 45 donors were performed in 16 lung centers in Eurotransplant, with a complete follow-up of 1 year. No significant differences between left- and right-lung allograft recipients were observed regarding age, sex, primary disease, number of human leukocyte antigen mismatches, cold ischemic time, and donor-to-recipient cytomegalovirus match. Early posttransplant outcome, as assessed by oxygenation index at 12, 24, and 48 hr, also did not differ significantly, and there were no differences in time to extubation and time spent in the intensive care unit. In the first month, six left- and three right-lung allograft recipients died. Bronchiolitis obliterans syndrome developed in 5 of 39 left-lung and 10 of 42 right-lung allograft recipients. If the retrieval team was different from the transplanting team, a significantly worse 1-year posttransplant survival rate was seen in patients who underwent left SLTx compared with those who underwent right SLTx (62% vs. 92%, respectively; P=0.04). More fatal posttransplant complications occur in patients undergoing left SLTx compared with right SLTx. A less optimistic assessment of the left lung by the not-implanting retrieval team is warranted.
Alveolar Edema Fluid Clearance and Acute Lung Injury
Berthiaume, Yves; Matthay, Michael A.
2009-01-01
Although lung-protective ventilation strategies have substantially reduced mortality of acute lung injury patients there is still a need for new therapies that can further decrease mortality in patients with acute lung injury. Studies of epithelial ion and fluid transport across the distal pulmonary epithelia have provided important new concepts regarding potential new therapies for acute lung injury. Overall, there is convincing evidence that the alveolar epithelium is not only a tight epithelial barrier that resists the movement of edema fluid into the alveoli, but it is also actively involved in the transport of ions and solutes, a process that is essential for edema fluid clearance and the resolution of acute lung injury. The objective of this article is to consider some areas of recent progress in the field of alveolar fluid transport under normal and pathologic conditions. Vectorial ion transport across the alveolar and distal airway epithelia is the primary determinant of alveolar fluid clearance. The general paradigm is that active Na+ and Cl− transport drives net alveolar fluid clearance, as demonstrated in several different species, including the human lung. Although these transport processes can be impaired in severe lung injury, multiple experimental studies suggest that upregulation of Na+ and Cl− transport might be an effective therapy in acute lung injury. We will review mechanisms involved in pharmacological modulation of ion transport in lung injury with a special focus on the use of β-adrenergic agonists which has generated considerable interest and is a promising therapy for clinical acute lung injury. PMID:17604701
WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts.
Klee, S; Lehmann, M; Wagner, D E; Baarsma, H A; Königshoff, M
2016-02-12
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. IPF is characterized by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of extracellular matrix. The Wnt1-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly upregulated by Transforming growth factor β1 (TGFβ1) and Tumor necrosis factor α (TNFα) in phLFs, using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and concentration-dependent manner by TGFβ1 and TNFα in phLFs, as analysed by qPCR and ELISA, respectively. Notably, WISP1 is required for TGFβ1- and TNFα-dependent induction of interleukin 6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led to a significant IL-6 reduction after TGFβ1 or TNFα stimulation. Furthermore, siRNA-mediated downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6 expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a variety of profibrotic mediators, including Wnts, TGFβ1 and TNFα.
Fourman, Mitchell S; Mahjoub, Adel; Mandell, Jon B; Yu, Shibing; Tebbets, Jessica C; Crasto, Jared A; Alexander, Peter E; Weiss, Kurt R
2018-03-01
Current preclinical osteosarcoma (OS) models largely focus on quantifying primary tumor burden. However, most fatalities from OS are caused by metastatic disease. The quantification of metastatic OS currently relies on CT, which is limited by motion artifact, requires intravenous contrast, and can be technically demanding in the preclinical setting. We describe the ability for indocyanine green (ICG) fluorescence angiography to quantify primary and metastatic OS in a previously validated orthotopic, immunocompetent mouse model. (1) Can near-infrared ICG fluorescence be used to attach a comparable, quantitative value to the primary OS tumor in our experimental mouse model? (2) Will primary tumor fluorescence differ in mice that go on to develop metastatic lung disease? (3) Does primary tumor fluorescence correlate with tumor volume measured with CT? Six groups of 4- to 6-week-old immunocompetent Balb/c mice (n = 6 per group) received paraphyseal injections into their left hindlimb proximal tibia consisting of variable numbers of K7M2 mouse OS cells. A hindlimb transfemoral amputation was performed 4 weeks after injection with euthanasia and lung extraction performed 10 weeks after injection. Histologic examination of lung and primary tumor specimens confirmed ICG localization only within the tumor bed. Mice with visible or palpable tumor growth had greater hindlimb fluorescence (3.5 ± 2.3 arbitrary perfusion units [APU], defined as the fluorescence pixel return normalized by the detector) compared with those with a negative examination (0.71 ± 0.38 APU, -2.7 ± 0.5 mean difference, 95% confidence interval -3.7 to -1.8, p < 0.001). A strong linear trend (r = 0.81, p < 0.01) was observed between primary tumor and lung fluorescence, suggesting that quantitative ICG tumor fluorescence is directly related to eventual metastatic burden. We did not find a correlation (r = 0.04, p = 0.45) between normalized primary tumor fluorescence and CT volumetric measurements. We demonstrate a novel methodology for quantifying primary and metastatic OS in a previously validated, immunocompetent, orthotopic mouse model. Quantitative fluorescence of the primary tumor with ICG angiography is linearly related to metastatic burden, a relationship that does not exist with respect to clinical tumor size. This highlights the potential utility of ICG near-infrared fluorescence imaging as a valuable preclinical proof-of-concept modality. Future experimental work will use this model to evaluate the efficacy of novel OS small molecule inhibitors. Given the histologic localization of ICG to only the tumor bed, we envision the clinical use of ICG angiography as an intraoperative margin and tumor detector. Such a tool may be used as an alternative to intraoperative histology to confirm negative primary tumor margins or as a valuable tool for debulking surgeries in vulnerable anatomic locations. Because we have demonstrated the successful preservation of ICG in frozen tumor samples, future work will focus on blinded validation of this modality in observational human trials, comparing the ICG fluorescence of harvested tissue samples with fresh frozen pathology.
IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-κB signaling
Lu, Jinchang; Song, Guohui; Tang, Qinglian; Zou, Changye; Han, Feng; Zhao, Zhiqiang; Yong, Bicheng; Yin, Junqiang; Xu, Huaiyuan; Xie, Xianbiao; Kang, Tiebang; Lam, YingLee; Yang, Huiling; Shen, Jingnan; Wang, Jin
2015-01-01
Osteosarcoma is a common malignant bone tumor with a propensity to metastasize to the lungs. Epigenetic abnormalities have been demonstrated to underlie osteosarcoma development; however, the epigenetic mechanisms that are involved in metastasis are not yet clear. Here, we analyzed 2 syngeneic primary human osteosarcoma cell lines that exhibit disparate metastatic potential for differences in epigenetic modifications and expression. Using methylated DNA immunoprecipitation (MeDIP) and microarray expression analysis to screen for metastasis-associated genes, we identified Iroquois homeobox 1 (IRX1). In both human osteosarcoma cell lines and clinical osteosarcoma tissues, IRX1 overexpression was strongly associated with hypomethylation of its own promoter. Furthermore, experimental modulation of IRX1 in osteosarcoma cell lines profoundly altered metastatic activity, including migration, invasion, and resistance to anoikis in vitro, and influenced lung metastasis in murine models. These prometastatic effects of IRX1 were mediated by upregulation of CXCL14/NF-κB signaling. In serum from osteosarcoma patients, the presence of IRX1 hypomethylation in circulating tumor DNA reduced lung metastasis–free survival. Together, these results identify IRX1 as a prometastatic gene, implicate IRX1 hypomethylation as a potential molecular marker for lung metastasis, and suggest that epigenetic reversion of IRX1 activation may be beneficial for controlling osteosarcoma metastasis. PMID:25822025
B cell lymphoma with lung involvement: what is it about?
Mian, Michael; Wasle, Ines; Gritsch, Stefan; Willenbacher, Wolfgang; Fiegl, Michael
2015-01-01
Primary lymphoma of the lung or pleural is a very rare condition. Due to the outdated literature data, the approximate occurrence of primary and secondary lung and/or pleural involvement according to the most common B cell lymphoma entities is unknown. To answer this open question in Austria, we screened the Tyrolean registry for B cell non-Hodgkin's lymphomas regarding primary and secondary lung involvement. Of 854 patients affected by B cell lymphoma, 7.5% had lung/pleural disease. This organ was the primary site in only 0.7%, while a secondary involvement was registered in 6.8%. Most of them were affected by diffuse large B cell lymphoma (DLBCL; 29/368, 8%) followed by follicular lymphoma (7/188, 4%), mantle cell lymphoma (7/57, 12%), mucosa-associated tissue lymphoma (10/37, 27%), posttransplant lymphoproliferative disease (6/24, 25%), Burkitt lymphoma (3/19, 16%), other lymphomas (1/32, 3%) and Richter transformation (1/11, 9%). Moreover, primary lung/pleural lymphoma is one of the rarest neoplasias affecting the lung, accounting for only 0.4% of cases. Lung/pleural involvement is a very rare condition among B cell lymphomas since it mainly occurs in the setting of a generalized disease. A large majority of patients with secondary organ involvement are affected by DLBCL and have similar clinical features at diagnosis to others with advanced-stage disease. © 2014 S. Karger AG, Basel.
Cadelis, G; Kaddah, S; Bhakkan, B; Quellery, M; Deloumeaux, J
2013-09-01
Few data are available about primary lung cancer in the Caribbean. The purpose of this study was to provide, for the first time, the epidemiological and clinical characteristics of primary lung cancer in the archipelago of Guadeloupe (French West Indies). From the cancer registry, we identified in this retrospective study, all incident cases of primary lung cancer that had occurred between 1st January 2008 and 31st December 2009 in Guadeloupe. Over the period from 2008 to 2009, 106 patients with primary lung cancer were identified. Males accounted for 72.6% and the women for 27.4%. Mean incidence rate over the 2 years was estimated at 13.4/100000 persons-years (95% CI: [6.0-20.8]) in men (world standardized) and 4.2/100000 persons-years (95% CI: [0.3-8.1]) in women. The median age at initial diagnosis was 65 years for men and 66 years for women. We noted a proportion of 61.3% of current smokers, 4.7% of passive smokers and 34% of non-smokers. The comorbidities were present in 41% of patients. Non-small cell lung cancer (NSCLC) accounted for 88.7% of lung cancers and small cell lung cancer for 7.5%. The most common histological type was adenocarcinoma (43%) followed by squamous cell (24%). Stage III and IV patients accounted for 64.1% of individuals with NSCLC. The incidence of primary lung cancer in Guadeloupe is relatively low compared to metropolitan France. Guadeloupe is also a French department where the rate of tobacco consumption is one of the lowest. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.
Postoperative Management of Multiple Primary Cancers Associated with Non-small Cell Lung Cancer.
Shoji, Fumihiro; Yamazaki, Koji; Miura, Naoko; Katsura, Masakazu; Oku, Yuka; Takeo, Sadanori; Maehara, Yoshihiko
2018-06-01
Modern treatment for primary cancers has improved survival. Therefore, increased numbers of patients with multiple primary cancers (MPC) associated with lung cancer may be expected. The aim of the present study was to report MPC associated with lung cancer and discuss patients' characteristics and postoperative management. Overall, 973 consecutive patients who underwent surgery for non-small cell lung cancer (NSCLC) were retrospectively studied. NSCLC with MPC was observed in 148 patients (15.2%). MPC comprised 24 synchronous (2.5%) and 124 metachronous (12.7%) diseases. Of the 124 metachronous patients, NSCLC was detected before cancers were detected in other organs (lung cancer first (LCF)) in 25 (20.2%) patients and subsequently in other organs after treatment (other organs, primary cancer-first (OCF)) in 99 (79.8%) patients. MPC was significantly associated with advanced age (p<0.0001) and chronic obstructive pulmonary disease (COPD) (p=0.0040). The leading sites of MPC in patients with synchronous tumors and those with OCF were the digestive organs. In contrast, the leading site of MPC in patients with LCF was the lung. In the latter, at least two primary lung cancers were detected within 5 years as well as 5 years after surgery for the treatment of the first detected lung cancer, while primary cancers of other organs were detected within 5 years. Advanced age and COPD may represent a high-risk of MPCs. Therefore, we recommend careful follow-up to detect MPC in the lung as well as the digestive organs beyond 5 years after treatment of the first cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Guerard, Marie; Robin, Thomas; Perron, Pascal; Hatat, Anne-Sophie; David-Boudet, Laurence; Vanwonterghem, Laetitia; Busser, Benoit; Coll, Jean-Luc; Lantuejoul, Sylvie; Eymin, Beatrice; Hurbin, Amandine; Gazzeri, Sylvie
2018-04-28
Many Receptor Tyrosine Kinases translocate from the cell surface to the nucleus in normal and pathological conditions, including cancer. Here we report the nuclear expression of insulin-like growth factor-1 receptor (IGF1R) in primary human lung tumours. Using lung cancer cell lines and lung tumour xenografts, we demonstrate that the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib induces the nuclear accumulation of IGF1R in mucinous lung adenocarcinoma by a mechanism involving the intracellular re-localization of the growth factor amphiregulin. Amphiregulin allows the binding of IGF1R to importin-β1 and promotes its nuclear transport. The nuclear accumulation of IGF1R by amphiregulin induces cell cycle arrest through p21 WAF1/CIP1 upregulation, and prevents the induction of apoptosis in response to gefitinib. These results identify amphiregulin as the first nuclear localization signal-containing protein that interacts with IGF1R and allows its nuclear translocation. Furthermore they indicate that nuclear expression of IGF1R contributes to EGFR-TKI resistance in lung cancer. Copyright © 2018 Elsevier B.V. All rights reserved.
C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.
Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji
2016-02-19
Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22α, indicating that CNP suppresses fibroblast differentiation into myofibroblasts. Furthermore, human lung fibroblasts from patients with or without interstitial lung disease substantially expressed GC-B receptor mRNA. These data suggest that CNP ameliorates bleomycin-induced pulmonary fibrosis by suppressing TGF-β signaling and myofibroblastic differentiation in lung fibroblasts. Therefore, we propose consideration of CNP for clinical application to pulmonary fibrosis treatment.
Comprehensive outcomes after lung retransplantation: a single center review.
Halloran, Kieran; Aversa, Meghan; Tinckam, Kathryn; Martinu, Tereza; Binnie, Matthew; Chaparro, Cecilia; Chow, Chung-Wai; Waddell, Tom; McRae, Karen; Pierre, Andrew; de Perrot, Marc; Yasufuku, Kazuhiro; Cypel, Marcelo; Keshavjee, Shaf; Singer, Lianne G
2018-05-13
Lung retransplantation is an important therapy for a growing population of lung transplant recipients with graft failure, but detailed outcome data are lacking. We conducted a retrospective cohort study of adult lung retransplant in the Toronto Lung Transplant Program from 2001 to 2013 (n=38). We analyzed the post-operative course, graft function, renal function, microbiology, donor specific antibodies (DSA), quality of life and survival compared to a control cohort of primary transplant recipients matched for age and era. Indication for retransplant was chronic lung allograft dysfunction in most retransplant recipients (35/38, 82%). The post-operative course was more complex after retransplant than primary (ventilation time, 8 vs. 2 days, p<0.01; ICU stay 14 vs. 4 days, 0<0.01) and peak lung function was lower (FEV1 2.2L vs. 3L, p<0.01). Quality of life scores were comparable, as were renal function, microbiology and donor specific antibody formation. Median survival was 1988 days after primary and 1475 days after retransplant (p=0.39). Lung retransplantation is associated with a more complex post-operative course and lower peak lung function, but the long term medical profile is similar to primary transplant. Lung retransplantation can be beneficial for carefully selected candidates with allograft failure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Timothy N.; Dentener, Mieke A.
Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damagingmore » inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT5A signaling. • Microarray reveals WNT as a novel complex signaling network in silica-mediated injury.« less
Quail, Daniela F; Olson, Oakley C; Bhardwaj, Priya; Walsh, Logan A; Akkari, Leila; Quick, Marsha L; Chen, I-Chun; Wendel, Nils; Ben-Chetrit, Nir; Walker, Jeanne; Holt, Peter R; Dannenberg, Andrew J; Joyce, Johanna A
2017-08-01
Obesity is associated with chronic, low-grade inflammation, which can disrupt homeostasis within tissue microenvironments. Given the correlation between obesity and relative risk of death from cancer, we investigated whether obesity-associated inflammation promotes metastatic progression. We demonstrate that obesity causes lung neutrophilia in otherwise normal mice, which is further exacerbated by the presence of a primary tumour. The increase in lung neutrophils translates to increased breast cancer metastasis to this site, in a GM-CSF- and IL5-dependent manner. Importantly, weight loss is sufficient to reverse this effect, and reduce serum levels of GM-CSF and IL5 in both mouse models and humans. Our data indicate that special consideration of the obese patient population is critical for effective management of cancer progression.
Jeffers, Ann; Alvarez, Alexia; Owens, Shuzi; Koenig, Kathleen; Quaid, Brandon; Komissarov, Andrey A.; Florova, Galina; Kothari, Hema; Pendurthi, Usha; Mohan Rao, L. Vijaya; Idell, Steven
2014-01-01
Local derangements of fibrin turnover and plasminogen activator inhibitor (PAI)-1 have been implicated in the pathogenesis of pleural injury. However, their role in the control of pleural organization has been unclear. We found that a C57Bl/6j mouse model of carbon black/bleomycin (CBB) injury demonstrates pleural organization resulting in pleural rind formation (14 d). In transgenic mice overexpressing human PAI-1, intrapleural fibrin deposition was increased, but visceral pleural thickness, lung volumes, and compliance were comparable to wild type. CBB injury in PAI-1−/− mice significantly increased visceral pleural thickness (P < 0.001), elastance (P < 0.05), and total lung resistance (P < 0.05), while decreasing lung compliance (P < 0.01) and lung volumes (P < 0.05). Collagen, α-smooth muscle actin, and tissue factor were increased in the thickened visceral pleura of PAI-1−/− mice. Colocalization of α-smooth muscle actin and calretinin within pleural mesothelial cells was increased in CBB-injured PAI-1−/− mice. Thrombin, factor Xa, plasmin, and urokinase induced mesothelial–mesenchymal transition, tissue factor expression, and activity in primary human pleural mesothelial cells. In PAI-1−/− mice, D-dimer and thrombin–antithrombin complex concentrations were increased in pleural lavage fluids. The results demonstrate that PAI-1 regulates CBB-induced pleural injury severity via unrestricted fibrinolysis and cross-talk with coagulation proteases. Whereas overexpression of PAI-1 augments intrapleural fibrin deposition, PAI-1 deficiency promotes profibrogenic alterations of the mesothelium that exacerbate pleural organization and lung restriction. PMID:24024554
Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Naohiko; Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp; Furuya, Kishio
Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellularmore » Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.« less
Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.
Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L
2017-11-01
Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Autoradiographic localization of specific (/sup 3/H)dexamethasone binding in fetal lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, D.G.; Butley, M.S.; Cunha, G.R.
1984-10-01
The cellular and subcellular localization of specific (/sup 3/H)dexamethasone binding was examined in fetal mouse lung at various stages of development and in human fetal lung at 8 weeks of gestation using a rapid in vitro steroid incubation technique followed by thaw-mount autoradiography. Competition studies with unlabeled steroids demonstrate the specificity of (/sup 3/H)dexamethasone labeling, and indicate that fetal lung mesenchyme is a primary glucocorticoid target during lung development. Autoradiographs of (/sup 3/H)dexamethasone binding in lung tissue at early stages of development demonstrate that the mesenchyme directly adjacent to the more proximal portions of the bronchiolar network is heavily labeled.more » In contrast, the epithelium which will later differentiate into bronchi and bronchioles, is relatively unlabeled. Distal portions of the growing epithelium, destined to become alveolar ducts and alveoli, do show nuclear localization of (/sup 3/H)dexamethasone. In addition, by utilizing a technique which allows the simultaneous examination of extracellular matrix components and (/sup 3/H)dexamethasone binding, a relationship is observed between extensive mesenchymal (/sup 3/H)dexamethasone binding and extensive extracellular matrix accumulation. Since glucocorticoids stimulate the synthesis of many extracellular matrix components, these results suggest a role for these hormones in affecting mesenchymal-epithelial interactions during lung morphogenesis.« less
Styrene exposure and risk of cancer
Huff, James; Infante, Peter F.
2011-01-01
Styrene is widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. Styrene and the primary metabolite styrene-7,8-oxide are genotoxic and carcinogenic. Long-term chemical carcinogenesis bioassays showed that styrene caused lung cancers in several strains of mice and mammary cancers in rats and styrene-7,8-oxide caused tumours of the forestomach in rats and mice and of the liver in mice. Subsequent epidemiologic studies found styrene workers had increased mortality or incidences of lymphohematopoietic cancers (leukaemia or lymphoma or all), with suggestive evidence for pancreatic and esophageal tumours. No adequate human studies are available for styrene-7,8-oxide although this is the primary and active epoxide metabolite of styrene. Both are genotoxic and form DNA adducts in humans. PMID:21724974
Promotion of Lung Health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases
Budinger, G. R. Scott; Escobar, Gabriel J.; Hansel, Nadia N.; Hanson, Corrine K.; Huffnagle, Gary B.; Buist, A. Sonia
2014-01-01
Lung-related research primarily focuses on the etiology and management of diseases. In recent years, interest in primary prevention has grown. However, primary prevention also includes “health promotion” (actions in a population that keep an individual healthy). We encourage more research on population-based (public health) strategies that could not only maximize lung health but also mitigate “normal” age-related declines—not only for spirometry but across multiple measures of lung health. In developing a successful strategy, a “life course” approach is important. Unfortunately, we are unable to achieve the full benefit of this approach until we have better measures of lung health and an improved understanding of the normal trajectory, both over an individual’s life span and possibly across generations. We discuss key questions in lung health promotion, with an emphasis on the upper (healthier) end of the distribution of lung functioning and resiliency and briefly summarize the few interventions that have been studied to date. We conclude with suggestions regarding the most promising future research for this important, but largely neglected, area of lung research. PMID:24754821
Lung Parenchymal Assessment in Primary and Secondary Pneumothorax.
Bintcliffe, Oliver J; Edey, Anthony J; Armstrong, Lynne; Negus, Ian S; Maskell, Nick A
2016-03-01
The definition of primary spontaneous pneumothorax excludes patients with known lung disease; however, the assumption that the underlying lung is normal in these patients is increasingly contentious. The purpose of this study was to assess lung structure and compare the extent of emphysema in patients with primary versus secondary spontaneous pneumothorax and to patients with no pneumothorax in an otherwise comparable control group. We identified patients treated for pneumothorax by screening inpatient and outpatient medical records at one medical center in the United Kingdom. From this group, 20 patients had no clinically apparent underlying lung disease and were classified as having a primary spontaneous pneumothorax, and 20 patients were classified as having a secondary spontaneous pneumothorax. We assembled a control group composed of 40 subjects matched for age and smoking history who had a unilateral pleural effusion or were suspected to have a thoracic malignancy and had a chest computed tomography scan suitable for quantitative analysis. Demographics and smoking histories were collected. Quantitative evaluation of low-attenuation areas of the lung on computed tomography imaging was performed using semiautomated software, and the extent of emphysema-like destruction was assessed visually. The extent of emphysema and percentage of low-attenuation areas was greater for patients with primary spontaneous pneumothorax than for control subjects matched for age and smoking history (median, 0.25 vs. 0.00%; P = 0.019) and was also higher for patients with secondary pneumothorax than those with primary spontaneous pneumothorax (16.15 vs. 0.25%, P < 0.001). Patients with primary pneumothorax who smoked had significantly greater low-attenuation area than patients with primary pneumothorax who were nonsmokers (0.7 vs. 0.1%, P = 0.034). The majority of patients with primary spontaneous pneumothorax had quantifiable evidence of parenchymal destruction and emphysema. The exclusion of patients with underlying lung disease from the definition of primary spontaneous pneumothorax should be reappraised.
Pravosud, Vira; Huang, Bin; Tucker, Thomas; Vanderford, Nathan L
2017-12-01
The aim of this study was to investigate whether patients with lung cancer in Appalachian Kentucky are more likely to develop multiple primary cancers than patients in non-Appalachian Kentucky. Additional analyses were conducted to identify other factors that may be associated with an increased hazard of developing multiple primary cancers in patients with lung cancer. The data for this retrospective, population-based cohort study of 26,456 primary lung cancer patients were drawn from the Kentucky Cancer Registry. For inclusion in the study, patients must have been diagnosed between January 1, 2000 and December 31, 2013 and they must either have continually resided in Appalachian Kentucky or continually resided in non-Appalachian Kentucky. Cases were excluded if the patient was diagnosed as having additional primary cancers within 3 months of the initial diagnosis of primary lung cancer. The medical records for each case were examined to determine whether the patient was subsequently diagnosed as having additional primary cancers. The Cox proportional hazards model was then used to assess whether there was an association between the region in which the patients live and the likelihood of developing multiple primary cancers. Time to event was considered as the time from diagnosis to either death or development of a second primary cancer. The results presented here indicate that the risk of developing multiple primary cancers is the same for patients with lung cancer throughout Kentucky (hazard ratio [HR] 1.002, P = 0.9713). We found no evidence for a greater hazard in patients from Appalachia; however, additional analyses revealed several high-risk groups. Male patients and older patients had a significantly greater hazard of developing multiple primary cancers (HR 1.169, P = 0.012 and 1.015, P = 0.0001, respectively). In addition, patients who underwent surgery and those who were diagnosed initially as having an earlier stage of cancer also were more likely to develop multiple primary cancers (HR 1.446, P = 0.0003 and 0.684, P = 0.0015, respectively). This is a negative study. Patients with primary lung cancer living in Appalachian Kentucky are not at a greater risk of developing multiple primary cancers than those residing in non-Appalachian Kentucky. High-risk groups identified in this study are male patients and older patients. The increased hazard seen in patients who underwent surgery or those who were diagnosed as having earlier stages of lung cancer are likely an artifact of these patients living longer and, therefore, having more time to develop additional primary cancers.
Maruta, Naomichi; Marumoto, Moegi
2017-01-01
Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293
Metachronous Lung Cancer: Clinical Characteristics and Effects of Surgical Treatment.
Rzechonek, Adam; Błasiak, Piotr; Muszczyńska-Bernhard, Beata; Pawełczyk, Konrad; Pniewski, Grzegorz; Ornat, Maciej; Grzegrzółka, Jędrzej; Brzecka, Anna
2018-01-01
The occurrence of a second lung tumor after surgical removal of lung cancer usually indicates a lung cancer metastasis, but sometimes a new lesion proves to be a new primary lung cancer, i.e., metachronous lung cancer. The goal of the present study was to conduct a clinical evaluation of patients with metachronous lung cancer and lung cancer metastasis, and to compare the early and distant outcomes of surgical treatment in both cancer types. There were 26 age-matched patients with lung cancer metastases and 23 patients with metachronous lung cancers, who underwent a second lung cancer resection. We evaluated the histological type of a resected cancer, the extent of thoracosurgery, the frequency of early postoperative complications, and the probability of 5-year survival after the second operation. The findings were that metachronous lung cancer was adenocarcinoma in 52% of patients, with a different histopathological pattern from that of the primary lung cancer in 74% of patients. In both cancer groups, mechanical resections were the most common surgery type (76% of all cases), with anatomical resections such as segmentectomy, lobectomy, or pneumectomy being much rarer conducted. The incidence of early postoperative complications in metachronous lung cancer and lung cancer metastasis (30% vs. 31%, respectively) and the probability of 5-year survival after resection of either cancer tumor (60.7% vs. 50.9%, respectively) were comparable. In conclusion, patients undergoing primary lung cancer surgery require a long-term follow-up due to the risk of metastatic or metachronous lung cancer. The likelihood of metachronous lung cancer and pulmonary lung cancer metastases, the incidence of postoperative complications, and the probability of 5-year survival after resection of metachronous lung cancer or lung cancer metastasis are similar.
Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M
2009-10-19
Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.
Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E
2013-06-01
In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.
Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P
2017-07-01
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Primary pulmonary plasmacytoma with diffuse alveolar consolidation: a case report.
Mohammad Taheri, Zohreh; Mohammadi, Forouzan; Karbasi, Mehrdad; Seyfollahi, Leila; Kahkoei, Shahram; Ghadiany, Mojtaba; Fayazi, Nader; Mansouri, Davood
2010-06-13
Solitary extramedullary plasmacytomas are plasma cell tumors that tend to develop in mucosa-associated lymphoid tissues including the sinonasal or nasopharyngeal regions. Primary plasmacytoma of the lung is exceedingly rare and often presents as a solitary mass or nodule in mid-lung or hilar areas and diagnosed after resection. Herein, we report a case of primary pulmonary plasmacytoma that presented with diffuse alveolar consolidation and diagnosed by transbronchial lung biopsy.
Primary Pulmonary Plasmacytoma with Diffuse Alveolar Consolidation: A Case Report
Mohammad Taheri, Zohreh; Mohammadi, Forouzan; Karbasi, Mehrdad; Seyfollahi, Leila; Kahkoei, Shahram; Ghadiany, Mojtaba; Fayazi, Nader; Mansouri, Davood
2010-01-01
Solitary extramedullary plasmacytomas are plasma cell tumors that tend to develop in mucosa-associated lymphoid tissues including the sinonasal or nasopharyngeal regions. Primary plasmacytoma of the lung is exceedingly rare and often presents as a solitary mass or nodule in mid-lung or hilar areas and diagnosed after resection. Herein, we report a case of primary pulmonary plasmacytoma that presented with diffuse alveolar consolidation and diagnosed by transbronchial lung biopsy. PMID:21151727
Squamous Cell Cancer of The Lung with Synchronous Renal Cell Carcinoma
Ateş, İhsan; Yazıcı, Ozan; Ateş, Hale; Yazılıtaş, Doğan; Özcan, Ayşe Naz; Ağaçkıran, Yetkin; Zengin, Nurullah
2016-01-01
Coexistence of two or more primary cancers is a relatively rare case. Not with standing that the coexistence of multiple primary cancers is often discussed in the literature, there is a small number of publications concerning the coexistence of squamous cell lung carcinoma and renal cancer. In this case report, detection of both squamous cell lung carcinoma and primary renal cancer in one male patient is going to be discussed. PMID:29404140
CXCR4 regulates growth of both primary and metastatic breast cancer.
Smith, Matthew C P; Luker, Kathryn E; Garbow, Joel R; Prior, Julie L; Jackson, Erin; Piwnica-Worms, David; Luker, Gary D
2004-12-01
The chemokine receptor CXCR4 and its cognate ligand CXCL12 recently have been proposed to regulate the directional trafficking and invasion of breast cancer cells to sites of metastases. However, effects of CXCR4 on the growth of primary breast cancer tumors and established metastases and survival have not been determined. We used stable RNAi to reduce expression of CXCR4 in murine 4T1 cells, a highly metastatic mammary cancer cell line that is a model for stage IV human breast cancer. Using noninvasive bioluminescence and magnetic resonance imaging, we showed that knockdown of CXCR4 significantly limited the growth of orthotopically transplanted breast cancer cells. Mice in which parental 4T1 cells were implanted had progressively enlarging tumors that spontaneously metastasized, and these animals all died from metastatic disease. Remarkably, RNAi of CXCR4 prevented primary tumor formation in some mice, and all mice transplanted with CXCR RNAi cells survived without developing macroscopic metastases. To analyze effects of CXCR4 on metastases to the lung, an organ commonly affected by metastatic breast cancer, we injected tumor cells intravenously and monitored cell growth with bioluminescence imaging. Inhibiting CXCR4 with RNAi, or the specific antagonist AMD3100, substantially delayed the growth of 4T1 cells in the lung, although neither RNAi nor AMD3100 prolonged overall survival in mice with experimental lung metastases. These data indicate that CXCR4 is required to initiate proliferation and/or promote survival of breast cancer cells in vivo and suggest that CXCR4 inhibitors will improve treatment of patients with primary and metastatic breast cancer.
Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry
2017-08-01
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. Copyright © 2017 American Society for Microbiology.
Escaffre, Olivier; Saito, Tais B.; Juelich, Terry L.; Ikegami, Tetsuro; Smith, Jennifer K.; Perez, David D.; Atkins, Colm; Levine, Corri B.; Huante, Matthew B.; Nusbaum, Rebecca J.; Endsley, Janice J.
2017-01-01
ABSTRACT Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. PMID:28539439
Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.
Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J
2017-08-01
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Metastatic gastric carcinoma from breast cancer mimicking primary linitis plastica: A case report.
Yagi, Yasumichi; Sasaki, Shozo; Yoshikawa, Akemi; Tsukioka, Yuji; Fukushima, Wataru; Fujimura, Takashi; Hirosawa, Hisashi; Izumi, Ryohei; Saito, Katsuhiko
2015-12-01
Metastases to the gastrointestinal tract rarely occur in breast cancer except in invasive lobular carcinoma. The present study reports a rare case of metastatic gastric cancer from invasive ductal carcinoma (IDC) of the breast mimicking primary gastric linitis plastica. A 51-year-old premenopausal female, who had a history of partial mastectomy for right breast cancer at the age of 40, was referred to Toyama City Hospital (Toyoma, Japan) for an endoscopic diagnosis of gastric linitis plastica. Abdominal computed tomography (CT) revealed left hydronephrosis, while peritoneal metastasis and malignant ascites were not detected. Chest CT detected a left lung tumor, which had invaded the left upper bronchus. Biopsy specimens were obtained and the histopathological findings on both the gastric tumor and lung tumor demonstrated poorly differentiated adenocarcinoma, whereas the histology of the original breast cancer was IDC with a solid-tubular type. Immunohistochemistry revealed that the biopsied specimens of the gastric and lung tumors were positive for estrogen receptor (ER), progesterone receptor (PgR) and negative for human epithelial growth factor receptor-2 (HER2). These molecular characteristics indicated the case was metastatic gastric carcinoma from the breast cancer with lung metastasis, since the statuses of ER, PgR and HER2 were concordant with those of the original breast cancer. However, the possibility of primary gastric cancer could not be completely ruled out. Therefore, a total gastrectomy was performed for the purpose of both diagnosis and treatment. Pathological examination of the resected specimen provided a definite diagnosis of multiple metastatic gastric carcinomas from the breast. To the best of our knowledge, metastatic gastric cancer derived from the breast presenting as linitis plastica 11 years following the surgical removal of IDC has not been described previously.
Winkler-Heil, R; Hussain, M; Hofmann, W
2015-05-01
Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.
Lung retransplantation in children: appropriate when selectively applied.
