Sample records for primary human pathogen

  1. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens.

    PubMed

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N

    2015-12-01

    The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.

  2. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens

    PubMed Central

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.

    2018-01-01

    Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444

  3. Pathogenicity of Shigella in chickens.

    PubMed

    Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.

  4. Pathogenicity of Shigella in Chickens

    PubMed Central

    Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance. PMID:24949637

  5. Searching for Helicobacter pylori and Chlamydia pneumoniae in primary endodontic infections.

    PubMed

    Rôças, Isabela N; Siqueira, José F

    2012-04-01

    The purpose of this study was to search samples from primary endodontic infections for the presence of two common human bacterial pathogens - Helicobacter pylori and Chlamydia pneumoniae. Genomic DNA isolated from samples taken from 25 root canals of teeth with asymptomatic (chronic) apical periodontitis and 25 aspirates from acute apical abscess was initially amplified by the multiple displacement amplification approach and then used as template in species-specific polymerase chain reaction (PCR) for detection of H. pylori and C. pneumoniae. All clinical samples were positive for the presence of bacterial DNA. However, no clinical sample was positive for either H. pylori or C. pneumoniae. Neither H. pylori nor C. pneumoniae were found in samples from primary endodontic infections. These findings suggest that these species are not candidate endodontic pathogens and that the necrotic root canal does not serve as a reservoir for these human pathogens in healthy patients.

  6. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  7. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells.

    PubMed

    Sauerhering, Lucie; Zickler, Martin; Elvert, Mareike; Behner, Laura; Matrosovich, Tatyana; Erbar, Stephanie; Matrosovich, Mikhail; Maisner, Andrea

    2016-07-01

    Highly pathogenic Nipah virus (NiV) causes symptomatic infections in pigs and humans. The severity of respiratory symptoms is much more pronounced in pigs than in humans, suggesting species-specific differences of NiV replication in porcine and human airways. Here, we present a comparative study on productive NiV replication in primary airway epithelial cell cultures of the two species. We reveal that NiV growth substantially differs in primary cells between pigs and humans, with a more rapid spread of infection in human airway epithelia. Increased replication, correlated with higher endogenous expression levels of the main NiV entry receptor ephrin-B2, not only significantly differed between airway cells of the two species but also varied between cells from different human donors. To our knowledge, our study provides the first experimental evidence of species-specific and individual differences in NiV receptor expression and replication kinetics in primary airway epithelial cells. It remains to be determined whether and how these differences contribute to the viral host range and pathogenicity.

  8. Ultra-low power laser stimulation impairs the adhesion of Staphylococcus aureus to primary human cells, and interferes with the expression of staphylococcal pathogenic factors.

    PubMed

    Petruzzelli, Sabina; Congiu, Antonio; Gallamini, Michele; Pompei, Raffaello

    2014-04-01

    Lasers are commonly used in several fields of medicine as a complementary therapy for internal medicine, surgery and also diagnostics. The efficacy of ultra-low level laser therapy (ULLLT) at power levels around 0.15 mW/cm(2) has been demonstrated both in in vitro experiments and in the clinical environment. This work used an ULLLT laser source to analyze its efficacy on Staphylococcus aureus adhesion to cells and on its ability to produce pathogenic factors. Laser stimulation succeeded in impairing the binding of S. aureus to primary human cells in culture and in inhibiting the expression of coagulase, one of the main staphylococcal pathogenic factors. The importance of the extracellular matrix (ECM) and the modification of the ECM redox potential in these activities were also evidenced.

  9. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals.

    PubMed

    Rodrigues, Anderson Messias; Cruz Choappa, Rodrigo; Fernandes, Geisa Ferreira; de Hoog, G Sybren; de Camargo, Zoilo Pires

    2016-02-01

    A combination of phylogeny, evolution, morphologies and ecologies has enabled major advances in understanding the taxonomy of Sporothrix species, including members exhibiting distinct lifestyles such as saprobes, human/animal pathogens, and insect symbionts. Phylogenetic analyses of ITS1/2 + 5.8s sequences split Sporothrix genus in two well-defined groups with dissimilar ecologies. Species embedded in the Sporothrix schenckii complex are frequently agents of human and animal sporotrichosis, and some of these are responsible for large sapronoses and zoonoses around the warmer temperate regions of the world. At the other extreme, basal saprophytic species evolved in association with decaying wood and soil, and are rarely found to cause human disease. We propose to create a new taxa, Sporothrix chilensis sp. nov., to accommodate strains collected from a clinical case of onychomycosis as well as from environmental origins in Chile. Multigene analyses based on ITS1/2 + 5.8s region, beta-tubulin, calmodulin and translation elongation factor 1α revealed that S. chilensis is a member of the Sporothrix pallida complex, and the nearest taxon is Sporothrix mexicana, a rare soil-borne species, non-pathogenic to humans. The ITS region serves as a primary barcode marker, while each one of the protein-coding loci easily recognized species boundaries providing sufficient information for species identification. A disseminated model of murine sporotrichosis revealed a mild-pathogenic potential, with lung invasion. Although S. chilensis is not a primary pathogen, accidental infection may have an impact in the immunosuppressed population. With the introduction of distinct species with similar routes of transmission but different virulence, identification of Sporothrix agents at the species level is mandatory. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Pathogenic strains of Yersinia enterocolitica isolated from domestic dogs (Canis familiaris) belonging to farmers are of the same subtype as pathogenic Y. enterocolitica strains isolated from humans and may be a source of human infection in Jiangsu Province, China.

    PubMed

    Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi

    2010-05-01

    We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections.

  11. Pathogenic Strains of Yersinia enterocolitica Isolated from Domestic Dogs (Canis familiaris) Belonging to Farmers Are of the Same Subtype as Pathogenic Y. enterocolitica Strains Isolated from Humans and May Be a Source of Human Infection in Jiangsu Province, China ▿ ‡

    PubMed Central

    Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi

    2010-01-01

    We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections. PMID:20181899

  12. Conversations between kingdoms: small RNAs.

    PubMed

    Weiberg, Arne; Bellinger, Marschal; Jin, Hailing

    2015-04-01

    Humans, animals, and plants are constantly under attack from pathogens and pests, resulting in severe consequences on global human health and crop production. Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism that is involved in almost all eukaryotic cellular processes, including host immunity and pathogen virulence. Recent evidence supports the significant contribution of sRNAs and RNAi to the communication between hosts and some eukaryotic pathogens, pests, parasites, or symbiotic microorganisms. Mobile silencing signals—most likely sRNAs—are capable of translocating from the host to its interacting organism, and vice versa. In this review, we will provide an overview of sRNA communications between different kingdoms, with a primary focus on the advances in plant-pathogen interaction systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence

    PubMed Central

    Brand, Alexandra

    2012-01-01

    Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo. PMID:22121367

  14. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density.

    PubMed

    Tallavaara, Miikka; Eronen, Jussi T; Luoto, Miska

    2018-02-06

    The environmental drivers of species distributions and abundances are at the core of ecological research. However, the effects of these drivers on human abundance are not well-known. Here, we report how net primary productivity, biodiversity, and pathogen stress affect human population density using global ethnographic hunter-gatherer data. Our results show that productivity has significant effects on population density globally. The most important direct drivers, however, depend on environmental conditions: biodiversity influences population density exclusively in low-productivity regions, whereas pathogen stress does so in high-productivity regions. Our results also indicate that subtropical and temperate forest biomes provide the highest carrying capacity for hunter-gatherer populations. These findings document that environmental factors play a key role in shaping global population density patterns of preagricultural humans.

  15. CHANGES IN GENE EXPRESSION DURING DIFFERENTIATION OF CULTURED HUMAN PRIMARY BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Primary airway epithelial cell cultures are a useful tool for the in vitro study of normal bronchial cell differentiation and function, airway disease mechanisms, and pathogens and toxin response. Growth of these cells at an air-liquid interface for several days results in the f...

  16. DETECTION OF CYCLOSPORA CAYETANESIS USING A QUANTITATIVE REAL-TIME PCR ASSAY

    EPA Science Inventory

    Cyclosporal cayetanensis, a coccidian parasite of humans, has been recognized worldwide as an emerging pathogen in both immunocompromised (Ortega et al.1993) and immunocompetent individuals (Berlin et al.1994). Presently, humans apear to be the primary host for this parasite (Eb...

  17. Commercial strain-derived clinical Saccharomyces cerevisiae can evolve new phenotypes without higher pathogenicity.

    PubMed

    Pfliegler, Walter P; Boros, Enikő; Pázmándi, Kitti; Jakab, Ágnes; Zsuga, Imre; Kovács, Renátó; Urbán, Edit; Antunovics, Zsuzsa; Bácsi, Attila; Sipiczki, Matthias; Majoros, László; Pócsi, István

    2017-11-01

    Saccharomyces cerevisiae is one of the most important microbes in food industry, but there is growing evidence on its potential pathogenicity as well. Its status as a member of human mycobiome is still not fully understood. In this study, we characterize clinical S. cerevisiae isolates from Hungarian hospitals along with commercial baking and probiotic strains, and determine their phenotypic parameters, virulence factors, interactions with human macrophages, and pathogenicity. Four of the clinical isolates could be traced back to commercial strains based on genetic fingerprinting. Our observations indicate that the commercial-derived clinical isolates have evolved new phenotypes and show similar, or in two cases, significantly decreased pathogenicity. Furthermore, immunological experiments revealed that the variability in human primary macrophage activation after coincubation with yeasts is largely donor and not isolate dependent. Isolates in this study offer an interesting insight into the potential microevolution of probiotic and food strains in human hosts. These commensal yeasts display various changes in their phenotypes, indicating that the colonization of the host does not necessarily impose a selective pressure toward higher virulence/pathogenicity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    PubMed Central

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  19. What have we learned after more than 30 years of research into the effects of sunlight, water type, nutrients, temperature and biotic interactions on decay of fecal indicators and pathogens?

    EPA Science Inventory

    Many waterborne pathogens originate in the gastrointestinal tract of humans or other animals (the primary habitat), and enter water bodies (secondary habitat) via direct fecal deposition, runoff, or sewage discharges. Fecal indicator bacteria (FIB) such as fecal coliforms, entero...

  20. Prebiotic and probiotic approaches to improving food safety on the farm and their implications on human health

    USDA-ARS?s Scientific Manuscript database

    Human health is a broad category that encompasses the entirety of the food production system. Livestock production practices have important impacts on human health because livestock are not only a primary food source, but also can be the source of pathogenic bacteria that may enter the food chain i...

  1. Protection from pulmonary tissue damage associated with infection of cynomolgus macaques by highly pathogenic avian influenza virus (H5N1) by low dose natural human IFN-α administered to the buccal mucosa.

    PubMed

    Strayer, David R; Carter, William A; Stouch, Bruce C; Stittelaar, Koert J; Thoolen, Robert J M M; Osterhaus, Albert D M E; Mitchell, William M

    2014-10-01

    Using an established nonhuman primate model for H5N1 highly pathogenic influenza virus infection in humans, we have been able to demonstrate the prophylactic mitigation of the pulmonary damage characteristic of human fatal cases from primary influenza virus pneumonia with a low dose oral formulation of a commercially available parenteral natural human interferon alpha (Alferon N Injection®). At the highest oral dose (62.5IU/kg body weight) used there was a marked reduction in the alveolar inflammatory response with minor evidence of alveolar and interstitial edema in contrast to the hemorrhage and inflammatory response observed in the alveoli of control animals. The mitigation of severe damage to the lower pulmonary airway was observed without a parallel reduction in viral titers. Clinical trial data will be necessary to establish its prophylactic human efficacy for highly pathogenic influenza viruses. Copyright © 2014. Published by Elsevier B.V.

  2. Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes.

    PubMed

    Elsori, Deena H; Yakubenko, Valentin P; Roome, Talat; Thiagarajan, Praveena S; Bhattacharjee, Ashish; Yadav, Satya P; Cathcart, Martha K

    2011-09-01

    Zymosan, a mimic of fungal pathogens, and its opsonized form (ZOP) are potent stimulators of monocyte NADPH oxidase, resulting in the production of O(2)(.-), which is critical for host defense against fungal and bacterial pathogens and efficient immune responses; however, uncontrolled O(2)(.-) production may contribute to chronic inflammation and tissue injury. Our laboratory has focused on characterizing the signal transduction pathways that regulate NADPH oxidase activity in primary human monocytes. In this study, we examined the involvement of various pattern recognition receptors and found that Dectin-1 is the primary receptor for zymosan stimulation of O(2)(.-) via NADPH oxidase in human monocytes, whereas Dectin-1 and CR3 mediate the activation by ZOP. Further studies identified Syk and Src as important signaling components downstream of Dectin-1 and additionally identified PKCδ as a novel downstream signaling component for zymosan-induced O(2)(.-) as well as phagocytosis. Our results show that Syk and Src association with Dectin-1 is dependent on PKCδ activity and expression and demonstrate direct binding between Dectin-1 and PKCδ. Finally, our data show that PKCδ and Syk but not Src are required for Dectin-1-mediated phagocytosis. Taken together, our data identify Dectin-1 as the major PRR for zymosan in primary human monocytes and identify PKCδ as a novel downstream signaling kinase for Dectin-1-mediated regulation of monocyte NADPH oxidase and zymosan phagocytosis.

  3. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production

    PubMed Central

    Xing, Junji; Ly, Hinh

    2014-01-01

    ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708

  4. Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models.

    PubMed

    Alves-Barroco, Cinthia; Roma-Rodrigues, Catarina; Raposo, Luís R; Brás, Catarina; Diniz, Mário; Caço, João; Costa, Pedro M; Santos-Sanches, Ilda; Fernandes, Alexandra R

    2018-03-25

    Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic.

    PubMed

    Brisson, Dustin; Dykhuizen, Daniel E; Ostfeld, Richard S

    2008-01-22

    Emerging zoonotic pathogens are a constant threat to human health throughout the world. Control strategies to protect public health regularly fail, due in part to the tendency to focus on a single host species assumed to be the primary reservoir for a pathogen. Here, we present evidence that a diverse set of species can play an important role in determining disease risk to humans using Lyme disease as a model. Host-targeted public health strategies to control the Lyme disease epidemic in North America have focused on interrupting Borrelia burgdorferi sensu stricto (ss) transmission between blacklegged ticks and the putative dominant reservoir species, white-footed mice. However, B. burgdorferi ss infects more than a dozen vertebrate species, any of which could transmit the pathogen to feeding ticks and increase the density of infected ticks and Lyme disease risk. Using genetic and ecological data, we demonstrate that mice are neither the primary host for ticks nor the primary reservoir for B. burgdorferi ss, feeding 10% of all ticks and 25% of B. burgdorferi-infected ticks. Inconspicuous shrews feed 35% of all ticks and 55% of infected ticks. Because several important host species influence Lyme disease risk, interventions directed at a multiple host species will be required to control this epidemic.

  6. Adhesive and invasive capacities of Edwardsiella tarda isolated from South American sea lion.

    PubMed

    Fernández, Araceli; Villanueva, María Paz; González, Mario; Fernández, Fabiola; Latif, Fadua; Flores, Sandra Nonier; Fernández, Heriberto

    2014-01-01

    Edwarsiella tarda is a zoonotic bacterium that can be isolated from humans, animals and the environment. Although E. tarda is primarily considered a fish pathogen, it is the only species of its genus considered to be pathogenic for humans as well. A survey of zoonotic intestinal bacteria in fresh feces from South American sea lions (SASL) Otaria flavescens, reported E. tarda as the most frequently isolated species. In this study, we used HEp-2 cells to establish in vitro the adherence and invasive ability of 17 E. tarda strains isolated from SASL fecal material. All the strains were able to adhere and invade HEp-2 cells with adhesion and invasion percentages ranging from 56 to 100% and 21 to 74%, respectively. Despite the expression of these pathogenic factors, further investigation is needed to determine whether this bacterium could play a role as primary pathogen for this and other species of pinnipeds.

  7. Adhesive and invasive capacities of Edwarsiella tarda isolated from South American sea lion

    PubMed Central

    Fernández, Araceli; Villanueva, María Paz; González, Mario; Fernández, Fabiola; Latif, Fadua; Flores, Sandra Nonier; Fernández, Heriberto

    2014-01-01

    Edwarsiella tarda is a zoonotic bacterium that can be isolated from humans, animals and the environment. Although E. tarda is primarily considered a fish pathogen, it is the only species of its genus considered to be pathogenic for humans as well. A survey of zoonotic intestinal bacteria in fresh feces from South American sea lions (SASL) Otaria flavescens, reported E. tarda as the most frequently isolated species. In this study, we used HEp-2 cells to establish in vitro the adherence and invasive ability of 17 E. tarda strains isolated from SASL fecal material. All the strains were able to adhere and invade HEp-2 cells with adhesion and invasion percentages ranging from 56 to 100% and 21 to 74%, respectively. Despite the expression of these pathogenic factors, further investigation is needed to determine whether this bacterium could play a role as primary pathogen for this and other species of pinnipeds. PMID:25477948

  8. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4

    PubMed Central

    Alsina, L; Israelsson, E; Altman, MC; Dang, KK; Ghandil, P; Israel, L; von Bernuth, H; Baldwin, N; Qin, H; Jin, Z; Banchereau, R; Anguiano, E; Ionan, A; Abel, L; Puel, A; Picard, C; Pascual, V; Casanova, JL; Chaussabel, D

    2014-01-01

    Loss of function in the kinase IRAK-4 or the adapter MyD88 in humans interrupts a pathway critical for pathogen sensing and ignition of inflammation. Yet patients with loss of function mutations are surprisingly only susceptible to a limited range of pathogens. We employed a systems approach to investigate transcriptome responses following in vitro exposure of patients’ blood to Toll-like receptor and interleukin-1 receptor agonists, and whole pathogens. Responses to purified agonists were globally abolished but variable residual responses were present following exposure to whole pathogens. Further dissection of the latter responses identified a narrow repertoire of immune transcriptional programs affected by loss of MyD88 or IRAK-4 function. This work introduces the use of a systems approach for the global assessment of innate immune responses, and the characterization of human primary immunodeficiencies. PMID:25344726

  9. Streptococcus suis infection

    PubMed Central

    Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun

    2014-01-01

    Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807

  10. Avian influenza viruses in humans.

    PubMed

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  11. The application of food safety interventions in primary production of beef and lamb: a review.

    PubMed

    Adam, K; Brülisauer, F

    2010-07-31

    The production of safe red meat depends on effective control of pathogenic microorganisms at all stages of the "farm-to-fork" chain. Eight microorganisms have been selected as the focus of the PathogenCombat project: Shiga toxin producing Escherichia coli (STEC), Mycobacterium avium subspecies paratuberculosis (Map), Listeria monocytogenes, Campylobacter jejuni, Penicillium nordicum, invasive variants of Saccharomyces cerevisiae, hepatitis E virus and tick borne encephalitis virus. The need and potential for coordinated control of the selected food-borne pathogens by on-farm interventions is assessed using a decision tree and a review of the relevant scientific literature. Control measures to reduce the carriage of these pathogens in ruminants prior to slaughter are reviewed with reference to the current regulations and guidelines relating to the primary production. From the eight pathogens investigated, two (STEC and Map), are likely to be effectively controlled by interventions at farm level and the applicable interventions are described and discussed. Ruminants are the main reservoir for these two pathogens; hence a reduction of carriage in livestock should directly reduce human exposure through the consumption of beef and lamb. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.

    PubMed

    Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N

    2014-03-06

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.

  13. Primary lung abscess caused by Staphylococcus lugdunensis.

    PubMed

    Chou, Deng-Wei; Lee, Chao-Tai

    2017-11-01

    Staphylococcus lugdunensis, a strain of coagulase-negative staphylococci, is part of the normal flora of human skin but can cause multiple infections at various sites. This microorganism has emerged as a major human pathogen. However, no study has reported primary lung abscess caused by S. lugdunensis. A 54-year-old alcoholic man without relevant past medical history was admitted because of primary lung abscesses. Empirical amoxicillin/clavulanate therapy was initially administered; however, the patient had persistent pleuritic chest pain and fever. He subsequently underwent resection of the lung abscess and removal of exudative pleural effusion on the fourth hospital day. Histopathologic examination confirmed the diagnosis of lung abscess, and colonies of gram-positive bacteria were identified. The culture specimen from the abscess was positive for S. lugdunensis, which was susceptible to amoxicillin/clavulanate, cefazolin, ciprofloxacin, clindamycin, erythromycin, oxacillin, teicoplanin, tetracycline, and vancomycin. Following resection and 3 weeks of amoxicillin/clavulanate therapy, the patient eventually recovered well without relapse. This case report is the first to describe S. lugdunensis as a cause of primary lung abscess; this microorganism should be considered a potential monomicrobial pathogen in primary lung abscess. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Thermal ecology of Naegleria fowleri from a power plant cooling reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huizinga, H.W.; McLaughlin, G.L.

    1990-07-01

    The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance,more » mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.« less

  15. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells

    PubMed Central

    Lukiw, Walter J.; Pogue, Aileen I.

    2007-01-01

    Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564

  16. Human primary myeloid dendritic cells interact with the opportunistic fungal pathogen Aspergillus fumigatus via the C-type lectin receptor Dectin-1.

    PubMed

    Hefter, Maike; Lother, Jasmin; Weiß, Esther; Schmitt, Anna Lena; Fliesser, Mirjam; Einsele, Hermann; Loeffler, Juergen

    2017-07-01

    Aspergillus fumigatus is an opportunistic fungal pathogen causing detrimental infections in immunocompromised individuals. Dendritic cells (DCs) are potent antigen-presenting cells and recognize the A. fumigatus cell wall component β-1,3 glucan via Dectin-1, followed by DC maturation and cytokine release. Here, we demonstrate that human primary myeloid DCs (mDCs) interact with different morphotypes of A. fumigatus. Dectin-1 is expressed on mDCs and is down-regulated after contact with A. fumigatus, indicating that mDCs recognize A. fumigatus via this receptor. Blocking of Dectin-1, followed by stimulation with depleted zymosan diminished the up-regulation of the T-cell co-stimulatory molecules CD40, CD80, HLA-DR and CCR7 on mDCs and led to decreased release of the cytokines TNF-α, IL-8, IL-1β and IL-10. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Epidemiology of the Ebola Virus: Facts and Hypotheses.

    PubMed

    Portela Câmara F

    1998-12-01

    Marburg and Ebola viruses are emerging pathogens recognized since 1967, and in 1976, when they were first identified. These viruses are the only members of the Filoviridae family. They cause severe, frequently fatal, hemorrhagic fever. Each genus includes some serotypes with the distinctive characteristics to cause high mortality rate during outbreaks. The Ebola-Zaire subtype is the most lethal variant. The epidemiology of human pathogenic filovirus is reviewed in this paper considering the most relevant facts. Primary human cases arise probably through close contact with infected primates. This point may be the key to preventing the introduction of these viruses in human populations. Once introduced in humans, the infection may spread through close contact with infected individuals or their body fluids, particularly in hospital environments. A main feature of filovirus outbreaks is the occurrence of cycles of secondary infection.

  18. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins.

    PubMed

    Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J

    2016-10-01

    The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.

  19. Occurrence and pathogenicity of Naegleria fowleri in artificially heated waters.

    PubMed Central

    Sykora, J L; Keleti, G; Martinez, A J

    1983-01-01

    The occurrence of pathogenic Naegleria fowleri in thermal discharges, recipient waters, and cooling towers of eight power plants located in western Pennsylvania was investigated for 2 years in conjunction with several environmental measurements. Pathogenic N. fowleri was detected in one cooling tower and in the discharge, receiving waters, or both of five of eight localities. The occurrence of this organism was related to elevated temperatures, but no significant correlation was found for other biological and chemical parameters. Laboratory experiments on the effect of pH on pathogenic N. fowleri documented 100% survival at a range from 2.1 to 8.15. Higher pH reduced or killed the amoebae. No case of human primary amoebic meningoencephalitis occurred during the study. PMID:6847189

  20. Occurrence and pathogenicity of Naegleria fowleri in artificially heated waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykora, J.L.; Keleti, G.; Martinez, A.J.

    1983-03-01

    The occurrence of pathogenic Naegleria fowleri in thermal discharges, recipient waters, and cooling towers of eight power plants located in western Pennsylvania was investigated for 2 years in conjunction with several environmental measurements. Pathogenic N. fowleri was detected in one cooling tower and in the discharge, receiving waters, or both of five of eight localities. The occurrence of this organism was related to elevated temperatures, but no significant correlation was found for other biological and chemical parameters. Laboratory experiments on the effect of pH on pathogenic N. fowleri documented 100% survival at a range from 2.1 to 8.15. Higher pHmore » reduced or killed the amoebae. No case of human primary amoebic meningoencephalitis occurred during the study.« less

  1. Harnessing the microbiome to reduce Fusarium head blight

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum (Fg), the primary fungal pathogen responsible for Fusarium head blight (FHB), reduces crop yield and contaminates grain with trichothecene mycotoxins that are deleterious to plant, human and animal health. In this presentation, we will discuss two different research projects tha...

  2. [Survival Strategies of Aspergillus in the Human Body].

    PubMed

    Tashiro, Masato; Izumikawa, Koichi

    2017-01-01

     The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.