Scully, Brandi B; Zafar, Farhan; Schecter, Marc G; Rossano, Joseph W; Mallory, George B; Heinle, Jeffrey S; Morales, David L S
2011-02-01
Lung retransplantation (re-LTx) in children has been associated with lower survival rates compared with primary lung transplantation. However, improving survival for primary LTx has led to more patients presenting for re-LTx. Therefore, an analysis of the UNOS (United Network of Organ Sharing) database to evaluate the effectiveness of pediatric lung retransplantation in the United States was completed. The UNOS registry was queried for pediatric re-LTx patients from May 1988 to May 2008. There were 81 (10%) re-LTx out of a total 802 pediatric lung transplants. Median age and weight at re-LTx were 14 (range, 0 to 18) years and 32 (4 to 58) kg. Indications for re-LTx were obliterative bronchiolitis in 50 patients (62%), primary graft failure in 8 (10%), and other in 23 (28%). The Kaplan-Meier graft survival for re-LTx patients was worse than for primary transplant patients (p < 0.001, graft half-life 0.9 vs 4.0 years), especially if re-LTx was done less than 1 year after primary transplant (graft half-life 0.25 years). Graft survival in patients who underwent re-LTx greater than 1 year after primary transplant was not statistically different than for primary LTx patients (p = 0.21; graft half-life 2.8 vs 4.0 years), and if re-LTx greater than 1 year posttransplant occurred in patients who were not ventilator dependent, survival was further improved (p = 0.68; graft half-life 4.7 vs 4.0 years). Pediatric lung retransplantation within the first year after primary transplant does not appear advisable. Pediatric re-LTx greater than 1 year after primary transplantation may be a reasonable strategy for end-stage graft failure. Patients greater than 1 year posttransplant and not ventilator dependent appear an even more compelling group in which to consider lung retransplantation. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Chirmade, Pushpak Chandrakant; Parikh, Sonia; Anand, Asha; Panchal, Harsha; Patel, Apurva; Shah, Sandip
2017-01-01
Primary lung neoplasms are rare in children. The most common primary lung malignancies in children are pleuropulmonary blastoma and carcinoid tumour. Synovial sarcoma (SS) accounts for approximately 1% of all childhood malignancies. In absolute terms, the SS of the lungs and pleura are extremely rare and pose a diagnostic difficulty. Soft tissue sarcomas usually have a high potential for metastases, however, metastasis to the brain is rare, even in widely disseminated disease, and it has been described only in 3 case reports previously. Primary pleuropulmonary SS with brain metastases is even rarer. Here we present a case of an 11-year-old boy who presented with respiratory complaints, viz. fever and cough for 20 days. Initial impression was lung abscess, however, on histopathological, immunohistochemical and molecular study, the disorder was diagnosed as synovial sarcoma. After a week from the first consult, the child developed neurological symptoms, viz., an episode of convulsion and gradually worsening power of the lower limb. Computed tomography scan and Magnetic Resonance Spectroscopy was suggestive of brain metastases. Given the rarity of primary lung neoplasms in children, clinical detection remains a challenge. Delayed diagnoses are common as respiratory symptoms may be attributed to inflammatory or infective processes. Primary pleuropulmonary synovial sarcoma is a rare tumour and it is not known to commonly metastasise to the brain. Though rare, primary pleuropulmonary SS should be considered an important differential among peadiatric primary lung neoplasms due to its potential for curability if detected early, and more aggressive metastatic pattern, e.g. brain metastases making early detection imperative.
Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K
2016-01-01
Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators. These observed changes may contribute local inflammation, which can lead to lung function decline and increased susceptibility to COPD in HIV patients.
Tongue metastasis mimicking an abscess.
Mavili, Ertuğrul; Oztürk, Mustafa; Yücel, Tuba; Yüce, Imdat; Cağli, Sedat
2010-03-01
Primary tumors metastasizing to the oral cavity are extremely rare. Lung is one of the most common primary sources of metastases to the tongue. Although the incidence of lung cancer is increasing, tongue metastasis as the initial presentation of the tumor remains uncommon. Due to the rarity of tongue metastasis, little is known about its imaging findings. Herein we report the magnetic resonance imaging and clinical findings of a lingual metastasis, mimicking an abscess, from a primary lung cancer.
Wood dust exposure and lung cancer risk: a meta-analysis.
Hancock, David G; Langley, Mary E; Chia, Kwan Leung; Woodman, Richard J; Shanahan, E Michael
2015-12-01
Occupational lung cancers represent a major health burden due to their increasing prevalence and poor long-term outcomes. While wood dust is a confirmed human carcinogen, its association with lung cancer remains unclear due to inconsistent findings in the literature. We aimed to clarify this association using meta-analysis. We performed a search of 10 databases to identify studies published until June 2014. We assessed the lung cancer risk associated with wood dust exposure as the primary outcome and with wood dust-related occupations as a secondary outcome. Random-effects models were used to pool summary risk estimates. 85 publications were included in the meta-analysis. A significantly increased risk for developing lung cancer was observed among studies that directly assessed wood dust exposure (RR 1.21, 95% CI 1.05 to 1.39, n=33) and that assessed wood dust-related occupations (RR 1.15, 95% CI 1.07 to 1.23, n=59). In contrast, a reduced risk for lung cancer was observed among wood dust (RR 0.63, 95% CI 0.39 to 0.99, n=5) and occupation (RR 0.96, 95% CI 0.95 to 0.98, n=1) studies originating in Nordic countries, where softwood dust is the primary exposure. These results were independent of the presence of adjustment for smoking and exposure classification methods. Only minor differences in risk between the histological subtypes were identified. This meta-analysis provides strong evidence for an association between wood dust and lung cancer, which is critically influenced by the geographic region of the study. The reasons for this region-specific effect estimates remain to be clarified, but may suggest a differential effect for hardwood and softwood dusts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Zhang, Liying; Makwana, Rahul; Sharma, Sumit
2013-01-01
Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591
Experience with the first 50 ex vivo lung perfusions in clinical transplantation.
Cypel, Marcelo; Yeung, Jonathan C; Machuca, Tiago; Chen, Manyin; Singer, Lianne G; Yasufuku, Kazuhiro; de Perrot, Marc; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf
2012-11-01
Normothermic ex vivo lung perfusion is a novel method to evaluate and improve the function of injured donor lungs. We reviewed our experience with 50 consecutive transplants after ex vivo lung perfusion. A retrospective study using prospectively collected data was performed. High-risk brain death donor lungs (defined as Pao(2)/Fio(2) <300 mm Hg or lungs with radiographic or clinical findings of pulmonary edema) and lungs from cardiac death donors were subjected to 4 to 6 hours of ex vivo lung perfusion. Lungs that achieved stable airway and vascular pressures and Pao(2)/Fio(2) greater than 400 mm Hg during ex vivo lung perfusion were transplanted. The primary end point was the incidence of primary graft dysfunction grade 3 at 72 hours after transplantation. End points were compared with lung transplants not treated with ex vivo lung perfusion (controls). A total of 317 lung transplants were performed during the study period (39 months). Fifty-eight ex vivo lung perfusion procedures were performed, resulting in 50 transplants (86% use). Of these, 22 were from cardiac death donors and 28 were from brain death donors. The mean donor Pao(2)/Fio(2) was 334 mm Hg in the ex vivo lung perfusion group and 452 mm Hg in the control group (P = .0001). The incidence of primary graft dysfunction grade 3 at 72 hours was 2% in the ex vivo lung perfusion group and 8.5% in the control group (P = .14). One patient (2%) in the ex vivo lung perfusion group and 7 patients (2.7%) in the control group required extracorporeal lung support for primary graft dysfunction (P = 1.00). The median time to extubation, intensive care unit stay, and hospital length of stay were 2, 4, and 20 days, respectively, in the ex vivo lung perfusion group and 2, 4, and 23 days, respectively, in the control group (P > .05). Thirty-day mortality (4% in the ex vivo lung perfusion group and 3.5% in the control group, P = 1.00) and 1-year survival (87% in the ex vivo lung perfusion group and 86% in the control group, P = 1.00) were similar in both groups. Transplantation of high-risk donor lungs after 4 to 6 hours of ex vivo lung perfusion is safe, and outcomes are similar to those of conventional transplants. Ex vivo lung perfusion improved our center use of donor lungs, accounting for 20% of our current lung transplant activity. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Needs for animal models of human diseases of the respiratory system.
Reid, L. M.
1980-01-01
Animal models are of two types those that occur spontaneously and those that the scientist produces by artefact. One value of spontaneously occurring models is that if pathogenetic mechanisms are identified, they give new leads for the study of human disease. There is a need for spontaneously occurring examples of so-called primary or idiopathic pulmonary fibrosis, pulmonary hypertension (arterial or venous), and emphysema. Acquired or artefactual models of each of these conditions are available and have led to better understanding of the pathological changes, but they have not led to identification of the basic or primary abnormality. A naturally occurring model of cystic fibrosis could be a major event in our control of this disease. A spontaneously occurring form of asthma is needed as a bridge between experiment and patient. Artefactual models that are needed are of bronchopulmonary dysplasia and shock lung. There is probably enough agreement--but only just--on the nature of bronchopulmonary dysplasia for specific needs to be identified. Here the questions concern the choice of an appropriate species--or several--in which to study the premature lung and its adaptation to air breathing and supportive therapy. Knowledge of comparative anatomy and physiology must influence choice of species for certain models. For adult respiratory failure, or shock lung, a model is needed that progresses to pulmonary hypertension. Spontaneous models of interstitial pneumonia and of infection, both viral and bacterial, are needed. An animal model of a disease is only as useful as the questions we ask of it. PMID:6969987
Aerosol gemcitabine: preclinical safety and in vivo antitumor activity in osteosarcoma-bearing dogs.
Rodriguez, Carlos O; Crabbs, Torrie A; Wilson, Dennis W; Cannan, Virginia A; Skorupski, Katherine A; Gordon, Nancy; Koshkina, Nadya; Kleinerman, Eugenie; Anderson, Peter M
2010-08-01
Osteosarcoma is the most common skeletal malignancy in the dog and in young humans. Although chemotherapy improves survival time, death continues to be attributed to metastases. Aerosol delivery can provide a strategy with which to improve the lung drug delivery while reducing systemic toxicity. The purpose of this study is to assess the safety of a regional aerosol approach to chemotherapy delivery in osteosarcoma-bearing dogs, and second, to evaluate the effect of gemcitabine on Fas expression in the pulmonary metastasis. We examined the systemic and local effects of aerosol gemcitabine on lung and pulmonary metastasis in this relevant large-animal tumor model using serial laboratory and arterial blood gas analysis and histopathology and immunohistochemistry, respectively. Six hundred seventy-two 1-h doses of aerosol gemcitabine were delivered. The treatment was well tolerated by these subjects with osteosarcoma (n = 20). Aerosol-treated subjects had metastatic foci that demonstrated extensive, predominately central, intratumoral necrosis. Fas expression was decreased in pulmonary metastases compared to the primary tumor (p = 0.008). After aerosol gemcitabine Fas expression in the metastatic foci was increased compared to lung metastases before treatment (p = 0.0075), and even was higher than the primary tumor (p = 0.025). Increased apoptosis (TUNEL) staining was also detected in aerosol gemcitabine treated metastasis compared to untreated controls (p = 0.028). The results from this pivotal translational study support the concept that aerosol gemcitabine may be useful against pulmonary metastases of osteosarcoma. Additional studies that evaluate the aerosol route of administration of gemcitabine in humans should be safe and are warranted.
Ruiz, Ximena D.; Mlakar, Logan R.; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T.; Pilewski, Joseph M.; Feghali-Bostwick, Carol A.
2012-01-01
Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3. PMID:22900087
Ruiz, Ximena D; Mlakar, Logan R; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T; Pilewski, Joseph M; Feghali-Bostwick, Carol A
2012-01-01
Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.
Piolatto, G; Pira, E
2011-01-01
The Italian Society of Occupational Medicine and Industrial Hygiene (SIMLII) began a thorough overview of the silica-silicosis-lung cancer question starting in 2005. The body of informa tion obtained from a number of epidemiological studies, meta-analyses and reviews following the decision of the IARC to classify Respirable Crystalline Silica (RCS) as a human carcinogen (Group 1) led to different conclusions, which can be summarized as follows: basically an increased risk of developing lung cancer is demonstrated and generally accepted for silicotics; the association of lung cancer and exposure to silica per se is controversial, with some studies in favour of an association and some leading to contrary conclusions. Due to methodological problems affecting most studies and the difficulty in identifying the mechanism of action, we agree that the silica-lung cancer association is still unclear. The UE approach is more practical than scientific, in that it recommended the use of "good practices" subject to an agreement with the social partners, without any need to classify RCS as a human carcinogen. However, in 2008 the UE asked the Institute of Occupational Medicine (IOM) in Edinburgh to assess, as a primary objective, the impact of introducing a system for setting Occupational Exposure Limits (OELs) based on objective risk criteria. In the present state of the art SIMLII's conclusions are: a) There is no need to label RCS with phrase H350i (ex R.49); b) It is of utmost importance to enforce compliance with current OELs; c) Future guidelines specific for silicosis risk should include adequate health surveillance; d) For legal medicine purposes, only lung cancer cases with an unquestionable diagnosis of silicosis should be recognised as an occupational disease.
Kumar, Ashwani; Saini, Narinder Singh; Mohindroo, Jitender; Singh, Balbir Bagicha; Sangwan, Vandana; Sood, Naresh Kumar
2016-01-01
Aim: Echinococcosis is the major cause of lung and liver cysts in ruminants. This study compared usefulness of radiography and ultrasonography (USG) in the detection of lung and/or liver cysts in sick bovine animals. The study also worked out cooccurrence of lung and liver cysts, and whether these cysts were primary cause of sickness or not. Materials and Methods: This study was conducted on 45 sick bovine (37 buffaloes and 8 cattle) suffering from lung and liver cysts. A complete history of illness and clinical examination was carried out. Lateral radiographs of chest and reticular region were taken. In radiographically positive or suspected cases of cysts, USG of the lung and liver region was done. Depending on the location of cyst and clinical manifestations of the animal, the cysts were categorized as primary or secondary causes of sickness. Results: Using either imaging technique, it was observed that 46.7% of the animals had both lung and liver cysts, whereas 33.3% had only lung and 20% had only liver cyst. Cysts were identified as primary cause of sickness in 31.1% animals only. For diagnosing lung cysts, radiography (71.1%) and USG (62.2%) had similar diagnostic utility. However, for detecting liver cysts, USG was the only imaging tool. Conclusion: The lung and liver cysts, depending on their number and size may be a primary cause of sickness in bovine. Radiography and USG are recommended, in combination, as screening tools to rule out echinococcosis. PMID:27847421
Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair
2015-08-01
Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.
Mujovic, Natasa; Mujovic, Nebojsa; Subotic, Dragan; Ercegovac, Maja; Milovanovic, Andjela; Nikcevic, Ljubica; Zugic, Vladimir; Nikolic, Dejan
2015-11-01
Influence of physiotherapy on the outcome of the lung resection is still controversial. Study aim was to assess the influence of physiotherapy program on postoperative lung function and effort tolerance in lung cancer patients with chronic obstructive pulmonary disease (COPD) that are undergoing lobectomy or pneumonectomy. The prospective study included 56 COPD patients who underwent lung resection for primary non small-cell lung cancer after previous physiotherapy (Group A) and 47 COPD patients (Group B) without physiotherapy before lung cancer surgery. In Group A, lung function and effort tolerance on admission were compared with the same parameters after preoperative physiotherapy. Both groups were compared in relation to lung function, effort tolerance and symptoms change after resection. In patients with tumors requiring a lobectomy, after preoperative physiotherapy, a highly significant increase in FEV1, VC, FEF50 and FEF25 of 20%, 17%, 18% and 16% respectively was registered with respect to baseline values. After physiotherapy, a significant improvement in 6-minute walking distance was achieved. After lung resection, the significant loss of FEV1 and VC occurred, together with significant worsening of the small airways function, effort tolerance and symptomatic status. After the surgery, a clear tendency existed towards smaller FEV1 loss in patients with moderate to severe, when compared to patients with mild baseline lung function impairment. A better FEV1 improvement was associated with more significant loss in FEV1. Physiotherapy represents an important part of preoperative and postoperative treatment in COPD patients undergoing a lung resection for primary lung cancer.
Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.
2016-01-01
Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365
Kobayashi-Watanabe, Naomi; Sato, Akemi; Watanabe, Tatsuro; Abe, Tomonori; Nakashima, Chiho; Sueoka, Eisaburo; Kimura, Shinya; Sueoka-Aragane, Naoko
2017-08-01
Discoidin domain receptor (DDR) 2 mutations have recently been reported to be candidate targets of molecular therapy in lung squamous cell carcinoma (SQCC). However, the status of DDR2 expression and mutations, as well as their precise roles in lung SQCC, have not been clarified. We here report DDR2 mutation and expression status in clinical samples and its role of lung SQCC. We investigated DDR2 expression and mutation status in 44 human clinical samples and 7 cell lines. Biological functions of DDR2 were assessed by in vitro cell invasion assay and animal model experiments. Endogenous DDR2 protein expression levels were high in one cell line, PC-1, and immunohistochemistry of lung cancer tissue array showed high levels of DDR2 protein in 29% of lung SQCC patients. A mutation (T681I) identified in lung SQCC and the cell line EBC-1 was detected among 44 primary lung SQCC samples and 7 lung SQCC cell lines. Although Forced expression of DDR2 and its mutant (T681I) led to induce SQCC cell invasion in vitro, only wild type DDR2 enhanced lung metastasis in an animal model. We also found that ectopic expression of DDR2 induced MMP-1 mRNA expression accompanied by phosphorylation of c-Jun after treatment with its ligand, collagen type I, but DDR2 with the T681I mutation did not, suggesting that T681I mutation is an inactivating mutation. Overexpression of DDR2 might contribute to tumor progression in lung SQCC. The overexpression of DDR2 could be potential molecular target of lung SQCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Azzopardi, Stephanie; Smith, Roger S.; Nasar, Abu; Altorki, Nasser K.; Mittal, Vivek; Somwar, Romel; Stiles, Brendon M.; Du, Yi-Chieh Nancy
2016-01-01
The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various cancers, but its role in primary and metastatic non-small cell lung carcinoma (NSCLC) remains to be determined. Here, we investigate the clinical relevance of RHAMM expression in NSCLC. RHAMM protein expression correlates with histological differentiation stages and extent of the primary tumor (T stages) in 156 patients with primary NSCLC. Importantly, while focal RHAMM staining pattern is present in 57% of primary NSCLC, intense RHAMM protein expression is present in 96% of metastatic NSCLC cases. In a publicly available database, The Cancer Genome Atlas (TCGA), RHAMM mRNA expression is 12- and 10-fold higher in lung adenocarcinoma and squamous lung carcinoma than in matched normal lung tissues, respectively. RHAMM mRNA expression correlates with stages of differentiation and inferior survival in more than 400 cases of lung adenocarcinoma in the Director's Challenge cohort. Of 4 RHAMM splice variants, RHAMMv3 (also known as RHAMMB) is the dominant variant in NSCLC. Moreover, shRNA-mediated knockdown of RHAMM reduced the migratory ability of two lung adenocarcinoma cell lines, H1975 and H3255. Taken together, RHAMM, most likely RHAMMv3 (RHAMMB), can serve as a prognostic factor for lung adenocarcinomas and a potential therapeutic target in NSCLC to inhibit tumor migration. PMID:27220886
Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross
2015-06-12
Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.
Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T.; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross
2015-01-01
Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229
Spontaneous Osteoblastic Osteosarcoma in a Mongolian Gerbil (Meriones unguiculatus)
Salyards, Gregory W; Blas-Machado, Uriel; Mishra, Sasmita; Harvey, Stephen B; Butler, Abigail M
2013-01-01
Spontaneous neoplasms in Mongolian gerbils have an incidence of 20% to 26.8%, but osteosarcomas occur at a much lower rate. Here we report a 1-y-old Mongolian gerbil with a spontaneous osteosarcoma at the level of the proximal tibia, with metastases to the pectoral muscles and lungs. Grossly, the tibial mass obliterated the tibia and adjacent muscles, and an axillary mass with a bloody, cavitary center expanded the pectoral muscles. Microscopically, the tibial mass was an infiltrative, osteoblastic mesenchymal neoplasm, and the axillary mass was an anaplastic mesenchymal neoplasm with hemorrhage. The lung contained multiple metastatic foci. Immunohistochemistry for osteonectin was strongly positive in the tibial, axillary, and pulmonary metastases. Although osteosarcoma is the most common primary malignant bone neoplasm that occurs spontaneously in all laboratory and domestic animal species and humans, it arises less frequently than does other neoplasms. The current case of spontaneous osteoblastic osteosarcoma of the proximal tibia and metastases to the pectoral muscles and lung in a Mongolian gerbil is similar in presentation, histology, and predilection site of both osteoblastic and telangiectatic osteosarcomas in humans. In addition, this case is an unusual manifestation of osteosarcoma in the appendicular skeleton of a Mongolian gerbil. PMID:23561939
Cho, Soo Jung; Moon, Jong-Seok; Lee, Chang-Min; Choi, Augustine M. K.
2017-01-01
Aging is associated with metabolic diseases such as type 2 diabetes mellitus, cardiovascular disease, cancer, and neurodegeneration. Aging contributes to common processes including metabolic dysfunction, DNA damage, and reactive oxygen species generation. Although glycolysis has been linked to cell growth and proliferation, the mechanisms by which the activation of glycolysis by aging regulates fibrogenesis in the lung remain unclear. The objective of this study was to determine if glucose transporter 1 (GLUT1)–induced glycolysis regulates age-dependent fibrogenesis of the lung. Mouse and human lung tissues were analyzed for GLUT1 and glycolytic markers using immunoblotting. Glycolytic function was measured using a Seahorse apparatus. To study the effect of GLUT1, genetic inhibition of GLUT1 was performed by short hairpin RNA transduction, and phloretin was used for pharmacologic inhibition of GLUT1. GLUT1-dependent glycolysis is activated in aged lung. Genetic and pharmacologic inhibition of GLUT1 suppressed the protein expression of α-smooth muscle actin, a key cytoskeletal component of activated fibroblasts, in mouse primary lung fibroblast cells. Moreover, we demonstrated that the activation of AMP-activated protein kinase, which is regulated by GLUT1-dependent glycolysis, represents a critical metabolic pathway for fibroblast activation. Furthermore, we demonstrated that phloretin, a potent inhibitor of GLUT1, significantly inhibited bleomycin-induced lung fibrosis in vivo. These results suggest that GLUT1-dependent glycolysis regulates fibrogenesis in aged lung and that inhibition of GLUT1 provides a potential target of therapy of age-related lung fibrosis. PMID:27997810
Cho, Soo Jung; Moon, Jong-Seok; Lee, Chang-Min; Choi, Augustine M K; Stout-Delgado, Heather W
2017-04-01
Aging is associated with metabolic diseases such as type 2 diabetes mellitus, cardiovascular disease, cancer, and neurodegeneration. Aging contributes to common processes including metabolic dysfunction, DNA damage, and reactive oxygen species generation. Although glycolysis has been linked to cell growth and proliferation, the mechanisms by which the activation of glycolysis by aging regulates fibrogenesis in the lung remain unclear. The objective of this study was to determine if glucose transporter 1 (GLUT1)-induced glycolysis regulates age-dependent fibrogenesis of the lung. Mouse and human lung tissues were analyzed for GLUT1 and glycolytic markers using immunoblotting. Glycolytic function was measured using a Seahorse apparatus. To study the effect of GLUT1, genetic inhibition of GLUT1 was performed by short hairpin RNA transduction, and phloretin was used for pharmacologic inhibition of GLUT1. GLUT1-dependent glycolysis is activated in aged lung. Genetic and pharmacologic inhibition of GLUT1 suppressed the protein expression of α-smooth muscle actin, a key cytoskeletal component of activated fibroblasts, in mouse primary lung fibroblast cells. Moreover, we demonstrated that the activation of AMP-activated protein kinase, which is regulated by GLUT1-dependent glycolysis, represents a critical metabolic pathway for fibroblast activation. Furthermore, we demonstrated that phloretin, a potent inhibitor of GLUT1, significantly inhibited bleomycin-induced lung fibrosis in vivo. These results suggest that GLUT1-dependent glycolysis regulates fibrogenesis in aged lung and that inhibition of GLUT1 provides a potential target of therapy of age-related lung fibrosis.
Asthma: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases
Hartert, Tina V.; Martinez, Fernando D.; Weiss, Scott T.; Fahy, John V.
2014-01-01
Asthma is a common disease with enormous public health costs, and its primary prevention is an ambitious and important goal. Understanding of how host and environmental factors interact to cause asthma is incomplete, but persistent questions about mechanisms should not stop clinical research efforts aimed at reducing the prevalence of childhood asthma. Achieving the goal of primary prevention of asthma will involve integrated and parallel sets of research activities in which mechanism-oriented studies of asthma inception proceed alongside clinical intervention studies to test biologically plausible prevention ideas. For example, continued research is needed, particularly in young children, to uncover biomarkers that identify asthma risk and provide potential targets of intervention, and to improve understanding of the role of microbial factors in asthma risk and disease initiation. In terms of clinical trials that could be initiated now or in the near future, we recommend three interventions for testing: (1) preventing asthma through prophylaxis against respiratory syncytial virus and human rhinovirus infections of the airway; (2) immune modulation, using prebiotics, probiotics, and bacterial lysates; and (3) prevention of allergen sensitization and allergic inflammation, using anti-IgE. These interventions should be tested while other, more universal prevention measures that may promote lung health are also investigated. These potential universal lung health measures include prevention of preterm delivery; reduced exposure of the fetus and young infant to environmental pollutants, including tobacco smoke; prevention of maternal and child obesity; and management of psychosocial stress. PMID:24754822
Mechanisms of pulmonary cyst pathogenesis in Birt-Hogg-Dube syndrome: The stretch hypothesis.
Kennedy, John C; Khabibullin, Damir; Henske, Elizabeth P
2016-04-01
Loss-of-function mutations in the folliculin gene (FLCN) on chromosome 17p cause Birt-Hogg-Dube syndrome (BHD), which is associated with cystic lung disease. The risk of lung collapse (pneumothorax) in BHD patients is 50-fold higher than in the general population. The cystic lung disease in BHD is distinctive because the cysts tend to be basilar, subpleural and lentiform, differentiating BHD from most other cystic lung diseases. Recently, major advances in elucidating the primary functions of the folliculin protein have been made, including roles in mTOR and AMPK signaling via the interaction of FLCN with FNIP1/2, and cell-cell adhesion via the physical interaction of FLCN with plakophilin 4 (PKP4), an armadillo-repeat containing protein that interacts with E-cadherin and is a component of the adherens junctions. In addition, in just the last three years, the pulmonary impact of FLCN deficiency has been examined for the first time. In mouse models, evidence has emerged that AMPK signaling and cell-cell adhesion are involved in alveolar enlargement. In addition, the pathologic features of human BHD cysts have been recently comprehensively characterized. The "stretch hypothesis" proposes that cysts in BHD arise because of fundamental defects in cell-cell adhesion, leading to repeated respiration-induced physical stretch-induced stress and, over time, expansion of alveolar spaces particularly in regions of the lung with larger changes in alveolar volume and at weaker "anchor points" to the pleura. This hypothesis ties together many of the new data from cellular and mouse models of BHD and from the human pathologic studies. Critical questions remain. These include whether the consequences of stretch-induced cyst formation arise through a destructive/inflammatory program or a proliferative program (or both), whether cyst initiation involves a "second hit" genetic event inactivating the remaining wild-type copy of FLCN (as is known to occur in BHD-associated renal cell carcinomas), and whether cyst initiation involves exclusively the epithelial compartment versus an interaction between the epithelium and mesenchyme. Ultimately, understanding the mechanisms of cystic lung disease in BHD may help to elucidate the pathogenesis of primary spontaneous pneumothorax, with more than 20,000 cases reported annually in the United States alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differential Expression of CHL1 Gene during Development of Major Human Cancers
Senchenko, Vera N.; Krasnov, George S.; Dmitriev, Alexey A.; Kudryavtseva, Anna V.; Anedchenko, Ekaterina A.; Braga, Eleonora A.; Pronina, Irina V.; Kondratieva, Tatiana T.; Ivanov, Sergey V.; Zabarovsky, Eugene R.; Lerman, Michael I.
2011-01-01
Background CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer. PMID:21408220
Gaspar'ian, A V; Sel'chuk, V Iu; Iakubovskaia, M G; Zborovskaia, I B; Tatosian, A G
1997-01-01
Restriction fragment length polymorphism in the human c-Ha-ras-1 locus, associated with a minisatellite sequence, was examined in 45 multiple primary cancer (MPC) patients, 56 patients with squamous cell lung cancer (SCLC), 21 patients with lung adenocarcinoma (LAC), and 53 individuals having no oncopathology. Southern analysis of cellular DNA revealed the presence of 4 common alleles (with collective allele frequency close to 94% in the control group) and a set of rare alleles. Allele a3, (2.1 kb in size under MspI/HpaII digestion) was shown to be more frequent in the MPC than in the control group. The same tendency was observed in the patients with highly differentiated cell lung cancer. An increased frequency of the a4 allele (2.5 kb under MspI/HpaII digestion) was observed in the patients with adenocarcinomas as well as in the patients with metastases and low levels of tumor tissue differentiation. The elevated frequencies of a3 in the MPC group and of a4 in the LAC patients did not correlate with increased risk of the cancers mentioned above but was associated with type of tumor progression. Previously, it was reported that the mini-satellite sequence within the c-Ha-ras-1 locus possesses enhancer activity. Our data indirectly confirm the hypothesis that the efficiency of minisatellite modulator activity is associated with fragment size.
Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D.; Townsend, Danyelle M.
2016-01-01
ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. PMID:27255112
Bai, Yun; Qiu, Jianxing; Shang, Xueqian; Liu, Ping; Zhang, Ying; Wang, Ying; Xiong, Yan; Li, Ting
2015-05-01
Lung cancer is the most common cancer in the world. Despite this, there have been few cases of simultaneous primary and metastatic cancers in the lung reported, let alone coexisting with tumor-to-tumor metastasis. Herein, we describe an extremely unusual case. A 61-year-old man with a history of colon adenocarcinoma was revealed as having three nodules in the lung 11 months after colectomy. The nodule in the left upper lobe was primary lung adenocarcinoma, the larger one in the right upper lobe was a metastasis of colon adenocarcinoma, and the smaller one in the right upper lobe was colon adenocarcinoma metastasizing to lung adenocarcinoma. Our paper focused on the differential diagnosis and cancer staging of this unique case, and discussed the uncommon phenomenon of the lung acting as a recipient in tumor-to-tumor metastasis.
Differential diagnosis of cough: focus on lung malignancy.
Brashers, V L; Haden, K
2000-01-01
Evaluating cough in the primary care setting can be very difficult and requires a thorough look through a long list of potential differential diagnoses. The most worrisome diagnosis is that of a lung malignancy. Primary care providers must assess each patient carefully in a logical, precise manner to determine a working diagnosis for acute versus chronic cough in smokers and nonsmokers. Early detection leads to a diagnosis of lung cancer at earlier stages and may offer the only possibility of cure. This article provides primary care providers with an overview of the most common causes of cough, an algorithm to assist with the diagnosis, and a brief overview of the staging, diagnostic workup, treatment, and management of lung cancer.
Spontaneous haemothorax: an unusual presentation of primary lung cancer.
Chou, S. H.; Cheng, Y. J.; Kao, E. L.; Chai, C. Y.
1993-01-01
An unusual case of spontaneous haemothorax caused by a subpleural primary lung cancer is reported. Tumour invasion of the pulmonary vessels and visceral pleura was the possible cause. Images PMID:8296269
Single-cell multimodal profiling reveals cellular epigenetic heterogeneity.
Cheow, Lih Feng; Courtois, Elise T; Tan, Yuliana; Viswanathan, Ramya; Xing, Qiaorui; Tan, Rui Zhen; Tan, Daniel S W; Robson, Paul; Loh, Yuin-Han; Quake, Stephen R; Burkholder, William F
2016-10-01
Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.
Assessing Worker Exposures during Composite Material and Fiberglass Repair: A Special
2015-01-01
zinc, or lead chromate. 3.2.3 Clean Wiping. Removal of dust, dirt, and oil from depainted surfaces. After depainting, residual dust is present on...aspiration and deposition characteristics of the human respiratory tract. The primary size distributions of interest during advanced composite...the respiratory tract, while the respirable mass is that portion of the total aerosol that ends up in the gas -exchange region of the lungs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula
2015-11-13
Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis thatmore » OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. - Highlights: • We investigated whether omeprazole induces NQO1 in human fetal lung cells. • Omeprazole induces the phase II enzyme, NQO1, in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of NQO1. • Omeprazole increases phosphoNrf2 (S40) protein expression in human fetal lung cells. • Nrf2 knockdown abrogates the induction of NQO1 by omeprazole in human lung cells.« less
Hypermethylation of the TSLC1 Gene Promoter in Primary Gastric Cancers and Gastric Cancer Cell Lines
Honda, Teiichiro; Waki, Takayoshi; Jin, Zhe; Sato, Kiyoshi; Motoyama, Teiichi; Kawata, Sumio; Kimura, Wataru; Nishizuka, Satoshi; Murakami, Yoshinori
2002-01-01
The TSLC1 (tumor suppressor in lung cancer–1) gene is a novel tumor suppressor gene on chromosomal region 11q23.2, and is frequently inactivated by concordant promoter hypermethylation and loss of heterozygosity (LOH) in non‐small cell lung cancer (NSCLC). Because LOH on 11q has also been observed frequently in other human neoplasms including gastric cancer, we investigated the promoter methylation status of TSLC1 in 10 gastric cancer cell lines and 97 primary gastric cancers, as well as the corresponding non‐cancerous gastric tissues, by bisulfite‐SSCP analysis followed by direct sequencing. Allelic status of the TSLC1 gene was also investigated in these cell lines and primary gastric cancers. The TSLC1 promoter was methylated in two gastric cancer cell lines, KATO‐III and ECC10, and in 15 out of 97 (16%) primary gastric cancers. It was not methylated in non‐cancerous gastric tissues, suggesting that this hypermethylation is a cancer‐specific alteration. KATO‐III and ECC10 cells retained two alleles of TSLC1, both of which showed hypermethylation, associated with complete loss of gene expression. Most of the primary gastric cancers with promoter methylation also retained heterozygosity at the TSLC1 locus on 11q23.2. These data indicate that bi‐allelic hypermethylation of the TSLC1 promoter and resulting gene silencing occur in a subset of primary gastric cancers. PMID:12716461
LungMAP: The Molecular Atlas of Lung Development Program
Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam
2017-01-01
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251
Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.