  3. Novel FHB control strategy using the volatile trichodiene to reduce mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum (Fg), the primary fungal pathogen responsible for Fusarium head blight (FHB), reduces crop yield and contaminates grain with trichothecene mycotoxins that are deleterious to plant, human and animal health. The first committed step in trichothecene biosynthesis is the formation o...

  4. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  5. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States.

    PubMed

    McBride, Graham B; Stott, Rebecca; Miller, Woutrina; Bambic, Dustin; Wuertz, Stefan

    2013-09-15

    This study is the first to report a quantitative microbial risk assessment (QMRA) on pathogens detected in stormwater discharges-of-concern, rather than relying on pathogen measurements in receiving waters. The pathogen concentrations include seven "Reference Pathogens" identified by the U.S. EPA: Cryptosporidium, Giardia, Salmonella, Norovirus, Rotavirus, Enterovirus, and Adenovirus. Data were collected from 12 sites representative of seven discharge types (including residential, commercial/industrial runoff, agricultural runoff, combined sewer overflows, and forested land), mainly during wet weather conditions during which times human health risks can be substantially elevated. The risks calculated herein therefore generally apply to short-term conditions (during and just after rainfall events) and so the results can be used by water managers to potentially inform the public, even for waters that comply with current criteria (based as they are on a 30-day mean risk). Using an example waterbody and mixed source, pathogen concentrations were used in QMRA models to generate risk profiles for primary and secondary water contact (or inhalation) by adults and children. A number of critical assumptions and considerations around the QMRA analysis are highlighted, particularly the harmonization of the pathogen concentrations measured in discharges during this project with those measured (using different methods) during the published dose-response clinical trials. Norovirus was the most dominant predicted health risk, though further research on its dose-response for illness (cf. infection) is needed. Even if the example mixed-source concentrations of pathogens had been reduced 30 times (by inactivation and mixing), the predicted swimming-associated illness rates - largely driven by Norovirus infections - can still be appreciable. Rotavirus generally induced the second-highest incidence of risk among the tested pathogens while risks for the other Reference Pathogens (Giardia, Cryptosporidium, Adenovirus, Enterovirus and Salmonella) were considerably lower. Secondary contact or inhalation resulted in considerable reductions in risk compared to primary contact. Measurements of Norovirus and careful incorporation of its concentrations into risk models (harmonization) should be a critical consideration for future QMRA efforts. The discharge-based QMRA approach presented herein is particularly relevant to cases where pathogens cannot be reliably detected in receiving waters with detection limits relevant to human health effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  7. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.

    PubMed

    Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S

    2013-12-05

    The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases.

    PubMed

    Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen

    2015-12-01

    The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to the surveillance of pathogens circulating in both human and animal populations and assess how frequently they are exchanged. This infrastructure will facilitate systematic investigations of pathogen ecology and evolution, enhance understanding of viral cross-species transmission events, and identify relevant risk factors and drivers of zoonotic disease emergence.

  9. Tick-borne infections in human and animal population worldwide

    PubMed Central

    Brites-Neto, José; Duarte, Keila Maria Roncato; Martins, Thiago Fernandes

    2015-01-01

    The abundance and activity of ectoparasites and its hosts are affected by various abiotic factors, such as climate and other organisms (predators, pathogens and competitors) presenting thus multiples forms of association (obligate to facultative, permanent to intermittent and superficial to subcutaneous) developed during long co-evolving processes. Ticks are ectoparasites widespread globally and its eco epidemiology are closely related to the environmental conditions. They are obligatory hematophagous ectoparasites and responsible as vectors or reservoirs at the transmission of pathogenic fungi, protozoa, viruses, rickettsia and others bacteria during their feeding process on the hosts. Ticks constitute the second vector group that transmit the major number of pathogens to humans and play a role primary for animals in the process of diseases transmission. Many studies on bioecology of ticks, considering the information related to their population dynamics, to the host and the environment, comes possible the application and efficiency of tick control measures in the prevention programs of vector-borne diseases. In this review were considered some taxonomic, morphological, epidemiological and clinical fundamental aspects related to the tick-borne infections that affect human and animal populations. PMID:27047089

  10. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    PubMed Central

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  11. Disparate Proteome Responses of Pathogenic and Non-pathogenic Aspergilli to Human Serum Measured by Activity-Based Protein Profiling (ABPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Susan D.; Ansong, Charles; Webb-Robertson, Bobbie-Jo M.

    2013-07-01

    Aspergillus fumigatus is the primary pathogen causing the devastating pulmonary disease Invasive Aspergillosis in immunocompromised individuals. Genomic analysis shows high synteny between A. fumigatus and closely related rarely pathogenic Neosartorya fischeri and Aspergillus clavatus genomes. To investigate the presence of unique or highly inducible protein reactivity in the pathogen, we applied activity-based protein profiling to compare protein reactivity of all three fungi over time in minimal media growth and in response to human serum. We found 350 probe-reactive proteins exclusive to A. fumigatus, including known virulence associated proteins, and 13 proteins associated with stress response exclusive to A. fumigatus culturemore » in serum. Though the fungi are highly orthologous, A. fumigatus has significantly more activity across varied biological process. Only 50% of expected orthologs of measured A. fumigatus reactive proteins were observed in N. fischeri and A. clavatus. Human serum induced processes uniquely or significantly represented in A. fumigatus include actin organization and assembly, transport, and fatty acid, cell membrane, and cell wall synthesis. Additionally, signaling proteins regulating vegetative growth, conidiation, and cell wall integrity, required for appropriate cellular response to external stimuli, had higher reactivity over time in A. fumigatus and N. fisheri, but not in A. clavatus. Together, we show that measured proteins and physiological processes identified solely or significantly over-represented in A. fumigatus reveal a unique adaptive response to human protein not found in closely related, but rarely aspergilli. These unique protein reactivity responses may reveal how A. fumigatus initiates pulmonary invasion leading to Invasive Aspergillosis.« less

  12. [A parotitis as primary infection of Lemierre's syndrome].

    PubMed

    Valleix, B; Floccard, B; Hautin, E; Faure, F; Allaouchiche, B

    2011-09-01

    Lemierre's syndrome is a classical presentation of human necrobacillosis. It is characterized by a primary infection in the face including a septic thrombophlebitis of the internal jugular vein and disseminated metastatic abcesses. Fusobacterium necrophorum is the main pathogen found in that syndrome. The diagnosis is based on clinical features, then on the microbiology with positive anaerobic blood cultures as key role and finally on the computed tomography. Most of the time a well-chosen antibiotic treatment against anaerobic pathogens and Gram negative bacilli is efficient but surgery can be useful. We report a case of a 73 years old man, which seems to be unique because it is the first case reported of a Lemierre's syndrome characterized by a parotitis infected by F. necrophorum. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.

    PubMed

    Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M

    2016-05-10

    Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly. Copyright © 2016 Fernandes et al.

  14. Meat Science and Muscle Biology Symposium: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle.

    PubMed

    Wells, J E; Kim, M; Bono, J L; Kuehn, L A; Benson, A K

    2014-04-01

    Shiga-toxigenic Escherichia coli, such as E. coli O157:H7, are foodborne zoonotic pathogens that can cause severe illness and death in humans. The gastrointestinal tract of ruminant animals has been identified as a primary habitat for E. coli O157:H7 and, in cattle, the hindgut tract appears to be a primary site for colonization. This pathogen has been found in cattle feces, on cattle hides, and in the production environment, and transmission to humans has occurred as a result of consumption of contaminated ground beef, water, and produce. Interventions to reduce the pathogen at beef harvest have significantly reduced the occurrence of the pathogen, but outbreaks and recalls due to the pathogen still occur for beef products. Interventions in the feedyard before harvest have had little success, but critical control points for implementing interventions are limited compared with the beef abattoir. The percentage of animals shedding E. coli O157:H7 in the feces can be highly variable from pen to pen, and the levels in the feces can vary from animal to animal. Animals colonized and shedding E. coli O157:H7 at high levels are a small fraction of animals in a pen but are important source for transferring the pathogen amongst the penmates. Recent research has indicated that diet may greatly influence the shedding of E. coli O157:H7. In addition, diet can influence the microbiota composition of the feces. However, little is known about the interaction between the indigenous microbiota and fecal shedding of E. coli O157:H7. Understanding the influence of indigenous microbiota on the colonization and shedding of E. coli O157:H7 will provide a potential avenue for intervention in the preharvest production environment not yet exploited.

  15. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle.

    PubMed

    Kirkness, Ewen F; Haas, Brian J; Sun, Weilin; Braig, Henk R; Perotti, M Alejandra; Clark, John M; Lee, Si Hyeock; Robertson, Hugh M; Kennedy, Ryan C; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V; Elsik, Christine G; Graur, Dan; Hill, Catherine A; Veenstra, Jan A; Walenz, Brian; Tubío, José Manuel C; Ribeiro, José M C; Rozas, Julio; Johnston, J Spencer; Reese, Justin T; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L; Tomoyasu, Yoshinori; Kraus, Emily; Krause, Emily; Mittapalli, Omprakash; Margam, Venu M; Li, Hong-Mei; Meyer, Jason M; Johnson, Reed M; Romero-Severson, Jeanne; Vanzee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M; Yoon, Kyong S; Strycharz, Joseph P; Unger, Maria F; Christley, Scott; Lobo, Neil F; Seufferheld, Manfredo J; Wang, Naikuan; Dasch, Gregory A; Struchiner, Claudio J; Madey, Greg; Hannick, Linda I; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C; Cameron, Stephen; Bruggner, Robert V; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R; Sutton, Granger G; Lawson, Daniel; Waterhouse, Robert M; Venter, J Craig; Strausberg, Robert L; Berenbaum, May R; Collins, Frank H; Zdobnov, Evgeny M; Pittendrigh, Barry R

    2010-07-06

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

  16. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

    PubMed Central

    Kirkness, Ewen F.; Haas, Brian J.; Sun, Weilin; Braig, Henk R.; Perotti, M. Alejandra; Clark, John M.; Lee, Si Hyeock; Robertson, Hugh M.; Kennedy, Ryan C.; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V.; Elsik, Christine G.; Graur, Dan; Hill, Catherine A.; Veenstra, Jan A.; Walenz, Brian; Tubío, José Manuel C.; Ribeiro, José M. C.; Rozas, Julio; Johnston, J. Spencer; Reese, Justin T.; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L.; Tomoyasu, Yoshinori; Kraus, Emily; Mittapalli, Omprakash; Margam, Venu M.; Li, Hong-Mei; Meyer, Jason M.; Johnson, Reed M.; Romero-Severson, Jeanne; VanZee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G.; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M.; Yoon, Kyong S.; Strycharz, Joseph P.; Unger, Maria F.; Christley, Scott; Lobo, Neil F.; Seufferheld, Manfredo J.; Wang, NaiKuan; Dasch, Gregory A.; Struchiner, Claudio J.; Madey, Greg; Hannick, Linda I.; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C.; Cameron, Stephen; Bruggner, Robert V.; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R.; Sutton, Granger G.; Lawson, Daniel; Waterhouse, Robert M.; Venter, J. Craig; Strausberg, Robert L.; Collins, Frank H.; Zdobnov, Evgeny M.; Pittendrigh, Barry R.

    2010-01-01

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens. PMID:20566863

  17. Outbreak of pathogenic Escherichia coli in an outdoor-housed non-human primate colony.

    PubMed

    Kolappaswamy, K; Nazareno, J; Porter, W P; Klein, H J

    2014-04-01

    Pathogenic Escherichia coli has been identified as an etiologic agent in humans causing acute diarrhea or even death but has been rarely reported in non-human primates (NHP). An outbreak of diarrhea occurred in an outdoor-housed NHP colony over a period of 2 months with an attack rate of 29%. Bacterial culture and PCR were performed on the fecal specimens to identify enteroinvasive E. coli (EIEC) and Enterohemorrhagic E. coli (EHEC) in the NHPs. By random sampling of 10% of fecal samples of diarrheal cases, four cases of EIEC in rhesus macaques and two cases of EHEC in cynomolgus macaques were confirmed. This is the first time EIEC and EHEC have been reported in NHPs associated with diarrhea. The primary source of infection could not be determined. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Tissue Distribution of the Ehrlichia muris-Like Agent in a Tick Vector

    PubMed Central

    Lynn, Geoffrey E.; Oliver, Jonathan D.; Nelson, Curtis M.; Felsheim, Roderick F.; Kurtti, Timothy J.; Munderloh, Ulrike G.

    2015-01-01

    Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands. PMID:25781930

  19. Status of Epstein-Barr Virus Coinfection with Helicobacter pylori in Gastric Cancer

    PubMed Central

    Singh, Shyam

    2017-01-01

    Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett's lymphoma, nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph and epithelial cells. Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori and EBV. Approximately 180 per hundred thousand population is developing GC along with many gastric abnormalities. This makes GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV and H. pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of this review is to present status on coinfection of both pathogens and their association with GC. PMID:28421114

  20. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.

    PubMed

    John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian

    2017-04-21

    Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

  1. Effect of in-feed supplementation of trans-cinnamaldehyde and caprylic acid on chicken cecal microbiome in response to Salmonella Enteritidis

    USDA-ARS?s Scientific Manuscript database

    Salmonella Enteritidis (SE) is a major foodborne pathogen causing enteric illnesses in humans, with undercooked eggs and poultry meat as the primary sources of infection. Our previous research revealed that in-feed supplementation of two GRAS (generally recognized as safe)-status, natural compounds,...

  2. The Ecology and Pathobiology of Clostridium difficile Infections: An Interdisciplinary Challenge

    PubMed Central

    Dubberke, Erik R.; Haslam, David B.; Lanzas, Cristina; Bobo, Linda D.; Burnham, Carey-Ann D.; Gröhn, Yrjö T.; Tarr, Phillip I.

    2013-01-01

    Summary Clostridium difficile is a well recognized pathogen of humans and animals. Although C. difficile was first identified over 70 years ago, much remains unknown in regards to the primary source of human acquisition and its pathobiology. These deficits in our knowledge have been intensified by dramatic increases in both the frequency and severity of disease in humans over the last decade. The changes in C. difficile epidemiology might be due to the emergence of a hypervirulent stain of C. difficile, aging of the population, altered risk of developing infection with newer medications, and/or increased exposure to C. difficile outside of hospitals. In recent years there have been numerous reports documenting C. difficile contamination of various foods, and reports of similarities between strains that infect animals and strains that infect humans as well. The purposes of this review are to highlight the many challenges to diagnosing, treating, and preventing C. difficile infection in humans, and to stress that collaboration between human and veterinary researchers is needed to control this pathogen. PMID:21223531

  3. Vibrio vulnificus: new insights into a deadly opportunistic pathogen.

    PubMed

    Baker-Austin, Craig; Oliver, James D

    2018-02-01

    Vibrio vulnificus is a Gram-negative aquatic bacterium first isolated by the United States (US) Centers for Disease Control and Prevention (CDC) in 1964. This bacterium is part of the normal microbiota of estuarine waters and occurs in high numbers in molluscan shellfish around the world, particularly in warmer months. Infections in humans are derived from consumption of seafood produce and from water exposure. Vibrio vulnificus is a striking and enigmatic human pathogen, yet many aspects related to its biology, genomics, virulence capabilities and epidemiology remain elusive and poorly understood. This pathogen is responsible for over 95% of seafood-related deaths in the United States, and carries the highest fatality rate of any food-borne pathogen. Indeed, infections associated with this pathogen that progress to primary septicaemia have a similar case fatality rate to category BSL 3 and 4 pathogens, such as anthrax, bubonic plague, Ebola and Marburg fever. Interestingly, V. vulnificus infections disproportionately affect males (∼85% of cases) and older patients (> 40 years), especially those with underlying conditions such as liver diseases, diabetes and immune disorders. New insights from molecular studies and comparative genomic approaches have offered tantalising insights into this pathogen. A recent increase and geographical spread in reported infections, in particular wound cases, underlines the growing international importance of V. vulnificus, particularly in the context of coastal warming. We outline and explore here a range of current data gaps regarding this important pathogen, and provide some current thoughts on approaches to elucidate key aspects associated with this bacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages.

    PubMed

    Lu, Richard; Popov, Vsevolod; Patel, Jignesh; Eaves-Pyles, Tonyia

    2012-01-01

    Alveolar type II pneumocytes (ATII) and alveolar macrophages (AM) play a crucial role in the lung's innate immune response. Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM). We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP-induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8) and macrophages (IL-6, TNFα) at 6 h post-infection compared to BM (p < 0.05). Interestingly, BM-induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6 h post-infection, with delayed induction of inflammatory cytokines at 24 h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR) 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  5. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures

    PubMed Central

    Fernandes, Maria Cecilia; Dillon, Laura A. L.; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M.

    2016-01-01

    ABSTRACT Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. PMID:27165796

  6. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water

    PubMed Central

    Blyton, Michaela D. J.; Gordon, David M.

    2017-01-01

    Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination. PMID:28107364

  7. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.

    PubMed

    Blyton, Michaela D J; Gordon, David M

    2017-01-01

    Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.

  8. Developing a Salivary Antibody Multiplex Immunoassay to ...

    EPA Pesticide Factsheets

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to develop an immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using the Luminex xMAP solution-phase assay. Beads were coupled to antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary detection antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen coupled and control beads were then incubated with prospectively-collected human saliva samples, analyzed on a Luminex 100 platform, and the presence

  9. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis

    PubMed Central

    Lee, Jungnam; Roberts, JoAnn S.; Atanasova, Kalina R.; Chowdhury, Nityananda; Han, Kyudong; Yilmaz, Özlem

    2017-01-01

    Porphyromonas gingivalis is a host-adapted oral pathogen associated with chronic periodontitis that successfully survives and persists in the oral epithelium. Recent studies have positively correlated periodontitis with increased risk and severity of oral squamous cell carcinoma (OSCC). Intriguingly, the presence of P. gingivalis enhances tumorigenic properties independently of periodontitis and has therefore been proposed as a potential etiological agent for OSCC. However, the initial host molecular changes induced by P. gingivalis infection which promote predisposition to cancerous transformation through EMT (epithelial-mesenchymal-transition), has never been studied in human primary cells which more closely mimic the physiological state of cells in vivo. In this study, we examine for the first time in primary oral epithelial cells (OECs) the expression and activation of key EMT mediators during long-term P. gingivalis infection in vitro. We examined the inactive phosphorylated state of glycogen synthase kinase-3 beta (p-GSK3β) over 120 h P. gingivalis infection and found p-GSK3β, an important EMT regulator, significantly increases over the course of infection (p < 0.01). Furthermore, we examined the expression of EMT-associated transcription factors, Slug, Snail, and Zeb1 and found significant increases (p < 0.01) over long-term P. gingivalis infection in protein and mRNA expression. Additionally, the protein expression of mesenchymal intermediate filament, Vimentin, was substantially increased over 120 h of P. gingivalis infection. Analysis of adhesion molecule E-cadherin showed a significant decrease (p < 0.05) in expression and a loss of membrane localization along with β-catenin in OECs. Matrix metalloproteinases (MMPs) 2, 7, and 9 are all markedly increased with long-term P. gingivalis infection. Finally, migration of P. gingivalis infected cells was evaluated using scratch assay in which primary OEC monolayers were wounded and treated with proliferation inhibitor, Mitomycin C. The cellular movement was determined by microscopy. Results displayed P. gingivalis infection promoted cell migration which was slightly enhanced by co-infection with Fusobacterium nucleatum, another oral opportunistic pathogen. Therefore, this study demonstrates human primary OECs acquire initial molecular/cellular changes that are consistent with EMT induction during long-term infection by P. gingivalis and provides a critically novel framework for future mechanistic studies. PMID:29250491

  10. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    PubMed

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  11. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens

    PubMed Central

    Zeng, Yuan; Hu, Xing Ping

    2016-01-01

    The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens. PMID:27611223

  12. Vector-borne diseases on Fire Island, New York (Fire Island National Seashore Science Synthesis Paper)

    USGS Publications Warehouse

    Ginsberg, H.S.

    2005-01-01

    This paper discusses eleven tick-borne and five mosquito-borne pathogens that are known to occur at FIlS, or could potentially occur. The potential for future occurrence, and ecological factors that influence occurrence, are assessed for each disease. Lyme disease is the most common vector-borne disease on Fire Island. The Lyme spirochete, Borrelia burgdorferi, is endemic in local tick and wildlife populations. Public education, personal precautions against tick bite, and prompt treatment of early-stage infections can help manage the risk of Lyme disease on Fire Island. The pathogens that cause Human Monocytic Ehrlichiosis and Tularemia have been isolated from ticks or wildlife on Fire Island, and conditions suggest that other tickborne diseases (including Babesiosis, Rocky Mountain Spotted Fever, and Human Granulocytic Ehrlichiosis) might also occur, but these are far less common than Lyme disease, if present. West Nile Virus (WNV) is the primary mosquito- borne human pathogen that is known to occur on Fire Island. Ecological conditions and recent epizootiological events suggest that WNV occurs in foci that can shift from year to year. Therefore, a surveillance program with appropriate responses to increasing epizootic activity can help manage the risk of WNV transmission on Fire Island.

  13. Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2 viruses in U.S. swine.

    PubMed

    Lewis, Nicola S; Anderson, Tavis K; Kitikoon, Pravina; Skepner, Eugene; Burke, David F; Vincent, Amy L

    2014-05-01

    Swine influenza A virus is an endemic and economically important pathogen in pigs, with the potential to infect other host species. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major component in swine influenza A vaccines. However, as a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza virus strains in humans is also important in assessing the relative risk of interspecies transmission of viruses from one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among H3N2 viruses isolated from pigs in the United States from 1998 to 2013 and the relative cross-reactivity between these viruses and current human seasonal influenza A virus strains. Two primary antigenic clusters were found circulating in the pig population, but with enough diversity within and between the clusters to suggest updates in vaccine strains are needed. We identified single amino acid substitutions that are likely responsible for antigenic differences between the two primary antigenic clusters and between each antigenic cluster and outliers. The antigenic distance between current seasonal influenza virus H3 strains in humans and those endemic in swine suggests that population immunity may not prevent the introduction of human viruses into pigs, and possibly vice versa, reinforcing the need to monitor and prepare for potential incursions. Influenza A virus (IAV) is an important pathogen in pigs and humans. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major target of vaccines. However, vaccine strains must be updated to reflect current strains. Characterizing the differences between seasonal IAV in humans and swine IAV is important in assessing the relative risk of interspecies transmission of viruses. We found two primary antigenic clusters of H3N2 in the U.S. pig population, with enough diversity to suggest updates in swine vaccine strains are needed. We identified changes in the HA protein that are likely responsible for these differences and that may be useful in predicting when vaccines need to be updated. The difference between human H3N2 viruses and those in swine is enough that population immunity is unlikely to prevent new introductions of human IAV into pigs or vice versa, reinforcing the need to monitor and prepare for potential introductions.

  14. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term “supershedder” has been applied to cattle that sh...

  15. Isolation and characterization of bacteriophages as potential agents against Shiga toxin – producing Escherichia coli (STEC) strains

    USDA-ARS?s Scientific Manuscript database

    Shiga – toxin producing Escherichia coli (STEC) is a significant group of foodborne pathogens that can cause mild diarrhea to serious human illnesses. The gastrointestinal tracts of cattle and other ruminants are the primary reservoirs of STEC strains and may co-harbor bacteriophages as part of its ...

  16. Proteins facilitating Escherichia coli O157 persistence at the bovine recto-anal junction (RAJ) squamous epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157 (O157) persist at the recto-anal junction (RAJ) of gastrointestinal tracts (GIT) of cattle, the primary reservoirs of this human pathogen. We recently reported (Kudva et al., BMC Microbiol. 2012, 12: 103) that the previously identified and extensively documented principal O157...

  17. 75 FR 20615 - Risk Profile: Pathogens and Filth in Spices: Request for Comments and for Scientific Data and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... spices throughout the food supply chain (e.g., on the farm, at primary processing/manufacturing..., ingredient in a prepared food). 5. Manufacturing practices, including the use of spices as ingredients in... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0195...

  18. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells.

    PubMed

    Dai, Lu; DeFee, Michael R; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C; Qin, Zhiqiang

    2014-01-01

    Kaposi's sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria-lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients.

  19. Lipoteichoic Acid (LTA) and Lipopolysaccharides (LPS) from Periodontal Pathogenic Bacteria Facilitate Oncogenic Herpesvirus Infection within Primary Oral Cells

    PubMed Central

    Dai, Lu; DeFee, Michael R.; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C.; Qin, Zhiqiang

    2014-01-01

    Kaposi’s sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria–lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients. PMID:24971655

  20. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    PubMed Central

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  1. Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures.

    PubMed

    Zeng, Hui; Goldsmith, Cynthia S; Maines, Taronna R; Belser, Jessica A; Gustin, Kortney M; Pekosz, Andrew; Zaki, Sherif R; Katz, Jacqueline M; Tumpey, Terrence M

    2013-03-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses.

  2. Integrated inference and evaluation of host–fungi interaction networks

    PubMed Central

    Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.

    2015-01-01

    Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851

  3. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi.