2011-01-01
Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nickel toxicity is influenced by the route of exposure, dose, and solubility of the nickel compound. Lung inhalation is the major route of exposure for nickel-induced toxicity. Nickel may also be ingested or absorbed through the skin. The primary target organs are the kidneys and lungs. Other organs such as the liver, spleen, heart and testes may also be affected to a lesser extent. Although the most common health effect is an allergic reaction, research has also demonstrated that nickel is carcinogenic to humans. The focus of the present review is on recent research concerning the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity. We first present a background on the occurrence of nickel in the environment, human exposure, and human health effects. PMID:21905451
Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung
2017-02-14
Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.
Expression and prognostic relevance of PRAME in primary osteosarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Pingxian; Zou, Changye; Yong, Bicheng
2012-03-23
Graphical abstract: High PRAME expression was associated with osteosarcoma patients' poor prognosis and lung metastasis. Highlights: Black-Right-Pointing-Pointer We analyzed and verified the role of PRAME in primary osteosarcoma. Black-Right-Pointing-Pointer High PRAME expression in osteosarcoma correlated to poor prognosis and lung metastasis. Black-Right-Pointing-Pointer PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. -- Abstract: The preferentially expressed antigen of melanoma (PRAME), a cancer-testis antigen with unknown function, is expressed in many human malignancies and is considered an attractive potential target for tumor immunotherapy. However, studies of its expression and function in osteosarcoma havemore » rarely been reported. In this study, we found that PRAME is expressed in five osteosarcoma cell lines and in more than 70% of osteosarcoma patient specimens. In addition, an immunohistochemical analysis showed that high PRAME expression was associated with poor prognosis and lung metastasis. Furthermore, PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. Our results suggest that PRAME plays an important role in cell proliferation and disease progression in osteosarcoma. However, the detail mechanisms of PRAME function in osteosarcoma require further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, Michael V.; Claassen, Erwin A.W.; Graaff, Patricia M.A. de
2006-08-15
The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4{sup +} and CD8{sup +} T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse strains and allow dissection of immune mechanisms by using transgenic and knockout mice that are mostly available on a C57BL/6 background, we characterized the specificity, level and functional capabilities of CD8{sup +} T cells during primary and secondary responses in lung parenchyma, airways and spleens of C57BL/6 mice. During the primary response, epitopes weremore » recognized originating from the matrix, fusion, nucleo- and attachment proteins, whereas the secondary response focused predominantly on the matrix epitope. C57BL/6 mice are less permissive for hRSV infection than BALB/c mice, yet we found CD8{sup +} T cell responses in the lungs and bronchoalveolar lavage, comparable to the responses described for BALB/c mice.« less
Lung Allocation Score: A Single-Center Simulation.
Rosso, L; Palleschi, A; Tosi, D; Mendogni, P; Righi, I; Carrinola, R; Montoli, M; Damarco, F; Rossetti, V; Morlacchi, L C; Nosotti, M
2016-03-01
The lung allocation score (LAS) was introduced in the United States in May 2005 with the main goal of reducing the waiting list mortality of patients with end-stage lung diseases, but also to enhance the lung transplant benefit and improve the management of urgent candidates. Several papers have reported that LAS resulted in a reduction of the waiting list mortality but no significant survival benefit was noted. We evaluate the usefulness of LAS as a predictor for lung transplantation outcome in 123 patients listed for lung transplantation in an Italian center. Primary endpoints were waiting list mortality and posttransplant mortality at 1 year; secondary endpoints included perioperative circulatory support, cardiopulmonary bypass, primary graft dysfunction, and long-term survival after transplantation. We observed the absence of correlation between LAS and waiting list mortality. The LAS did not affect the long-term survival in our population. High LAS was predictive of primary graft dysfunction of grade 3 in the first 72 hours after transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
ARIZONO, N; NISHIDA, M; UCHIKAWA, R; YAMADA, M; MATSUDA, S; TEGOSHI, T; KITAMURA, Y; SASABE, M
1996-01-01
Certain nematode infections induce eosinophil infiltration and granulomatous responses in the lungs. To examine the role of mast cells in the development of lung lesions, normal +/+ and genetically mast cell-deficient Ws/Ws rats were infected with the nematode Nippostrongylusbrasiliensis. In +/+ rats, numbers of eosinophils in bronchoalveolar lavage fluid (BALF) increased significantly 3–7 days after infection, and granulomatous responses composed of histiocytes/macrophages and multinucleate giant cells were triggered in the lungs 3–14 days after infection. Challenge infection, which was carried out on day 28 after primary infection, induced much higher levels of granulomatous response than after primary infection, suggesting that the response is mediated at least in part by an immunological mechanism. In Ws/Ws rats, both the eosinophil percentage in BALF and the size of the granulomas in the lungs were significantly smaller than in +/+ rats after primary as well as after challenge infection. The amount of rat mast cell protease (RMCP) II in +/+ rat BALF was increased 1 day after primary infection and more significantly after challenge infection, suggesting that lung mucosal mast cells were activated more markedly after the challenge infection. In Ws/Ws rats, RMCP II was undetectable throughout the observation period. The time course of nematode migration in the lungs did not differ in +/+ and Ws/Ws rats. These results suggest that mast cell activation might be relevant to eosinophil infiltration and granulomatous response in the lungs, although the responses do not affect lung migration of the nematode. PMID:8870698
Tanaka, F; Wada, H; Fukui, Y; Fukushima, M
2011-08-01
Previous small-sized studies showed lower thymidylate synthase (TS) expression in adenocarcinoma of the lung, which may explain higher antitumor activity of TS-inhibiting agents such as pemetrexed. To quantitatively measure TS gene expression in a large-scale Japanese population (n = 2621) with primary lung cancer, laser-captured microdissected sections were cut from primary tumors, surrounding normal lung tissues and involved nodes. TS gene expression level in primary tumor was significantly higher than that in normal lung tissue (mean TS/β-actin, 3.4 and 1.0, respectively; P < 0.01), and TS gene expression level was further higher in involved node (mean TS/β-actin, 7.7; P < 0.01). Analyses of TS gene expression levels in primary tumor according to histologic cell type revealed that small-cell carcinoma showed highest TS expression (mean TS/β-actin, 13.8) and that squamous cell carcinoma showed higher TS expression as compared with adenocarcinoma (mean TS/β-actin, 4.3 and 2.3, respectively; P < 0.01); TS gene expression was significantly increased along with a decrease in the grade of tumor cell differentiation. There was no significant difference in TS gene expression according to any other patient characteristics including tumor progression. Lower TS expression in adenocarcinoma of the lung was confirmed in a large-scale study.
NASA Astrophysics Data System (ADS)
De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis
2016-05-01
Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.
De Miguel, Diego; Gallego-Lleyda, Ana; Ayuso, José María; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; Fernández, Luis José; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis
2016-05-06
Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.
Chang, Sheng-Wei; Wellmerling, Jack; Zhang, Xiaoli; Rayner, Rachael E; Osman, Wissam; Mertz, Sara; Amer, Amal O; Peeples, Mark E; Boyaka, Prosper N; Cormet-Boyaka, Estelle
2018-06-18
Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function. Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR. THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression. THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells. Copyright © 2018. Published by Elsevier B.V.
van den Brule, Sybille; Wallemme, Laurent; Uwambayinema, Francine; Huaux, François; Lison, Dominique
2010-11-01
Prostaglandin (PG) D(2) exerts contrasting activities in the inflamed lung via two receptors, the D prostanoid receptor (DP) and the chemoattractant receptor-homologous molecule expressed on T helper 2 lymphocytes. DP activation is known mainly to inhibit proinflammatory cell functions. We tested the effect of a DP-specific agonist, (4S)-(3-[(3R,S)-3-cyclohexyl-3-hydroxypropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid (BW245C), on pulmonary fibroblast functions in vitro and in a mouse model of lung fibrosis induced by bleomycin. DP mRNA expression was detected in cultured mouse lung primary fibroblasts and human fetal lung fibroblasts and found to be up- and down-regulated by interleukin-13 and transforming growth factor (TGF)-β, respectively. Although micromolar concentrations of BW245C and PGD(2) did not affect mouse fibroblast collagen synthesis or differentiation in myofibroblasts, they both inhibited fibroblast basal and TGF-β-induced proliferation in vitro. The repeated administration of BW245C (500 nmol/kg body weight instilled transorally in the lungs 2 days before and three times per week for 3 weeks) in bleomycin-treated mice significantly decreased both inflammatory cell recruitment and collagen accumulation in the lung (21 days). Our results indicate that BW245C can reduce lung fibrosis in part via its activity on fibroblast proliferation and suggest that DP activation should be considered as a new therapeutic target in fibroproliferative lung diseases.
Stueve, Theresa Ryan; Li, Wen-Qing; Shi, Jianxin; Marconett, Crystal N; Zhang, Tongwu; Yang, Chenchen; Mullen, Daniel; Yan, Chunli; Wheeler, William; Hua, Xing; Zhou, Beiyun; Borok, Zea; Caporaso, Neil E; Pesatori, Angela C; Duan, Jubao; Laird-Offringa, Ite A; Landi, Maria Teresa
2017-08-01
Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts
Capistrano, Sarah J.; Zakarya, Razia; Chen, Hui; Oliver, Brian G.
2016-01-01
Biomass smoke is one of the major air pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases inflammation in the lungs can be targeted and inhibited via p38 MAP kinase pathway. PMID:27571064
Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts.
Capistrano, Sarah J; Zakarya, Razia; Chen, Hui; Oliver, Brian G
2016-08-25
Biomass smoke is one of the major air pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases inflammation in the lungs can be targeted and inhibited via p38 MAP kinase pathway.
The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com
2014-08-15
Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved inmore » the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.« less
Primary leiomyoma of the lung: an exceptional localization.
Zidane, Abdelfettah; Elktaibi, Abderahim; Benjelloun, Amine; Arsalane, Adil; Afandi, Oussama; Bouchentouf, Rachid
2016-05-01
Leiomyoma is a benign smooth muscle tumor usually encountered in the uterus. Primary pulmonary localization is extremely rare in adults and children. However, it must be included in the differential diagnosis of any nodular lung lesion. Its treatment is surgical, with good long-term results. Here, we report a case of leiomyoma of lung parenchyma diagnosed in a 26-year-old man. © The Author(s) 2016.
Flechsig, Paul; Rastgoo, Ramin; Kratochwil, Clemens; Martin, Ole; Holland-Letz, Tim; Harms, Alexander; Kauczor, Hans-Ulrich; Haberkorn, Uwe; Giesel, Frederik L
2018-04-20
Tumor delineation within an atelectasis in lung cancer patients is not always accurate. When T staging is done by integrated 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG)-positron emission tomography (PET)/X-ray computer tomography (CT), tumors of neuroendocrine differentiation and slowly growing tumors can present with reduced FDG uptake, thus aggravating an exact T staging. In order to further exhaust information derived from [ 18 F]FDG-PET/CT, we evaluated the impact of CT density and maximum standardized uptake value (SUVmax) for the classification of different tumor subtypes within a surrounding atelectasis, as well as possible cutoff values for the differentiation between the primary tumor and atelectatic lung tissue. Seventy-two patients with histologically proven lung cancer and adjacent atelectasis were investigated. Non-contrast-enhanced [ 18 F]FDG-PET/CT was performed within 2 weeks before surgery/biopsy. Boundaries of the primary within the atelectasis were determined visually on the basis of [ 18 F]FDG uptake; CT density was quantified manually within each primary and each atelectasis. CT density of the primary (36.4 Hounsfield units (HU) ± 6.2) was significantly higher compared to that of atelectatic lung (24.3 HU ± 8.3; p < 0.01), irrespective of the histological subtype. The discrimination between different malignant tumors using density analysis failed. SUVmax was increased in squamous cell carcinomas compared to adenocarcinomas. Irrespective of the malignant subtype, a possible cutoff value of 24 HU may help to exclude the presence of a primary in lesions below 24 HU, whereas a density above a threshold of 40 HU can help to exclude atelectatic lung. Density measurements in patients with lung cancer and surrounding atelectasis may help to delineate the primary tumor, irrespective of the specific lung cancer subtype. This could improve T staging and radiation treatment planning (RTP) without additional application of a contrast agent in CT, or an additional magnetic resonance imaging (MRI), even in cases of lung tumors of neuroendocrine differentiation or in slowly growing tumors with less avidity to [ 18 F]FDG.
Jönsson, A; Arvebo, E; Schantz, B
1988-01-01
Experiments with an anthropomorphic dummy for blast research demonstrated that pressures recorded in the lung model of the dummy could be correlated to primary air blast effects on the lungs of experimental animals. The results presented here were obtained with a dummy of the type mentioned above, but with the lung model modified to improve geometric similarity to man. Blast experiments were performed in a shock tube, and impact experiments in a special impact machine. Experiments with nonpenetrating missiles were performed with small-caliber firearms and the dummy protected by body armor. Severity indices derived from the blast experiments were related to established criteria for primary lung injury in man. Impacts delivered in the impact machine and by nonpenetrating missiles are compared. Relationships between severity of impact based on experiments with animals and primary lung injury in man are discussed.
LungMAP: The Molecular Atlas of Lung Development Program.
Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam
2017-11-01
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.
Primary mesenchymal or mixed-cell-origin lung tumors in four dogs.
Watson, A D; Young, K M; Dubielzig, R R; Biller, D S
1993-03-15
Primary lung tumors of mesenchymal or mixed cell origin were diagnosed in 4 dogs with clinical and radiographic abnormalities indicating an intrathoracic mass. Each dog had 1 large intrapulmonary lesion, and 1 dog also had nodules scattered throughout all lung lobes. Two dogs were euthanatized; 1 had a biphasic pulmonary blastoma; and the other had a pulmonary chondroblastic osteosarcoma with intrapulmonary metastases. The masses in the other 2 dogs were hamartomas (lipomatous in 1, microcystic in the other), which were resected. Both dogs survived more than 1 year after surgery. Primary lung tumors are uncommon in dogs and are generally malignant (adenocarcinomas or carcinomas). Tumors of connective tissue or mixed cell origin are rare, but the outcome is potentially good after surgical removal.
Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated including in non-small cell lung cancer (NSCLC). Here we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaojie; Patel, Ananddeep; Chu, Chun
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesismore » that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells. • AhR-deficient lung cells have decreased RelB activation.« less
2013-07-01
Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
Mgbemena, Victoria; Segovia, Jesus A.; Chang, Te-Hung; Tsai, Su-Yu; Cole, Garry T.; Hung, Chiung-Yu; Bose, Santanu
2012-01-01
Influenza A virus (flu) is a respiratory tract pathogen causing high morbidity and mortality among the human population. Nitric oxide (NO) is a cellular mediator involved in tissue damage due to apoptosis of target cells and resulting enhancement of local inflammation. Inducible nitric oxide (iNOS) is involved in the production of NO following infection. Although NO is a key player in the development of exaggerated lung disease during flu infection, the underlying mechanism including the role of NO in apoptosis during infection has not been reported. Similarly, the mechanism of iNOS gene induction during flu infection is not well defined in terms of host trans-activator(s) required for iNOS gene expression. In the current study we have identified kruppel-like factor 6 (KLF6) as a critical transcription factor essential for iNOS gene expression during flu infection. We have also underscored the requirement of iNOS in inducing apoptosis during infection. KLF6 gene silencing in human lung epithelial cells resulted in drastic loss of NO production, iNOS-promoter specific luciferase activity and expression of iNOS mRNA following flu infection. Chromatin immuno-precipitation assay revealed a direct interaction of KLF6 with iNOS promoter during both in vitro and in vivo flu infection of human lung cells and mouse respiratory tract, respectively. Significant reduction in flu mediated apoptosis was noted in KLF6 silenced cells, cells treated with iNOS inhibitor and in primary murine macrophages derived from iNOS knock-out (KO) mice. A similar reduction in apoptosis was noted in the lungs following intra-tracheal flu infection of iNOS KO mice. PMID:22711891
Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon
2012-01-01
Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957
Nikolić, Marko Z; Caritg, Oriol; Jeng, Quitz; Johnson, Jo-Anne; Sun, Dawei; Howell, Kate J; Brady, Jane L; Laresgoiti, Usua; Allen, George; Butler, Richard; Zilbauer, Matthias; Giangreco, Adam; Rawlins, Emma L
2017-01-01
The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated. DOI: http://dx.doi.org/10.7554/eLife.26575.001 PMID:28665271
Morello, Emanuela; Martano, Marina; Buracco, Paolo
2011-09-01
Osteosarcoma (OSA) is the most common primary bone tumour in dogs. The appendicular locations are most frequently involved and large to giant breed dogs are commonly affected, with a median age of 7-8 years. OSA is a locally invasive neoplasm with a high rate of metastasis, mostly to the lungs. Due to similarities in biology and treatment of OSA in dogs and humans, canine OSA represents a valid and important tumour model. Differences between canine and human OSAs include the age of occurrence (OSA is most commonly an adolescent disease in humans), localisation (the stifle is the most common site of localisation in humans) and limited use of neoadjuvant chemotherapy in canine OSA. Copyright © 2010 Elsevier Ltd. All rights reserved.
Inhaled uranium ore dust and lung cancer risk in rats.
Mitchel, R E; Jackson, J S; Heinmiller, B
1999-02-01
Using a nose-only inhalation system, male Sprague-Dawley rats were exposed 4.2 h d(-1), 5 days per week for 65 weeks to one of two concentrations of natural uranium ore dust aerosol (44% U, 50 mg m(-3) and 19 mg m(-3)) without significant radon content. After inhalation exposure ceased, the rats were allowed to live for their natural lifetime. Lung uranium burdens, measured at the time of death of each animal, declined exponentially after dust inhalation ceased, and the rate of decline was independent of the initial lung burden. Lymph node specific burdens ranged from 1 to 60 fold greater than the specific lung burden in the same animal. No lymph node tumors were observed. The frequency of primary malignant lung tumors was 0.016, 0.175 and 0.328 and primary non-malignant lung tumors 0.016, 0.135 and 0.131 in the control, low and high aerosol exposed groups, respectively. There was no difference in tumor latency between the groups. Absorbed dose to the lung was calculated for each animal in the study. The average doses for all the animals exposed to the low and high dust aerosol concentrations were 0.87 Gy and 1.64 Gy respectively, resulting in an average risk of malignant lung tumors of about 0.20 tumors per animal per Gy in both groups. The frequency of primary lung tumors was also calculated as a function of dose increment for both exposed groups individually and combined. The data indicate that, in spite of the above result, lung tumor frequency was not directly proportional to dose. However, when malignant lung tumor frequency was calculated as a function of dose rate (as measured by the lung burden at the end of dust inhalation) a direct linear relationship was seen (p < 0.01) suggesting dose rate may be a more important determinant of lung cancer risk than dose. Conversely, non-malignant lung tumors were significantly correlated with low lung burdens (p = 0.01). We conclude that chronic inhalation of natural uranium ore dust alone in rats creates a risk of primary malignant and non-malignant lung tumor formation and that malignant tumor risk was not directly proportional to dose, but was directly proportional to dose rate.
Aerosol Gemcitabine: Preclinical Safety and In Vivo Antitumor Activity in Osteosarcoma-Bearing Dogs
Crabbs, Torrie A.; Wilson, Dennis W.; Cannan, Virginia A.; Skorupski, Katherine A.; Gordon, Nancy; Koshkina, Nadya; Kleinerman, Eugenie; Anderson, Peter M.
2010-01-01
Abstract Background Osteosarcoma is the most common skeletal malignancy in the dog and in young humans. Although chemotherapy improves survival time, death continues to be attributed to metastases. Aerosol delivery can provide a strategy with which to improve the lung drug delivery while reducing systemic toxicity. The purpose of this study is to assess the safety of a regional aerosol approach to chemotherapy delivery in osteosarcoma-bearing dogs, and second, to evaluate the effect of gemcitabine on Fas expression in the pulmonary metastasis. Methods We examined the systemic and local effects of aerosol gemcitabine on lung and pulmonary metastasis in this relevant large-animal tumor model using serial laboratory and arterial blood gas analysis and histopathology and immunohistochemistry, respectively. Results and Conclusions Six hundred seventy-two 1-h doses of aerosol gemcitabine were delivered. The treatment was well tolerated by these subjects with osteosarcoma (n = 20). Aerosol-treated subjects had metastatic foci that demonstrated extensive, predominately central, intratumoral necrosis. Fas expression was decreased in pulmonary metastases compared to the primary tumor (p = 0.008). After aerosol gemcitabine Fas expression in the metastatic foci was increased compared to lung metastases before treatment (p = 0.0075), and even was higher than the primary tumor (p = 0.025). Increased apoptosis (TUNEL) staining was also detected in aerosol gemcitabine treated metastasis compared to untreated controls (p = 0.028). The results from this pivotal translational study support the concept that aerosol gemcitabine may be useful against pulmonary metastases of osteosarcoma. Additional studies that evaluate the aerosol route of administration of gemcitabine in humans should be safe and are warranted. PMID:19803732
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela
2016-01-01
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344
Soft fibrin gels promote selection and growth of tumorigenic cells
NASA Astrophysics Data System (ADS)
Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo
2012-08-01
The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.
Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin
2016-01-01
Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; BéruBé, K.; Krebs, T.
2016-12-01
Combustion emissions cause health effects. The HICE-Aerosol and Health project team studies the physicochemical properties as well as biological and toxicological effects on lung cells of combustion particle emissions. The chemical composition and physical parameters thoroughly characterized. Human lung cells are exposed to the diluted combustion exhaust fumes at the air-liquid interface (ALI), allowing a realistic lung-cell exposure by simulation of the lung situation. After exposure, cellular responses of the exposed lung cells are studied by multi-omics molecular biological analyses on transcriptomic, proteomic and metabolomic level. Emissions of wood combustion (log wood, pellet heater), ship diesel engines and car gasoline engines are addressed. Special field deployable ALI-exposition systems in a mobile S2-biological laboratory were set up and applied. Human alveolar epithelial cells (A549, BEAS2B and primary cells) as well as murine macrophages were ALI-exposed to diluted emissions. The cellular effects were then comprehensively characterized (viability, cyto-toxicology, multi-omics effects monitoring) and put in context with the chemical and physical aerosol data. The following order of overall cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions. Interestingly the effects-strength for log-wood and pellet burner emissions are similar, although PM-concentrations are much higher for the log-wood heater. Similar mild biological effects are observed for the gasoline car emissions. The ship diesel engine emissions induced the most intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions showed lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emission contain high concentrations of known toxicants (transition metals, polycyclic aromatics). This result was recently confirmed by experiments with murine RAW macrophages. Detailed analyses of the activated cellular response pathways, such as pro-inflammatory responses, xenobiotic metabolism, phagocytosis and oxidative stress were performed. The data is suggesting a large difference in relative toxicity for different combustion sources.
Pease, Camilla; Rücker, Thomas; Birk, Thomas
2016-03-21
Since the iron-age and throughout the industrial age, humans have been exposed to iron oxides. Here, we review the evidence from epidemiology, toxicology, and lung bioavailability as to whether iron oxides are likely to act as human lung carcinogens. Current evidence suggests that observed lung tumors in rats result from a generic particle overload effect and local inflammation that is rat-specific under the dosing conditions of intratracheal instillation. This mode of action therefore, is not relevant to human exposure. However, there are emerging differences seen in vitro, in cell uptake and cell bioavailability between "bulk" iron oxides and "nano" iron oxides. "Bulk" particulates, as defined here, are those where greater than 70% are >100 nm in diameter. Similarly, "nano" iron oxides are defined in this context as particulates where the majority, usually >95% for pure engineered forms of primary particulates (not agglomerates), fall in the range 1-100 nm in diameter. From the weight of scientific evidence, "bulk" iron oxides are not genotoxic/mutagenic. Recent evidence for "nano" iron oxide is conflicting regarding genotoxic potential, albeit genotoxicity was not observed in an in vivo acute oral dose study, and "nano" iron oxides are considered safe and are being investigated for biomedical uses; there is no specific in vivo genotoxicity study on "nano" iron oxides via inhalation. Some evidence is available that suggests, hypothetically due to the larger surface area of "nano" iron oxide particulates, that toxicity could be exerted via the generation of reactive oxygen species (ROS) in the cell. However, the potential for ROS generation as a basis for explaining rodent tumorigenicity is only apparent if free iron from intracellular "nano" scale iron oxide becomes bioavailable at significant levels inside the cell. This would not be expected from "bulk" iron oxide particulates. Furthermore, human epidemiological evidence from a number of studies suggests that iron oxide is not a human carcinogen, and therefore, based upon the complete weight of evidence, we conclude that "bulk" iron oxides are not human carcinogens.
Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.
2011-01-01
Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359
Hori, Tomohide; Okada, Noriyuki; Nakauchi, Masaya; Hiramoto, Shuji; Kikuchi-Mizota, Ayako; Kyogoku, Masahisa; Oike, Fumitaka; Sugimoto, Hidemitsu; Tanaka, Junya; Morikami, Yoshiki; Shigemoto, Kaori; Ota, Toyotsugu; Kaneko, Masanobu; Nakatsuji, Masato; Okae, Shunji; Tanaka, Takahiro; Gunji, Daigo; Yoshioka, Akira
2013-01-01
Sister Mary Joseph’s nodule (SMJN) is a rare umbilical nodule that develops secondary to metastatic cancer. Primary malignancies are located in the abdomen or pelvis. Patients with SMJN have a poor prognosis. An 83-year-old woman presented to our hospital with a 1-month history of a rapidly enlarging umbilical mass. Endoscopic findings revealed advanced transverse colon cancer. computer tomography and fluorodeoxyglucose-positron emission tomography revealed tumors of the transverse colon, umbilicus, right inguinal lymph nodes, and left lung. The feeding arteries and drainage veins for the SMJN were the inferior epigastric vessels. Imaging findings of the left lung tumor allowed for identification of the primary lung cancer, and a diagnosis of advanced transverse colon cancer with SMJN and primary lung cancer was made. The patient underwent local resection of the SMNJ and subsequent single-site laparoscopic surgery involving right hemicolectomy and paracolic lymph node dissection. Intra-abdominal dissemination to the mesocolon was confirmed during surgery. Histopathologically, the transverse colon cancer was confirmed to be moderately differentiated tubular adenocarcinoma. We suspect that SMJN may occur via a hematogenous pathway. Although chemotherapy for colon cancer and thoracoscopic surgery for the primary lung cancer were scheduled, the patient and her family desired home hospice. Seven months after surgery, she died of rapidly growing lung cancer. PMID:24179626
Adipose Gene Expression Profile Changes With Lung Allograft Reperfusion.
Diamond, Joshua M; Arcasoy, Selim; McDonnough, Jamiela A; Sonett, Joshua R; Bacchetta, Matthew; D'Ovidio, Frank; Cantu, Edward; Bermudez, Christian A; McBurnie, Amika; Rushefski, Melanie; Kalman, Laurel H; Oyster, Michelle; D'Errico, Carly; Suzuki, Yoshikazu; Giles, Jon T; Ferrante, Anthony; Lippel, Matthew; Singh, Gopal; Lederer, David J; Christie, Jason D
2017-01-01
Obesity is a risk factor for primary graft dysfunction (PGD), a form of lung injury resulting from ischemia-reperfusion after lung transplantation, but the impact of ischemia-reperfusion on adipose tissue is unknown. We evaluated differential gene expression in thoracic visceral adipose tissue (VAT) before and after lung reperfusion. Total RNA was isolated from thoracic VAT sampled from six subjects enrolled in the Lung Transplant Body Composition study before and after allograft reperfusion and quantified using the Human Gene 2.0 ST array. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed enrichment for genes involved in complement and coagulation cascades and Jak-STAT signaling pathways. Overall, 72 genes were upregulated and 56 genes were downregulated in the postreperfusion time compared with baseline. Long pentraxin-3, a gene and plasma protein previously associated with PGD, was the most upregulated gene (19.5-fold increase, p = 0.04). Fibronectin leucine-rich transmembrane protein-3, a gene associated with cell adhesion and receptor signaling, was the most downregulated gene (4.3-fold decrease, p = 0.04). Ischemia-reperfusion has a demonstrable impact on gene expression in visceral adipose tissue in our pilot study of nonobese, non-PGD lung transplant recipients. Future evaluation will focus on differential adipose tissue gene expression and the development of PGD after transplant. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Min, Kyoung Ah; Rosania, Gus R; Kim, Chong-Kook; Shin, Meong Cheol
2016-03-01
To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies.
Min, Kyoung Ah; Rosania, Gus R.; Kim, Chong-Kook; Shin, Meong Cheol
2016-01-01
To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641
Genetic association between human chitinases and lung function in COPD.
Aminuddin, F; Akhabir, L; Stefanowicz, D; Paré, P D; Connett, J E; Anthonisen, N R; Fahy, J V; Seibold, M A; Burchard, E G; Eng, C; Gulsvik, A; Bakke, P; Cho, M H; Litonjua, A; Lomas, D A; Anderson, W H; Beaty, T H; Crapo, J D; Silverman, E K; Sandford, A J
2012-07-01
Two primary chitinases have been identified in humans--acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host's immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to chronic obstructive pulmonary disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the caucasian LHS population, the baseline forced expiratory volume in one second (FEV(1)) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV(1) and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV(1). Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups.
Kukita, Yoji; Okami, Jiro; Yoneda-Kato, Noriko; Nakamae, Ikuko; Kawabata, Takeshi; Higashiyama, Masahiko; Kato, Junya; Kodama, Ken; Kato, Kikuya
2016-01-01
In clinical practice, there are a number of cancer patients with clear family histories, but the patients lack mutations in known familial cancer syndrome genes. Recent advances in genomic technologies have enhanced the possibility of identifying causative genes in such cases. Two siblings, an elder sister and a younger brother, were found to have multiple primary lung cancers at the age of 60. The former subsequently developed breast cancer and had a history of uterine myoma. The latter had initially developed prostate cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism (SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients. Exome sequencing revealed nonsynonymous mutations in five genes in the runs of homozygosity: CHEK2, FCGRT, INPP5J, MYO18B, and SFI1. Evolutionary conservation of primary protein structures suggested the functional importance of the CHEK2 mutation, p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge between p.R474 and p.E394. No such structural changes were observed with the other mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant was contributory in this case of familial cancer. Although homozygous inactivation of CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases is needed to establish its pathogenic role in humans. PMID:27900359
Kukita, Yoji; Okami, Jiro; Yoneda-Kato, Noriko; Nakamae, Ikuko; Kawabata, Takeshi; Higashiyama, Masahiko; Kato, Junya; Kodama, Ken; Kato, Kikuya
2016-11-01
In clinical practice, there are a number of cancer patients with clear family histories, but the patients lack mutations in known familial cancer syndrome genes. Recent advances in genomic technologies have enhanced the possibility of identifying causative genes in such cases. Two siblings, an elder sister and a younger brother, were found to have multiple primary lung cancers at the age of 60. The former subsequently developed breast cancer and had a history of uterine myoma. The latter had initially developed prostate cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism (SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients. Exome sequencing revealed nonsynonymous mutations in five genes in the runs of homozygosity: CHEK2 , FCGRT , INPP5J , MYO18B , and SFI1 . Evolutionary conservation of primary protein structures suggested the functional importance of the CHEK2 mutation, p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge between p.R474 and p.E394. No such structural changes were observed with the other mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant was contributory in this case of familial cancer. Although homozygous inactivation of CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases is needed to establish its pathogenic role in humans.
Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production
2014-01-01
Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728
López-Cantero, M; Grisolía, A L; Vicente, R; Moreno, I; Ramos, F; Porta, J; Torregrosa, S
2014-04-01
Primary graft dysfunction is a leading cause of morbimortality in the immediate postoperative period of patients undergoing lung transplantation. Among the treatment options are: lung protective ventilatory strategies, nitric oxide, lung surfactant therapy, and supportive treatment with extracorporeal membrane oxygenation (ECMO) as a bridge to recovery of lung function or re-transplant. We report the case of a 9-year-old girl affected by cystic fibrosis who underwent double-lung transplantation complicated with a severe primary graft dysfunction in the immediate postoperative period and refractory to standard therapies. Due to development of multiple organ failure, it was decided to insert arteriovenous ECMO catheters (pulmonary artery-right atrium). The postoperative course was satisfactory, allowing withdrawal of ECMO on the 5th post-surgical day. Currently the patient survives free of rejection and with an excellent quality of life after 600 days of follow up. Copyright © 2012 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.
Inactivation of LLC1 gene in nonsmall cell lung cancer
Hong, Kyeong-Man; Yang, Sei-Hoon; Chowdhuri, Sinchita R.; Player, Audrey; Hames, Megan; Fukuoka, Junya; Meerzaman, Daoud; Dracheva, Tatiana; Sun, Zhifu; Yang, Ping; Jen, Jin
2007-01-01
Serial analysis of gene expression studies led us to identify a previously unknown gene, c20orf85, that is present in the normal lung epithelium, but absent or downregulated in most primary non-small cell lung cancers and lung cancer cell lines. We named this gene LLC1 for Low in Lung Cancer 1. LLC1 is located on chromosome 20q13.3 and has a 70% GC content in the promoter region. It has 4 exons and encodes a protein containing 137 amino acids. By in situ hybridization, we observed that LLC1 message is localized in normal lung bronchial epithelial cells, but absent in 13 of 14 lung adenocarcinoma and 9 out of 10 lung squamous carcinoma samples. Methylation at CpG sites of the LLC1 promoter was frequently observed in lung cancer cell lines and in a fraction of primary lung cancer tissues. Treatment with 5-aza deoxycytidine resulted in a reduced methylation of the LLC1 promoter concomitant with the increase of LLC1 expression. These results suggest that inactivation of LLC1 by means of promoter methylation is a frequent event in nonsmall cell lung cancer and may play a role in lung tumorigenesis. PMID:17304513
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; McCarthy, M.; Lin, Y-H
2006-01-01
In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.
Yu, Zhi-hong; Wang, Ding-ding; Zhou, Zhi-you; He, Shui-lian; Chen, An-an; Wang, Ju
2012-01-01
We have developed a strong inhibitor (S252W mutant soluble ectodomain of fibroblast growth factor recptor-2 IIIc, msFGFR2) that binds FGFs strongly and blocks the activation of FGFRs. In vitro, msFGFR2 could inhibit the promoting effect of transforming growth factor (TGF)-β1 on the proliferation of primary lung fibroblasts. In vivo, msFGFR2 alleviated lung fibrosis through inhibiting the expression of α-smooth muscle actin (SMA) and collagen deposit. In Western blotting of the right lung tissues and immunohistochemical assay, we found the level of p-FGFRs, p-mitogen activated protein kinase (MAPK) and p-Smad3 in the mice of bleomycin (BLM) group treated with msFGFR2 was down dramatically compared with the mice of BLM group, which suggested the activations of FGF and TGF-β signals were blocked meanwhile. In summary, msFGFR2 attenuated BLM-induced fibrosis and is an attractive therapeutic candidate for human pulmonary fibrosis.