    PubMed

    Seifert, Stephanie N; Khatchikian, Camilo E; Zhou, Wei; Brisson, Dustin

    2015-04-01

    Population genomic studies have the potential to address many unresolved questions about microbial pathogens by facilitating the identification of genes underlying ecologically important traits, such as novel virulence factors and adaptations to humans or other host species. Additionally, this framework improves estimations of population demography and evolutionary history to accurately reconstruct recent epidemics and identify the molecular and environmental factors that resulted in the outbreak. The Lyme disease bacterium, Borrelia burgdorferi, exemplifies the power and promise of the application of population genomics to microbial pathogens. We discuss here the future of evolutionary studies in B. burgdorferi, focusing on the primary evolutionary forces of horizontal gene transfer, natural selection, and migration, as investigations transition from analyses of single genes to genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Primary and secondary CoQ(10) deficiencies in humans.

    PubMed

    Quinzii, Catarina M; Hirano, Michio

    2011-01-01

    CoQ(10) deficiencies are clinically and genetically heterogeneous. This syndrome has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis variably contribute to the pathogenesis of primary CoQ(10) deficiencies. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  5. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests

    Treesearch

    Richard C. Cobb; Joao A.N. Filipe; Ross K. Meentemeyer; Christopher A. Gilligan; David M. Rizzo

    2012-01-01

    1. Few pathogens are the sole or primary cause of species extinctions, but forest disease has caused spectacular declines in North American overstorey trees and restructured forest ecosystems at large spatial scales over the past 100 years. These events threaten biodiversity associated with impacted host trees and other resources valued by human societies even when...

  6. Reduction in airborne virus using modifications of simulated home slaughter of asymptomatic H5N1 HPAI virus infected chickens

    USDA-ARS?s Scientific Manuscript database

    Background: The majority of human infections with H5N1 high pathogenicity avian influenza (HPAI) virus have occurred in the village setting of developing countries with the primary exposure risk being direct contact with live or dead poultry in the household or neighborhood. In Egypt, the majority o...

  7. Evaluation of Gulf Coast Ticks (Acari: Ixodidae) for Ehrlichia and Anaplasma Species.

    PubMed

    Allerdice, Michelle E J; Hecht, Joy A; Karpathy, Sandor E; Paddock, Christopher D

    2017-03-01

    Amblyomma maculatum Koch (the Gulf Coast tick) is an aggressive, human-biting ixodid tick distributed throughout much of the southeastern United States and is the primary vector for Rickettsia parkeri, an emerging human pathogen. Amblyomma maculatum has diverse host preferences that include white-tailed deer, a known reservoir for Ehrlichia and Anaplasma species, including the human pathogens E. ewingii and E. chaffeensis. To examine more closely the potential role of A. maculatum in the maintenance of various pathogenic Ehrlichia and Anaplasma species, we screened DNA samples from 493 questing adult A. maculatum collected from six U.S. states using broad-range Anaplasmataceae and Ehrlichia genus-specific PCR assays. Of the samples tested, four (0.8%) were positive for DNA of Ehrlichia ewingii, one (0.2%) was positive for Anaplasma platys, and one (0.2%) was positive for a previously unreported Ehrlichia species closely related to Ehrlichia muris and an uncultivated Ehrlichia species from Haemaphysalis longicornis ticks in Japan. No ticks contained DNA of Ehrlichia chaffeensis, Ehrlichia canis, the Panola Mountain Ehrlichia, or Anaplasma phagocytophilum. This is the first identification of E. ewingii, A. platys, and the novel Ehrlichia in questing Gulf Coast ticks; nonetheless the low prevalence of these agents suggests that A. maculatum is not likely an important vector of these zoonotic pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  8. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  9. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    PubMed

    Corona, Erik; Wang, Liuyang; Ko, Dennis; Patel, Chirag J

    2018-01-01

    Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  10. Substitutions near the Hemagglutinin Receptor-Binding Site Determine the Antigenic Evolution of Influenza A H3N2 Viruses in U.S. Swine

    PubMed Central

    Lewis, Nicola S.; Anderson, Tavis K.; Kitikoon, Pravina; Skepner, Eugene; Burke, David F.

    2014-01-01

    ABSTRACT Swine influenza A virus is an endemic and economically important pathogen in pigs, with the potential to infect other host species. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major component in swine influenza A vaccines. However, as a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza virus strains in humans is also important in assessing the relative risk of interspecies transmission of viruses from one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among H3N2 viruses isolated from pigs in the United States from 1998 to 2013 and the relative cross-reactivity between these viruses and current human seasonal influenza A virus strains. Two primary antigenic clusters were found circulating in the pig population, but with enough diversity within and between the clusters to suggest updates in vaccine strains are needed. We identified single amino acid substitutions that are likely responsible for antigenic differences between the two primary antigenic clusters and between each antigenic cluster and outliers. The antigenic distance between current seasonal influenza virus H3 strains in humans and those endemic in swine suggests that population immunity may not prevent the introduction of human viruses into pigs, and possibly vice versa, reinforcing the need to monitor and prepare for potential incursions. IMPORTANCE Influenza A virus (IAV) is an important pathogen in pigs and humans. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major target of vaccines. However, vaccine strains must be updated to reflect current strains. Characterizing the differences between seasonal IAV in humans and swine IAV is important in assessing the relative risk of interspecies transmission of viruses. We found two primary antigenic clusters of H3N2 in the U.S. pig population, with enough diversity to suggest updates in swine vaccine strains are needed. We identified changes in the HA protein that are likely responsible for these differences and that may be useful in predicting when vaccines need to be updated. The difference between human H3N2 viruses and those in swine is enough that population immunity is unlikely to prevent new introductions of human IAV into pigs or vice versa, reinforcing the need to monitor and prepare for potential introductions. PMID:24522915

  11. Lipopolysaccharide and Lipoteichoic Acid Virulence Deactivation by Stannous Fluoride.

    PubMed

    Haught, Chris; Xie, Sancai; Circello, Ben; Tansky, Cheryl S; Khambe, Deepa; Klukowska, Malgorzata; Huggins, Tom; White, Donald J

    2016-09-01

    Oral bacterial pathogens promote gingivitis and periodontal disease. Bacterial endotoxins, also known as lipopolysaccharides (LPSs) and lipoteichoic acids (LTAs), are known to enhance bacterial pathogenicity through binding with Toll-like receptors (TLRs), a group of pattern recognition receptors critical to the activation of innate immunity, that are expressed on host cells. Both LPS and LTA contain lipophilic domains and anionic charges that may be susceptible to reactivity with stannous fluoride, a commonly used ingredient clinically proven for the treatment and prevention of gingivitis. This study examined the effects of stannous fluoride on Toll-like receptor activation in response to bacterially derived LPS and LTA in select cell lines and secretion of inflammatory cytokines from human primary peripheral monocytes likewise exposed to LPS. TLR4 and TLR2 transfected HEK293 cells and THP1-Dual™ cells were exposed to bacterial LPS and LTA in the presence of increasing concentrations of stannous fluoride. Gene expression was assessed by measurement of secreted embryonic alkaline phosphatase (SEAP) reporter gene for HEK293 cells and SEAP and luciferase for THP-1 cells. Cell viability was confirmed using PrestoBlue. Human primary monocytes were treated with LPS with various concentrations of supplemented stannous fluoride, and cytokine expression was directly measured. Stannous fluoride inhibited gene expression response of TLR4 and TLR2 in HEK293 cells and THP1-Dual™ cells in a dose response fashion, producing complete inhibition at micromolar concentrations. The addition of stannous fluoride suppressed production of TNF-a, IFN-g, IL12p70, IL10, IL-1b, IL2, and IL-6, and also increased secretion of Il-8 in dose response fashion. Viability assays confirmed no effects of LPS or stannous fluoride on viability of HEK293, THP-1, and primary human monocytes. These results support the potential for stannous fluoride to provide clinical gingivitis benefits by directly decreasing the pathogenicity of plaque biofilms by blocking reactivity of LPS and LTA ligands with tissue receptors associated with inflammation. These learnings may influence recommendations for patients at risk for plaque-related diseases.

  12. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.

    PubMed

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-10-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.

  13. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    PubMed Central

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  14. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    PubMed Central

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette

    2014-01-01

    ABSTRACT Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. PMID:25410856

  15. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    PubMed

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes

    PubMed Central

    Köllisch, Gabriele; Kalali, Behnam Naderi; Voelcker, Verena; Wallich, Reinhard; Behrendt, Heidrun; Ring, Johannes; Bauer, Stefan; Jakob, Thilo; Mempel, Martin; Ollert, Markus

    2005-01-01

    Toll-like receptors (TLRs) are important pattern recognition molecules that activate the nuclear factor (NF)-κB pathway leading to the production of antimicrobial immune mediators. As keratinocytes represent the first barrier against exogenous pathogens in human skin, we investigated their complete functional TLR1–10 expression profile. First, reverse transcription–polymerase chain reaction (PCR) analysis revealed a very similar pattern of TLR mRNA expression when comparing freshly isolated human epidermis and cultured primary human keratinocytes. Thus, further experiments were carried out with primary keratinocytes in comparison with the spontaneously immortalized human keratinocyte cell line HaCaT. The quantitative expression of TLR1–10 mRNA in real-time PCR of primary human keratinocytes and HaCaT cells was analysed. Both cell types constitutively expressed TLR2, TLR3, TLR5, and to a lesser extent TLR10. TLR4 was only found in HaCaT cells, TLR1 to a higher degree in primary keratinocytes. In line with this, LPS induced mRNA expression of CD14 and TLR4 only in HaCaT cells. After stimulation with various TLR ligands, the NF-κB-activated chemokine interleukin-8 (IL-8) was measured. In primary keratinocytes and HaCaT cells the TLR3 ligand poly (I:C) was the most potent stimulator of IL-8 secretion. The TLR ligands peptidoglycan, Pam3Cys and flagellin which bind to TLR2, TLR1/TLR2 heterodimer, and TLR5, respectively, also induced IL-8 secretion, whereas no IL-8 was induced by LPS, R-848, loxoribine and cytosine guanine dinucleotide-containing oligodeoxynucleotide. A corresponding pattern was found in the RelA NF-κB translocation assay after ligand stimulation of primary keratinocytes. These studies provide substantial evidence for a functional TLR expression and signalling profile of normal human keratinocytes contributing to the antimicrobial defence barrier of human skin. PMID:15804290

  17. Human-Specific Bacterial Pore-Forming Toxins Induce Programmed Necrosis in Erythrocytes

    PubMed Central

    LaRocca, Timothy J.; Stivison, Elizabeth A.; Hod, Eldad A.; Spitalnik, Steven L.; Cowan, Peter J.; Randis, Tara M.

    2014-01-01

    ABSTRACT A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. PMID:25161188

  18. Tracing the source of campylobacteriosis.

    PubMed

    Wilson, Daniel J; Gabriel, Edith; Leatherbarrow, Andrew J H; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Fearnhead, Paul; Hart, C Anthony; Diggle, Peter J

    2008-09-26

    Campylobacter jejuni is the leading cause of bacterial gastro-enteritis in the developed world. It is thought to infect 2-3 million people a year in the US alone, at a cost to the economy in excess of US $4 billion. C. jejuni is a widespread zoonotic pathogen that is carried by animals farmed for meat and poultry. A connection with contaminated food is recognized, but C. jejuni is also commonly found in wild animals and water sources. Phylogenetic studies have suggested that genotypes pathogenic to humans bear greatest resemblance to non-livestock isolates. Moreover, seasonal variation in campylobacteriosis bears the hallmarks of water-borne disease, and certain outbreaks have been attributed to contamination of drinking water. As a result, the relative importance of these reservoirs to human disease is controversial. We use multilocus sequence typing to genotype 1,231 cases of C. jejuni isolated from patients in Lancashire, England. By modeling the DNA sequence evolution and zoonotic transmission of C. jejuni between host species and the environment, we assign human cases probabilistically to source populations. Our novel population genetics approach reveals that the vast majority (97%) of sporadic disease can be attributed to animals farmed for meat and poultry. Chicken and cattle are the principal sources of C. jejuni pathogenic to humans, whereas wild animal and environmental sources are responsible for just 3% of disease. Our results imply that the primary transmission route is through the food chain, and suggest that incidence could be dramatically reduced by enhanced on-farm biosecurity or preventing food-borne transmission.

  19. Transcriptome Complexity and Riboregulation in the Human Pathogen Helicobacter pylori

    PubMed Central

    Pernitzsch, Sandy R.; Sharma, Cynthia M.