Zhang, Lin; Li, Yingna; Liang, Chunlian; Yang, Weilin
2014-02-01
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with unknown etiology and undefined treatment modality. Fibroblasts are regarded as the major cell type that mediates the onset and progression of lung fibrosis by secreting large amounts of extracellular matrix (ECM) proteins, such as connective tissue growth factor (CTGF/CCN2). Current knowledge confers a crucial role of CCN2 in lung fibrosis. CCN5, another member of the CCN family, has been suggested to play an inhibitory role in some fibrotic diseases, such as cardiac fibrosis. However, the role of CCN5 in the process of IPF remains unknown. In the present study, using western blot analysis, we demonstrate that CCN2 is highly expressed in fibroblasts derived from IPF tissue, but is only slightly expressed in normal human lung fibroblasts. However, CCN5 was weakly expressed in all the above cells. qRT-PCR revealed that transforming growth factor (TGF)-β1 stimulation increased CCN2 expression in the IPF-derived cultures of primary human lung fibroblasts (PIFs) in a time- and concentration-dependent manner, but only slightly affected the expression of CCN5. The overexpression of CCN5 induced by the transfection of PIFs with recombinant plasmid did not affect cell viability, proliferation and apoptosis; however, it significantly suppressed the expression of CCN2, α-smooth muscle actin (α-SMA) and collagen type I. The TGF-β1-induced upregulation of the phosphorylation of Akt was reversed by CCN5 overexpression. Our results also demonstrated that adenovirus-mediated CCN5 overexpression in a mouse model of bleomycin-induced IPF significantly decreased the hydroxyproline content in the lungs, as well as TGF-β1 expression in bronchoalveolar lavage fluid. Taken together, our data demonstrate that CCN5 exerts an inhibitory effect on the fibrotic phenotypes of pulmonary fibroblasts in vitro and in vivo, and as such may be a promising target for the treatment of IPF.
Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D; Townsend, Danyelle M; Tew, Kenneth D
2016-08-01
ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Racing Against Lung Cancer: Imaging Tools Help Patient in Cancer Fight
... Against Lung Cancer Follow us Racing Against Lung Cancer Imaging tools help patient in cancer fight Photo: Courtesy of Ted Simon In early ... primary care doctor. The diagnosis? Stage 4 lung cancer—advanced cancer that had already spread to some ...
Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K
2016-06-15
Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300μmol/ml) for 6 or 24h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by Western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biopsy samples. A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunofluorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. Copyright © 2016 Elsevier Inc. All rights reserved.
Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.
2016-01-01
AIMS Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. MAIN METHODS Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30 μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300 μmol/ml) for 6 or 24 h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biospy samples. KEY FINDINGS A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunoflorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. SIGNIFICANCE Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. PMID:27157519
Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.
Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam
2007-01-01
Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.
Wu, Yuan-Yuan; Zhang, Jing-Hua; Gao, Jing-Hua; Li, Yong-Sheng
2017-08-26
Human lung squamous cell carcinoma is a deadly cancer for which present therapeutic strategies are inadequate. And traditional chemotherapy results in severe systemic toxicity. Compounds from living organisms often exert a biological activity, triggering several targets, which may be useful for the improvement of novel pharmaceuticals. Aloe-emodin (AE), a well-known natural compound, is a primary component of anthraquinones in Aloe vera and exhibits anti-proliferative and apoptotic effects on various tumor cells. However, the translational and clinical use of AE has been limited owing to its rapid degradation and poor bioavailability. To improve its efficacy, a poly (lactic-co-glycolic acid) based AE nanoparticle formulation (NanoAE) was prepared. Our study indicated that compared to the free AE, nanoAE significantly suppressed cancer cell proliferation, induced cell cycle arrest and apoptosis, evidenced by high cleavage of Caspase-3, poly (ADP-ribose) polymerase (PARP), Caspase-8 and Caspase-9. NanoAE enhanced reactive oxygen species (ROS) production, along with Mitogen-activated protein kinases (MAPKs) activation and PI3K/AKT inactivation. Cell proliferation, apoptosis and MAPKs and PI3K/AKT were dependent on ROS production in nanoAE-treated groups. In vivo, nanoAE exhibited inhibitory effects on the tumor growth with little toxicity. Together, our results indicated that nanoAE might be an effective treatment for human lung squamous cell carcinoma. Copyright © 2017. Published by Elsevier Inc.
Jiang, Meng-Jie; Weng, Shan-Shan; Cao, Ying; Li, Xiao-Fen; Wang, Liu-Hong; Xu, Jing-Hong; Yuan, Ying
2015-09-01
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in gastrointestinal tracts; however, the synchronous or metachronous coexistence of GIST with additional primary malignancy is not common.Here, we present an unusual case of gastric GIST with metachronous primary lung adenocarcinoma diagnosed during his adjuvant treatment with oral receptor tyrosine kinase inhibitor imatinib mesylate (400 mg daily). After 6-month use of imatinib, the patient suffered from dry cough and dyspnea. Subsequent lung biopsy demonstrated adenocarcinoma with diffuse interstitial changes.Our research emphasizes the possibility of an additional primary tumor with GIST, and reminds the clinicians to strengthen the surveillance of the additional cancer during the follow-up of GIST patients.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
Xiao, Xiang-sheng; Yu, Hong; Li, Hui-min; Liu, Shi-yuan; Li, Cheng-zhou; Liu, Jing
2006-04-01
To investigate the blood supply of primary lung cancer (PLC) using CT angiography for bronchial artery (BA) and pulmonary artery (PA). Thin-section enhanced multi-layer spiral CT (MSCT) were carried out in 147 primary lung cancer patients and 46 healthy subjects as control. Three-dimensional images of bronchial artery and pulmonary artery were obtained using volume render (VR) and multi-planar reconstruction (MPR) or maximum intensity projection (MIP) at the workstation, and their morphological findings and relationship with the mass were assessed. 136 primary lung cancer patients and 32 healthy controls were evaluated for at least one bronchial artery displayed clearly in VR. The detective rate of the bronchial artery was 92.5% and 69.6%, respectively. The bronchial artery caliber and the total section area of lesion side in lung cancer patients were significantly larger than that on the contralateral side and that of the control (P < 0.05). Bronchial artery on the lesion side in lung cancer was dilated and tortuous, directly penetrating into the mass with reticularly anastomosed branches. In the PLC patients, all PA were shown clearly with normal morphological image though crossing over the masses in 54 patients; In 25 PLC patients, the PA being essentially intact, was pushed around and surrounded the mass, giving the "hold ball" sign; In 40 other PLC patients, PA being also intact, the mass surrounded and buried the PA from the outside, crushing the PA flat resulting in an eccentric or centrifugal shrinkage, forming the "dead branch" sign; In the rest 28 patients, the PA was surrounded and even compressed, forming the "residual root" sign. Primary lung cancer patient shows dilated bronchial arteries and increased bronchial artery blood flow, whereas pulmonary arteries just pass through the mass or are compressed by the mass. It is further demonstrated that the bronchial artery, instead of the pulmonary artery, is the main vessel of blood supply to the primary lung cancer as shown by MSCT angiography of bronchial artery and pulmonary artery.
Lou, Emil; Fujisawa, Sho; Morozov, Alexei; Barlas, Afsar; Romin, Yevgeniy; Dogan, Yildirim; Gholami, Sepideh; Moreira, André L.; Manova-Todorova, Katia; Moore, Malcolm A. S.
2012-01-01
Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion. PMID:22427958
2013-01-15
Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
Cruzan, George; Bus, James S; Andersen, Melvin E; Carlson, Gary P; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie
2018-06-01
Based on 13 chronic studies, styrene exposure causes lung tumors in mice, but no tumor increases in other organs in mice or rats. Extensive research into the mode of action demonstrates the key events and human relevance. Key events are: metabolism of styrene by CYP2F2 in mouse lung club cells to ring-oxidized metabolites; changes in gene expression for metabolism of lipids and lipoproteins, cell cycle and mitotic M-M/G1 phases; cytotoxicity and mitogenesis in club cells; and progression to preneoplastic/neoplastic lesions in lung. Although styrene-7,8-oxide (SO) is a common genotoxic styrene metabolite in in vitro studies, the data clearly demonstrate that SO is not the proximate toxicant and that styrene does not induce a genotoxic mode of action. Based on complete attenuation of styrene short-term and chronic toxicity in CYP2F2 knockout mice and similar attenuation in CYP2F1 (humanized) transgenic mice, limited metabolism of styrene in human lung by CYP2F1, 2 + orders of magnitude lower SO levels in human lung compared to mouse lung, and lack of styrene-related increase in lung cancer in humans, styrene does not present a risk of cancer to humans. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...
Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.
2013-01-01
Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859
Modeling lung cancer evolution and preclinical response by orthotopic mouse allografts.
Ambrogio, Chiara; Carmona, Francisco J; Vidal, August; Falcone, Mattia; Nieto, Patricia; Romero, Octavio A; Puertas, Sara; Vizoso, Miguel; Nadal, Ernest; Poggio, Teresa; Sánchez-Céspedes, Montserrat; Esteller, Manel; Mulero, Francisca; Voena, Claudia; Chiarle, Roberto; Barbacid, Mariano; Santamaría, David; Villanueva, Alberto
2014-11-01
Cancer evolution is a process that is still poorly understood because of the lack of versatile in vivo longitudinal studies. By generating murine non-small cell lung cancer (NSCLC) orthoallobanks and paired primary cell lines, we provide a detailed description of an in vivo, time-dependent cancer malignization process. We identify the acquisition of metastatic dissemination potential, the selection of co-driver mutations, and the appearance of naturally occurring intratumor heterogeneity, thus recapitulating the stochastic nature of human cancer development. This approach combines the robustness of genetically engineered cancer models with the flexibility of allograft methodology. We have applied this tool for the preclinical evaluation of therapeutic approaches. This system can be implemented to improve the design of future treatments for patients with NSCLC. ©2014 American Association for Cancer Research.
Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.
2015-01-01
Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid secretion over 24 h, yet had no effect on the HCO3 − content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR‐dependent, electrogenic Cl− and fluid secretion, but not CFTR‐dependent HCO3 − secretion, which highlights a differential sensitivity of Cl− and HCO3 − transporters to raised CO2 in Calu‐3 cells. Hypercapnia also reduced forskolin‐stimulated CFTR‐dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs. PMID:26574187
A human lung xenograft mouse model of Nipah virus infection.
Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry
2014-04-01
Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7) TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.
Hyperinflated Lungs: What Does It Mean?
... breathe: The importance of lung hyperinflation in COPD. Primary Care Respiratory Journal. 2013;22:101. O'Donnell DE, et al. Lung hyperinflation in COPD: Applying physiology to clinical practice. COPD Research and Practice. 2015; ...
Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; Ribas de Pouplana, L; Esteller, M
2016-08-18
The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.
Payne, Katie; Parikh, Shailja; Enriquez, Jonathan
2018-01-01
Cardiac metastasis is much more common than primary cardiac tumors. Lung cancer is one of the most common primary malignancies to metastasize to the heart. It is not common for metastasis in the heart to present as a cavitary mass. To our knowledge, four cases have been reported in the literature showing metastatic lung cancer to the heart, presenting as a right ventricular mass. PMID:29725564
Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana
2018-07-01
Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.
Eymin, Béatrice; Gazzeri, Sylvie; Brambilla, Christian; Brambilla, Elisabeth
2002-04-18
Pathways involving p53 and pRb tumor suppressor genes are frequently deregulated during lung carcinogenesis. Through its location at the interface of these pathways, Mdm2 can modulate the function of both p53 and pRb genes. We have examined here the pattern of expression of Mdm2 in a series of 192 human lung carcinomas of all histological types using both immunohistochemical and Western blot analyses and four distinct antibodies mapping different epitopes onto the Mdm2 protein. Using Immunohistochemistry (IHC), Mdm2 was overexpressed as compared to normal lung in 31% (60 out of 192) of all tumors analysed, whatever their histological types. Western blotting was performed on 28 out of the 192 tumoral samples. Overexpression of p85/90, p74/76 and p57 Mdm2 isoforms was detected in 18% (5 out of 28), 25% (7 out of 28) and 39% (11 out of 28) of the cases respectively. Overall, overexpression of at least one isoform was observed in 14 out of 28 (50%) lung tumors and concomittant overexpression of at least two isoforms in 7 out of 28 (25%) cases. A good concordance (82%) was observed between immunohistochemical and Western blot data. Interestingly, a highly significant inverse relationship was detected between p14(ARF) loss and Mdm2 overexpression either in NSCLC (P=0.0089) or in NE lung tumors (P<0.0001). Furthermore, a Mdm2/p14(ARF) >1 ratio was correlated with a high grade phenotype among NE tumors overexpressing Mdm2 (P=0.0021). Taken together, these data strongly suggest that p14(ARF)and Mdm2 act on common pathway(s) to regulate p53 and/or pRb-dependent or independent functions and that the Mdm2 : p14(ARF) ratio might act as a rheostat in modulating the activity of both proteins.
Halbert, Christine L.; Rutledge, Elizabeth A.; Allen, James M.; Russell, David W.; Miller, A. Dusty
2000-01-01
Vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in the lung; however, we have found that while gene expression can persist for at least 8 months in mice, it was reduced dramatically in rabbits over a period of 2 months. The efficiency and persistence of AAV2-mediated gene expression in the human lung have yet to be determined, but it seems likely that readministration will be necessary over the lifetime of an individual. Unfortunately, we have found that transduction by a second administration of an AAV2 vector is blocked, presumably due to neutralizing antibodies generated in response to the primary vector exposure. Here, we have explored the use of AAV2 vectors pseudotyped with capsid proteins from AAV serotypes 2, 3, and 6 for readministration in the mouse lung. We found that an AAV6 vector transduced airway epithelial and alveolar cells in the lung at rates that were at least as high as those of AAV2 pseudotype vectors, while transduction rates mediated by AAV3 were much lower. AAV6 pseudotype vector transduction was unaffected by prior administration of an AAV2 or AAV3 vector, and transduction by an AAV2 pseudotype vector was unaffected by prior AAV6 vector administration, showing that cross-reactive neutralizing antibodies against AAV2 and AAV6 are not generated in mice. Interestingly, while prior administration of an AAV2 vector completely blocked transduction by a second AAV2 pseudotype vector, prior administration of an AAV6 vector only partially inhibited transduction by a second administration of an AAV6 pseudotype vector. Analysis of sera obtained from mice and humans showed that AAV6 is less immunogenic than AAV2, which helps explain this finding. These results support the development of AAV6 vectors for lung gene therapy both alone and in combination with AAV2 vectors. PMID:10627564
Expression and function of human hemokinin-1 in human and guinea pig airways.
Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Risse, Paul-André; Sage, Edouard; Advenier, Charles; Devillier, Philippe
2010-10-07
Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.
[The fundamental mechanisms of metastatic spread and chemotherapy resistance in lung cancer].
Tomuleasa, Ciprian; Kacso, Gabriel; Soritau, Olga; Susman, Sergiu; Petrushev, Bobe; Aldea, Mihaela; Buiga, Rareş; Irimie, Alexandru
2011-01-01
Lung cancer is the leading cause of cancer-related death in the European Union and the United States, accounting for about one third of all cancer deaths. Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartment of the lung, but the origins of the different histological types of primary lung tumours are not well understood and described in medical literature. Current investigation in the field of cancer research have focused on the "cancer stem cell" hypothesis as stem cells are belived to be crucial players in the homeostasis of all adult tissues. Even if the role of stem cells in lung carcinogenesis is not clear yet, numerous studies indicate that lung cancer is not the result of a sudden transforming event, but of a multistep process of molecular changes of the primordial stem cell niche, leading to the development of noeplasia. In the current review, we present state-of-the-art research in the field of lung stem cell biology, with a special emphasis on lung cancer emergence, development, metastasis and multidrug resistance.
Liu, Hongye; Kho, Alvin T; Kohane, Isaac S; Sun, Yao
2006-01-01
Background The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. Methods and Findings Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. Conclusions From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome. PMID:16800721
A three-dimensional model of human lung development and disease from pluripotent stem cells.
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-05-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.
Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry
2016-05-01
Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.
Clinical characteristics of lung abscess in children: 15-year experience at two university hospitals
Choi, Mi Suk; Chun, Ji Hye; Lee, Kyung Suk; Rha, Yeong Ho
2015-01-01
Purpose Information on the clinical features of lung abscess, which is uncommon in children, at hospitalizationis helpful to anticipate the disease course and management. There is no report concerning lung abscess in Korean children. We aimed to identify the clinical characteristics of pediatric lung abscess and compare the difference between primary and secondary abscess groups. Methods The medical records of 11 lung abscess patients (7 males and 4 females) from March 1998 to August 2011 at two university hospitals were retrospectively reviewed. The clinical characteristics, symptoms, underlying disease, laboratory and radiologic findings, microbiological results, and treatments were examined. Results Six patients had underlying structural-related problems (e.g., skeletal anomalies). No immunologic or hematologic problem was recorded. The mean ages of the primary and secondary groups were 2.4 and 5.3 years, respectively, but the difference was not statistically significant. The mean length of hospital stay was similar in both groups (22.8 days vs. 21.4 days). Immunologic studies were performed in 3 patients; the results were within the normal range. Most patients had prominent leukocytosis. Seven and 4 patients had right and left lung abscess, respectively. Staphylococcus aureus, Streptococcus pneumoniae, and antimycoplasma antibodies were detected in both groups. Two patients with primary lung abscess were administered antibiotics in the absence of other procedures, while 8 underwent interventional procedures, including 5 with secondary abscess. Conclusion The most common symptoms were fever and cough. All patients in the primary group were younger than 3 years. Structural problems were dominant. Most patients required interventional procedures and antibiotics. PMID:26770223
Choi, Mi Suk; Chun, Ji Hye; Lee, Kyung Suk; Rha, Yeong Ho; Choi, Sun Hee
2015-12-01
Information on the clinical features of lung abscess, which is uncommon in children, at hospitalizationis helpful to anticipate the disease course and management. There is no report concerning lung abscess in Korean children. We aimed to identify the clinical characteristics of pediatric lung abscess and compare the difference between primary and secondary abscess groups. The medical records of 11 lung abscess patients (7 males and 4 females) from March 1998 to August 2011 at two university hospitals were retrospectively reviewed. The clinical characteristics, symptoms, underlying disease, laboratory and radiologic findings, microbiological results, and treatments were examined. Six patients had underlying structural-related problems (e.g., skeletal anomalies). No immunologic or hematologic problem was recorded. The mean ages of the primary and secondary groups were 2.4 and 5.3 years, respectively, but the difference was not statistically significant. The mean length of hospital stay was similar in both groups (22.8 days vs. 21.4 days). Immunologic studies were performed in 3 patients; the results were within the normal range. Most patients had prominent leukocytosis. Seven and 4 patients had right and left lung abscess, respectively. Staphylococcus aureus, Streptococcus pneumoniae, and antimycoplasma antibodies were detected in both groups. Two patients with primary lung abscess were administered antibiotics in the absence of other procedures, while 8 underwent interventional procedures, including 5 with secondary abscess. The most common symptoms were fever and cough. All patients in the primary group were younger than 3 years. Structural problems were dominant. Most patients required interventional procedures and antibiotics.
Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark
2017-12-01
Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.
Upper aerodigestive tract cancer and the lung: a tale of two aspirations.
Vaideeswar, P; Ghodke, R
2012-01-01
Patients with upper aerodigestive epithelial cancers frequently develop second primary cancers due to common risk factors or develop distant metastases depending on the locoregional status of the primary tumor. In most instances, the organ affected is the lung. Pulmonary spread usually occurs due to hematogenous or lymphatic dissemination. The following is a report of two patients with upper aerodigestive tract squamous cell carcinomas who developed lung metastases due to aspiration, a route not well documented in recent literature.
Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed
2017-01-01
A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647
M2 polarization enhances silica nanoparticle uptake by macrophages.
Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K
2015-01-01
While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2 polarized macrophages.
M2 polarization enhances silica nanoparticle uptake by macrophages
Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.
2015-01-01
While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2 polarized macrophages. PMID:25852557
There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-01-01
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847
Singh, Sandeep; Trevino, Jose; Bora-Singhal, Namrata; Coppola, Domenico; Haura, Eric; Altiok, Soner; Chellappan, Srikumar P
2012-09-25
Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the EGFR-Src-Akt targeted therapy may rely upon the expression and function of Sox2 within the NSCLC-CSCs.
Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Cong, De-Gang; Chang, Hao; Wang, Xue-Feng; Zhang, Tie-Wa; Zhang, Jian; Fu, Kai; Jiang, Jiu-Yang
2008-04-29
To investigate the correlation between Pokemon gene and cisplatin mechanism. Human lung adenocarcinoma cells of the lines A549 and AGZY83-a, human lung squamous carcinoma cells of the line HE-99, and human giant cell lung cancer cells of the line 95D were cultured and cisplatin was added into the medium. Other lung cancer cells of the above mentioned lines were cultured in the medium without cisplatin and were used as control groups. RT-PCR and Western blotting were used to detect the mRNA and protein expression of Pokemon. Pokemon mRNA and protein were expressed highly in all the 4 cell lines. The Pokemon gene expression did not changed significantly after cisplatin treatment groups. There were not significant differences in the mRNA and protein expression of Pokemon among the 4 experiment groups and the control groups (all P > 0.05). Cisplatin has no effect on the Pokemon gene expression of the human lung cancer cells.
Lu, Richard; Popov, Vsevolod; Patel, Jignesh; Eaves-Pyles, Tonyia
2012-01-01
Alveolar type II pneumocytes (ATII) and alveolar macrophages (AM) play a crucial role in the lung's innate immune response. Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM). We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP-induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8) and macrophages (IL-6, TNFα) at 6 h post-infection compared to BM (p < 0.05). Interestingly, BM-induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6 h post-infection, with delayed induction of inflammatory cytokines at 24 h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR) 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.
Díaz, Lorenza; Ceja-Ochoa, Irais; Restrepo-Angulo, Iván; Larrea, Fernando; Avila-Chávez, Euclides; García-Becerra, Rocío; Borja-Cacho, Elizabeth; Barrera, David; Ahumada, Elías; Gariglio, Patricio; Alvarez-Rios, Elizabeth; Ocadiz-Delgado, Rodolfo; Garcia-Villa, Enrique; Hernández-Gallegos, Elizabeth; Camacho-Arroyo, Ignacio; Morales, Angélica; Ordaz-Rosado, David; García-Latorre, Ethel; Escamilla, Juan; Sánchez-Peña, Luz Carmen; Saqui-Salces, Milena; Gamboa-Dominguez, Armando; Vera, Eunice; Uribe-Ramírez, Marisela; Murbartián, Janet; Ortiz, Cindy Sharon; Rivera-Guevara, Claudia; De Vizcaya-Ruiz, Andrea; Camacho, Javier
2009-04-15
Ether-à-go-go-1 (Eag1) potassium channels are potential tools for detection and therapy of numerous cancers. Here, we show human Eag1 (hEag1) regulation by cancer-associated factors. We studied hEag1 gene expression and its regulation by estradiol, antiestrogens, and human papillomavirus (HPV) oncogenes (E6/E7). Primary cultures from normal placentas and cervical cancer tissues; tumor cell lines from cervix, choriocarcinoma, keratinocytes, and lung; and normal cell lines from vascular endothelium, keratinocytes, and lung were used. Reverse transcription-PCR (RT-PCR) experiments and Southern blot analysis showed Eag1 expression in all of the cancer cell types, normal trophoblasts, and vascular endothelium, in contrast to normal keratinocytes and lung cells. Estradiol and antiestrogens regulated Eag1 in a cell type-dependent manner. Real-time RT-PCR experiments in HeLa cells showed that Eag1 estrogenic regulation was strongly associated with the expression of estrogen receptor-alpha. Eag1 protein was detected by monoclonal antibodies in normal placenta and placental blood vessels. Patch-clamp recordings in normal trophoblasts treated with estradiol exhibited potassium currents resembling Eag1 channel activity. Eag1 gene expression in keratinocytes depended either on cellular immortalization or the presence of HPV oncogenes. Eag1 protein was found in keratinocytes transfected with E6/E7 HPV oncogenes. Cell proliferation of E6/E7 keratinocytes was decreased by Eag1 antibodies inhibiting channel activity and by the nonspecific Eag1 inhibitors imipramine and astemizole; the latter also increased apoptosis. Our results propose novel oncogenic mechanisms of estrogen/antiestrogen use and HPV infection. We also suggest Eag1 as an early indicator of cell proliferation leading to malignancies and a therapeutic target at early stages of cellular hyperproliferation.
Lim, Chae Hong; Moon, Seung Hwan; Cho, Young Seok; Im, Young-Hyuck; Choe, Yearn Seong; Kim, Byung-Tae; Lee, Kyung-Han
2016-08-01
Identification of tumor imaging features associated with metastatic pattern may allow better understanding of cancer dissemination. Here, we investigated how primary tumor F-fluorodeoxyglucose (FDG) avidity influences the first site of breast cancer metastasis.Subjects were 264 patients with advanced breast cancer who underwent positron emission tomography/computed tomography at diagnosis and had metastasis at presentation (n = 193) or metastatic relapse after surgery (n = 71). Primary tumor FDG avidity (maximum SUV [SUVmax] ≥10.1) was compared with histology and first metastatic sites.The most common site of first metastasis was the bone, occurring in 62.7% of patients with metastasis at presentation and 38.0% of those with metastatic relapse. First metastasis to lung occurred in 30.1% and 35.2%, and to liver in 25.4% and 15.2% of respective groups. In patients with metastasis at presentation, primary tumors were FDG avid in 98/193 cases, and this was associated with more frequent first metastasis to lung (37.8% vs 22.1%; P = 0.018). In patients with metastasis relapse, primary tumors were FDG avid in 31/71 cases, and this was associated with more frequent first metastasis to lung (48.4% vs 25.0%; P = 0.041) and liver (29.0% vs 5.0%; P = 0.008). In patients with metastasis relapse, primary tumors that were FDG avid but hormone receptor negative had more first metastasis to lung (57.9% vs 26.9%; P = 0.016).FDG-avid primary breast tumors have favored first spread to the lung and liver, which suggests that tumor cells with heightened glycolytic activity better colonize these organs.
Bischoff, Florian C; Werner, Astrid; John, David; Boeckel, Jes-Niels; Melissari, Maria-Theodora; Grote, Phillip; Glaser, Simone F; Demolli, Shemsi; Uchida, Shizuka; Michalik, Katharina M; Meder, Benjamin; Katus, Hugo A; Haas, Jan; Chen, Wei; Pullamsetti, Soni S; Seeger, Werner; Zeiher, Andreas M; Dimmeler, Stefanie; Zehendner, Christoph M
2017-08-04
Pericytes are essential for vessel maturation and endothelial barrier function. Long noncoding RNAs regulate many cellular functions, but their role in pericyte biology remains unexplored. Here, we investigate the effect of hypoxia-induced endoplasmic reticulum stress regulating long noncoding RNAs (HypERlnc, also known as ENSG00000262454) on pericyte function in vitro and its regulation in human heart failure and idiopathic pulmonary arterial hypertension. RNA sequencing in human primary pericytes identified hypoxia-regulated long noncoding RNAs, including HypERlnc. Silencing of HypERlnc decreased cell viability and proliferation and resulted in pericyte dedifferentiation, which went along with increased endothelial permeability in cocultures consisting of human primary pericyte and human coronary microvascular endothelial cells. Consistently, Cas9-based transcriptional activation of HypERlnc was associated with increased expression of pericyte marker genes. Moreover, HypERlnc knockdown reduced endothelial-pericyte recruitment in Matrigel assays ( P <0.05). Mechanistically, transcription factor reporter arrays demonstrated that endoplasmic reticulum stress-related transcription factors were prominently activated by HypERlnc knockdown, which was confirmed via immunoblotting for the endoplasmic reticulum stress markers IRE1α ( P <0.001), ATF6 ( P <0.01), and soluble BiP ( P <0.001). Kyoto encyclopedia of genes and gene ontology pathway analyses of RNA sequencing experiments after HypERlnc knockdown indicate a role in cardiovascular disease states. Indeed, HypERlnc expression was significantly reduced in human cardiac tissue from patients with heart failure ( P <0.05; n=19) compared with controls. In addition, HypERlnc expression significantly correlated with pericyte markers in human lungs derived from patients diagnosed with idiopathic pulmonary arterial hypertension and from donor lungs (n=14). Here, we show that HypERlnc regulates human pericyte function and the endoplasmic reticulum stress response. In addition, RNA sequencing analyses in conjunction with reduced expression of HypERlnc in heart failure and correlation with pericyte markers in idiopathic pulmonary arterial hypertension indicate a role of HypERlnc in human cardiopulmonary disease. © 2017 American Heart Association, Inc.
Spectrum of high-resolution computed tomography imaging in occupational lung disease
Satija, Bhawna; Kumar, Sanyal; Ojha, Umesh Chandra; Gothi, Dipti
2013-01-01
Damage to the lungs caused by dusts or fumes or noxious substances inhaled by workers in certain specific occupation is known as occupational lung disease. Recognition of occupational lung disease is especially important not only for the primary worker, but also because of the implications with regard to primary and secondary disease prevention in the exposed co-workers. Although many of the disorders can be detected on chest radiography, high-resolution computed tomography (HRCT) is superior in delineating the lung architecture and depicting pathology. The characteristic radiological features suggest the correct diagnosis in some, whereas a combination of clinical features, occupational history, and radiological findings is essential in establishing the diagnosis in others. In the presence of a history of exposure and consistent clinical features, the diagnosis of even an uncommon occupational lung disease can be suggested by the characteristic described HRCT findings. In this article, we briefly review the HRCT appearance of a wide spectrum of occupational lung diseases. PMID:24604929
Spectrum of high-resolution computed tomography imaging in occupational lung disease.
Satija, Bhawna; Kumar, Sanyal; Ojha, Umesh Chandra; Gothi, Dipti
2013-10-01
Damage to the lungs caused by dusts or fumes or noxious substances inhaled by workers in certain specific occupation is known as occupational lung disease. Recognition of occupational lung disease is especially important not only for the primary worker, but also because of the implications with regard to primary and secondary disease prevention in the exposed co-workers. Although many of the disorders can be detected on chest radiography, high-resolution computed tomography (HRCT) is superior in delineating the lung architecture and depicting pathology. The characteristic radiological features suggest the correct diagnosis in some, whereas a combination of clinical features, occupational history, and radiological findings is essential in establishing the diagnosis in others. In the presence of a history of exposure and consistent clinical features, the diagnosis of even an uncommon occupational lung disease can be suggested by the characteristic described HRCT findings. In this article, we briefly review the HRCT appearance of a wide spectrum of occupational lung diseases.
NASA Astrophysics Data System (ADS)
Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.
2011-06-01
Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm. Electronic supplementary information (ESI) available: See DOI: 10.1039/c1nr10080g
Interplay between the lung microbiome and lung cancer.
Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong
2018-02-28
The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
We developed a three-dimensional fibroblastic nodule model for fibrogenicity testing of nanomaterials and investigated the role of fibroblast stemlike cells (FSCs) in the fibrogenic process. We showed that carbon nanotubes (CNTs) induced fibroblastic nodule formation in primary human lung fibroblast cultures resembling the fibroblastic foci in clinical fibrosis and promoted FSCs that are highly fibrogenic and a potential driving force of fibrogenesis. This study provides a predictive 3D model and mechanistic insight on CNT fibrogenesis. PMID:24873662
Morris, Alison; Paulson, Joseph N; Talukder, Hisham; Tipton, Laura; Kling, Heather; Cui, Lijia; Fitch, Adam; Pop, Mihai; Norris, Karen A; Ghedin, Elodie
2016-07-08
Longitudinal studies of the lung microbiome are challenging due to the invasive nature of sample collection. In addition, studies of the lung microbiome in human disease are usually performed after disease onset, limiting the ability to determine early events in the lung. We used a non-human primate model to assess lung microbiome alterations over time in response to an HIV-like immunosuppression and determined impact of the lung microbiome on development of obstructive lung disease. Cynomolgous macaques were infected with the SIV-HIV chimeric virus SHIV89.6P. Bronchoalveolar lavage fluid samples were collected pre-infection and every 4 weeks for 53 weeks post-infection. The microbiota was characterized at each time point by 16S ribosomal RNA (rRNA) sequencing. We observed individual variation in the composition of the lung microbiota with a proportion of the macaques having Tropheryma whipplei as the dominant organism in their lungs. Bacterial communities varied over time both within and between animals, but there did not appear to be a systematic alteration due to SHIV infection. Development of obstructive lung disease in the SHIV-infected animals was characterized by a relative increase in abundance of oral anaerobes. Network analysis further identified a difference in community composition that accompanied the development of obstructive disease with negative correlations between members of the obstructed and non-obstructed groups. This emphasizes how species shifts can impact multiple other species, potentially resulting in disease. This study is the first to investigate the dynamics of the lung microbiota over time and in response to immunosuppression in a non-human primate model. The persistence of oral bacteria in the lung and their association with obstruction suggest a potential role in pathogenesis. The lung microbiome in the non-human primate is a valuable tool for examining the impact of the lung microbiome in human health and disease.
Bronchopulmonary Dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases
McEvoy, Cindy T.; Jain, Lucky; Schmidt, Barbara; Abman, Steven; Bancalari, Eduardo
2014-01-01
Bronchopulmonary dysplasia (BPD) is the most common complication of extreme preterm birth. Infants who develop BPD manifest aberrant or arrested pulmonary development and can experience lifelong alterations in cardiopulmonary function. Despite decades of promising research, primary prevention of BPD has proven elusive. This workshop report identifies current barriers to the conduct of primary prevention studies for BPD and causal pathways implicated in BPD pathogenesis. Throughout, we highlight promising areas for research to improve understanding of normal and aberrant lung development, distinguish BPD endotypes, and ascertain biomarkers for more targeted therapeutic approaches to prevention. We conclude with research recommendations and priorities to accelerate discovery and promote lung health in infants born preterm. PMID:24754823
Two Decades of Lung Retransplantation: A Single-Center Experience.
Hall, David J; Belli, Erol V; Gregg, Jon A; Salgado, Juan C; Baz, Maher A; Staples, E Denmark; Beaver, Thomas M; Machuca, Tiago N
2017-04-01
Lung retransplantation (ReTx) comprises an increasing share of lung transplants and recently has shown improved outcomes. The aim of this study was to identify risk factors affecting overall survival after pulmonary ReTx. The United Network for Organ Sharing database was used to identify patients undergoing lung transplantation at our institution from 1995 to 2014. Of the total 542 lung transplants performed, 87 (16.1%) were ReTxs. The primary outcome was overall survival. Multivariate Cox regression models were used to assess the effect of recipient and donor characteristics on survival. Of the patients who underwent ReTx, median survival was 2 years. Predictors of worse survival include recipient age between 50 and 60 years (relative risk, 4.3; p = 0.02) or older than 60 years (relative risk, 10.2; p < 0.001), and time to ReTx of less than 2 years (relative risk, 3.8; p = 0.01). ReTx for bronchiolitis obliterans syndrome had longer median survival than for restrictive chronic lung allograft dysfunction (2.7 years vs 0.9 years; p = 0.055). Overall survival of ReTx patients after initiation of the lung allocation score was not significantly different (p = 0.21). Lung ReTx outcomes are significantly worse than for primary transplantation but may be appropriate in well-selected patients with certain diagnoses. Lung ReTx in patients older than 50 years or within 2 years of primary lung transplantation was associated with decreased survival. Further work is warranted to identify patients who benefit most from ReTx. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Clay, Candice; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B.; Lei, Wanli; Price, Lance; Hahn, Fletcher; Van Westrienen, Jesse
2012-01-01
Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs. PMID:22345460
Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann
2012-06-01
Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD defined at 72 h does not lead to recognizable changes in ventilation-perfusion scintigrapy at 3 months, and scintigraphic findings do not correlate with development in lung function in the first 12 months.
Characterizing the cancer genome in lung adenocarcinoma
Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A.; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A.; Borecki, Ingrid B.; Broderick, Stephen; Chang, Andrew C.; Chiang, Derek Y.; Chirieac, Lucian R.; Cho, Jeonghee; Fujii, Yoshitaka; Gazdar, Adi F.; Giordano, Thomas; Greulich, Heidi; Hanna, Megan; Johnson, Bruce E.; Kris, Mark G.; Lash, Alex; Lin, Ling; Lindeman, Neal; Mardis, Elaine R.; McPherson, John D.; Minna, John D.; Morgan, Margaret B.; Nadel, Mark; Orringer, Mark B.; Osborne, John R.; Ozenberger, Brad; Ramos, Alex H.; Robinson, James; Roth, Jack A.; Rusch, Valerie; Sasaki, Hidefumi; Shepherd, Frances; Sougnez, Carrie; Spitz, Margaret R.; Tsao, Ming-Sound; Twomey, David; Verhaak, Roel G. W.; Weinstock, George M.; Wheeler, David A.; Winckler, Wendy; Yoshizawa, Akihiko; Yu, Soyoung; Zakowski, Maureen F.; Zhang, Qunyuan; Beer, David G.; Wistuba, Ignacio I.; Watson, Mark A.; Garraway, Levi A.; Ladanyi, Marc; Travis, William D.; Pao, William; Rubin, Mark A.; Gabriel, Stacey B.; Gibbs, Richard A.; Varmus, Harold E.; Wilson, Richard K.; Lander, Eric S.; Meyerson, Matthew
2008-01-01
Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered. PMID:17982442
Talaska, G; Underwood, P; Maier, A; Lewtas, J; Rothman, N; Jaeger, M
1996-01-01
Lung cancer caused by polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental agents is a major problem in industrialized nations. The high case-fatality rate of the disease, even with the best supportive treatment, underscores the importance of primary lung cancer prevention. Development of biomarkers of exposure and effects to PAHs and related compounds is now underway and includes measurement of urinary metabolites of specific PAHs as well as detection of protein and DNA adducts as indicators of effective dose. Validation of these markers in terms of total environmental dose requires that concurrent measures of air levels and potential dermal exposure be made. In addition, the interrelationships between PAH biomarkers must be determined, particularly when levels of the marker in surrogate molecules (e.g., protein) or markers from surrogate tissues (e.g., lymphocyte DNA) are used to assess the risk to the target organ, the lung. Two approaches to biomarker studies will be reviewed in this article: the progress made using blood lymphocytes as surrogates for lung tissues and the progress made developing noninvasive markers of carcinogen-DNA adduct levels in lung-derived cells available in bronchial-alveolar lavage and in sputum. Data are presented from studies in which exfoliated urothelial cells were used as a surrogate tissue to assess exposure to human urinary bladder carcinogens in occupational groups. PMID:8933032
Konter, Jason M; Parker, Jennifer L; Baez, Elizabeth; Li, Stephanie Z; Ranscht, Barbara; Denzel, Martin; Little, Frederic F; Nakamura, Kazuto; Ouchi, Noriyuki; Fine, Alan; Walsh, Kenneth; Summer, Ross S
2011-01-01
Adiponectin (APN) is an adipose tissue-derived factor with anti-inflammatory and vascular protective properties whose levels paradoxically decrease with increasing body fat. In this study, APN’s role in the early development of ALI to lipopolysaccharide (LPS) was investigated. Intra-tracheal (i.t.) LPS elicited an exaggerated systemic inflammatory response in APN-deficient (APN−/−) mice compared to wild-type (wt) littermates. Increased lung injury and inflammation were observed in APN−/− mice as early as 4 hours after delivery of LPS. Targeted gene expression profiling performed on immune and endothelial cells isolated from lung digests 4 hours after LPS administration showed increased pro-inflammatory gene expression (e.g. IL-6) only in endothelial cells of APN−/− mice when compared to wt mice. Direct effects on lung endothelium were demonstrated by APN’s ability to inhibit LPS-induced IL-6 production in primary human endothelial cells in culture. Furthermore, T-cadherin-deficient (T-cad−/−) mice that have significantly reduced lung airspace APN but high serum APN levels had pulmonary inflammatory responses after i.t. LPS that were similar to those of wt mice. These findings indicate the importance of serum APN in modulating LPS-induced ALI and suggest that conditions leading to hypoadiponectinemia (e.g. obesity) predispose to development of ALI through exaggerated inflammatory response in pulmonary vascular endothelium. PMID:22156343
Zhukov, V A; Shishkina, L N; Sergeev, A A; Malkova, E M; Riabchikova, E I; Petrishchenko, V A; Sergeev, A N; Ustiuzhanina, N V; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2008-01-01
The levels of susceptibility to influenza virus A/Aichi/2/68 H3N2 and the virus yield were determined using primary cells of the trachea and lungs of CD-1 mice and Wistar rats, and for 3 sets of cells obtained from primary lung cells of the both species by centrifugation in the gradient of density and by sedimentation on a surface. The values of ID50 virus dose for 10(6) cells and virus yield per 1 infected cell determined for primary mice cells were 4.0+/-0.47 and 3.2+/-0.27 IgEID50 (lung cells), 3.8+/-0.17 and 3.3+/-0.20 IgEID50 (tracheal cells), and those determined for primary rat cells were 4.0+/-0.35 and 2.1+/-0.24 IgEID50 (lung cells), 3.7+/-0.27 and 2.2+/-0.46 IgEID50 (tracheal cells). The values of ID50 and yield measured for mixtures of cells obtained from primary lung cells by centrifugation in gradient of density and by sedimentation on a surface differed insignificantly (p = 0.05) from the values of the corresponding parameters measured for lung and tracheal cells for both rats and mice. The analysis of data on the variation of the concentrations of different cell types in the experimental cell mixtures shows that type 1 and 2 alveolocytes possess significantly lower (p = 0.05) susceptibility and productivity vs. ciliated cells of the both species. The investigation was conducted within the frame of the ISTC/DARPA#450p project.
Grafino, Mónica; Alves, Paula; de Almeida, Margarida Mendes; Garrido, Patrícia; Hasmucrai, Direndra; Teixeira, Encarnação; Sotto-Mayor, Renato
2016-01-01
Angiosarcoma is a rare malignant vascular tumor. Pulmonary involvement is usually attributable to metastasis from other primary sites, primary pulmonary angiosarcoma therefore being quite uncommon. We report a case of angiosarcoma with pulmonary involvement, probably primary to the lung, which had gone untreated for more than two years. We describe this rare neoplasm and its growth, as well as the extensive local invasion and hematogenous metastasis at presentation. We also discuss its poor prognosis. PMID:26982044
Relationship between primary lesion metabolic parameters and clinical stage in lung cancer.
Sahiner, I; Atasever, T; Akdemir, U O; Ozturk, C; Memis, L
2013-01-01
The relation of PET-derived parameters as maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV) with clinical stage in lung cancer and correlation of SUVmax of primary tumor and that of metastatic lesion was studied in lung cancer patients. Patients with lung cancer who were referred for FDG PET/CT were included in the study. PET/CT scans and pathology reports of 168 patients were assessed. A total of 146 (86.9%) of these patients had a diagnosis of non-small cell lung cancer (NSCLC) and 22 (13.1%) had small cell lung cancer (SCLC). Metabolic parameters such as SUVmax, TLG and MTV showed significant differences in all the stages in NSCLC patients (p<0.001). However, after tumors sizes <25 mm were excluded, no significant differences in SUVmax between stages were observed. No significant differences were found between these metabolic parameters and limited or extended disease SCLC. Tumor diameter correlated with primary tumor SUVmax and significant correlations between primary lesion SUVmax and metastatic lesion SUVmax were found. Although differences were found regarding indices between stages of NSCLC cases, SUVmax differences between stages seem to be caused by underestimation of SUVmax in small lesions. Other glucose metabolism indexes such as MTV and TLG show promising results in terms of prognostic stratification. Future studies are needed for better understanding of their contribution to clinical cases. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.
Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping
2018-02-19
The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.
A three-dimensional model of human lung development and disease from pluripotent stem cells
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F.; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-01-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modeling, drug discovery and regenerative medicine1. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants2, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs3. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis4,5, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease. PMID:28436965
Napier, F. E.; Shearer, M. A.; Temple, D. M.
1990-01-01
1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152
Selenium and Lung Cancer: A Systematic Review and Meta Analysis
Fritz, Heidi; Kennedy, Deborah; Fergusson, Dean; Fernandes, Rochelle; Cooley, Kieran; Seely, Andrew; Sagar, Stephen; Wong, Raimond; Seely, Dugald
2011-01-01
Background Selenium is a natural health product widely used in the treatment and prevention of lung cancers, but large chemoprevention trials have yielded conflicting results. We conducted a systematic review of selenium for lung cancers, and assessed potential interactions with conventional therapies. Methods and Findings Two independent reviewers searched six databases from inception to March 2009 for evidence pertaining to the safety and efficacy of selenium for lung cancers. Pubmed and EMBASE were searched to October 2009 for evidence on interactions with chemo- or radiation-therapy. In the efficacy analysis there were nine reports of five RCTs and two biomarker-based studies, 29 reports of 26 observational studies, and 41 preclinical studies. Fifteen human studies, one case report, and 36 preclinical studies were included in the interactions analysis. Based on available evidence, there appears to be a different chemopreventive effect dependent on baseline selenium status, such that selenium supplementation may reduce risk of lung cancers in populations with lower baseline selenium status (serum<106 ng/mL), but increase risk of lung cancers in those with higher selenium (≥121.6 ng/mL). Pooling data from two trials yielded no impact to odds of lung cancer, OR 0.93 (95% confidence interval 0.61–1.43); other cancers that were the primary endpoints of these trials, OR 1.51 (95%CI 0.70–3.24); and all-cause-death, OR 0.93 (95%CI 0.79–1.10). In the treatment of lung cancers, selenium may reduce cisplatin-induced nephrotoxicity and side effects associated with radiation therapy. Conclusions Selenium may be effective for lung cancer prevention among individuals with lower selenium status, but at present should not be used as a general strategy for lung cancer prevention. Although promising, more evidence on the ability of selenium to reduce cisplatin and radiation therapy toxicity is required to ensure that therapeutic efficacy is maintained before any broad clinical recommendations can be made in this context. PMID:22073154
Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias
2017-01-01
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
van Suylen, V; Luijk, B; Hoek, R A S; van de Graaf, E A; Verschuuren, E A; Van De Wauwer, C; Bekkers, J A; Meijer, R C A; van der Bij, W; Erasmus, M E
2017-10-01
The implementation of donation after circulatory death category 3 (DCD3) was one of the attempts to reduce the gap between supply and demand of donor lungs. In the Netherlands, the total number of potential lung donors was greatly increased by the availability of DCD3 lungs in addition to the initial standard use of donation after brain death (DBD) lungs. From the three lung transplant centers in the Netherlands, 130 DCD3 recipients were one-to-one nearest neighbor propensity score matched with 130 DBD recipients. The primary end points were primary graft dysfunction (PGD), posttransplant lung function, freedom from chronic lung allograft dysfunction (CLAD), and overall survival. PGD did not differ between the groups. Posttransplant lung function was comparable after bilateral lung transplantation, but seemed worse after DCD3 single lung transplantation. The incidence of CLAD (p = 0.17) nor the freedom from CLAD (p = 0.36) nor the overall survival (p = 0.40) were significantly different between both groups. The presented multicenter results are derived from a national context where one third of the lung transplantations are performed with DCD3 lungs. We conclude that the long-term outcome after lung transplantation with DCD3 donors is similar to that of DBD donors and that DCD3 donation can substantially enlarge the donor pool. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Chen, Delphine L; Huang, Howard J; Byers, Derek E; Shifren, Adrian; Belikoff, Bryan; Engle, Jacquelyn T; Arentson, Elizabeth; Kemp, Debra; Phillips, Sharon; Scherrer, David E; Fujiwara, Hideji; Spayd, Katherine J; Brooks, Frank J; Pierce, Richard A; Castro, Mario; Isakow, Warren
2018-01-01
Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. ClinicalTrials.gov NCT01174056.
Huang, Howard J.; Byers, Derek E.; Shifren, Adrian; Belikoff, Bryan; Engle, Jacquelyn T.; Arentson, Elizabeth; Kemp, Debra; Phillips, Sharon; Scherrer, David E.; Fujiwara, Hideji; Spayd, Katherine J.; Brooks, Frank J.; Pierce, Richard A.; Castro, Mario; Isakow, Warren
2018-01-01
Background Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. Methods For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Results Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Conclusions Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. Trial registration ClinicalTrials.gov NCT01174056. PMID:29414995
Stone, Matthew L; Zhao, Yunge; Robert Smith, J; Weiss, Mark L; Kron, Irving L; Laubach, Victor E; Sharma, Ashish K
2017-12-21
Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis.
Xie, Yan; Jiang, Haihong; Zhang, Qian; Mehrotra, Suneet; Abel, Peter W; Toews, Myron L; Wolff, Dennis W; Rennard, Stephen; Panettieri, Reynold A; Casale, Thomas B; Tu, Yaping
2016-08-22
Pirfenidone was recently approved for treatment of idiopathic pulmonary fibrosis. However, the therapeutic dose of pirfenidone is very high, causing side effects that limit its doses and therapeutic effectiveness. Understanding the molecular mechanisms of action of pirfenidone could improve its safety and efficacy. Because activated fibroblasts are critical effector cells associated with the progression of fibrosis, this study investigated the genes that change expression rapidly in response to pirfenidone treatment of pulmonary fibroblasts and explored their contributions to the anti-fibrotic effects of pirfenidone. We used the GeneChip microarray to screen for genes that were rapidly up-regulated upon exposure of human lung fibroblast cells to pirfenidone, with confirmation for specific genes by real-time PCR and western blots. Biochemical and functional analyses were used to establish their anti-fibrotic effects in cellular and animal models of pulmonary fibrosis. We identified Regulator of G-protein Signaling 2 (RGS2) as an early pirfenidone-induced gene. Treatment with pirfenidone significantly increased RGS2 mRNA and protein expression in both a human fetal lung fibroblast cell line and primary pulmonary fibroblasts isolated from patients without or with idiopathic pulmonary fibrosis. Pirfenidone treatment or direct overexpression of recombinant RGS2 in human lung fibroblasts inhibited the profibrotic effects of thrombin, whereas loss of RGS2 exacerbated bleomycin-induced pulmonary fibrosis and mortality in mice. Pirfenidone treatment reduced bleomycin-induced pulmonary fibrosis in wild-type but not RGS2 knockout mice. Endogenous RGS2 exhibits anti-fibrotic functions. Upregulated RGS2 contributes significantly to the anti-fibrotic effects of pirfenidone.
Jorgensen, Ellen; Stinson, Andy; Shan, Lin; Yang, Jin; Gietl, Diana; Albino, Anthony P
2008-01-01
Background Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. Methods Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. Results We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers. Conclusion These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer. PMID:18694499
Clinical significance of tumor cavitation in surgically resected early-stage primary lung cancer.
Tomizawa, Kenji; Shimizu, Shigeki; Ohara, Shuta; Fujino, Toshio; Nishino, Masaya; Sesumi, Yuichi; Kobayashi, Yoshihisa; Sato, Katsuaki; Chiba, Masato; Shimoji, Masaki; Suda, Kenichi; Takemoto, Toshiki; Mitsudomi, Tetsuya
2017-10-01
The prognostic impact of tumor cavitation is unclear in patients with early-stage primary lung cancer. The aim of the present study was to examine the clinicopathological features and prognoses of patients with pathological stage I-IIA (p-stage I-IIA) primary lung cancers harboring tumor cavitation. This study was conducted according to the eighth edition of the TNM classification for lung cancer. We examined 602 patients with p-stage I-IIA primary lung cancer out of 890 patients who underwent pulmonary resection from January 2007 through March 2014 and searched for the presence of tumor cavitation, which is defined as the presence of air space within the primary tumor. A total of 59 out of the 602 patients had tumor cavitation (10%). Compared with patients without tumor cavitation, those with tumor cavitation had a significantly higher frequency of the following characteristics: high serum carcinoembryonic antigen (CEA) level (≥5ng/ml, p=0.027), interstitial pneumonia (p=0.0001), high SUVmax value on FDG-PET scan (≥4.2, p=0.023), tumors located in the lower lobe (p=0.024), large tumor size (>3cm, p=0.002), vascular invasion (66% vs 17%, p<0.0001) and non-adenocarcinoma histology (p=0.025). The overall survival period of patients with tumor cavitation was significantly shorter than that of patients without tumor cavitation (log-rank test: p<0.0001, 5-year OS rate: 56% vs 81%). Tumor cavitation was found to be an independent and significant factor associated with poor prognosis in the multivariate analysis (hazard ratio: 1.76, 95% confidence interval: 1.02-3.10, p=0.042). Tumor cavitation is an independent factor for poor prognosis in patients with resected p-stage I-IIA primary lung cancer. Based on our analyses, patients with tumor cavitation should be regarded as a separate cohort that requires more intensive follow-up. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Jenifer; Abramson, Michael J; Zwar, Nicholas; Russell, Grant; Holland, Anne E; Bonevski, Billie; Mahal, Ajay; van Hecke, Benjamin; Phillips, Kirsten; Eustace, Paula; Paul, Eldho; Petrie, Kate; Wilson, Sally; George, Johnson
2017-01-01
Introduction Up to half of all smokers develop clinically significant chronic obstructive pulmonary disease (COPD). Gaps exist in the implementation and uptake of evidence-based guidelines for managing COPD in primary care. We describe the methodology of a cluster randomised controlled trial (cRCT) evaluating the efficacy and cost-effectiveness of an interdisciplinary model of care aimed at reducing the burden of smoking and COPD in Australian primary care settings. Methods and analysis A cRCT is being undertaken to evaluate an interdisciplinary model of care (RADICALS — Review of Airway Dysfunction and Interdisciplinary Community-based care of Adult Long-term Smokers). General practice clinics across Melbourne, Australia, are identified and randomised to the intervention group (RADICALS) or usual care. Patients who are current or ex-smokers, of at least 10 pack years, including those with an existing diagnosis of COPD, are being recruited to identify 280 participants with a spirometry-confirmed diagnosis of COPD. Handheld lung function devices are being used to facilitate case-finding. RADICALS includes individualised smoking cessation support, home-based pulmonary rehabilitation and home medicines review. Patients at control group sites receive usual care and Quitline referral, as appropriate. Follow-ups occur at 6 and 12 months from baseline to assess changes in quality of life, abstinence rates, health resource utilisation, symptom severity and lung function. The primary outcome is change in St George’s Respiratory Questionnaire score of patients with COPD at 6 months from baseline. Ethics and dissemination This project has been approved by the Monash University Human Research Ethics Committee and La Trobe University Human Ethics Committee (CF14/1018 – 2014000433). Results of the study will be disseminated in peer-reviewed journals and research conferences. If the intervention is successful, the RADICALS programme could potentially be integrated into general practices across Australia and sustained over time. Trial registration number ACTRN12614001155684; Pre-results. PMID:28928190
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-11-25
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-01-01
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841
Infected colonic mass revealing a lung adenocarcinoma.
Doussot, Alexandre; Chalumeau, Claire; Combier, Christophe; Cheynel, Nicolas; Facy, Olivier
2013-12-01
We report the case of lung adenocarcinoma revealed by infected colonic tumor in a 62-year-old man. An en bloc surgical resection was performed with uneventful recovery. The pathologic report concluded in a right mesocolic lymph node metastases from a mildly differentiated adenocarcinoma from pulmonary origin. GI metastases of lung cancer are described in the literature and are frequently asymptomatic in patient with a known primary cancer. In this patient, the complication of the metastases revealed the primary and immunochemistry permitted to adapt the systemic chemotherapy. Copyright © 2012. Published by Elsevier Masson SAS.
Growth of alveoli during postnatal development in humans based on stereological estimation.
Herring, Matt J; Putney, Lei F; Wyatt, Gregory; Finkbeiner, Walter E; Hyde, Dallas M
2014-08-15
Alveolarization in humans and nonhuman primates begins during prenatal development. Advances in stereological counting techniques allow accurate assessment of alveolar number; however, these techniques have not been applied to the developing human lung. Based on the recent American Thoracic Society guidelines for stereology, lungs from human autopsies, ages 2 mo to 15 yr, were fractionated and isometric uniform randomly sampled to count the number of alveoli. The number of alveoli was compared with age, weight, and height as well as growth between right and left lungs. The number of alveoli in the human lung increased exponentially during the first 2 yr of life but continued to increase albeit at a reduced rate through adolescence. Alveolar numbers also correlated with the indirect radial alveolar count technique. Growth curves for human alveolarization were compared using historical data of nonhuman primates and rats. The alveolar growth rate in nonhuman primates was nearly identical to the human growth curve. Rats were significantly different, showing a more pronounced exponential growth during the first 20 days of life. This evidence indicates that the human lung may be more plastic than originally thought, with alveolarization occurring well into adolescence. The first 20 days of life in rats implies a growth curve that may relate more to prenatal growth in humans. The data suggest that nonhuman primates are a better laboratory model for studies of human postnatal lung growth than rats. Copyright © 2014 the American Physiological Society.
Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LCmore » cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship between cadmium and lung cancer.« less
Alì, Greta; Proietti, Agnese; Niccoli, Cristina; Pelliccioni, Serena; Borrelli, Nicla; Giannini, Riccardo; Lupi, Cristiana; Valetto, Angelo; Bertini, Veronica; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella
2013-08-01
The EML4-ALK gene translocation was described in a non small cell lung cancer (NSCLC) subset, with a potent oncogenic activity. It represents one of the newest molecular targets in NSCLC. We report on the case of a metachronous second primary lung sarcomatoid carcinoma after resection of lung adenocarcinoma both with ALK translocation, in a non-smoking patient. EML4-ALK rearrangement was detected with immunohistochemistry and confirmed with fluorescent in situ hybridization (FISH). To assess the clonal relationship between the two tumors, both adenocarcinoma and sarcomatoid carcinoma were analyzed by array comparative genomic hybridization (aCGH). We observed different genomic profiles suggesting that the tumors arose independently and were thus multiple primaries. To the best of our knowledge, this is the first report concerning the presence of the EML4-ALK fusion gene in a sarcomatoid carcinoma of the lung. Crizotinib, the ALK tyrosine kinase inhibitor, is highly effective in ALK-rearranged NSCLC; therefore, it may be imperative to identify all NSCLC that harbor ALK translocations in the near future. Starting from our evidence, tumors with sarcomatoid histology may need to be screened for the presence of EML4-ALK rearrangement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Kai, E-mail: gk161@163.com; Department of Respiration, 161th Hospital, PLA, Wuhan 430015; Jin, Faguang, E-mail: jinfag@fmmu.edu.cn
2015-09-25
The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5more » also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.« less
Evaluation of the male reproductive toxicity of gallium arsenide.
Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M
2012-10-01
Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Lung cancer - solitary nodule; Infectious granuloma - pulmonary nodule; SPN ... such as aspergillosis , coccidioidomycosis , cryptococcosis , or histoplasmosis Primary lung cancer is the most common cause of cancerous (malignant) ...
Hennemeier, Isabell; Humpf, Hans-Ulrich; Gekle, Michael; Schwerdt, Gerald
2012-09-01
The underlying molecular mechanisms of nanomolar ochratoxin A (OTA) concentrations, especially those on pathophysiological relevant gene expression in target tissue and underlying signaling mechanisms are unknown. qPCR arrays showed that 14 days exposure of human primary proximal tubule cells to 10 nM OTA influences the expression of genes that are related to inflammation, malignant transformation, and epithelial-to-mesenchymal transition. Wnt1 inducible signaling protein 1 (WISP1), an oncogenic, and profibrotic growth factor, turned out to be the gene with the strongest upregulation. Its expression, and that of TNF-α, an important inflammatory mediator, was further investigated in human renal cells and in primary human lung fibroblasts. OTA-induced upregulation of WISP1 and TNF-α occurs only in renal cells. Inhibition of ERK1/2 activation reverses the effect of OTA on WISP1 and TNF-α expression. Wnt or other signaling pathways were not involved. Upregulation of WISP1 and TNF-α occured independently of each other. Long-term exposure of human kidney cells with OTA concentrations expectable in renal tissue due to average dietary intake leads in an ERK1/2-dependent manner to pathogenetic alterations of gene expression, notably WISP1 and TNF-α. Renal long-term risk by OTA is actually not excludable and argues for low but rational safety levels. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ono, Motoharu; Yamada, Kayo; Avolio, Fabio; Afzal, Vackar; Bensaddek, Dalila; Lamond, Angus I
2015-01-01
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.
Henry, Frank S.
2015-01-01
The structure of the gas exchange region of the human lung (the pulmonary acinus) undergoes profound change in the first few years of life. In this paper, we investigate numerically how the change in alveolar shape with time affects the rate of nanoparticle deposition deep in the lung during postnatal development. As human infant data is unavailable, we use a rat model of lung development. The process of postnatal lung development in the rat is remarkably similar to that of the human, and the structure of the rat acinus is indistinguishable from that of the human acinus. The current numerical predictions support our group's recent in vivo findings, which were also obtained by using growing rat lung models, that nanoparticle deposition in infants is strongly affected by the change in the structure of the pulmonary acinus. In humans, this major structural change occurs over the first 2 yr of life. Our current predictions would suggest that human infants at the age of ∼2 yr might be most at risk to the harmful effects of air pollution. Our results also suggest that dose estimates for inhalation therapies using nanoparticles, based on fully developed adult lungs with simple body weight scaling, are likely to overestimate deposition by up to 55% for newborns and underestimate deposition by up to 17% for 2-yr-old infants. PMID:26494453
Kuppuswamy, M; Spencer, J F; Doronin, K; Tollefson, A E; Wold, W S M; Toth, K
2005-11-01
We have constructed a novel oncolytic adenovirus (Ad) vector, named VRX-011, in which the replication of the vector is targeted to cancer cells by the replacement of the wild-type Ad E4 promoter with the human telomerase reverse transcriptase (hTERT) promoter. Genes in the Ad E4 transcription unit are essential for Ad replication; therefore, VRX-011 will grow efficiently only in cells in which the hTERT promoter is active, that is, in a wide range of cancer and immortalized cells but not in most somatic cells. Consistent with these expectations, VRX-011 replicated efficiently in all cancer cell lines examined, while its growth was restricted in various primary and normal cells. VRX-011 overexpresses ADP (also known as E3-11.6K), an Ad protein required for efficient cell lysis and release of virions from cells at late stages of infection. This overexpression enhances cell-to-cell spread and could significantly increase antitumor efficacy. In a xenograft model in nude mice, both intratumoral and intravenous administration of VRX-011 effectively suppressed the growth of subcutaneous Hep3B human liver tumors. Also, intravenous delivery of VRX-011 greatly reduced the number and size of A549 human lung cancer cell nodules in a disseminated lung tumor model in nude mice. Importantly, tail vein administration of different doses of VRX-011 in C57BL/6 mice showed minimal liver toxicity. Considering its broad range of lytic replication in cancer cells, its attenuated phenotype in primary cells, its efficacy in suppressing xenografts, and its low toxicity in mouse liver, VRX-011 is a promising candidate for further evaluation as an anticancer therapeutic.
Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat
2011-05-01
Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.
Deng, Pengbo; Hu, Chengping; Zhou, Lihua; Li, Yuanyuan; Huang, Li
2013-09-01
Mixed-histology primary lung cancer is a rare type of lung cancer, where data regarding epidemiology, clinical features and prognosis of survival are limited. The aim of this study was to analyze the clinical characteristics of patients with mixed-histology lung tumors, and to investigate the association between clinical characteristics, treatment and prognosis. Between January, 1999 and September, 2008, 1,842 patients were diagnosed with primary lung tumors. Of these, 92 presented a mixed histological pattern. Patient clinical characteristics, clinical tumor-node-metastasis (TNM) staging, diagnostic methods, treatment and survival data were collected in order to be retrospectively analyzed. Differences between the frequencies were examined using the χ 2 test and survival rates using the Kaplan-Meier method. The log-rank test was used to compare the survival curves and a probability value <5% (P<0.05) was considered to indicate a statistically significant difference. Of the 92 lung cancer patients (4.99%) with a mixed histological pattern, most were adenosquamous carcinomas. Patients included 75 men and 17 women with a mean age of 56 years. Most cases were in late stage and 64 patients had metastasis. The 1-, 2- and 3-year survival of 52 mixed-histology and 54 non-small cell lung cancer (NSCLC) patients with resection who were successfully followed up, was 63.5, 23.1, 9.6 and 81.5, 48.1, 27.7% (P=0.013). The median survival time of mixed-histology lung cancer patients treated with surgery plus adjuvant therapy and surgery alone was 22 and 12 months, respectively (P=0.002). Mixed-histology lung cancer is characterized by higher malignancy and poor prognosis. However, surgery plus adjuvant therapy is able to prolong survival, compared to surgery alone.
Ren, Ling; Hong, Sung-Hyeok; Chen, Qing-Rong; Briggs, Joseph; Cassavaugh, Jessica; Srinivasan, Satish; Lizardo, Michael M.; Mendoza, Arnulfo; Xia, Ashley Y.; Avadhani, Narayan; Khan, Javed; Khanna, Chand
2013-01-01
Ezrin links the plasma membrane to the actin cytoskeleton where it plays a pivotal role in the metastatic progression of several human cancers (1, 2), however, the precise mechanistic basis for its role remains unknown. Here we define transitions between active (phosphorylated open) and inactive (dephosphorylated closed) forms of Ezrin that occur during metastatic progression in osteosarcoma. In our evaluation of these conformations we expressed C-terminal mutant forms of Ezrin that are open (phosphomimetic T567D) or closed (phosphodeficient T567A) and compared their biological characteristics to full length wild-type Ezrin in osteosarcoma cells. Unexpectedly, cells expressing open, active Ezrin could form neither primary orthotopic tumors nor lung metastases. In contrast, cells expressing closed, inactive Ezrin were also deficient in metastasis but were unaffected in their capacity for primary tumor growth. By imaging single metastatic cells in the lung, we found that cells expressing either open or closed Ezrin displayed increased levels of apoptosis early after their arrival in the lung. Gene expression analysis suggested dysregulation of genes that are functionally linked to carbohydrate and amino acid metabolism. In particular, cells expressing closed, inactive Ezrin exhibited reduced lactate production and basal or ATP-dependent oxygen consumption. Collectively, our results suggest that dynamic regulation of Ezrin phosphorylation at amino acid T567 that controls structural transitions of this protein plays a pivotal role in tumor progression and metastasis, possibly in part by altering cellular metabolism. PMID:22147261
Lee, Janie M.; McMahon, Pamela M.; Lowry, Kathryn P.; Omer, Zehra B.; Eisenberg, Jonathan D.; Pandharipande, Pari V.; Gazelle, G. Scott
2012-01-01
Purpose: To evaluate the effect of incorporating radiation risk into microsimulation (first-order Monte Carlo) models for breast and lung cancer screening to illustrate effects of including radiation risk on patient outcome projections. Materials and Methods: All data used in this study were derived from publicly available or deidentified human subject data. Institutional review board approval was not required. The challenges of incorporating radiation risk into simulation models are illustrated with two cancer screening models (Breast Cancer Model and Lung Cancer Policy Model) adapted to include radiation exposure effects from mammography and chest computed tomography (CT), respectively. The primary outcome projected by the breast model was life expectancy (LE) for BRCA1 mutation carriers. Digital mammographic screening beginning at ages 25, 30, 35, and 40 years was evaluated in the context of screenings with false-positive results and radiation exposure effects. The primary outcome of the lung model was lung cancer–specific mortality reduction due to annual screening, comparing two diagnostic CT protocols for lung nodule evaluation. The Metropolis-Hastings algorithm was used to estimate the mean values of the results with 95% uncertainty intervals (UIs). Results: Without radiation exposure effects, the breast model indicated that annual digital mammography starting at age 25 years maximized LE (72.03 years; 95% UI: 72.01 years, 72.05 years) and had the highest number of screenings with false-positive results (2.0 per woman). When radiation effects were included, annual digital mammography beginning at age 30 years maximized LE (71.90 years; 95% UI: 71.87 years, 71.94 years) with a lower number of screenings with false-positive results (1.4 per woman). For annual chest CT screening of 50-year-old females with no follow-up for nodules smaller than 4 mm in diameter, the lung model predicted lung cancer–specific mortality reduction of 21.50% (95% UI: 20.90%, 22.10%) without radiation risk and 17.75% (95% UI: 16.97%, 18.41%) with radiation risk. Conclusion: Because including radiation exposure risk can influence long-term projections from simulation models, it is important to include these risks when conducting modeling-based assessments of diagnostic imaging. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110352/-/DC1 PMID:22357897
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Chaudhri, Virendra K.; Salzler, Gregory G.; Dick, Salihah A.; Buckman, Melanie S.; Sordella, Raffaella; Karoly, Edward D.; Mohney, Robert; Stiles, Brendon M.; Elemento, Olivier; Altorki, Nasser K.; McGraw, Timothy E.