    2012-01-01

    The Gram-negative Epsilonproteobacterium Helicobacter pylori is considered as one of the major human pathogens and many studies have focused on its virulence mechanisms as well as genomic diversity. In contrast, only very little is known about post-transcriptional regulation and small regulatory RNAs (sRNAs) in this spiral-shaped microaerophilic bacterium. Considering the absence of the common RNA chaperone Hfq, which is a key-player in post-transcriptional regulation in enterobacteria, H. pylori was even regarded as an organism without riboregulation. However, analysis of the H. pylori primary transcriptome using RNA-seq revealed a very complex transcriptional output from its small genome. Furthermore, the identification of a wealth of sRNAs as well as massive antisense transcription indicates that H. pylori uses riboregulation for its gene expression control. The ongoing functional characterization of sRNAs along with the identification of associated RNA binding proteins will help to understand their potential roles in Helicobacter virulence and stress response. Moreover, research on riboregulation in H. pylori will provide new insights into its virulence mechanisms and will also help to shed light on post-transcriptional regulation in other Epsilonproteobacteria, including widespread and emerging pathogens such as Campylobacter. PMID:22919606

  20. Molecular Methods for the Detection of Mycoplasma and Ureaplasma Infections in Humans

    PubMed Central

    Waites, Ken B.; Xiao, Li; Paralanov, Vanya; Viscardi, Rose M.; Glass, John I.

    2012-01-01

    Mycoplasma and Ureaplasma species are well-known human pathogens responsible for a broad array of inflammatory conditions involving the respiratory and urogenital tracts of neonates, children, and adults. Greater attention is being given to these organisms in diagnostic microbiology, largely as a result of improved methods for their laboratory detection, made possible by powerful molecular-based techniques that can be used for primary detection in clinical specimens. For slow-growing species, such as Mycoplasma pneumoniae and Mycoplasma genitalium, molecular-based detection is the only practical means for rapid microbiological diagnosis. Most molecular-based methods used for detection and characterization of conventional bacteria have been applied to these organisms. A complete genome sequence is available for one or more strains of all of the important human pathogens in the Mycoplasma and Ureaplasma genera. Information gained from genome analyses and improvements in efficiency of DNA sequencing are expected to significantly advance the field of molecular detection and genotyping during the next few years. This review provides a summary and critical review of methods suitable for detection and characterization of mycoplasmas and ureaplasmas of humans, with emphasis on molecular genotypic techniques. PMID:22819362

  1. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.

    PubMed

    LaRocca, Timothy J; Stivison, Elizabeth A; Hod, Eldad A; Spitalnik, Steven L; Cowan, Peter J; Randis, Tara M; Ratner, Adam J

    2014-08-26

    A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family. Copyright © 2014 LaRocca et al.

  2. Biogeography of Human Infectious Diseases: A Global Historical Analysis

    PubMed Central

    Cashdan, Elizabeth

    2014-01-01

    Objectives Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Methods Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Results Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare. PMID:25271730

  3. Biogeography of human infectious diseases: a global historical analysis.

    PubMed

    Cashdan, Elizabeth

    2014-01-01

    Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare.

  4. Introduction to cell culture.

    PubMed

    Philippeos, Christina; Hughes, Robin D; Dhawan, Anil; Mitry, Ragai R

    2012-01-01

    The basics of cell culture as applied to human cells are discussed. Biosafety when working with human tissue, which is often pathogenic, is important. The requirements for a tissue culture laboratory are described, particularly the range of equipment needed to carry out cell isolation, purification, and culture. Steps must be taken to maintain aseptic conditions to prevent contamination of cultures with micro-organisms. Basic cell-handling techniques are discussed, including choice of media, primary culture, and cryopreservation of cells so they can be stored for future use. Common assays which are used to determine cell viability and activity are considered.

  5. Pathogen Transmission from Humans to Great Apes is a Growing Threat to Primate Conservation.

    PubMed

    Dunay, Emily; Apakupakul, Kathleen; Leard, Stephen; Palmer, Jamie L; Deem, Sharon L

    2018-01-23

    All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.

  6. Tracking pathogen transmission at the human-wildlife interface: banded mongoose and Escherichia coli.

    PubMed

    Pesapane, R; Ponder, M; Alexander, K A

    2013-06-01

    A primary challenge to managing emerging infectious disease is identifying pathways that allow pathogen transmission at the human-wildlife interface. Using Escherichia coli as a model organism, we evaluated fecal bacterial transmission between banded mongoose (Mungos mungo) and humans in northern Botswana. Fecal samples were collected from banded mongoose living in protected areas (n = 87, 3 troops) and surrounding villages (n = 92, 3 troops). Human fecal waste was collected from the same environment (n = 46). Isolates were evaluated for susceptibility to 10 antibiotics. Resistant E. coli isolates from mongoose were compared to human isolates using rep-PCR fingerprinting and MLST-PCR. Antimicrobial resistant isolates were identified in 57 % of the mongoose fecal samples tested (range 31-78% among troops). At least one individual mongoose fecal sample demonstrated resistance to each tested antibiotic, and multidrug resistance was highest in the protected areas (40.9%). E. coli isolated from mongoose and human sources in this study demonstrated an extremely high degree of genetic similarity on rep-PCR (AMOVA, F ST = 0.0027, p = 0.18) with a similar pattern identified on MLST-PCR. Human waste may be an important source of microbial exposure to wildlife. Evidence of high levels of antimicrobial resistance even within protected areas identifies an emerging health threat and highlights the need for improved waste management in these systems.

  7. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    PubMed

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  8. [Outbreaks caused by diarrheagenic Escherichia coli].

    PubMed

    Vila Estapé, Jordi; Zboromyrska, Yuliya

    2012-02-01

    Escherichia coli are ubiquitous bacteria from a wide variety of ecosystems including the gastrointestinal tract of humans and warm-blooded animals. E. coli can play a role as an opportunistic bacteria causing a variety of infectious diseases including, among many others, sepsis, urinary tract infections, meningitis, and wound infections. Moreover, these bacteria can also act as primary pathogens in the intestinal tract. There are several pathotypes of E. coli that cause enteritis, and both sporadic cases and outbreaks have been reported. In this article, we review the pathogenicity and epidemiology of enteritis caused by these E. coli pathotypes, and provide some examples of outbreaks described in the scientific literature and the measures required to prevent them. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  9. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate

    PubMed Central

    Gouzy, Alexandre; Larrouy-Maumus, Gérald; Wu, Ting-Di; Peixoto, Antonio; Levillain, Florence; Lugo-Villarino, Geanncarlo; Gerquin-Kern, Jean-Luc; de Carvalho, Luiz Pedro Sório; Poquet, Yannick; Neyrolles, Olivier

    2013-01-01

    Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant inactivated in AnsP1 revealed the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus. PMID:24077180

  10. Risks Posed by Reston, the Forgotten Ebolavirus

    PubMed Central

    Cantoni, Diego; Hamlet, Arran; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    ABSTRACT Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs. PMID:28066813

  11. Chicken and Duck Myotubes Are Highly Susceptible and Permissive to Influenza Virus Infection

    PubMed Central

    Baquero-Perez, Belinda; Kuchipudi, Suresh V.; Ho, Jemima; Sebastian, Sujith; Puranik, Anita; Howard, Wendy; Brookes, Sharon M.; Brown, Ian H.

    2014-01-01

    ABSTRACT Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus. Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-β) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection. IMPORTANCE Infection with high-pathogenicity H5N1 viruses in ducks is often asymptomatic, and skeletal muscle from such birds could be a source of infection of humans and animals. Little is known about the ability of influenza A viruses to replicate in avian skeletal muscle fibers. We show here that cultured chicken and duck myotubes were highly susceptible to infection with both low- and high-pathogenicity avian influenza viruses. Infected myotubes of both avian species displayed rapid virus accumulation, apoptosis, and extensive cellular damage. Our results indicate that avian skeletal muscle fibers of chicken and duck could be significant contributors to progeny production of highly pathogenic H5N1 viruses. PMID:25540384

  12. Chicken and duck myotubes are highly susceptible and permissive to influenza virus infection.

    PubMed

    Baquero-Perez, Belinda; Kuchipudi, Suresh V; Ho, Jemima; Sebastian, Sujith; Puranik, Anita; Howard, Wendy; Brookes, Sharon M; Brown, Ian H; Chang, Kin-Chow

    2015-03-01

    Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus. Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-β) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection. Infection with high-pathogenicity H5N1 viruses in ducks is often asymptomatic, and skeletal muscle from such birds could be a source of infection of humans and animals. Little is known about the ability of influenza A viruses to replicate in avian skeletal muscle fibers. We show here that cultured chicken and duck myotubes were highly susceptible to infection with both low- and high-pathogenicity avian influenza viruses. Infected myotubes of both avian species displayed rapid virus accumulation, apoptosis, and extensive cellular damage. Our results indicate that avian skeletal muscle fibers of chicken and duck could be significant contributors to progeny production of highly pathogenic H5N1 viruses. Copyright © 2015, Baquero-Perez et al.

  13. Critical Evaluation of the Linkage Between Tick-Based Risk Measures and the Occurrence of Lyme Disease Cases.

    PubMed

    Eisen, Lars; Eisen, Rebecca J

    2016-06-21

    The nymphal stage of the blacklegged tick, Ixodes scapularis Say, is considered the primary vector to humans in the eastern United States of the Lyme disease spirochete Borrelia burgdorferi sensu stricto. The abundance of infected host-seeking nymphs is commonly used to estimate the fundamental risk of human exposure to B. burgdorferi, for the purpose of environmental risk assessment and as an outcome measure when evaluating environmentally based tick or pathogen control methods. However, as this tick-based risk measure does not consider the likelihoods of either human encounters with infected ticks or tick bites resulting in pathogen transmission, its linkage to the occurrence of Lyme disease cases is worth evaluating. In this Forum article, we describe different tick-based risk measures, discuss their strengths and weaknesses, and review the evidence for their capacity to predict the occurrence of Lyme disease cases. We conclude that: 1) the linkage between abundance of host-seeking B. burgdorferi-infected nymphs and Lyme disease occurrence is strong at community or county scales but weak at the fine spatial scale of residential properties where most human exposures to infected nymphs occur in Northeast, 2) the combined use of risk measures based on infected nymphs collected from the environment and ticks collected from humans is preferable to either one of these risk measures used singly when assessing the efficacy of environmentally based tick or pathogen control methods aiming to reduce the risk of human exposure to B. burgdorferi, 3) there is a need for improved risk assessment methodology for residential properties that accounts for both the abundance of infected nymphs and the likelihood of human-tick contact, and 4) we need to better understand how specific human activities conducted in defined residential microhabitats relate to risk for nymphal exposures and bites. Published by Oxford University Press on behalf of Entomological Society of America 2016.This work is written by US Government employees and is in the public domain in the US.

  14. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes

    PubMed Central

    Baart, Gino JE; Zomer, Bert; de Haan, Alex; van der Pol, Leo A; Beuvery, E Coen; Tramper, Johannes; Martens, Dirk E

    2007-01-01

    Background Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. Results Using the genomic database of N. meningitidis serogroup B together with biochemical and physiological information in the literature we constructed a genome-scale flux model for the primary metabolism of N. meningitidis. The validity of a simplified metabolic network derived from the genome-scale metabolic network was checked using flux-balance analysis in chemostat cultures. Several useful predictions were obtained from in silico experiments, including substrate preference. A minimal medium for growth of N. meningitidis was designed and tested succesfully in batch and chemostat cultures. Conclusion The verified metabolic model describes the primary metabolism of N. meningitidis in a chemostat in steady state. The genome-scale model is valuable because it offers a framework to study N. meningitidis metabolism as a whole, or certain aspects of it, and it can also be used for the purpose of vaccine process development (for example, the design of growth media). The flux distribution of the main metabolic pathways (that is, the pentose phosphate pathway and the Entner-Douderoff pathway) indicates that the major part of pyruvate (69%) is synthesized through the ED-cleavage, a finding that is in good agreement with literature. PMID:17617894

  15. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    PubMed Central

    Brennan, Joseph J.; Messerschmidt, Jonathan L.; Williams, Leah M.; Matthews, Bryan J.; Reynoso, Marinaliz; Gilmore, Thomas D.

    2017-01-01

    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity. PMID:29109290

  16. NORMAL FLORA OF THE NOSE, THROAT, AND LOWER INTESTINE OF DOGS

    PubMed Central

    Clapper, W. E.; Meade, G. H.