2013-01-01
SUMMARY Cancer cells undergo a metabolic reprogramming but little is known about metabolic alterations of other cells within tumors. We use mass spectrometry-based profiling and a metabolic pathway-based systems analysis to compare 21 primary human lung tumor cancer-associated fibroblast lines (CAFs) to “normal” fibroblast lines (NFs) generated from adjacent non-neoplastic lung tissue. CAFs are pro-tumorigenic, although the mechanisms by which CAFs support tumors have not been elucidated. We have identified several pathways whose metabolite abundance globally distinguished CAFs from NFs, suggesting that metabolic alterations are not limited to cancer cells. In addition, we found metabolic differences between CAFs from high and low glycolytic tumors that might reflect distinct roles of CAFs related to the tumor’s glycolytic capacity. One such change was an increase of dipeptides in CAFs. Dipeptides primarily arise from the breakdown of proteins. We found in CAFs an increase in basal macroautophagy which likely accounts for the increase in dipeptides. Furthermore, we demonstrate a difference between CAFs and NFs in the induction of autophagy promoted by reduced glucose. In sum, our data suggest increased autophagy may account for metabolic differences between CAFs and NFs and may play additional as yet undetermined roles in lung cancer. PMID:23475953
Loss of Bad expression confers poor prognosis in non-small cell lung cancer.
Huang, Yi; Liu, Dan; Chen, Bojiang; Zeng, Jing; Wang, Lei; Zhang, Shangfu; Mo, Xianming; Li, Weimin
2012-09-01
Proapoptotic BH-3-only protein Bad (Bcl-Xl/Bcl-2-associated death promoter homolog, Bad) initiates apoptosis in human cells, and contributes to tumorigenesis and chemotherapy resistant in malignancies. This study explored association between the Bad expression level and prognosis in patients with non-small cell lung cancer (NSCLC). In our study, a cohort of 88 resected primary NSCLC cases were collected and analyzed. Bad expression level was determined via immunohistochemical staining assay. The prognostic significances of Bad expression were evaluated with univariate and multivariate survival analysis. The results showed that compared with normal lung tissues, Bad expression level significantly decreased in NSCLC (P < 0.05). Bad expression was associated with adjuvant therapy status. Loss of Bad independently predicted poor prognosis in whole NSCLC cohort and early stage subjects (T1 + T2 and N0 + N1) (all P < 0.05). Overall survival time was also drastically shortened for Bad negative phenotype in NSCLC patients with smoking history, especially lung squamous cell carcinoma (all P < 0.05). In conclusion, this study provided clinical evidence that loss of Bad is an independent and powerful predictor of adverse prognosis in NSCLC. Bad protein could be a new biomarker for selecting individual therapy strategies and predicting therapeutic response in subjects with NSCLC.
Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Al-Hadi, Ahmed M; Juhaimi, Fahad Al; Mahmoud, Mohamed H; Alshatwi, Ali A
2015-01-01
Food grade TiO2 (E171) is a synthetic additive, and widely used as a coloring agent in many foods, pharmaceutical and personal care products. A few reports have highlighted that insoluble particulates (less than 200nm) of food grade TiO2 are found in many foods and confectionary products. However, information regarding the physico-chemical properties (i.e., size and shape)-based food grade TiO2 nanotoxicity related human health issues are limited. The main goal of this study is to examine the presence of nano-sized particulates and its structural characteristics of food grade- TiO2 materials and to assess the acute cellular uptake and metabolic stress induced by these particulates in human lung fibroblast (WI-38) cells. The results of transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction studies indicated that about food grade TiO2 sample contains spherical shaped particulate forms in the nano-scale range, <100nm. The intracellular oxidative stress in human lung fibroblast cells (WI-38) was assessed through studies investigating the cellular uptake of the particles, changes in nuclear and cytoplasmic morphology, intracellular ROS, mitochondrial trans-membrane potential, the cell cycle and the expression of genes linked to metabolic stress markers. Altogether our data clearly indicate that primary metabolic stress indicators such as changes in the intracellular ROS, the dose-dependent loss of the mitochondrial membrane potential, alterations in cell cycle progression (G2/M>S>G0/G1) and changes in the TNF and CYP1A gene expression pattern are linked to cellular stress. Thus, food grade TiO2 as nano-scaled contaminants could not only be potential human health risk factors, suggesting that safety considerations with special respect to a few crucial factors such as size, and shape should be considered and regulated by food regulators. Copyright © 2014 Elsevier B.V. All rights reserved.
Morphometric and histological analysis of the lungs of Syrian golden hamsters.
Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B
1978-01-01
Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957
Soluble Human Leukocyte Antigen-G in the Bronchoalveolar Lavage of Lung Cancer Patients.
Montilla, Dayana; Pérez, Mario; Borges, Lérida; Bianchi, Guillermo; Cova, José-Angel
2016-08-01
The main function of the HLA-G molecule in its membrane-bound and soluble forms is to inhibit the immune response by acting on CD4+ T cells, cytotoxic T cells, NK cells and dendritic cells. Lung cancer is a leading cause of death worldwide, and annual incidence is high in both women and men. Some studies have reported an increase of HLA-G serum levels in lung cancer, probably generated by tumor cells escaping the antitumor immune response. In this study the concentration of soluble HLA-G in bronchoalveolar lavage (BAL) in patients with primary and metastatic lung cancer was measured to determine its relation with tumor histological type and overall patient status according to the Karnofsky scale. Thirty-one lung cancer patients were included. A tumor biopsy was obtained by bronchoscopy and the tumor type was determined by hematoxylin and eosin staining. BAL samples were obtained to measure soluble HLA-G concentrations in an ELISA sandwich assay. The average value of soluble HLA-G was 49.04ng/mL. No correlation between soluble HLA-G levels and age, gender or smoking was observed. A highly significant difference was observed in the levels of soluble HLA-G in BAL from patients with different histological types of lung cancer, especially in metastatic tumors. The Karnofsky index showed a significant and inverse correlation with soluble HLA-G levels in BAL. Soluble HLA-G protein is significantly associated with metastatic tumors and patients with lower Karnofsky index and may be useful as a prognostic marker in lung cancer. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Zhu, Haiyan; Lu, Xiaoxiao; Ling, Lijun; Li, Hong; Ou, Yingye; Shi, Xunlong; Lu, Yan; Zhang, Yunyi; Chen, Daofeng
2018-05-23
Hottuynia cordata is an important traditional Chinese medicine for the treatment of respiratory diseases including bacterial and viral infections. Polysaccharides isolated from Houttuynia cordata (HCP), as its main ingredients, have been demonstrated to ameliorate the LPS-induced acute lung injury in mice. The study aimed to determine the protective effects of HCP on multiple organ injury in influenza A virus (IAV) H1N1 infected mice and its primary mechanisms in anti-inflammation and immune regulation. Mice were inoculated with IAV H1N1 and then treated with 20 or 40 mg/kg/d of HCP for survival test and acute lung-gut injury test. The treatment with HCP resulted in an increase in the survival rate of H1N1 infected mice and the protection from lung and intestine injury, accompanied with the reduced virus replication. HCP markedly decreased the concentration of pulmonary proinflammatory cytokines/chemokines and the number of intestinal goblet cells, and strengthened the intestinal physical and immune barrier, according to the increase of sIgA and tight junction protein (ZO-1) in intestine. At the same time, the inhibition of inflammation in lung and gut was related to the suppressing of the expression of TLR4 and p-NFκB p65 in lung. These results indicated that HCP ameliorated lung and intestine injury induced by IAV attack. The mechanisms were associated with inhibition of inflammation, protection of intestinal barrier and regulation of mucosal immunity, which may be related to the regulation of gut-lung axis. As an alternative medicine, HCP may have clinical potential to treat IAV infection in human beings. Copyright © 2018 Elsevier B.V. All rights reserved.
IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity.
Bassères, Daniela S; Ebbs, Aaron; Cogswell, Patricia C; Baldwin, Albert S
2014-04-01
Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.
Xie, Hong; Holmes, Amie L.; Wise, Sandra S.; Young, Jamie L.; Wise, James T. F.; Wise, John Pierce
2015-01-01
Hexavalent chromium Cr(VI) is a known human lung carcinogen, with solubility playing an important role in its carcinogenic potency. Dermal exposure to Cr(VI) is common and has been associated with skin damage; however, no link between chromate exposure and skin cancer has been found. In this study, we compared the cytotoxic and clastogenic effects of Cr(VI) and its impacts on cell cycle progression in human lung and skin fibroblasts. We found human skin cells arrested earlier in their cell cycle and exhibit more cytotoxicity than human lung cells, despite taking up similar amounts of Cr. These outcomes are consistent with a hypothesis that different cellular and molecular responses underlie the differences in carcinogenic outcome in these two tissues. PMID:25805272
Büchner, Nicole; Ale-Agha, Niloofar; Jakob, Sascha; Sydlik, Ulrich; Kunze, Kerstin; Unfried, Klaus; Altschmied, Joachim; Haendeler, Judith
2013-01-01
Diet and pollution are environmental factors known to compromise "healthy aging" of the cardiovascular and respiratory systems. The molecular consequences of this permanent burden in these cells are still unknown. Therefore, this study investigates the impact of unhealthy diet on aging-related signaling pathways of human, primary cardiovascular cells and of airborne particles on lung epithelial and human endothelial cells. Nutrition health reports have shown that the diet in industrialized countries contains more than 100mg/dl low density lipoprotein (LDL) and a high fraction of added sugars, especially fructose. Several studies demonstrated that ultrafine particles can enter the circulation and thus may interact with endothelial cells directly. Both, dietary compounds and pollution derived particles, have been shown to increase the risk for cardiovascular diseases. To simulate an unhealthy diet, we supplemented cell culture media of human primary endothelial cells, smooth muscle cells and cardiomyocytes with LDL and replaced 1/3 of glucose with fructose. We observed hypertrophy in cardiomyocytes, enhanced proliferation in smooth muscle cells and increased senescence, loss of endothelial nitric oxide synthase and increased nuclear FoxO3A in endothelial cells. With respect to pollution we have used ultrafine carbon black particles (ufCB), one of the major constituents of industrial and exhaust emissions, in concentrations our lungs and vessels are constantly exposed to. These concentrations of ufCB increased reactive oxygen species in lung epithelial and vascular endothelial cells and reduced the S-NO content, a marker for NO-bioavailability, in endothelial cells. NO increases activation of Telomerase Reverse Transcriptase (TERT), an enzyme essential for telomere maintenance. TERT is required for proper endothelial cell function and is inactivated by Src kinase under conditions of oxidative stress. ufCB significantly increased Src kinase activation and reduced Telomerase activity in endothelial and lung epithelial cells. As a consequence, ufCB increased senescence of endothelial cells. To investigate whether ufCB show also effects in vivo, we instilled ufCB in concentrations not inducing inflammation into mice. Indeed, eNOS expression was reduced in the abdominal aorta of animals treated with ufCB. Thus, a combination of fructose and LDL in the diet and ufCB, as a major constituent of air pollution, seem to accelerate respiratory and cardiovascular cellular changes, which may compromise "healthy aging" and can lead to cardiovascular and pulmonary diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Predictive Outcomes for HER2-enriched Cancer Using Growth and Metastasis Signatures Driven By SPARC.
Güttlein, Leandro N; Benedetti, Lorena G; Fresno, Cristóbal; Spallanzani, Raúl G; Mansilla, Sabrina F; Rotondaro, Cecilia; Raffo Iraolagoitia, Ximena L; Salvatierra, Edgardo; Bravo, Alicia I; Fernández, Elmer A; Gottifredi, Vanesa; Zwirner, Norberto W; Llera, Andrea S; Podhajcer, Osvaldo L
2017-03-01
Understanding the mechanism of metastatic dissemination is crucial for the rational design of novel therapeutics. The secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein which has been extensively associated with human breast cancer aggressiveness although the underlying mechanisms are still unclear. Here, shRNA-mediated SPARC knockdown greatly reduced primary tumor growth and completely abolished lung colonization of murine 4T1 and LM3 breast malignant cells implanted in syngeneic BALB/c mice. A comprehensive study including global transcriptomic analysis followed by biological validations confirmed that SPARC induces primary tumor growth by enhancing cell cycle and by promoting a COX-2-mediated expansion of myeloid-derived suppressor cells (MDSC). The role of SPARC in metastasis involved a COX-2-independent enhancement of cell disengagement from the primary tumor and adherence to the lungs that fostered metastasis implantation. Interestingly, SPARC-driven gene expression signatures obtained from these murine models predicted the clinical outcome of patients with HER2-enriched breast cancer subtypes. In total, the results reveal that SPARC and its downstream effectors are attractive targets for antimetastatic therapies in breast cancer. Implications: These findings shed light on the prometastatic role of SPARC, a key protein expressed by breast cancer cells and surrounding stroma, with important consequences for disease outcome. Mol Cancer Res; 15(3); 304-16. ©2016 AACR . ©2016 American Association for Cancer Research.
Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S.
Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Bothmore » FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.« less
Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L
2018-05-10
Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B
2015-11-01
Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.
Taveira-DaSilva, Angelo M.; Hathaway, Olanda; Stylianou, Mario; Moss, Joel
2011-01-01
Background Lymphangioleiomyomatosis (LAM) is a disorder that affects women and is characterized by cystic lung destruction, chylous effusions, lymphangioleiomyomas, and angiomyolipomas. It is caused by proliferation of abnormal smooth muscle–like cells. Sirolimus is a mammalian target of rapamycin inhibitor that has been reported to decrease the size of neoplastic growths in animal models of tuberous sclerosis complex and to reduce the size of angiomyolipomas and stabilize lung function in humans. Objective To assess whether sirolimus therapy is associated with improvement in lung function and a decrease in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. Design Observational study. Setting The National Institutes of Health Clinical Center. Patients 19 patients with rapidly progressing LAM or chylous effusions. Intervention Treatment with sirolimus. Measurements Lung function and the size of chylous effusions and lymphangioleiomyomas before and during sirolimus therapy. Results Over a mean of 2.5 years before beginning sirolimus therapy, the mean (±SE) FEV1 decreased by 2.8% ± 0.8% predicted and diffusing capacity of the lung for carbon monoxide (DLCO) decreased by 4.8% ± 0.9% predicted per year. In contrast, over a mean of 2.6 years of sirolimus therapy, the mean (± SE) FEV1 increased by 1.8% ± 0.5% predicted and DLCO increased by 0.8% ± 0.5% predicted per year (P < 0.001). After beginning sirolimus therapy, 12 patients with chylous effusions and 11 patients with lymphangioleiomyomas experienced almost complete resolution of these conditions. In 2 of the 12 patients, sirolimus therapy enabled discontinuation of pleural fluid drainage. Limitations This was an observational study. The resolution of effusions may have affected improvements in lung function. Conclusion Sirolimus therapy is associated with improvement or stabilization of lung function and reduction in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. Primary Funding Source Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health. PMID:21690594
Inflammatory mediator mRNA expression by adenovirus E1A-transfected bronchial epithelial cells.
Higashimoto, Yuji; Elliott, W Mark; Behzad, Ali R; Sedgwick, Edward G; Takei, Tatsuo; Hogg, James C; Hayashi, Shizu
2002-07-15
Lung tissue from patients with emphysema and airway obstruction carries excess adenoviral E1A DNA that is expressed as protein in airway surface epithelium and is associated with an increased inflammatory response. To examine mechanisms by which latent adenoviral infection might amplify the inflammatory process, we transfected primary human bronchial epithelial (HBE) cells from three separate patients undergoing lung resection so that they stably expressed adenovirus E1A. Lipopolysaccharide stimulation of the E1A-transfected HBE cells increased intercellular adhesion molecule-1 and interleukin-8 mRNA and protein expression compared with control cells from the same patient. It also induced greater intercellular adhesion molecule-1 promoter activity and greater nuclear factor-kappa B binding activity of nuclear extracts in E1A transfectants than controls. E1A-positive transfectants constitutively expressed transforming growth factor-beta 1 mRNA and protein, whereas this expression was either very low or not detected in control cells. We conclude that adenoviral E1A transfection transforms primary HBE cells and upregulates their production of mediators that are clinically relevant to the pathogenesis of chronic obstructive pulmonary disease.
Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; He, Yao; Chen, Shanshan
Lung cancer has been a hot area of research because of its high incidence and mortality. In this study, WWP2, an E3 ubiquitin ligase, is proposed to be an oncoprotein contributing to lung tumorigenesis. We attempted to determine if WWP2 gene expression is correlated with the development of human lung adenocarcinoma. Real-time PCR and western blotting were used to detect the expression of WWP2 in 65 paired lung adenocarcinoma and adjacent normal lung tissues. We found that WWP2 expression was elevated in lung adenocarcinoma tissues and was correlated with the tumor differentiation stage, TNM stage and presence of lymph nodemore » metastasis. We performed CCK-8 and colony formation assays and found that down-regulation of WWP2 inhibited proliferation in A549 and SPC-A-1 cells. A wound healing assay and trans-well invasion assays showed that down-regulation of WWP2 inhibited the migration and invasion of lung adenocarcinoma cells. It could be predicted from these data that elevated expression of WWP2 may play a role in facilitating the development of lung adenocarcinoma. - Highlights: • Expression of WWP2 is firstly reported in human lung adenocarcinoma. • Function of WWP2 is firstly explored in lung adenocarcinoma cells.« less
Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.
Cao, Huibi; Ouyang, Hong; Grasemann, Hartmut; Bartlett, Claire; Du, Kai; Duan, Rongqi; Shi, Fushan; Estrada, Marvin; Seigel, Kyle E; Coates, Allan L; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Moraes, Theo J; Hu, Jim
2018-06-01
A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells, of which basal cells are the major type in human airways. In this study, helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery, and direct bronchoscopic instillation, respectively. Vector transduction was assessed by immunostaining of lung tissue sections, which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition, efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore, we successfully delivered the human CFTR gene to airway basal cells from CF patients, and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.
Cardona, P J; Llatjós, R; Gordillo, S; Díaz, J; Viñado, B; Ariza, A; Ausina, V
2001-01-01
It is well known that one of the differences between murine and human tuberculosis is the lack of intragranulomatous necrosis in the former. The aim of this study was to create a feasible and reproducible model of an experimental model of murine tuberculosis in which this necrosis should be present. Considering the Shwartzman reaction as a possible explanation for intragranulomatous necrosis in human tuberculosis, C57Bl/6 mice, infected aerogenically with a virulent strain of Mycobacterium tuberculosis, were intranasally inoculated with lipopolysaccharide (LPS) on day 19 postinfection (p.i.). Twenty-four hours later, neutrophils infiltrated the lung parenchyma in a significant level, and 10 days after necrosis could be detected in the centres of primary granulomas, that showed scanty macrophages and large amounts of collagen on an eosinophilic background. On the other hand, a significant decrease in the concentration of colony forming units (CFU) could be appreciated 24 h after the LPS inoculation. Afterwards, nonbronchogenic spreading of granulomas increased and higher levels of interferon (IFN)-gamma mRNA were detected. These results lend support to the Shwartzman reaction as the origin of the intragranulomatous necrosis in the M. tuberculosis infection, and provides a useful tool to improve experimental murine models in tuberculosis.
HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways.
Wang, Gang; Jiao, Hao; Zheng, Jun-Nian; Sun, Xia
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease with unknown etiology. Recent studies have indicated that heat-shock protein 27 (HSP27) contributes to the pathogenesis of IPF through the regulation of epithelial-mesenchymal transition (EMT). However, the expression and role of HSP27 in fibroblasts during pulmonary fibrogenesis has not been investigated to date, at least to the best of our knowledge. In this study, we examined the expression of HSP27 in fibrotic lung tissue and fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor-β (TGF-β). The results revealed that the expression of HSP27 was significantly increased in fibrotic lung tissue and fibroblasts from BLM-challenged mice. In vitro, TGF-β stimulated HSP27 expression in and the differentiation of human lung fibroblasts. The knockdown of Smad3 expression or nuclear factor-κB p65 subunit attenuated the TGF-β-induced increase in HSP27 expression and the differentiation of human lung fibroblasts. In addition, the knockdown of HSP27 expression attenuated the TGF-β-induced activation of ERK and Smad3, and inhibited the differentiation of human lung fibroblasts. On the whole, the findings of our study demonstrate that HSP27 expression is upregulated in lung fibroblasts during pulmonary fibrosis, and subsequently, HSP27 modulates lung fibroblast differentiation through the Smad3 and ERK pathways.
Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.
Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A
2017-01-01
Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes.
Schmidt, Hanna; Michel, Christiane; Braubach, Peter; Fauler, Michael; Neubauer, Daniel; Thompson, Kristin E; Frick, Manfred; Mizaikoff, Boris; Dietl, Paul; Wittekindt, Oliver H
2017-03-01
The apical surface liquid (ASL) layer covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na + channels is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial osmotic water permeability (P osm ), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long-term AVE. NCI-H441 cells and primary human tracheal epithelial cells, both cultivated in air-liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution to the apical surface of differentiated lung epithelia, and time course of ASL volume restoration was assessed by the deuterium oxide dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state immediately after AVE, which coincided with proteolytic ion transport activation within 10-15 minutes after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state, which did not correlate with ion transport activation. Instead, high resorptive state onset coincided with an increase in P osm , which depended on aquaporin up-regulation. In summary, our data demonstrate that, aside from ion transport activation, modulation of P osm is a major mechanism to compensate for long-term AVE in lung epithelia.
Gastrointestinal metastasis from primary lung cancer. Case series and systematic literature review.
Balla, Andrea; Subiela, José D; Bollo, Jesús; Martínez, Carmen; Rodriguez Luppi, Carlos; Hernández, Pilar; Pascual-González, Yuliana; Quaresima, Silvia; Targarona, Eduard M
2018-04-01
Aim of the present study is to report clinical characteristics and outcomes of patients treated in authors' hospital for GI metastasis from primary lung cancer, and to report and analyse the same data concerning patients retrieved from a systematic literature review. We performed a retrospective analysis of prospectively collected data, and a systematic review using the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. Ninety-one patients were included, 5 patients from the authors' hospital and 86 through PubMed database using the keywords "intestinal metastasis" AND "lung cancer". The median time between primary lung cancer diagnosis and GI metastasis diagnosis was 2 months and the median overall survival was 4 months. This group of patients present a poor prognosis and the gold standard treatment is not defined. None of the reported treatments had a significant impact on survival. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Lung cancer diagnosis on ovary mass: a case report
2013-01-01
Metastatic neoplasms to the ovary often cause diagnostic problems, in particular those large ovarian masses mimicking primary tumors. Most of these tumors arise from digestive system or breast, while 37-year-old woman diagnosed as right adnexal complex mass, with a subpleural nodule in the apical part of the left lower lobe, at preoperative chest computed tomography scan. The patient underwent total abdominal hysterectomy with right salpingo-oophorectomy (ovarian mass 220 × 200 mm), total omentectomy, left ovarian biopsy, peritoneal random biopsies, and peritoneal washings for cytology. Pathologic and immunohistochemical examination of ovarian specimen suggested morphology and expression of metastatic lung adenocarcinoma with an intense positivity for Thyroid Transcriptional Factor-1 (TTF-1) and Cytokeratin 7 (CK7) staining. Fine needle biopsy of the lung nodule found epithelioid like malignant cells, confirming the diagnosis of an ovarian metastasis from a primary lung cancer. This report focused on the clinical and pathologic diagnostic challenge of distinguishing secondary from primary ovarian neoplasms. Issues on useful immunohistochemical stains are also discussed. PMID:23663245
Binocular stereo-navigation for three-dimensional thoracoscopic lung resection.
Kanzaki, Masato; Isaka, Tamami; Kikkawa, Takuma; Sakamoto, Kei; Yoshiya, Takehito; Mitsuboshi, Shota; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa
2015-05-08
This study investigated the efficacy of binocular stereo-navigation during three-dimensional (3-D) thoracoscopic sublobar resection (TSLR). From July 2001, the authors' department began to use a virtual 3-D pulmonary model on a personal computer (PC) for preoperative simulation before thoracoscopic lung resection and for intraoperative navigation during operation. From 120 of 1-mm thin-sliced high-resolution computed tomography (HRCT)-scan images of tumor and hilum, homemade software CTTRY allowed sugeons to mark pulmonary arteries, veins, bronchi, and tumor on the HRCT images manually. The location and thickness of pulmonary vessels and bronchi were rendered as diverse size cylinders. With the resulting numerical data, a 3-D image was reconstructed by Metasequoia shareware. Subsequently, the data of reconstructed 3-D images were converted to Autodesk data, which appeared on a stereoscopic-vision display. Surgeons wearing 3-D polarized glasses performed 3-D TSLR. The patients consisted of 5 men and 5 women, ranging in age from 65 to 84 years. The clinical diagnoses were a primary lung cancer in 6 cases and a solitary metastatic lung tumor in 4 cases. Eight single segmentectomies, one bi-segmentectomy, and one bi-subsegmentectomy were performed. Hilar lymphadenectomy with mediastinal lymph node sampling has been performed in 6 primary lung cancers, but four patients with metastatic lung tumors were performed without lymphadenectomy. The operation time and estimated blood loss ranged from 125 to 333 min and from 5 to 187 g, respectively. There were no intraoperative complications and no conversion to open thoracotomy and lobectomy. Postoperative courses of eight patients were uneventful, and another two patients had a prolonged lung air leak. The drainage duration and hospital stay ranged from 2 to 13 days and from 8 to 19 days, respectively. The tumor histology of primary lung cancer showed 5 adenocarcinoma and 1 squamous cell carcinoma. All primary lung cancers were at stage IA. The organs having metastatic pulmonary tumors were kidney, bladder, breast, and rectum. No patients had macroscopically positive surgical margins. Binocular stereo-navigation was able to identify the bronchovascular structures accurately and suitable to perform TSLR with a sufficient margin for small pulmonary tumors.
Li, Encheng; Xu, Zhiyun; Liu, Fen; Wang, Huiling; Wen, Jiabin; Shao, Shujuan; Zhang, Lichuan; Wang, Lei; Liu, Chong; Lu, Jianxin; Wang, Wenxin; Gao, Zhancheng; Wang, Qi
2014-08-01
Heavy cigarette smoking-related chronic obstructive pulmonary disease is an independent risk factor for lung squamous carcinoma. However, the mechanisms underlying the malignant transformation of bronchial epithelial cells are unclear. In our study, human tumor-adjacent bronchial epithelial cells were obtained from 10 cases with smoking-related chronic obstructive pulmonary disease and lung squamous carcinoma and cultured in an established microfluidic chip for continual exposure to cigarette smoke extracts (CSE) to investigate the potential tumor-like transformation and mechanisms. The integrated microfluidic chip included upstream concentration gradient generator and downstream cell culture chambers supplied by flowing medium containing different concentrations of CSE. Our results showed that continual exposure to low doses of CSE promoted cell proliferation whereas to high doses of CSE triggered cell apoptosis. Continual exposure to CSE promoted reactive oxygen species production in human epithelial cells in a dose-dependent manner. More importantly, continual exposure to low dose of CSE promoted the epithelial-to-mesenchymal transition process and anchorage-independent growth, and increased chromosome instability in bronchial epithelial cells, accompanied by activating the GRP78, NF-κB, and PI3K pathways. The established microfluidic chip is suitable for primary culture of human tumor-adjacent bronchial epithelial cells to investigate the malignant transformation. Continual exposure to low doses of CSE promoted tumor-like transformation of human nontumor bronchial epithelial cells by inducing reactive oxygen species production and activating the relevant signaling.
Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.
Judge, Eoin P; Hughes, J M Lynne; Egan, Jim J; Maguire, Michael; Molloy, Emer L; O'Dea, Shirley
2014-09-01
The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.
Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge
2006-04-01
Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.
Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel
2015-01-01
ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550
Wolf in Sheep's Clothing: Primary Lung Cancer Mimicking Benign Entities.
Snoeckx, Annemie; Dendooven, Amélie; Carp, Laurens; Desbuquoit, Damien; Spinhoven, Maarten J; Lauwers, Patrick; Van Schil, Paul E; van Meerbeeck, Jan P; Parizel, Paul M
2017-10-01
Lung cancer is the most common cancer worldwide. On imaging, it typically presents as mass or nodule. Recognition of these typical cases is often straightforward, whereas diagnosis of uncommon manifestations of primary lung cancer is far more challenging. Lung cancer can mimic a variety of benign entities, including pneumonia, lung abscess, postinfectious scarring, atelectasis, a mediastinal mass, emphysema and granulomatous diseases. Correlation with previous history, clinical and biochemical parameters is necessary in the assessment of these cases, but often aspecific and inconclusive. Whereas 18 F-fluorodeoxyglucose ( 18 F-FDG) Positron Emission Tomography is the cornerstone in staging of lung cancer, its role in diagnosis of these uncommon manifestations is less straightforward since benign entities can present with increased 18 F-FDG-uptake and, on the other hand, a number of these uncommon lung cancer manifestations do not exhibit increased uptake. Chest Computed Tomography (CT) is the imaging modality of choice for both lesion detection and characterization. In this pictorial review we present the wide imaging spectrum of CT-findings as well as radiologic-pathologic correlation of these uncommon lung cancer manifestations. Knowledge of the many faces of lung cancer is crucial for early diagnosis and subsequent treatment. A multidisciplinary approach in these cases is mandatory. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yongkui; Le, Hanbo; Chen, Zhijun; Wang, Chaoye; Zhang, Binjie
2006-01-01
At present, it has been known that the bronchogenic artery participates in the blood supply of primary bronchogenic carcinoma, but there is controversy about the blood supply from pulmonary artery in primary bronchogenic carcinoma. The aim of this study is to assess the relationship between the blood supply from pulmonary artery and pathological characteristis of patients with primary bronchogenic carcinoma. The pulmonary arteries in 43 surgical samples of bronchogenic carcinoma were marked, then the iopromide was used to selective pulmonary arteriography in digital subtraction angiography (DSA). The relationship between tumor with blood supply from pulmonary artery and the pathologic characteristics was observed. There were 34 samples with blood supply from pulmonary artery ( 79.07%) , and 9 samples without blood supply from pulmonary artery (20.93%). The development rate of peripheral lung cancer (100.00%) was significantly higher than that of central lung cancer (64.00%) (P < 0.01) . The development rate of squamous cell carcinoma (91.30%) was remarkably higher than that of adenocarcinoma (61.11%) (P < 0.05). The development rate of poorly differentiated lung cancer (95.00%) was remarkably higher than that of well and moderately differentiated lung cancer (65.22%) (P < 0.05). There was a positive relationship between the tumor size and the development rate (P < 0.05). In primary bronchogenic carcinoma, the pulmonary artery blood supply exists in most of tumors. There is relationship between the blood supply from pulmonary artery and general type, histopathology, cell differentiation and tumor size of lung cancer. The blood supply from pulmonary artery doesn't relate to tumor stage.
Chang, Yih-Leong; Lee, Yung-Chie; Liao, Wei-Yu; Wu, Chen-Tu
2004-05-01
Thyroid transcription factor-1 (TTF-1) is a tissue-specific transcription factor expressed in the thyroid and lung. The clinical utility and limitation of TTF-1 in primary or metastatic carcinomas of the lung have not been previously studied in detail. We examined TTF-1 expression in 510 primary lung and 107 metastatic neoplasms. TTF-1 was detectable in 4/99 (4%) squamous cell carcinomas, 169/176 (96%) solitary adenocarcinomas, 34/34 (100%) multifocal adenocarcinomas, 1/1 (100%) signet ring cell carcinoma, 16/20 (80%) mucinous adenocarcinomas, 23/23 (100%) nonmucinous bronchioloalveolar carcinomas, 19/36 (53%) small cell carcinomas, and 39/44 (89%) sclerosing hemangioma. TTF-1 was absent in all eight carcinoids, three atypical carcinoids, 23 pleomorphic carcinomas, 25 lymphoepithelioma-like carcinomas, the sarcomatous component of one pseudomesotheliomatous carcinoma, and one mesothelioma. In four combined small cell carcinomas and 12 adenosquamous carcinomas, TTF-1 expression was only demonstrated in the adenocarcinoma component. There were 78 TTF-1 non-immunoreactive metastatic cases from 22 livers, 20 colorectums, 10 breasts, six nasopharynx, four larynx, four ovaries, three salivary glands, three esophagus, two adrenal glands, two kidneys, one bile duct, and one endometrium. TTF-1 was also detected in all 10 cervical lymph nodes, seven brain, and 6/7 (86%) bony tissues of 24 patients with metastatic carcinomas of unknown primary site, but it was absent in 125 patients with metastatic carcinomas other than lung origin in cervical lymph nodes, brain, and bony tissues. These results indicate the clinical usefulness and limitation in certain primary and metastatic lung neoplasms.
Reeb, Jeremie; Cypel, Marcelo
2016-03-01
Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tyan, Yu-Chang; Wu, Hsin-Yi; Lai, Wu-Wei; Su, Wu-Chou; Liao, Pao-Chi
2005-01-01
Pleural effusion, an accumulation of pleural fluid, contains proteins originated from plasma filtrate and, especially when tissues are damaged, parenchyma interstitial spaces of lungs and/or other organs. This study details protein profiles in human pleural effusion from 43 lung adenocarcinoma patients by a two-dimensional nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (2D nano-HPLC-ESI-MS/MS) system. The experimental results revealed the identification of 1415 unique proteins from human pleural effusion. Among these 124 proteins identified with higher confidence levels, some proteins have not been reported in plasma and may represent proteins specifically present in pleural effusion. These proteins are valuable for mass identification of differentially expressed proteins involved in proteomics database and screening biomarker to further study in human lung adenocarcinoma. The significance of the use of proteomics analysis of human pleural fluid for the search of new lung cancer marker proteins, and for their simultaneous display and analysis in patients suffering from lung disorders has been examined.
Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A
1992-12-01
The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.
Pai, Rohan V; Jain, Rajesh R; Bannalikar, Anilkumar S; Menon, Mala D
2016-04-01
The lung is the primary entry site and target for Mycobacterium tuberculosis; more than 80% of the cases reported worldwide are of pulmonary tuberculosis. Hence, direct delivery of anti-tubercular drugs to the lung would be beneficial in reducing both, the dose required, as well as the duration of therapy for pulmonary tuberculosis. In the present study, microsphere-based dry powder inhalation systems of the anti-tubercular drugs, rifampicin and rifabutin, were developed and evaluated, with a view to achieve localized and targeted delivery of these drugs to the lung. The drug-loaded chitosan microparticles were prepared by an ionic gelation method, followed by spray-drying to obtain respirable particles. The microparticles were evaluated for particle size and drug release. The drug-loaded microparticles were then adsorbed onto an inhalable lactose carrier and characterized for in vitro lung deposition on an Andersen Cascade Impactor (ACI) followed by in vitro uptake study in U937 human macrophage cell lines. In vivo toxicity of the developed formulations was evaluated using Sprague Dawley rats. Both rifampicin and rifabutin-loaded microparticles had MMAD close to 5 μm and FPF values of 21.46% and 29.97%, respectively. In vitro release study in simulated lung fluid pH 7.4 showed sustained release for 12 hours for rifampicin microparticles and up to 96 hours for rifabutin microparticles, the release being dependent on both swelling of the polymer and solubility of the drugs in the dissolution medium. In vitro uptake studies in U937 human macrophage cell line suggested that microparticles were internalized within the macrophages. In vivo acute toxicity study of the microparticles in Sprague Dawley rats revealed no significant evidence for local adverse effects. Thus, spray-dried microparticles of the anti-tubercular drugs, rifampicin and rifabutin, could prove to be an improved, targeted, and efficient system for treatment of tuberculosis.
Ignjatović, Nenad L; Penov-Gaši, Katarina M; Wu, Victoria M; Ajduković, Jovana J; Kojić, Vesna V; Vasiljević-Radović, Dana; Kuzmanović, Maja; Uskoković, Vuk; Uskoković, Dragan P
2016-12-01
In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1 H NMR and 13 C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d 50 =168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells. Copyright © 2016 Elsevier B.V. All rights reserved.
XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer
Kim, Jimi; McMillan, Elizabeth; Kim, Hyun Seok; Venkateswaran, Niranjan; Makkar, Gurbani; Rodriguez-Canales, Jaime; Villalobos, Pamela; Neggers, Jasper Edgar; Mendiratta, Saurabh; Wei, Shuguang; Landesman, Yosef; Senapedis, William; Baloglu, Erkan; Chow, Chi-Wan B.; Frink, Robin E.; Gao, Boning; Roth, Michael; Minna, John D.; Daelemans, Dirk; Wistuba, Ignacio I.; Posner, Bruce A.; Scaglioni, PierPaolo; White, Michael A.
2016-01-01
The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity1. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation. PMID:27680702
Involvement of MicroRNAs in Lung Cancer Biology and Therapy
Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan
2011-01-01
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030
Heßelbach, Katharina; Kim, Gwang-Jin; Flemming, Stephan; Häupl, Thomas; Bonin, Marc; Dornhof, Regina; Günther, Stefan; Merfort, Irmgard; Humar, Matjaz
2017-09-01
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM 2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM 2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM 2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Heßelbach, Katharina; Kim, Gwang-Jin; Flemming, Stephan; Häupl, Thomas; Bonin, Marc; Dornhof, Regina; Günther, Stefan; Merfort, Irmgard; Humar, Matjaz
2017-01-01
ABSTRACT Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases. PMID:28742980
Kudinov, Alexander E; Deneka, Alexander; Nikonova, Anna S; Beck, Tim N; Ahn, Young-Ho; Liu, Xin; Martinez, Cathleen F; Schultz, Fred A; Reynolds, Samuel; Yang, Dong-Hua; Cai, Kathy Q; Yaghmour, Khaled M; Baker, Karmel A; Egleston, Brian L; Nicolas, Emmanuelle; Chikwem, Adaeze; Andrianov, Gregory; Singh, Shelly; Borghaei, Hossein; Serebriiskii, Ilya G; Gibbons, Don L; Kurie, Jonathan M; Golemis, Erica A; Boumber, Yanis
2016-06-21
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
Rodrigues, A; Gualdi, L P; de Souza, R G; Vargas, M H M; Nuñez, N K; da Cunha, A A; Jones, M H; Pinto, L A; Stein, R T; Pitrez, P M
OM-85 is an immunostimulant bacterial lysate, which has been proven effective in reducing the number of lower airways infections. We investigated the efficacy of the bacterial lysate OM-85 in the primary prevention of a murine model of asthma. In the first phase of our study the animals received doses of 0.5μg, 5μg and 50μg of OM-85 through gavage for five days (days -10 to -6 of the protocol), 10 days prior to starting the sensitisation with ovalbumin (OVA), in order to evaluate the results of dose-response protocols. A single dose (5μg) was then chosen in order to verify in detail the effect of OM-85 on the pulmonary allergic response. Total/differential cells count and cytokine levels (IL-4, IL-5, IL-13 and IFN-γ) from bronchoalveolar lavage fluid (BALF), OVA-specific IgE levels from serum, lung function and lung histopathological analysis were evaluated. OM-85 did not reduce pulmonary eosinophilic response, regardless of the dose used. In the phase protocol using 5μg/animal of OM-85, no difference was shown among the groups studied, including total cell and eosinophil counts in BALF, serum OVA-specific IgE, lung histopathologic findings and lung resistance. However, OM-85 decreased IL-5 and IL-13 levels in BALF. OM-85, administered in early life in mice in human-equivalent doses, does not inhibit the development of allergic pulmonary response in mice. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
Dynamics of coherent flow structures of a pulsating unsteady glottal jet in human phonation.
NASA Astrophysics Data System (ADS)
Neubauer, Juergen; Miraghaie, Reza; Berry, David
2004-11-01
The primary sound source for human voice is oscillation of the vocal folds in the larynx. Phonation is the self-sustained oscillation of the viscoelastic vocal fold tissue driven by the air flow from the lung. It is due to the flow-induced Hopf instability of the biomechanical-aerodynamic system of vocal folds coupled to the aeroacoustic driving air flow. The aim of this study is to provide insight to the aero-acoustic part of the primary sound source of human voice. A physical rubber model of vocal folds with air flow conditions typical for human phonation was used. This model exhibits self-sustained oscillations similar to those in human phonation. The oscillating physical model can be regarded as a dynamic slit-like orifice that discharges a pulsating unsteady jet. A left-right flapping of the glottal jet axis was detected using hotwire anemometer measurements of the unsteady glottal jet. Flow visualization experiments revealed the detachment of the glottal jet from the physical model folds during the accelerating and decelerating phase of the jet pulsation. Roll-up of large-scale vortex rings as well as secondary vortex shedding in the form of Von Karman street due to shear layer instability were found downstream of the physical model.
Transpleural ventilation of explanted human lungs
Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D
2007-01-01
Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776
Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung.
Sava, Parid; Ramanathan, Anand; Dobronyi, Amelia; Peng, Xueyan; Sun, Huanxing; Ledesma-Mendoza, Adrian; Herzog, Erica L; Gonzalez, Anjelica L
2017-12-21
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
Desch, A Nicole; Gibbings, Sophie L; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J; Prabagar, Miglena; Atif, Shaikh M; Segura, Elodie; Xavier, Ramnik J; Bratton, Donna L; Janssen, William J; Henson, Peter M; Jakubzick, Claudia V
2016-03-15
The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Accurate segmentation of lung fields on chest radiographs using deep convolutional networks
NASA Astrophysics Data System (ADS)
Arbabshirani, Mohammad R.; Dallal, Ahmed H.; Agarwal, Chirag; Patel, Aalpan; Moore, Gregory
2017-02-01
Accurate segmentation of lung fields on chest radiographs is the primary step for computer-aided detection of various conditions such as lung cancer and tuberculosis. The size, shape and texture of lung fields are key parameters for chest X-ray (CXR) based lung disease diagnosis in which the lung field segmentation is a significant primary step. Although many methods have been proposed for this problem, lung field segmentation remains as a challenge. In recent years, deep learning has shown state of the art performance in many visual tasks such as object detection, image classification and semantic image segmentation. In this study, we propose a deep convolutional neural network (CNN) framework for segmentation of lung fields. The algorithm was developed and tested on 167 clinical posterior-anterior (PA) CXR images collected retrospectively from picture archiving and communication system (PACS) of Geisinger Health System. The proposed multi-scale network is composed of five convolutional and two fully connected layers. The framework achieved IOU (intersection over union) of 0.96 on the testing dataset as compared to manual segmentation. The suggested framework outperforms state of the art registration-based segmentation by a significant margin. To our knowledge, this is the first deep learning based study of lung field segmentation on CXR images developed on a heterogeneous clinical dataset. The results suggest that convolutional neural networks could be employed reliably for lung field segmentation.
Stegemann-Koniszewski, S; Jeron, Andreas; Gereke, Marcus; Geffers, Robert; Kröger, Andrea; Gunzer, Matthias; Bruder, Dunja
2016-05-03
Influenza A virus (IAV) periodically causes substantial morbidity and mortality in the human population. In the lower lung, the primary targets for IAV replication are type II alveolar epithelial cells (AECII), which are increasingly recognized for their immunological potential. So far, little is known about their reaction to IAV and their contribution to respiratory antiviral immunity in vivo Therefore, we characterized the AECII response during early IAV infection by analyzing transcriptional regulation in cells sorted from the lungs of infected mice. We detected rapid and extensive regulation of gene expression in AECII following in vivo IAV infection. The comparison to transcriptional regulation in lung tissue revealed a strong contribution of AECII to the respiratory response. IAV infection triggered the expression of a plethora of antiviral factors and immune mediators in AECII with a high prevalence for interferon-stimulated genes. Functional pathway analyses revealed high activity in pathogen recognition, immune cell recruitment, and antigen presentation. Ultimately, our analyses of transcriptional regulation in AECII and lung tissue as well as interferon I/III levels and cell recruitment indicated AECII to integrate signals provided by direct pathogen recognition and surrounding cells. Ex vivo analysis of AECII proved a powerful tool to increase our understanding of their role in respiratory immune responses, and our results clearly show that AECII need to be considered a part of the surveillance and effector system of the lower respiratory tract. In order to confront the health hazard posed by IAV, we need to complete our understanding of its pathogenesis. AECII are primary targets for IAV replication in the lung, and while we are beginning to understand their importance for respiratory immunity, the in vivo AECII response during IAV infection has not been analyzed. In contrast to studies addressing the response of AECII infected with IAV ex vivo, we have performed detailed gene transcriptional profiling of AECII isolated from the lungs of infected mice. Thereby, we have identified an exceptionally rapid and versatile response to IAV infection that is shaped by pathogen-derived as well as microenvironment-derived signals and aims at the induction of antiviral measures and the recruitment and activation of immune cells. In conclusion, our study presents AECII as active players in antiviral defense in vivo that need to be considered part of the sentinel and effector immune system of the lung. Copyright © 2016 Stegemann-Koniszewski et al.
Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A
2016-11-01
Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.
2015-01-01
Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248
Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.
2010-01-01
In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage. PMID:22461760
Pauluhn, Jürgen
2009-05-01
Inhaled polydisperse micronsized agglomerated particulates composed of nanosized primary particles may exert their pulmonary toxicity in either form, depending on whether these tightly associated structures are disintegrated within the biological system or not. This hypothesis was tested in a rat bioassay using two calcined aluminum oxyhydroxides (AlOOH) consisting of primary particles in the range of 10-40 nm. Male Wistar rats were nose-only exposed to 0.4, 3, and 28 mg/m(3) in two 4-week (6 h/day, 5 days/week) inhalation studies followed by a 3-month postexposure period. The respective mass median aerodynamic diameter (MMAD) of agglomerated particles in inhalation chambers was 1.7 and 0.6 mum. At serial sacrifices, pulmonary toxicity was characterized by bronchoalveolar lavage (BAL) and histopathology. The retention kinetics of aluminum (Al) was determined in lung tissue, BAL cells, and selected extrapulmonary organs, including lung-associated lymph nodes (LALNs). Significant changes in BAL, lung, and LALN weights occurred at 28 mg/m(3). Histopathology revealed alveolar macrophages with enlarged and foamy appearance, increased epithelial cells, inflammatory cells, and focal septal thickening. The determination of aluminum in lung tissue shows that the cumulative lung dose was higher following exposure to AlOOH-40 nm/MMAD-0.6 mum than to AlOOH-10 nm/MMAD-1.7 mum, despite identical exposure concentrations. The associated pulmonary inflammatory response appears to be principally dependent on the agglomerated rather than primary particle size. Despite high lung burdens, conclusively increased extrapulmonary organ burdens did not occur at any exposure concentration and postexposure time point. Particle-induced pulmonary inflammation was restricted to cumulative doses exceeding approximately 1 mg AlOOH/g lung following 4-week exposure at 28 mg/m(3). It is concluded that the pulmonary toxicity of nanosized, agglomerated AlOOH particles appears to be determined by the size of agglomerated rather than primary particles, whereas the clearance half-time of particles appears to increase with decreased primary particle size. However, in regard to toxicokinetics, this outcome is highly contingent upon the total lung burden and especially whether overloading or non-overloading conditions were attained or not. In order to reliably demonstrate retention-related different characteristics in toxicity and fate of poorly soluble (nano)particles postexposure periods of at least 3 months appear to be indispensible.
Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer
Chang, Joan; Lucas, Morghan C.; Leonte, Lidia E.; Garcia-Montolio, Marc; Singh, Lukram Babloo; Findlay, Alison D.; Deodhar, Mandar; Foot, Jonathan S.; Jarolimek, Wolfgang; Timpson, Paul; Erler, Janine T.; Cox, Thomas R.
2017-01-01
Lysyl Oxidase-like 2 (LOXL2), a member of the lysyl oxidase family of amine oxidases is known to be important in normal tissue development and homeostasis, as well as the onset and progression of solid tumors. Here we tested the anti-tumor properties of two generations of novel small molecule LOXL2 inhibitor in the MDA-MB-231 human model of breast cancer. We confirmed a functional role for LOXL2 activity in the progression of primary breast cancer. Inhibition of LOXL2 activity inhibited the growth of primary tumors and reduced primary tumor angiogenesis. Dual inhibition of LOXL2 and LOX showed a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer. PMID:28199967
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingappan, Krithika, E-mail: lingappa@bcm.edu; Jiang, Weiwu; Wang, Lihua
Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expressionmore » in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.« less
75 FR 66772 - National Heart, Lung, and Blood Institute; Notice of Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and..., Director, National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and... Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, National...
Acute intestinal obstruction due to metastatic lung cancer—case report
2017-01-01
Abstract We present a case of male patient, who was referred to our department because of acute intestinal obstruction, which was the initial clinical symptom of primary lung cancer. The abdominal computed tomography (CT) prior to the emergency operation showed small intestinal obstruction and metastases to both adrenal glands. The patient underwent an emergency abdominal exploratory laparotomy, that confirmed small bowel obstruction and diffuse metastatic lesions along the entire small bowel length. During the operation we took a sample of one metastasis for pathological examination and we created an intestinal bypass to relieve small bowel obstruction. The pathologist suspected to primary lung cancer according to the immunohistochemical staining. The chest CT after the emergency operation showed a large primary tumor in the left upper pulmonary lobe. PMID:28458837
Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma.
Greer, Alexandra M; Matthay, Michael A; Kukreja, Jasleen; Bhakta, Nirav R; Nguyen, Christine P; Wolters, Paul J; Woodruff, Prescott G; Fahy, John V; Shin, Jeoung-Sook
2014-01-01
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1⁺ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1⁺ DCs, we found that the numbers of BDCA1⁺ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1⁺ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
Causes of death in long-term lung cancer survivors: a SEER database analysis.
Abdel-Rahman, Omar
2017-07-01
Long-term (>5 years) lung cancer survivors represent a small but distinct subgroup of lung cancer patients and information about the causes of death of this subgroup is scarce. The Surveillance, Epidemiology and End Results (SEER) database (1988-2008) was utilized to determine the causes of death of long-term survivors of lung cancer. Survival analysis was conducted using Kaplan-Meier analysis and multivariate analysis was conducted using a Cox proportional hazard model. Clinicopathological characteristics and survival outcomes were assessed for the whole cohort. A total of 78,701 lung cancer patients with >5 years survival were identified. This cohort included 54,488 patients surviving 5-10 years and 24,213 patients surviving >10 years. Among patients surviving 5-10 years, 21.8% were dead because of primary lung cancer, 10.2% were dead because of other cancers, 6.8% were dead because of cardiac disease and 5.3% were dead because of non-malignant pulmonary disease. Among patients surviving >10 years, 12% were dead because of primary lung cancer, 6% were dead because of other cancers, 6.9% were dead because of cardiac disease and 5.6% were dead because of non-malignant pulmonary disease. On multivariate analysis, factors associated with longer cardiac-disease-specific survival in multivariate analysis include younger age at diagnosis (p < .0001), white race (vs. African American race) (p = .005), female gender (p < .0001), right-sided disease (p = .003), adenocarcinoma (vs. large cell or small cell carcinoma), histology and receiving local treatment by surgery rather than radiotherapy (p < .0001). The probability of death from primary lung cancer is still significant among other causes of death even 20 years after diagnosis of lung cancer. Moreover, cardiac as well as non-malignant pulmonary causes contribute a considerable proportion of deaths in long-term lung cancer survivors.
Lung abscess: update on microbiology and management.
Yazbeck, Moussa F; Dahdel, Maher; Kalra, Ankur; Browne, Alexander S; Pratter, Melvin R
2014-01-01
A lung abscess is a circumscribed collection of pus in the lung as a result of a microbial infection, which leads to cavity formation and often a radiographic finding of an air fluid level. Patients with lung abscesses commonly present to their primary care physician or to the emergency department with "nonresolving pneumonia." Although, the incidence of lung abscess has declined since the introduction of antibiotic treatment, it still carries a mortality of up to 10%-20%. This article discusses in detail the up-to-date microbiology and the management of lung abscesses.
Non-invasive toluene sensor for early diagnosis of lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Rahul; Srivastava, Sudha, E-mail: sudha.srivastava@jiit.ac.in
Here we present, quantification of volatile organic compounds in human breath for early detection of lung cancer to increase survival probability. Graphene oxide nanosheets synthesized by modified Hummer’s method were employed as a sensing element to detect the presence of toluene in the sample. Optical and morphological characterization of synthesized nanomaterial was performed by UV-Visible spectroscopy and scanning electron microscopy (SEM) respectively. Spectroscopic assay shows a linearly decreasing intensity of GO absorption peak with increasing toluene concentration with a linear range from 0-200 pM. While impedimetric sensor developed on a graphene oxide nanosheetsmodified screen printed electrodes displayed a decreasing electronmore » transfer resistance increasing toluene with much larger linear range of 0-1000 pM. Reported techniques are advantageous as these are simple, sensitive and cost effective, which can easily be extended for primary screening of other VOCs.« less
HDAC2 Suppresses IL17A-Mediated Airway Remodeling in Human and Experimental Modeling of COPD.
Lai, Tianwen; Tian, Baoping; Cao, Chao; Hu, Yue; Zhou, Jiesen; Wang, Yong; Wu, Yanping; Li, Zhouyang; Xu, Xuchen; Zhang, Min; Xu, Feng; Cao, Yuan; Chen, Min; Wu, Dong; Wu, Bin; Dong, Chen; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao
2018-04-01
Although airway remodeling is a central feature of COPD, the mechanisms underlying its development have not been fully elucidated. The goal of this study was to determine whether histone deacetylase (HDAC) 2 protects against cigarette smoke (CS)-induced airway remodeling through IL-17A-dependent mechanisms. Sputum samples and lung tissue specimens were obtained from control subjects and patients with COPD. The relationships between HDAC2, IL-17A, and airway remodeling were investigated. The effect of HDAC2 on IL-17A-mediated airway remodeling was assessed by using in vivo models of COPD induced by CS and in vitro culture of human bronchial epithelial cells and primary human fibroblasts exposed to CS extract, IL-17A, or both. HDAC2 and IL-17A expression in the sputum cells and lung tissue samples of patients with COPD were associated with bronchial wall thickening and collagen deposition. Il-17a deficiency (Il-17a -/- ) resulted in attenuation of, whereas Hdac2 deficiency (Hdac2 +/- ) exacerbated, CS-induced airway remodeling in mice. IL-17A deletion also attenuated airway remodeling in CS-exposed Hdac2 +/- mice. HDAC2 regulated IL-17A production partially through modulation of CD4 + T cells during T helper 17 cell differentiation and retinoid-related orphan nuclear receptor γt in airway epithelial cells. In vitro, IL-17A deficiency attenuated CS-induced mouse fibroblast activation from Hdac2 +/- mice. IL-17A-induced primary human fibroblast activation was at least partially mediated by autocrine production of transforming growth factor beta 1. These findings suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of airway remodeling by suppressing airway inflammation and modulating fibroblast activation in COPD. Copyright © 2017. Published by Elsevier Inc.
Verbeek, G L; Myles, P S; Westall, G P; Lin, E; Hastings, S L; Marasco, S F; Jaffar, J; Meehan, A C
2017-08-01
Primary graft dysfunction occurs in up to 25% of patients after lung transplantation. Contributing factors include ventilator-induced lung injury, cardiopulmonary bypass, ischaemia-reperfusion injury and excessive fluid administration. We evaluated the feasibility, safety and efficacy of an open-lung protective ventilation strategy aimed at reducing ventilator-induced lung injury. We enrolled adult patients scheduled to undergo bilateral sequential lung transplantation, and randomly assigned them to either a control group (volume-controlled ventilation with 5 cmH 2 O, positive end-expiratory pressure, low tidal volumes (two-lung ventilation 6 ml.kg -1 , one-lung ventilation 4 ml.kg -1 )) or an alveolar recruitment group (regular step-wise positive end-expiratory pressure-based alveolar recruitment manoeuvres, pressure-controlled ventilation set at 16 cmH 2 O with 10 cmH 2 O positive end-expiratory pressure). Ventilation strategies were commenced from reperfusion of the first lung allograft and continued for the duration of surgery. Regular PaO 2 /F I O 2 ratios were calculated and venous blood samples collected for inflammatory marker evaluation during the procedure and for the first 24 h of intensive care stay. The primary end-point was the PaO 2 /F I O 2 ratio at 24 h after first lung reperfusion. Thirty adult patients were studied. The primary outcome was not different between groups (mean (SD) PaO 2 /F I O 2 ratio control group 340 (111) vs. alveolar recruitment group 404 (153); adjusted p = 0.26). Patients in the control group had poorer mean (SD) PaO 2 /F I O 2 ratios at the end of the surgical procedure and a longer median (IQR [range]) time to tracheal extubation compared with the alveolar recruitment group (308 (144) vs. 402 (154) (p = 0.03) and 18 (10-27 [5-468]) h vs. 15 (11-36 [5-115]) h (p = 0.01), respectively). An open-lung protective ventilation strategy during surgery for lung transplantation is feasible, safe and achieves favourable ventilation parameters. © 2017 The Association of Anaesthetists of Great Britain and Ireland.
Short- and long-term outcomes of 1000 adult lung transplant recipients at a single center.
Kreisel, Daniel; Krupnick, Alexander S; Puri, Varun; Guthrie, Tracey J; Trulock, Elbert P; Meyers, Bryan F; Patterson, G Alexander
2011-01-01
Lung transplantation has become accepted therapy for end-stage pulmonary disease. The objective of this study was to review a single-institution experience of adult lung transplants. We reviewed 1000 adult lung transplants that were performed at Washington University between July 1988 and January 2009. Transplants were performed for emphysema (52%), cystic fibrosis (18.2%), pulmonary fibrosis (16.1%), and pulmonary vascular disease (7.2%). Overall recipient age was 48 ± 13 years with an increase from 43 ± 12 years (July 1988-November 1993) to 50 ± 14 years (June 2005-January 2009). Overall incidence of primary graft dysfunction was 22.1%. Hospital mortality was higher for patients who had primary graft dysfunction (primary graft dysfunction, 13.6%; no primary graft dysfunction, 4%; P < .001). Freedom from bronchiolitis obliterans syndrome was 84% at 1 year, 38.2% at 5 years, and 12.2% at 10 years. Survival at 1, 5, 10, and 15 years was 84%, 56.4%, 32.2%, and 17.8%, respectively. Five-year survival improved from 49.6% (July 1988-November 1993) to 62.1% (October 2001-June 2005). Primary graft dysfunction was associated with lower survival at 1, 5, and 10 years (primary graft dysfunction: 72.8%, 43.9%, and 18.7%, respectively; no primary graft dysfunction: 87.1%, 59.8%, and 35.7%, respectively, P < .001) and lower rates of freedom from bronchiolitis obliterans syndrome (primary graft dysfunction: 78%, 27.5%, and 8.5%, respectively; no primary graft dysfunction: 85.4%, 40.7%, and 13.1%, respectively, P = .007). Five-year survival has improved over the study period, but long-term outcomes are limited by bronchiolitis obliterans syndrome. Primary graft dysfunction is associated with higher rates of bronchiolitis obliterans syndrome and impaired short- and long-term survival. A better understanding of primary graft dysfunction and bronchiolitis obliterans syndrome is critical to improve outcomes. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Cytopathic effect of Human cosavirus (HCoSV) on primary cell cultures of human embryonic lung MRC5.
Rezig, Dorra; Touzi, Henda; Meddeb, Zina; Triki, Henda
2014-10-01
Human cosaviruses (HCoSVs) are newly discovered viruses in Picornaviridae family. Until now, most published studies reported HCoSV detection using molecular techniques and genetic characterization of the virus. Nevertheless, no laboratory has yet reported the replication of these viruses in cultured cell lines. In the present work, the propagation of HCoSV strains isolated from human fecal specimens in MRC5 cell line and their induced cytopathic effects (CPE) was studied. The first sign of virus growth was observed 24-48h after inoculation. The cells rounded up and clumped together rapidly; empty areas became visible and, on the third day of CPE, a remarkable decrease in live cells was observed. This represents the first report on in vitro model of HCoSV replication which opens up opportunities for future investigations of these new viruses. Copyright © 2014 Elsevier B.V. All rights reserved.
Primary amebic meningoencephalitis due to Naegleria fowleri in a South American tapir.
Lozano-Alarcón, F; Bradley, G A; Houser, B S; Visvesvara, G S
1997-05-01
Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris are known to cause fatal central nervous system (CNS) disease in human beings. N. fowleri causes acute, fulminating primary amebic meningoencephalitis (PAM), which generally leads to death within 10 days. Acanthamoeba spp. and B. mandrillaris cause chronic granulomatous amebic encephalitis, which may last for 8 weeks. Acanthamoeba spp. and B. mandrillaris also cause CNS disease in animals. N. fowleri, however, has been described only in human beings. This report is the first of PAM in an animal, a South American tapir. Dry cough, lethargy, and coma developed in the animal, and its condition progressed to death. At necropsy, lesions were seen in the cerebrum, cerebellum, and lungs. The CNS had severe, suppurative meningoencephalitis with many neutrophils, fibrin, plasma cells, and amebas. Amebas were 6.5 microns to 9 microns in diameter and had a nucleus containing a large nucleolus. Amebas in the sections reacted with a monoclonal antibody specific for N. fowleri in the immunofluorescent assay and appeared bright green.
Tiny Device Mimics Human Lung Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamedmore » “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.« less
Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip
2018-05-17
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.
Tiny Device Mimics Human Lung Function
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
2018-01-16
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. âWe breathe in and out thousands of times every day. And while we have control over what we eat or drink, we donât always have control over what we breathe in,â said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so weâre making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed âPuLMoâ for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unitâjust like the human lung. The units are primarily made from various polymers and are connected by a microfluidic âcircuit boardâ that manages fluid and air flow. âWhen we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,â said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.
Warnecke, Gregor; Van Raemdonck, Dirk; Smith, Michael A; Massard, Gilbert; Kukreja, Jasleen; Rea, Federico; Loor, Gabriel; De Robertis, Fabio; Nagendran, Jayan; Dhital, Kumud K; Moradiellos Díez, Francisco Javier; Knosalla, Christoph; Bermudez, Christian A; Tsui, Steven; McCurry, Kenneth; Wang, I-Wen; Deuse, Tobias; Lesèche, Guy; Thomas, Pascal; Tudorache, Igor; Kühn, Christian; Avsar, Murat; Wiegmann, Bettina; Sommer, Wiebke; Neyrinck, Arne; Schiavon, Marco; Calebrese, Fiorella; Santelmo, Nichola; Olland, Anne; Falcoz, Pierre-Emanuel; Simon, Andre R; Varela, Andres; Madsen, Joren C; Hertz, Marshall; Haverich, Axel; Ardehali, Abbas
2018-05-01
Severe primary graft dysfunction (PGD) of grade 3 (PGD3) is a common serious complication following lung transplantation. We aimed to assess physiological donor lung preservation using the Organ Care System (OCS) Lung device compared with cold static storage. In this non-inferiority, randomised, controlled, open-label, phase 3 trial (INSPIRE) recipients were aged 18 years or older and were registered as standard criteria primary double lung transplant candidates. Eligible donors were younger than 65 years old with a ratio of partial pressure of oxygen in arterial blood to the fraction of inspired oxygen of more than 300 mm Hg. Transplant recipients were randomly assigned (1:1) with permuted blocks, stratified by centre, to receive standard criteria donor lungs preserved in the OCS Lung device (OCS arm) or cold storage at 4°C (control arm). The composite primary effectiveness endpoint was absence of PGD3 within the first 72 h after transplant and 30-day survival in the per-protocol population, with a stringent 4% non-inferiority margin. Superiority was tested upon meeting non-inferiority. The primary safety endpoint was the mean number of lung graft-related serious adverse events within 30 days of transplant. We did analyses in the per-protocol and intention-to-treat populations. This trial is registered with ClinicalTrials.gov, number NCT01630434. Between Nov 17, 2011, and Nov 24, 2014, we randomly assigned 370 patients, and 320 (86%) underwent transplantation (n=151 OCS and n=169 control); follow-up was completed in Nov 24, 2016. The primary endpoint was met in 112 (79·4%) of 141 patients (95% CI 71·8 to 85·8) in the OCS group compared with 116 (70·3%) of 165 patients (62·7 to 77·2) in the control group (non-inferiority point estimate -9·1%; 95% CI -∞ to -1·0; p=0·0038; and superiority test p=0·068). Patient survival at day 30 post-transplant was 135 (95·7%) of 141 patients (95% CI 91·0-98·4) in the OCS group and 165 patients (100%; 97·8-100·0) in the control group (p=0·0090) and at 12 months was 126 (89·4%) of 141 patients (83·1-93·9) for the OCS group compared with 146 (88·1%) of 165 patients (81·8-92·8) for the control group. Incidence of PGD3 within 72 h was reported in 25 (17·7%) of 141 patients in the OCS group (95% CI 11·8 to 25·1) and 49 (29·7%) of 165 patients in the control group (22·8 to 37·3; superiority test p=0·015). The primary safety endpoint was met (0·23 lung graft-related serious adverse events in the OCS group compared with 0·28 events in the control group [point estimate -0·045%; 95% CI -∞ to 0·047; non-inferiority test p=0·020]). In the intention-to-treat population, causes of death at 30 days and in hospital were lung graft failure or lung infection (n=2 for OCS vs n=7 for control), cardiac causes (n=4 vs n=1), vascular or stroke (n=3 vs n=0), metabolic coma (n=0 vs n=2), and generalised sepsis (n=0 vs n=1). The INSPIRE trial met its primary effectiveness and safety endpoints. Although no short-term survival benefit was reported, further research is needed to see whether the reduced incidence of PGD3 within 72 h of a transplant might translate into earlier recovery and improved long-term outcomes after lung transplantation. TransMedics Inc. Copyright © 2018 Elsevier Ltd. All rights reserved.
Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P
2016-05-15
Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.
Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata
2015-03-20
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Bombesin-like peptide receptors in human bronchial epithelial cells.
Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A
1996-01-01
Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.
Efficacy and safety of fibrin sealant patch in the treatment of air leakage in thoracic surgery.
Lopez, C; Facciolo, F; Lequaglie, C; Rendina, E A; Saita, S; Dell'Amore, D; Sollitto, F; Urciuoli, G; Loizzi, M; Cisternino, M L; Granone, P; Angelelli, A; Cardillo, G; Mucilli, F; Di Rienzo, G
2013-12-01
Air leakage represents a major problem in lung surgery. Absorbable fibrin sealant patch (AFSP), a collagen sponge coated with human fibrinogen and thrombin, can be used as an adjunct to primary stapling or suturing. This study compared the efficacy of AFSP with manual suturing after primary stapling. This was a prospective, multicenter, randomized study. Patients undergoing lobectomy, bilobectomy, anatomical segmentectomy for lung cancer or wedge resection for pulmonary metastasis with air leakage grade 1 or 2 according to Macchiarini scale after stapler suture were randomized to receive AFSP or standard surgical treatment (ST). The primary endpoint was the reduction of intraoperative air leakage intensity. Duration of postoperative air leakage and number of days until removal of last chest drain were secondary endpoints. Safety was recorded for all patients. A total of 346 patients were enrolled in 14 centres, 179 of whom received AFSP and 167 ST. Intraoperative air leak intensity was reduced in 90.5% of AFSP patients and 82% of ST patients (P=0.03). A significant reduction in postoperative air leakage duration was observed in the AFSP group (P=0.0437). The median number of days until removal of last drainage was 6 (3-37) in the AFSP group and 7 (2-27) in the ST (P=0.38). Occurrence of adverse events was comparable in both groups. AFSP was more efficacious than standard ST as an adjunct to primary stapling in reducing intraoperative air leakage intensity and duration of postoperative air leakage in patients undergoing pulmonary surgery. AFSP was well tolerated.
De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu
2012-01-01
Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288
Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR
Xu, Xiaohua; Balsiger, Robert; Tyrrell, Jean; Boyaka, Prosper N.; Tarran, Robert; Cormet-Boyaka, Estelle
2015-01-01
Background CFTR plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date. Methods The molecular mechanisms leading to down-regulation of CFTR by cigarette smoke were determined using pharmacologic inhibitors and silencing RNAs. Results Using human bronchial epithelial cells, here we show that cigarette smoke induces degradation of CFTR that is attenuated by the lysosomal inhibitors, but not proteasome inhibitors. Cigarette smoke can activate multiple signaling pathways in airway epithelial cells, including the MEK/Erk1/2 MAPK pathway regulating cell survival. Interestingly, pharmacological inhibition of the MEK/Erk1/2 MAPK pathway prevented the loss of plasma membrane CFTR upon cigarette smoke exposure. Similarly, decreased expression of Erk1/2 using silencing RNAs prevented the suppression of CFTR protein by cigarette smoke. Conversely, specific inhibitors of the JNK or p38 MAPK pathways had no effect on CFTR decrease after cigarette smoke exposure. In addition, inhibition of the MEK/Erk1/2 MAPK pathway prevented the reduction of the airway surface liquid observed upon cigarette smoke exposure of primary human airway epithelial cells. Finally, addition of the antioxidant NAC inhibited activation of Erk1/2 by cigarette smoke and precluded the cigarette smoke-induced decrease of CFTR. Conclusions These results show that the MEK/Erk1/2 MAPK pathway regulates plasma membrane CFTR in human airway cells. General Significance The MEK/Erk1/2 MAPK pathway should be considered as a target for strategies to maintain/restore CFTR expression in the lung of smokers. PMID:25697727
Primary mucoepidermoid carcinoma of the lung with prominent clear cells
Fink, David D.; Lomas, Angela M.; Roden, Anja C.; Shah, Prashant C.
2017-01-01
Mucoepidermoid carcinoma of the lung is a rare malignancy of salivary gland-type origin. We report a case of a 21-year-old man with a right mainstem bronchus mass composed predominantly of clear cells. This case represents a rare primary pulmonary low-grade mucoepidermoid carcinoma positive for MAML2 rearrangement by fluorescence in situ hybridization with a prominent clear cell component. PMID:28670072
Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.