    1963-01-01

    Clapper, W. E. (The Lovelace Foundation for Medical Education and Research, Albuquerque, N.M.) and G. H. Meade. Normal flora of the nose, throat, and lower intestine of dogs. J. Bacteriol. 85:643–648. 1963.—An attempt was made to isolate and identify the complete normal flora of the rectum, nose, and throat of beagles. For primary isolation, 12 different kinds of media were used. Incubation of blood agar plates and slants anaerobically, and of thioglycolate broth aerobically, allowed the growth of obligate anaerobes. From the rectal specimens, 20 species of bacteria and 10 species of fungi were isolated and identified. The organisms were similar to those found in the human intestine. Escherichia coli, Streptococcus mitis, enterococci, S. lactis, Bacillus species, and coliforms other than E. coli were most frequently encountered. The frequency of occurrence was approximately the same at both samplings in more commonly cultured bacteria. Pathogenic E. coli were isolated from nearly one-third of the first specimens. These were the only human pathogens observed. In the throat cultures, 29 species of bacteria and 2 species of yeasts were identified, and 27 species of bacteria were identified from the nasal cultures. S. mitis, Neisseria, and coagulase-negative Staphylococcus were most often isolated. The flora was similar to that found in human nose and throat cultures, except that more Haemophilus and pneumococcus and fewer coliforms are generally found in human throats. Organisms resembling human pathogens were group A streptococci and coagulase-positive staphylococci. These were isolated infrequently. It appears that this kind of examination would reveal any significant changes in normal flora that might be related to the health of the animal. PMID:14042944

  17. The role of TGF-β signaling and apoptosis in innate and adaptive immunity in zebrafish: a systems biology approach.

    PubMed

    Lin, Che; Lin, Chin-Nan; Wang, Yu-Chao; Liu, Fang-Yu; Chuang, Yung-Jen; Lan, Chung-Yu; Hsieh, Wen-Ping; Chen, Bor-Sen

    2014-10-24

    The immune system is a key biological system present in vertebrates. Exposure to pathogens elicits various defensive immune mechanisms that protect the host from potential threats and harmful substances derived from pathogens such as parasites, bacteria, and viruses. The complex immune system of humans and many other vertebrates can be divided into two major categories: the innate and the adaptive immune systems. At present, analysis of the complex interactions between the two subsystems that regulate host defense and inflammatory responses remains challenging. Based on time-course microarray data following primary and secondary infection of zebrafish by Candida albicans, we constructed two intracellular protein-protein interaction (PPI) networks for primary and secondary responses of the host. 57 proteins and 341 PPIs were identified for primary infection while 90 proteins and 385 PPIs were identified for secondary infection. There were 20 proteins in common while 37 and 70 proteins specific to primary and secondary infection. By inspecting the hub proteins of each network and comparing significant changes in the number of linkages between the two PPI networks, we identified TGF-β signaling and apoptosis as two of the main functional modules involved in primary and secondary infection. Our initial in silico analyses pave the way for further investigation into the interesting roles played by the TGF-β signaling pathway and apoptosis in innate and adaptive immunity in zebrafish. Such insights could lead to therapeutic advances and improved drug design in the continual battle against infectious diseases.

  18. House-to-house human movement drives dengue virus transmission

    PubMed Central

    Stoddard, Steven T.; Forshey, Brett M.; Morrison, Amy C.; Paz-Soldan, Valerie A.; Vazquez-Prokopec, Gonzalo M.; Astete, Helvio; Reiner, Robert C.; Vilcarromero, Stalin; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Kitron, Uriel; Scott, Thomas W.

    2013-01-01

    Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539

  19. Assessment of management policies and practices for occupational exposure to bloodborne pathogens in dialysis facilities.

    PubMed

    Mbaeyi, Chukwuma; Panlilio, Adelisa L; Hobbs, Cynthia; Patel, Priti R; Kuhar, David T

    2012-10-01

    Occupational exposure management is an important element in preventing the transmission of bloodborne pathogens in health care settings. In 2008, the US Centers for Disease Control and Prevention conducted a survey to assess procedures for managing occupational bloodborne pathogen exposures in outpatient dialysis facilities in the United States. A cross-sectional survey of randomly selected outpatient dialysis facilities. 339 outpatient dialysis facilities drawn from the 2006 US end-stage renal disease database. Hospital affiliation (free-standing vs hospital-based facilities), profit status (for-profit vs not-for-profit facilities), and number of health care personnel (≥100 vs <100 health care personnel). Exposures to hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV); provision of HBV and HIV postexposure prophylaxis. We calculated the proportion of facilities reporting occupational bloodborne pathogen exposures and offering occupational exposure management services. We analyzed bloodborne pathogen exposures and provision of postexposure prophylaxis by facility type. Nearly all respondents (99.7%) had written policies and 95% provided occupational exposure management services to health care personnel during the daytime on weekdays, but services were provided infrequently during other periods of the week. Approximately 10%-15% of facilities reported having HIV, HBV, or HCV exposures in health care personnel in the 12 months prior to the survey, but inconsistencies were noted in procedures for managing such exposures. Despite 86% of facilities providing HIV prophylaxis for exposed health care personnel, only 37% designated a primary HIV postexposure prophylaxis regimen. For-profit and free-standing facilities reported fewer exposures, but did not as reliably offer HBV prophylaxis or have a primary HIV postexposure prophylaxis regimen relative to not-for-profit and hospital-based facilities. The survey response rate was low (37%) and familiarity of individuals completing the survey with facility policies or national guidelines could not be ascertained. Significant improvements are required in the implementation of guidelines for managing occupational exposures to bloodborne pathogens in outpatient dialysis facilities. Published by Elsevier Inc.

  20. Contamination of produce with human pathogens: sources and solutions

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of foodborne illnesses associated with the presence of human pathogens have led to increased concern about the prevalence of pathogens in the environment and the vulnerability of fresh produce to contamination by these pathogens. As the FDA strives to mandate treatments to reduce pathogen...

  1. Use of probiotics to reduce faecal shedding of Shiga toxin-producing Escherichia coli in sheep.

    PubMed

    Rigobelo, E E C; Karapetkov, N; Maestá, S A; Avila, F A; McIntosh, D

    2015-03-01

    Shiga toxin-producing Escherichia coli (STEC) are zoonotic, foodborne pathogens of humans. Ruminants, including sheep, are the primary reservoirs of STEC and there is a need to develop intervention strategies to reduce the entry of STEC into the food chain. The initiation of the majority of bacterial, enteric infections involves colonisation of the gut mucosal surface by the pathogen. However, probiotic bacteria can serve to decrease the severity of infection via a number of mechanisms including competition for receptors and nutrients, and/or the synthesis of organic acids and bacteriocins that create an environment unfavourable for pathogen development. The aim of the current study was to determine whether the administration of a probiotic mixture to sheep experimentally infected with a non-O157 STEC strain, carrying stx1, stx2 and eae genes, was able to decrease faecal shedding of the pathogen. The probiotic mixture contained Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus lactis, Streptococcus thermophilus and Enterococcus faecium. The numbers of non-O157 STEC in faecal samples collected from sheep receiving daily doses of the probiotic mixture were significantly lower at the 3rd, 5th and 6th week post-inoculation when compared to the levels recorded in untreated animals. It was concluded that administration of the probiotic mixture reduced faecal shedding of non-O157 STEC in sheep, and holds potential as a pre-harvest intervention method to reduce transmission to humans.

  2. High Incidence of Pathogenic Streptococcus agalactiae ST485 Strain in Pregnant/Puerperal Women and Isolation of Hyper-Virulent Human CC67 Strain

    PubMed Central

    Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi

    2018-01-01

    Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722

  3. Immune Serum Produced by DNA Vaccination Protects Hamsters against Lethal Respiratory Challenge with Andes Virus

    DTIC Science & Technology

    2008-02-01

    responses in the hantavirus cardiopulmonary syndrome. J. Infect. Dis. 182:43–48. 3. Butler, J. C., and C. J. Peters. 1994. Hantaviruses and hantavirus ...November 2007 Hantavirus pulmonary syndrome (HPS) is a highly pathogenic disease (40% case fatality rate) carried by rodents chronically infected with...certain viruses within the genus Hantavirus of the family Bunyaviridae. The primary mode of transmission to humans is thought to be inhalation of excreta

  4. Rapid detection, characterization, and enumeration of foodborne pathogens.

    PubMed

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based on the author's scientific work that has contributed with the following new developments to this field: (i) serologic tests for large-scale screening, surveillance, or eradication programs, (ii) same-day detection of Salmonella that otherwise was considered as difficult to achieve, (iii) pathogen enumeration following a short log-phase enrichment, (iv) detection of foodborne pathogens in air samples, and finally (v) biotracing of pathogens based on mathematical modeling, even in the absence of isolate. Rapid methods are discussed in a broad global health perspective, international food supply, and for improvement of quantitative microbial risk assessments. The need for quantitative sample preparation techniques, culture-independent, metagenomic-based detection, online monitoring, a global validation infrastructure has been emphasized. The cost and ease of use of rapid assays remain challenging obstacles to surmount. © 2011 The Author. APMIS © 2011 APMIS.

  5. STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival.

    PubMed

    de Toledo-Pinto, Thiago Gomes; Ferreira, Anna Beatriz Robottom; Ribeiro-Alves, Marcelo; Rodrigues, Luciana Silva; Batista-Silva, Leonardo Ribeiro; Silva, Bruno Jorge de Andrade; Lemes, Robertha Mariana Rodrigues; Martinez, Alejandra Nóbrega; Sandoval, Felipe Galvan; Alvarado-Arnez, Lucia Elena; Rosa, Patrícia Sammarco; Shannon, Edward Joseph; Pessolani, Maria Cristina Vidal; Pinheiro, Roberta Olmo; Antunes, Sérgio Luís Gomes; Sarno, Euzenir Nunes; Lara, Flávio Alves; Williams, Diana Lynn; Ozório Moraes, Milton

    2016-07-15

    Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Critical Evaluation of the Linkage Between Tick-Based Risk Measures and the Occurrence of Lyme Disease Cases

    PubMed Central

    Eisen, Lars; Eisen, Rebecca J.

    2018-01-01

    The nymphal stage of the blacklegged tick, Ixodes scapularis Say, is considered the primary vector to humans in the eastern United States of the Lyme disease spirochete Borrelia burgdorferi sensu stricto. The abundance of infected host-seeking nymphs is commonly used to estimate the fundamental risk of human exposure to B. burgdorferi, for the purpose of environmental risk assessment and as an outcome measure when evaluating environmentally based tick or pathogen control methods. However, as this tick-based risk measure does not consider the likelihoods of either human encounters with infected ticks or tick bites resulting in pathogen transmission, its linkage to the occurrence of Lyme disease cases is worth evaluating. In this Forum article, we describe different tick-based risk measures, discuss their strengths and weaknesses, and review the evidence for their capacity to predict the occurrence of Lyme disease cases. We conclude that: 1) the linkage between abundance of host-seeking B. burgdorferi-infected nymphs and Lyme disease occurrence is strong at community or county scales but weak at the fine spatial scale of residential properties where most human exposures to infected nymphs occur in Northeast, 2) the combined use of risk measures based on infected nymphs collected from the environment and ticks collected from humans is preferable to either one of these risk measures used singly when assessing the efficacy of environmentally based tick or pathogen control methods aiming to reduce the risk of human exposure to B. burgdorferi, 3) there is a need for improved risk assessment methodology for residential properties that accounts for both the abundance of infected nymphs and the likelihood of human–tick contact, and 4) we need to better understand how specific human activities conducted in defined residential microhabitats relate to risk for nymphal exposures and bites. PMID:27330093

  7. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae

    PubMed Central

    Fernandez, Jessie; Yang, Kuan Ting; Cornwell, Kathryn M.; Wright, Janet D.; Wilson, Richard A.

    2013-01-01

    Increasing incidences of human disease, crop destruction and ecosystem perturbations are attributable to fungi and threaten socioeconomic progress and food security on a global scale. The blast fungus Magnaporthe oryzae is the most devastating pathogen of cultivated rice, but its metabolic requirements in the host are unclear. Here we report that a purine-requiring mutant of M. oryzae could develop functional appressoria, penetrate host cells and undergo the morphogenetic transition to elaborate bulbous invasive hyphae from primary hyphae, but further in planta growth was aborted. Invasive hyphal growth following rice cell ingress is thus dependent on de novo purine biosynthesis by the pathogen and, moreover, plant sources of purines are neither available to the mutant nor required by the wild type during the early biotrophic phase of infection. This work provides new knowledge about the metabolic interface between fungus and host that might be applicable to other important intracellular fungal pathogens. PMID:23928947

  9. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    PubMed Central

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  10. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.

    PubMed

    Desai, Mahesh S; Seekatz, Anna M; Koropatkin, Nicole M; Kamada, Nobuhiko; Hickey, Christina A; Wolter, Mathis; Pudlo, Nicholas A; Kitamoto, Sho; Terrapon, Nicolas; Muller, Arnaud; Young, Vincent B; Henrissat, Bernard; Wilmes, Paul; Stappenbeck, Thaddeus S; Núñez, Gabriel; Martens, Eric C

    2016-11-17

    Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    PubMed Central

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz; Sultan, Abida; Sjöling, Åsa; Wai, Sun N.; Mijakovic, Ivan

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes. PMID:29376036

  12. Black Molds and Melanized Yeasts Pathogenic to Humans

    PubMed Central

    Chowdhary, Anuradha; Perfect, John; de Hoog, G. Sybren

    2015-01-01

    A review is given of melanized fungi involved in human infection, including species forming budding cells and strictly filamentous representatives. Classically, they are known as “phaeoid” or “dematiaceous” fungi, and, today, agents are recognized to belong to seven orders of fungi, of which the Chaetothyriales and Pleosporales are the most important. Infections range from cutaneous or pulmonary colonization to systemic or disseminated invasion. Subcutaneous involvement, either primary or after dissemination, may lead to host tissue proliferation of dermis or epidermis. Particularly in the Chaetothyriales, subcutaneous and systemic infections may occur in otherwise apparently healthy individuals. Infections are mostly chronic and require extended antifungal therapy and/or surgery. PMID:25384772

  13. Immunity in urogenital protozoa.

    PubMed

    Malla, N; Goyal, K; Dhanda, R S; Yadav, M

    2014-09-01

    Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated. © 2014 John Wiley & Sons Ltd.