2013-01-01
Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756
Jia, Xuemei; Yu, Fang; Wang, Junfeng; Iwanowycz, Stephen; Saaoud, Fatma; Wang, Yuzhen; Hu, Jun; Wang, Qian; Fan, Daping
2014-01-01
Purpose Breast cancer is the leading cause of death in female cancer patients due to the lack of effective treatment for metastasis. Macrophages are the most abundant immune cells in the primary and metastatic tumors, and contribute to tumor initiation, progression and metastasis. Emodin has been found to exert anti-tumor effects through promoting cell cycle arrest and apoptosis, and inhibiting angiogenesis, but its effects on tumor-associated macrophages during cancer metastasis have not been investigated. Methods Mice inoculated with 4T1 or EO771 breast cancer cells orthotopically were treated with Emodin after the primary tumors reached 200 mm3 in size. Primary tumor growth, lung metastasis, and macrophage infiltration in the lungs were analyzed. In vitro experiments were performed to examine the effects of Emodin on macrophage migration and M2 polarization, and the underlying mechanisms. Results Emodin significantly suppressed breast cancer lung metastasis in both orthotopic mouse models without apparent effects on primary tumors. Reduced infiltration of F4/80+ macrophages and Ym1+ M2 macrophages in lungs was observed in Emodin-treated mice. In vitro experiments demonstrated that Emodin decreased the migration of macrophages towards tumor cell conditioned medium (TCM) and inhibited macrophage M2 polarization induced by TCM. Mechanistically, Emodin suppressed STAT6 phosphorylation and C/EBPβ expression, two crucial signaling events in macrophage M2 polarization, in macrophages treated with IL-4 or TCM. Conclusion Taken together, our study, for the first time, demonstrated that Emodin suppressed pulmonary metastasis of breast cancer probably through inhibiting macrophage recruitment and M2 polarization in the lungs by reducing STAT6 phosphorylation and C/EBPβ expression. PMID:25311112
Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin
2016-01-01
Objective While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Setting Computer-based simulation model. Participants Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Interventions Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary and secondary outcome measures Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Results Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Conclusions Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. PMID:26928026
2013-01-01
Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely examined in vivo. There is no residual gas, which interferes with ultrasound. Pulmonary vessels and bronchi are clearly differentiated. Simulated lung lesions can easily be detected inside the lung lobe. Conclusions Lung flooding enables complete lung sonography and tumour detection. We have developed a novel method that efficiently uses ultrasound for guiding intraoperative interventions in open and endoscopic lung surgery. PMID:23841910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less
O'Dowd, Emma L; McKeever, Tricia M; Baldwin, David R; Anwar, Sadia; Powell, Helen A; Gibson, Jack E; Iyen-Omofoman, Barbara; Hubbard, Richard B
2015-02-01
The UK has poor lung cancer survival rates and high early mortality, compared to other countries. We aimed to identify factors associated with early death, and features of primary care that might contribute to late diagnosis. All cases of lung cancer diagnosed between 2000 and 2013 were extracted from The Health Improvement Network database. Patients who died within 90 days of diagnosis were compared with those who survived longer. Standardised chest X-ray (CXR) and lung cancer rates were calculated for each practice. Of 20,142 people with lung cancer, those who died early consulted with primary care more frequently prediagnosis. Individual factors associated with early death were male sex (OR 1.17; 95% CI 1.10 to 1.24), current smoking (OR 1.43; 95% CI 1.28 to 1.61), increasing age (OR 1.80; 95% CI 1.62 to 1.99 for age ≥80 years compared to 65-69 years), social deprivation (OR 1.16; 95% CI 1.04 to 1.30 for Townsend quintile 5 vs 1) and rural versus urban residence (OR 1.22; 95% CI 1.06 to 1.41). CXR rates varied widely, and the odds of early death were highest in the practices which requested more CXRs. Lung cancer incidence at practice level did not affect early deaths. Patients who die early from lung cancer are interacting with primary care prediagnosis, suggesting potentially missed opportunities to identify them earlier. A general increase in CXR requests may not improve survival; rather, a more timely and appropriate targeting of this investigation using risk assessment tools needs further assessment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsch, David G., E-mail: david.kirsch@duke.ed; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology.more » Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.« less
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
2012-01-01
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.
Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M
2012-12-28
G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng
Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild typemore » of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells. • Overexpression of the Del-1 gene potentiates proliferation and invasion of lung carcinoma cells. • Del-1 may be used as a diagnostic or prognostic marker for lung cancer progression.« less
The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor.
Gill, Sharonjit K; Yao, Yiwen; Kay, Linda J; Bewley, Martin A; Marriott, Helen M; Peachell, Peter T
2016-11-01
PGE 2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE 2 has not been defined. The aim of this study was to identify the EP receptor by which PGE 2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. The effects of PGE 2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP 2 -selective (PF-04852946, PF-04418948) and EP 4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE 2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. PGE 2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP 2 and EP 4 receptors. L-902,688 (EP 4 receptor-selective agonist) was considerably more potent than butaprost (EP 2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP 2 receptor-selective antagonists had marginal effects on the PGE 2 inhibition of TNF-α generation, whereas EP 4 receptor-selective antagonists caused rightward shifts in the PGE 2 concentration-response curves. These studies demonstrate that the EP 4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE 2 on human lung macrophages. This suggests that EP 4 receptor agonists could be effective anti-inflammatory agents in human lung disease. © 2016 The British Pharmacological Society.
Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.
2007-01-01
Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156
Krasnodembskaya, Anna; Song, Yuanlin; Fang, Xiaohui; Gupta, Naveen; Serikov, Vladimir; Lee, Jae-Woo; Matthay, Michael A.
2012-01-01
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/LL-37. PMID:20945332
Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J
2017-06-01
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.
A Simple Device for Measuring Static Compliance of Lung-Thorax Combine
ERIC Educational Resources Information Center
Sircar, Sabyasachi
2015-01-01
Explaining the concept of lung compliance remains a challenge to the physiology teacher because it cannot be demonstrated easily in human subjects and all attempts until now have used only simulation models. A simple device is described in the present article to measure the compliance of the "lung-thorax" combine in human subjects with…
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod
2018-08-01
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.
Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.
2011-01-01
Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803
Chemically-induced Mouse Lung Tumors: Applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce; ...
2016-07-14
Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce
Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less
Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction.
Diamond, Joshua M; Akimova, Tatiana; Kazi, Altaf; Shah, Rupal J; Cantu, Edward; Feng, Rui; Levine, Matthew H; Kawut, Steven M; Meyer, Nuala J; Lee, James C; Hancock, Wayne W; Aplenc, Richard; Ware, Lorraine B; Palmer, Scott M; Bhorade, Sangeeta; Lama, Vibha N; Weinacker, Ann; Orens, Jonathan; Wille, Keith; Crespo, Maria; Lederer, David J; Arcasoy, Selim; Demissie, Ejigayehu; Christie, Jason D
2014-03-01
Biologic pathways with significant genetic conservation across human populations have been implicated in the pathogenesis of primary graft dysfunction (PGD). The evaluation of the role of recipient genetic variation in PGD has thus far been limited to single, candidate gene analyses. We sought to identify genetic variants in lung transplant recipients that are responsible for increased risk of PGD using a two-phase large-scale genotyping approach. Phase 1 was a large-scale candidate gene association study of the multicenter, prospective Lung Transplant Outcomes Group cohort. Phase 2 included functional evaluation of selected variants and a bioinformatics screening of variants identified in phase 1. After genetic data quality control, 680 lung transplant recipients were included in the analysis. In phase 1, a total of 17 variants were significantly associated with PGD, four of which were in the prostaglandin E2 family of genes. Among these were a coding variant in the gene encoding prostaglandin E2 synthase (PTGES2; P = 9.3 × 10(-5)) resulting in an arginine to histidine substitution at amino acid position 298, and three variants in a block containing the 5' promoter and first intron of the PTGER4 gene (encoding prostaglandin E2 receptor subtype 4; all P < 5 × 10(-5)). Functional evaluation in regulatory T cells identified that rs4434423A in the PTGER4 gene was associated with differential suppressive function of regulatory T cells. Further research aimed at replication and additional functional insight into the role played by genetic variation in prostaglandin E2 synthetic and signaling pathways in PGD is warranted.
Dubinett - Targeted Sequencing 2012 — EDRN Public Portal
we propose to use targeted massively parallel DNA sequencing to identify somatic alterations within mutational hotspots in matched sets of primary lung tumors, premalignant lesions, and adjacent,histologically normal lung tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Kamran A.; Fulp, William J.; Berglund, Anders E.
2015-07-15
Purpose: We previously developed a multigene expression model of tumor radiation sensitivity index (RSI) with clinical validation in multiple independent cohorts (breast, rectal, esophageal, and head and neck patients). The purpose of this study was to assess differences between RSI scores in primary colon cancer and metastases. Methods and Materials: Patients were identified from our institutional review board–approved prospective observational protocol. A total of 704 metastatic and 1362 primary lesions were obtained from a de-identified metadata pool. RSI was calculated using the previously published rank-based algorithm. An independent cohort of 29 lung or liver colon metastases treated with 60 Gy in 5more » fractions stereotactic body radiation therapy (SBRT) was used for validation. Results: The most common sites of metastases included liver (n=374; 53%), lung (n=116; 17%), and lymph nodes (n=40; 6%). Sixty percent of metastatic tumors, compared with 54% of primaries, were in the RSI radiation-resistant peak, suggesting metastatic tumors may be slightly more radiation resistant than primaries (P=.01). In contrast, when we analyzed metastases based on anatomical site, we uncovered large differences in RSI. The median RSIs for metastases in descending order of radiation resistance were ovary (0.48), abdomen (0.47), liver (0.43), brain (0.42), lung (0.32), and lymph nodes (0.31) (P<.0001). These findings were confirmed when the analysis was restricted to lesions from the same patient (n=139). In our independent cohort of treated lung and liver metastases, lung metastases had an improved local control rate compared to that in patients with liver metastases (2-year local control rate of 100% vs 73.0%, respectively; P=.026). Conclusions: Assessment of radiation sensitivity between primary and metastatic tissues of colon cancer histology revealed significant differences based on anatomical location of metastases. These initial results warrant validation in a larger clinical cohort.« less
Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan
2018-04-01
Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Ni, Ke; Liu, Ming; Zheng, Jian; Wen, Liyan; Chen, Qingyun; Xiang, Zheng; Lam, Kowk-Tai; Liu, Yinping; Chan, Godfrey Chi-Fung; Lau, Yu-Lung; Tu, Wenwei
2018-06-01
Pulmonary fibrosis is a chronic progressive lung disease with few treatments. Human mesenchymal stem cells (MSCs) have been shown to be beneficial in pulmonary fibrosis because they have immunomodulatory capacity. However, there is no reliable model to test the therapeutic effect of human MSCs in vivo. To mimic pulmonary fibrosis in humans, we established a novel bleomycin-induced pulmonary fibrosis model in humanized mice. With this model, the benefit of human MSCs in pulmonary fibrosis and the underlying mechanisms were investigated. In addition, the relevant parameters in patients with pulmonary fibrosis were examined. We demonstrate that human CD8 + T cells were critical for the induction of pulmonary fibrosis in humanized mice. Human MSCs could alleviate pulmonary fibrosis and improve lung function by suppressing bleomycin-induced human T-cell infiltration and proinflammatory cytokine production in the lungs of humanized mice. Importantly, alleviation of pulmonary fibrosis by human MSCs was mediated by the PD-1/programmed death-ligand 1 pathway. Moreover, abnormal PD-1 expression was found in circulating T cells and lung tissues of patients with pulmonary fibrosis. Our study supports the potential benefit of targeting the PD-1/programmed death-ligand 1 pathway in the treatment of pulmonary fibrosis.
Absorbed doses of lungs from radon retained in airway lumens of mice and rats.
Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro
2013-08-01
This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.
Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.
Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam
2015-07-01
DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.
Armstrong, Sylvia J.; Zuckerman, A. J.
1972-01-01
Retronecine pyrrole induces toxic changes both in human liver and lung cells. Lasiocarpine and retrorsine are toxic to liver cells but not to lung cells, which are unable to metabolize the pyrrolizidine alkaloids to pyrroles. The application of lasiocarpine to human liver cells in culture is followed by inhibition of DNA, RNA and protein synthesis; vacuolation of the cells, the prevention of mitosis and the formation of giant cells (“megalocytes”). PMID:5032089
Zhou, Jie; Gong, Zhihua; Jia, Qingzhu; Wu, Yan; Yang, Zhen-Zhou; Zhu, Bo
2018-04-15
Immunotherapy targeting the programmed cell death-1/programmed death ligand 1(PD-L1) pathway has shown promising antitumor activity in brain metastases (BMs) of non-small cell lung cancer (NSCLC) patients with an acceptable safety profile; however, the response rates often differ between primary lesions and intracranial lesions. Studies are necessary to identify detailed characterizations of the response biomarkers. In this study, we aimed to compare the differences of PD-L1 expression and CD8 + tumor-infiltrating lymphocyte (TIL) density, two major response biomarkers of PD-1/PD-L1 blockade, between paired primary and brain metastatic lesions in advanced NSCLC. We observed that among primary lesions or BMs, only a small number of patients harbored common PD-L1 expression on both tumor cells and tumor-infiltrating immune cells. Additionally, we found that the numbers of CD8 + TILs were significantly fewer in BMs than in primary lung cancers. Low stromal CD8 + TIL numbers in BMs were associated with significantly shorter overall survival compared to high stromal CD8 + TIL counts. Notably, we demonstrated a discrepancy in PD-L1 expression and CD8 + TIL density between primary lung cancers and their corresponding BMs. Such heterogeneities are significantly associated with the time at which BMs occurred. Our study emphasizes the spatial and temporal heterogeneity of biomarkers for anti-PD-1/PD-L1 therapy, which should be concerned in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
Gulati, Shuchi; Kiefer, Christoper; Karim, Nagla Abdel
2015-10-01
Lung cancers are known to metastasize to unusual sites. Despite this knowledge often times the diagnosis of a primary lung cancer gets delayed especially when the patient presents without respiratory symptoms. The patient discussed in our review is a 47-year-old female, smoker who had presented to several hospitals with months of headache, nausea and intermittent episodes of vomiting. She was noted to have hypernatremia due to diabetes insipidus and a pituitary lesion on her magnetic resonance images. The pituitary mass on biopsy was found to represent a metastatic focus from a primary lung adenocarcinoma. Clinicians should be aware of malignancies that are well known to metastasize to the posterior pituitary. Conversely, since not every patient presents with symptoms of metastasis, there is a need to recognize the clinical syndromes (e. g., diabetes insipidus-like symptoms or more subtle symptoms like cranial nerve palsies) associated with potential metastasis to the pituitary.
Feliu, Neus; Kohonen, Pekka; Ji, Jie; Zhang, Yuning; Karlsson, Hanna L; Palmberg, Lena; Nyström, Andreas; Fadeel, Bengt
2015-01-27
Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer
Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...
2015-03-20
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less
Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells
Tielen, Frans; Elstak, Edo; Benschop, Julian; Grimbergen, Max; Stallen, Jan; Janssen, Richard; van Marle, Andre; Essrich, Christian
2017-01-01
Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single “all-in-one” Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities. PMID:28800587
Misquitta-Ali, Christine M.; Cheng, Edith; O'Hanlon, Dave; Liu, Ni; McGlade, C. Jane; Tsao, Ming Sound; Blencowe, Benjamin J.
2011-01-01
Alternative splicing (AS) is a widespread mechanism underlying the generation of proteomic and regulatory complexity. However, which of the myriad of human AS events play important roles in disease is largely unknown. To identify frequently occurring AS events in lung cancer, we used AS microarray profiling and reverse transcription-PCR (RT-PCR) assays to survey patient-matched normal and adenocarcinoma tumor tissues from the lungs of 29 individuals diagnosed with non-small cell lung cancer (NSCLC). Of 5,183 profiled alternative exons, four displayed tumor-associated changes in the majority of the patients. These events affected transcripts from the VEGFA, MACF1, APP, and NUMB genes. Similar AS changes were detected in NUMB and APP transcripts in primary breast and colon tumors. Tumor-associated increases in NUMB exon 9 inclusion correlated with reduced levels of NUMB protein expression and activation of the Notch signaling pathway, an event that has been linked to tumorigenesis. Moreover, short hairpin RNA (shRNA) knockdown of NUMB followed by isoform-specific rescue revealed that expression of the exon 9-skipped (nontumor) isoform represses Notch target gene activation whereas expression of the exon 9-included (tumor) isoform lacks this activity and is capable of promoting cell proliferation. The results thus reveal widespread AS changes in NSCLC that impact cell signaling in a manner that likely contributes to tumorigenesis. PMID:21041478
Misquitta-Ali, Christine M; Cheng, Edith; O'Hanlon, Dave; Liu, Ni; McGlade, C Jane; Tsao, Ming Sound; Blencowe, Benjamin J
2011-01-01
Alternative splicing (AS) is a widespread mechanism underlying the generation of proteomic and regulatory complexity. However, which of the myriad of human AS events play important roles in disease is largely unknown. To identify frequently occurring AS events in lung cancer, we used AS microarray profiling and reverse transcription-PCR (RT-PCR) assays to survey patient-matched normal and adenocarcinoma tumor tissues from the lungs of 29 individuals diagnosed with non-small cell lung cancer (NSCLC). Of 5,183 profiled alternative exons, four displayed tumor-associated changes in the majority of the patients. These events affected transcripts from the VEGFA, MACF1, APP, and NUMB genes. Similar AS changes were detected in NUMB and APP transcripts in primary breast and colon tumors. Tumor-associated increases in NUMB exon 9 inclusion correlated with reduced levels of NUMB protein expression and activation of the Notch signaling pathway, an event that has been linked to tumorigenesis. Moreover, short hairpin RNA (shRNA) knockdown of NUMB followed by isoform-specific rescue revealed that expression of the exon 9-skipped (nontumor) isoform represses Notch target gene activation whereas expression of the exon 9-included (tumor) isoform lacks this activity and is capable of promoting cell proliferation. The results thus reveal widespread AS changes in NSCLC that impact cell signaling in a manner that likely contributes to tumorigenesis.
Kuiken, Thijs; Buijs, Pascal; van Run, Peter; van Amerongen, Geert; Koopmans, Marion; van den Hoogen, Bernadette
2017-11-21
Although avian paramyxovirus type 1 is known to cause mild transient conjunctivitis in human beings, there are two recent reports of fatal respiratory disease in immunocompromised human patients infected with the pigeon lineage of the virus (PPMV-1). In order to evaluate the potential of PPMV-1 to cause respiratory tract disease, we inoculated a PPMV-1 isolate (hPPMV-1/Netherlands/579/2003) from an immunocompromised human patient into three healthy cynomolgus macaques (Macaca fascicularis) and examined them by clinical, virological, and pathological assays. In all three macaques, PPMV-1 replication was restricted to the respiratory tract and caused pulmonary consolidation affecting up to 30% of the lung surface. Both alveolar and bronchiolar epithelial cells expressed viral antigen, which co-localized with areas of diffuse alveolar damage. The results of this study demonstrate that PPMV-1 is a primary respiratory pathogen in cynomolgus macaques, and support the conclusion that PPMV-1 may cause fatal respiratory disease in immunocompromised human patients.
Depleted uranium induces neoplastic transformation in human lung epithelial cells.
Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce
2010-02-15
Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.
Macrophage and tumor cell responses to repetitive pulsed X-ray radiation
NASA Astrophysics Data System (ADS)
Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.
2017-05-01
To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.
Ding, Xingchen; Wang, Linlin; Liu, Xijun; Sun, Xindong; Yu, Jinming; Meng, Xue
2017-03-01
The pathogenesis and progression of lung cancer is a complicated process in which many genes take part. But molecular gene testing is typically only performed in advanced-stage non-squamous non-small-cell lung cancer (NSCLC). The value of tyrosine kinase inhibitors (TKI) administration is not widely recognized with respect to early-stage NSCLC. Here, we present a case of a man, heavy smoker who initially presented with stage IA lung adenocarcinoma (LADC). Three years after a lung lobectomy, he was diagnosed with advanced lung squamous cell carcinoma (SCC), according to laboratory, imaging, and pathological examinations. The case initially had an early-stage LADC with an L858R epidermal growth factor receptor (EGFR) mutation. A subsequent advanced SCC bearing EGFR L858R/T790M mutations occurred 3 years after surgery. The comprehensive therapy we utilized, including surgical resection for the early-stage lesion and GP chemotherapy and local radiotherapy as the first line therapy along with gefitinib maintenance treatment for the advanced metachronous second primary tumors (MST). The synthetical therapy, have resulted in our patient with remaining alive and progression free for 4.5 years. This case suggests that changes in molecular pathology should be monitored closely throughout cancer progression to guide personalized therapy and improve prognosis. We further review administration of TKI to early-stage NSCLC and to the metachronous second primary tumors (MST) in survivors.
Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong
2012-01-01
Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886
Tamoxifen Therapy to Treat Pulmonary Arterial Hypertension
2018-05-16
Hypertension; Pulmonary Arterial Hypertension; Familial Primary Pulmonary Hypertension; Primary Pulmonary Hypertension; Lung Diseases; Tamoxifen; Estrogen Receptor Antagonist; Hormone Antagonists; Estrogens
Lee, Jae W.; Fang, Xiaohui; Dolganov, Gregory; Fremont, Richard D.; Bastarache, Julie A.; Ware, Lorraine B.; Matthay, Michael A.
2009-01-01
Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of αENaC, α1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02±0.05 versus 1.31±0.56 μl/cm2/h, p<0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers. PMID:17580309
The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis.
Li, J; Zhan, Q
2011-05-10
The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.
The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis
Li, J; Zhan, Q
2011-01-01
The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis. PMID:21505454
Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross
2017-08-01
Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.
Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko
2007-01-01
Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation. PMID:17433115
Woo, Minjeong; Wood, Connor; Kwon, Doyoon; Park, Kyu-Ho Paul; Fejer, György; Delorme, Vincent
2018-01-01
Lung alveolar macrophages (AMs) are in the first line of immune defense against respiratory pathogens and play key roles in the pathogenesis of Mycobacterium tuberculosis ( Mtb ) in humans. Nevertheless, AMs are available only in limited amounts for in vitro studies, which hamper the detailed molecular understanding of host- Mtb interactions in these macrophages. The recent establishment of the self-renewing and primary Max Planck Institute (MPI) cells, functionally very close to lung AMs, opens unique opportunities for in vitro studies of host-pathogen interactions in respiratory diseases. Here, we investigated the suitability of MPI cells as a host cell system for Mtb infection. Bacterial, cellular, and innate immune features of MPI cells infected with Mtb were characterized. Live bacteria were readily internalized and efficiently replicated in MPI cells, similarly to primary murine macrophages and other cell lines. MPI cells were also suitable for the determination of anti-tuberculosis (TB) drug activity. The primary innate immune response of MPI cells to live Mtb showed significantly higher and earlier induction of the pro-inflammatory cytokines TNFα, interleukin 6 (IL-6), IL-1α, and IL-1β, as compared to stimulation with heat-killed (HK) bacteria. MPI cells previously showed a lack of induction of the anti-inflammatory cytokine IL-10 to a wide range of stimuli, including HK Mtb . By contrast, we show here that live Mtb is able to induce significant amounts of IL-10 in MPI cells. Autophagy experiments using light chain 3B immunostaining, as well as LysoTracker labeling of acidic vacuoles, demonstrated that MPI cells efficiently control killed Mtb by elimination through phagolysosomes. MPI cells were also able to accumulate lipid droplets in their cytoplasm following exposure to lipoproteins. Collectively, this study establishes the MPI cells as a relevant, versatile host cell model for TB research, allowing a deeper understanding of AMs functions in this pathology.
ACID AIR AND AEROBIOLOGY RELATED TO THE MATURING HUMAN LUNG
The effect of 'acid air' on human health was studied by considering the effects of hygroscopicity upon aerosol deposition in the lung as a function of human subject age. Children are a critical sub-population to be incorporated into health effects analyses following ambient expos...
EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON OZONE-INDUCED LUNG INJURY IN HUMAN SUBJECTS
Epidemiological, in vitro and animal studies suggest that dietary antioxidants can modulate the cellular and physiologic effects of ozone (O3) inhalation in humans. To determine whether antioxidants can influence human susceptibility to O3-induced changes in lung function and a...
Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L
2016-02-01
The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.
Schwab, Kristin; Saggar, Rajeev; Duffy, Erin; Elashoff, David; Tseng, Chi-Hong; Weigt, Sam; Charan, Deepshikha; Abtin, Fereidoun; Johannes, Jimmy; Derhovanessian, Ariss; Conklin, Jeffrey; Ghassemi, Kevin; Khanna, Dinesh; Siddiqui, Osama; Ardehali, Abbas; Hunter, Curtis; Kwon, Murray; Biniwale, Reshma; Lo, Michelle; Volkmann, Elizabeth; Torres Barba, David; Belperio, John A.; Mahrer, Thomas; Furst, Daniel E.; Kafaja, Suzanne; Clements, Philip; Shino, Michael; Gregson, Aric; Kubak, Bernard; Lynch, Joseph P.; Ross, David
2016-01-01
Rationale: Consideration of lung transplantation in patients with systemic sclerosis (SSc) remains guarded, often due to the concern for esophageal dysfunction and the associated potential for allograft injury and suboptimal post–lung transplantation outcomes. Objectives: The purpose of this study was to systematically report our single-center experience regarding lung transplantation in the setting of SSc, with a particular focus on esophageal dysfunction. Methods: We retrospectively reviewed all lung transplants at our center from January 1, 2000 through August 31, 2012 (n = 562), comparing the SSc group (n = 35) to the following lung transplant diagnostic subsets: all non-SSc (n = 527), non-SSc diffuse fibrotic lung disease (n = 264), and a non-SSc matched group (n = 109). We evaluated post–lung transplant outcomes, including survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates. In addition, we defined severe esophageal dysfunction using esophageal manometry and esophageal morphometry criteria on the basis of chest computed tomography images. For patients with SSc referred for lung transplant but subsequently denied (n = 36), we queried the reason(s) for denial with respect to the concern for esophageal dysfunction. Measurements and Main Results: The 1-, 3-, and 5-year post–lung transplant survival for SSc was 94, 77, and 70%, respectively, and similar to the other groups. The remaining post–lung transplant outcomes evaluated were also similar between SSc and the other groups. Approximately 60% of the SSc group had severe esophageal dysfunction. Pre–lung transplant chest computed tomography imaging demonstrated significantly abnormal esophageal morphometry for SSc when compared with the matched group. Importantly, esophageal dysfunction was the sole reason for lung transplant denial in a single case. Conclusions: Relative to other lung transplant indications, our SSc group experienced comparable survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates, despite the high prevalence of severe esophageal dysfunction. Esophageal dysfunction rarely precluded active listing for lung transplantation. PMID:27078625
Isolation, Characterization, and Functional Analysis of Ferret Lymphatic Endothelial Cells
Berendam, Stella J.; Fallert-Junecko, Beth A.; Murphy-Corb, Michael A.; Fuller, Deborah H.; Reinhart, Todd A.
2014-01-01
The lymphatic endothelium (LE) serves as a conduit for transport of immune cells and soluble antigens from peripheral tissues to draining lymph nodes (LNs), contributing to development of host immune responses and possibly dissemination of microbes. Lymphatic endothelial cells (LECs) are major constituents of the lymphatic endothelium. These specialized cells could play important roles in initiation of host innate immune responses through sensing of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), including toll-like receptors (TLRs). LECs secrete pro-inflammatory cytokines and chemokines to create local inflammatory conditions for recruitment of naïve antigen presenting cells (APCs) such as dendritic cells (DCs) to sites of infection and/or vaccine administration. In this study, we examined the innate immune potential of primary LEC populations derived from multiple tissues of an animal model for human infectious diseases -- the ferret. We generated a total of six primary LEC populations from lung, tracheal, and mesenteric LN tissues from three different ferrets. Standard RT-PCR characterization of these primary LECs showed that they varied in their expression of LEC markers. The ferret LECs were examined for their ability to respond to poly I:C (TLR3 and RIG-1 ligand) and other known TLR ligands as measured by production of proinflammatory cytokine (IFNα, IL6, IL10, Mx1, and TNFα) and chemokine (CCL5, CCL20, and CXCL10) mRNAs using real time RT-PCR. Poly I:C exposure induced robust proinflammatory responses by all of the primary ferret LECs. Chemotaxis was performed to determine the functional activity of CCL20 produced by the primary lung LECs and showed that the LEC-derived CCL20 was abundant and functional. Taken together, our results continue to reveal the innate immune potential of primary LECs during pathogen-host interactions and expand our understanding of the roles of LECs might play in health and disease in animal models. PMID:25540877
Isolation, characterization, and functional analysis of ferret lymphatic endothelial cells.
Berendam, Stella J; Fallert Junecko, Beth A; Murphey-Corb, Michael A; Fuller, Deborah H; Reinhart, Todd A
2015-02-15
The lymphatic endothelium (LE) serves as a conduit for transport of immune cells and soluble antigens from peripheral tissues to draining lymph nodes (LNs), contributing to development of host immune responses and possibly dissemination of microbes. Lymphatic endothelial cells (LECs) are major constituents of the lymphatic endothelium. These specialized cells could play important roles in initiation of host innate immune responses through sensing of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), including toll-like receptors (TLRs). LECs secrete pro-inflammatory cytokines and chemokines to create local inflammatory conditions for recruitment of naïve antigen presenting cells (APCs) such as dendritic cells (DCs) to sites of infection and/or vaccine administration. In this study, we examined the innate immune potential of primary LEC populations derived from multiple tissues of an animal model for human infectious diseases - the ferret. We generated a total of six primary LEC populations from lung, tracheal, and mesenteric LN tissues from three different ferrets. Standard RT-PCR characterization of these primary LECs showed that they varied in their expression of LEC markers. The ferret LECs were examined for their ability to respond to poly I:C (TLR3 and RIG-I ligand) and other known TLR ligands as measured by production of proinflammatory cytokine (IFNα, IL6, IL10, Mx1, and TNFα) and chemokine (CCL5, CCL20, and CXCL10) mRNAs using real time RT-PCR. Poly I:C exposure induced robust proinflammatory responses by all of the primary ferret LECs. Chemotaxis was performed to determine the functional activity of CCL20 produced by the primary lung LECs and showed that the LEC-derived CCL20 was abundant and functional. Taken together, our results continue to reveal the innate immune potential of primary LECs during pathogen-host interactions and expand our understanding of the roles LECs might play in health and disease in animal models. Copyright © 2014 Elsevier B.V. All rights reserved.
Biotin deficiency inhibits heme synthesis and impairs mitochondria in human lung fibroblasts.
Atamna, Hani; Newberry, Justin; Erlitzki, Ronit; Schultz, Carla S; Ames, Bruce N
2007-01-01
Four of the 5 biotin-dependent carboxylases (BDC) are in the mitochondria. BDC replace intermediates in the Krebs [tricarboxylic acid (TCA)] cycle that are regularly removed for the synthesis of key metabolites such as heme or amino acids. Heme, unlike amino acids, is not recycled to regenerate these intermediates, is not utilized from the diet, and must be synthesized in situ. We studied whether biotin deficiency (BD) lowers heme synthesis and whether mitochondria would be disrupted. Biotin-deficient medium was prepared by using bovine serum stripped of biotin with charcoal/dextran or avidin. Biotin-deficient primary human lung fibroblasts (IMR90) lost their BDC and senesced before biotin-sufficient cells. BD caused heme deficiency; there was a decrease in heme content and heme synthesis, and biotin-deficient cells selectively lost mitochondrial complex IV, which contains heme-a. Loss of complex IV, which is part of the electron transport chain, triggered oxidant release and oxidative damage, hallmarks of heme deficiency. Restoring biotin to the biotin-deficient medium prevented the above changes. Old cells were more susceptible to biotin shortage than young cells. These findings highlight the biochemical connection among biotin, heme, and iron metabolism, and the mitochondria, due to the role of biotin in maintaining the biochemical integrity of the TCA cycle. The findings are discussed in relation to aging and birth defects in humans.
Molecular Testing in Multiple Synchronous Lung Adenocarcinomas: Case Report and Literature Review.
Rafael, Oana C; Lazzaro, Richard; Hasanovic, Adnan
2016-02-01
Discovery of driver mutations in pulmonary adenocarcinoma has revolutionized the field of thoracic oncology with major impact on therapy and diagnosis. Testing for EGFR, ALK, and KRAS mutations has become part of everyday practice. We report a case with multiple synchronous primary pulmonary adenocarcinomas in a 72-year-old female with previous history of smoking. The patient presented with cough and bilateral lung ground glass opacities. A positron emission tomography/computed tomography scan showed no activity in mediastinal lymph nodes. She underwent a left upper lobe biopsy and a right upper lobe wedge resection. Pathology revealed 4 morphologically distinct adenocarcinoma foci, suggestive of synchronous primary lung tumors. Molecular testing demonstrated no mutation in the left tumor. Three different driver mutations were present in the right lung tumors: KRAS codon 12 G12D and G12V and EGFR exon 21 L858R mutation, confirming the initial histologic impression. Subsequently, left upper lobe lobectomy showed 3 additional foci of adenocarcinoma with different morphologies, suggestive of synchronous primaries as well. No additional molecular testing was performed. Synchronous pulmonary adenocarcinomas are not uncommon; however, 4 or more synchronous tumors are rare. Distinguishing multiple primary tumors from intrapulmonary metastases is a common problem in thoracic oncology with major implications for staging, prognosis, and treatment. Lung adenocarcinoma subclassification based on predominant and coexisting histologic patterns can greatly facilitate differentiation between intrapulmonary metastases and multiple synchronous tumors. Use of molecular profiling is recommended since it further increases confidence in the diagnostic workup of multiple pulmonary adenocarcinomas and helps guiding therapy. © The Author(s) 2015.
Iwabuchi, Tamiko; Kimura, Yukihiko; Suzuki, Takashi; Hayashi, Haeru; Fujimoto, Hiroaki; Hashimoto, Yuko; Ogawa, Takashi; Kusama, Hiroshi; Fukutake, Katsuyuki; Ohyashiki, Kazuma
2011-04-01
A 53-year-old female developed epigastric discomfort and back pain in 2007. Diagnostic imaging studies demonstrated a soft tissue tumor with heterogeneous enhancement in the anterior mediastinum and multiple nodules in the right lung. She underwent expanded thymectomy with subtotal resection of the right lung. The pathological diagnosis was primary thymic mucosa-associated lymphoid tissue (MALT) lymphoma. The patient complained of ocular discomfort, oral dryness and continuous nasal bleeding in 2007. Detailed examination led to a diagnosis of Sjögren syndrome and acquired von Willebrand syndrome. Rituximab treatment for residual disease achieved not only a reduction of the lung MALT lymphoma but also clinical and hematological remission of both syndromes. This is, to our knowledge, the first reported case of primary thymic MALT lymphoma accompanied by Sjögren and acquired von Willebrand syndromes.