  14. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri.

    PubMed

    De Jonckheere, Johan F

    2011-10-01

    Naegleria fowleri, a worldwide distributed pathogen, is the causative agent of primary amoebic meningoencephalitis. Because it is such a fulminant disease, most patients do not survive the infection. This pathogen is a free-living amoeboflagellate present in warm water. To date, it is well established that there are several types of N. fowleri, which can be distinguished based on the length of the internal transcribed spacer 1 and a one bp transition in the 5.8S rDNA. Seven of the eight known types have been detected in Europe. Three types are present in the USA, of which one is unique to this country. Only one of the eight types occurs in Oceania (Australia and New Zealand) and Japan. In mainland Asia (India, China and Thailand) the two most common types are found, which are also present in Europe and the USA. There is strong indication that the pathogenic N. fowleri evolved from the nonpathogenic Naegleria lovaniensis on the American continent. There is no evidence of virulence differences between the types of N. fowleri. Two other Naegleria spp. are pathogenic for mice, but human infections due to these two other Naegleria spp. are not known. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater

    PubMed Central

    Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua

    2017-01-01

    ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310

  16. Characterization of cellular immune response and innate immune signaling in human and nonhuman primate primary mononuclear cells exposed to Burkholderia mallei.

    PubMed

    Alam, Shahabuddin; Amemiya, Kei; Bernhards, Robert C; Ulrich, Robert G; Waag, David M; Saikh, Kamal U

    2015-01-01

    Burkholderia pseudomallei infection causes melioidosis and is often characterized by severe sepsis. Although rare in humans, Burkholderia mallei has caused infections in laboratory workers, and the early innate cellular response to B. mallei in human and nonhuman primates has not been characterized. In this study, we examined the primary cellular immune response to B. mallei in PBMC cultures of non-human primates (NHPs), Chlorocebus aethiops (African Green Monkeys), Macaca fascicularis (Cynomolgus macaque), and Macaca mulatta (Rhesus macaque) and humans. Our results demonstrated that B. mallei elicited strong primary pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, and IL-6) equivalent to the levels of B. pseudomallei in primary PBMC cultures of NHPs and humans. When we examined IL-1β and other cytokine responses by comparison to Escherichia coli LPS, African Green Monkeys appears to be most responsive to B. mallei than Cynomolgus or Rhesus. Characterization of the immune signaling mechanism for cellular response was conducted by using a ligand induced cell-based reporter assay, and our results demonstrated that MyD88 mediated signaling contributed to the B. mallei and B. pseudomallei induced pro-inflammatory responses. Notably, the induced reporter activity with B. mallei, B. pseudomallei, or purified LPS from these pathogens was inhibited and cytokine production was attenuated by a MyD88 inhibitor. Together, these results show that in the scenario of severe hyper-inflammatory responses to B. mallei infection, MyD88 targeted therapeutic intervention may be a successful strategy for therapy. Published by Elsevier Ltd.

  17. Mechanistic Insights into Elastin Degradation by Pseudolysin, the Major Virulence Factor of the Opportunistic Pathogen Pseudomonas aeruginosa

    PubMed Central

    Yang, Jie; Zhao, Hui-Lin; Ran, Li-Yuan; Li, Chun-Yang; Zhang, Xi-Ying; Su, Hai-Nan; Shi, Mei; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-01-01

    Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1’ positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1’ sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection. PMID:25905792

  18. Invasion of Human Coronary Artery Cells by Periodontal Pathogens

    PubMed Central

    Dorn, Brian R.; Dunn, William A.; Progulske-Fox, Ann

    1999-01-01

    There is an emerging paradigm shift from coronary heart disease having a purely hereditary and nutritional causation to possibly having an infectious etiology. Recent epidemiological studies have shown a correlation between periodontal disease and coronary heart disease. However, to date, there is minimal information as to the possible disease mechanisms of this association. It is our hypothesis that invasion of the coronary artery cells by oral bacteria may start and/or exacerbate the inflammatory response in atherosclerosis. Since a few periodontal pathogens have been reported to invade oral epithelial tissues, we tested the ability of three putative periodontal pathogens—Eikenella corrodens, Porphyromonas gingivalis, and Prevotella intermedia—to invade human coronary artery endothelial cells and coronary artery smooth muscle cells. In this study we demonstrate by an antibiotic protection assay and electron microscopy that specific species and strains invade coronary artery cells at a significant level. Actin polymerization and eukaryotic protein synthesis in metabolically active cells were required since the corresponding inhibitors nearly abrogated invasion. Many intracellular P. gingivalis organisms were seen to be present in multimembranous vacuoles resembling autophagosomes by morphological analysis. This is the first report of oral microorganisms invading human primary cell cultures of the vasculature. PMID:10531230

  19. 76 FR 30176 - Expedited Review for New Animal Drug Applications for Human Pathogen Reduction Claims; Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2001-D-0066] (Formerly Docket No. 2001D-0107) Expedited Review for New Animal Drug Applications for Human Pathogen... Review for New Animal Drug Applications for Human Pathogen Reduction Claims.'' The guidance predates the...

  20. Caulobacter spp: A Rare Pathogen Responsible for Paucisintomatic Persisitant Meningitis in a Glioblastoma Patient.

    PubMed

    Penner, Federica; Brossa, Silvia; Barbui, Anna Maria; Ducati, Alessandro; Cavallo, Rossana; Zenga, Francesco

    2016-12-01

    Caulobacter spp. are Gram-negative bacteria that have rarely been found to be pathogenic in humans. This report describes the first case, to our knowledge, of meningitis in an adult patient caused by Caulobacter spp. A 75-year-old man was operated for a glioblastoma with no evident signs of primary infection in the wound site. Eight days after surgery, the patient developed signs and symptoms of meningitis. Caulobacter was then isolated on 3 separate occasions in the patient's cerebrospinal fluid. Thereafter, specific antibiotic therapy began. After 2 weeks of therapy, the patient was discharged with complete resolution of any related symptoms. Caulobacter spp. can cause adult meningitis even where there is no evidence of surgical site infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells.

    PubMed

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S; Ding, Yong-Bing; Wang, Jian-Hua

    2015-12-30

    The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin.

    PubMed

    Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F

    2017-03-14

    Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.

  3. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans.

    PubMed

    Ruiz-Fons, F

    2017-02-01

    Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.

  4. Biofilms in Water, Its role and impact in human disease transmission

    DTIC Science & Technology

    2008-01-01

    increasing realization of the importance of the world’s oceans as a source of potentially pathogenic microorganisms. Human bacterial pathogens...colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 2008, 46:249-254. A new microplate model for...Polz M: Diversity, sources, and detection of human bacterial pathogens in the marine environment. In Oceans and Health: Pathogens in the Marine

  5. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study.

    PubMed

    Ai, Junhong; Xie, Zhengde; Liu, Gang; Chen, Zongbo; Yang, Yong; Li, Yuning; Chen, Jing; Zheng, Guo; Shen, Kunling

    2017-07-14

    In China, there were few studies about the pathogens of acute viral encephalitis and meningitis in children in recent years. The aims of this study were to characterize the etiology and prognosis of acute viral encephalitis and meningitis in Chinese children. This was a multicentre prospective study. Two hundred and sixty one viral encephalitis patients and 285 viral meningitis patients were enrolled. The mean age of viral encephalitis and meningitis were 5.88 ± 3.60 years and 6.39 ± 3.57 years, respectively. Real-time reverse transcription PCR and multiplex PCR were used to detect human enteroviruses and herpes viruses in cerebrospinal fluid (CSF) of patients with encephalitis or meningitis. The enzyme-linked immune absorbent assay (ELISA) was used for detecting IgM antibody against Japanese encephalitis virus (JEV) in CSF and against mumps virus, tick-borne encephalitis virus (TBEV), dengue virus and rubella virus in acute serum. The clinical and outcome data were collected during patients' hospitalization. The etiology of viral encephalitis was confirmed in 52.5% patients. The primary pathogen was human enteroviruses (27.7%) in viral encephalitis. The incidence of sequelae and the fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The etiology of viral meningitis was identified in 42.8% cases. The leading pathogen was also human enteroviruses (37.7%) in viral meningitis. The prognosis of viral meningitis was favorable with only 0.7% patients had neurological sequelae. Human enteroviruses were the leading cause both in acute viral encephalitis and viral meningitis in children. The incidence of sequelae and fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The prognosis of viral meningitis was favorable compared to viral encephalitis.

  6. Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation.

    PubMed

    Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke

    2011-01-01

    Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.

  7. Establishing high resolution melting analysis: method validation and evaluation for c-RET proto-oncogene mutation screening.

    PubMed

    Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina

    2011-10-06

    Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.

  8. First principles of Hamiltonian medicine.

    PubMed

    Crespi, Bernard; Foster, Kevin; Úbeda, Francisco

    2014-05-19

    We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.

  9. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGES

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; ...

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  10. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  11. Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry.

    PubMed

    Niñonuevo, Milady R; Perkins, Patrick D; Francis, Jimi; Lamotte, Latasha M; LoCascio, Riccardo G; Freeman, Samara L; Mills, David A; German, J Bruce; Grimm, Rudolf; Lebrilla, Carlito B

    2008-01-23

    Human milk is a complex biological fluid that provides not only primary nourishment for infants but also protection against pathogens and influences their metabolic, immunologic, and even cognitive development. The presence of oligosaccharides in remarkable abundance in human milk has been associated to provide diverse biological functions including directing the development of an infant's intestinal microflora and immune system. Recent advances in analytical tools offer invaluable insights in understanding the specific functions and health benefits these biomolecules impart to infants. Oligosaccharides in human milk samples obtained from five different individual donors over the course of a 3 month lactation period were isolated and analyzed using HPLC-Chip/TOF-MS technology. The levels and compositions of oligosaccharides in human milk were investigated from five individual donors. Comparison of HPLC-Chip/TOF-MS oligosaccharides profiles revealed heterogeneity among multiple individuals with no significant variations at different stages of lactation within individual donors.

  12. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  13. On the origin of smallpox: correlating variola phylogenics with historical smallpox records.

    PubMed

    Li, Yu; Carroll, Darin S; Gardner, Shea N; Walsh, Matthew C; Vitalis, Elizabeth A; Damon, Inger K

    2007-10-02

    Human disease likely attributable to variola virus (VARV), the etiologic agent of smallpox, has been reported in human populations for >2,000 years. VARV is unique among orthopoxviruses in that it is an exclusively human pathogen. Because VARV has a large, slowly evolving DNA genome, we were able to construct a robust phylogeny of VARV by analyzing concatenated single nucleotide polymorphisms (SNPs) from genome sequences of 47 VARV isolates with broad geographic distributions. Our results show two primary VARV clades, which likely diverged from an ancestral African rodent-borne variola-like virus either approximately 16,000 or approximately 68,000 years before present (YBP), depending on which historical records (East Asian or African) are used to calibrate the molecular clock. One primary clade was represented by the Asian VARV major strains, the more clinically severe form of smallpox, which spread from Asia either 400 or 1,600 YBP. Another primary clade included both alastrim minor, a phenotypically mild smallpox described from the American continents, and isolates from West Africa. This clade diverged from an ancestral VARV either 1,400 or 6,300 YBP, and then further diverged into two subclades at least 800 YBP. All of these analyses indicate that the divergence of alastrim and variola major occurred earlier than previously believed.

  14. The prevalence and distribution of indicators of fecal contamination in the sand from beaches of Oran coast

    NASA Astrophysics Data System (ADS)

    Messaoui, N.; Matallah-Boutiba, A.; Boutiba, Z.

    2017-02-01

    The microbiological quality of water at public bathing beaches is regularly monitored using fecal indicator bacteria (FIB) as a surrogate for the presence of human sewage and pathogens. The common feature of all these routine screening procedures is that the primary analysis is for indicator organisms rather than the pathogens that might cause concern. Indicator organisms are bacteria such as non-specific coliforms, Escherichia coli and Pseudomonas aeruginosa that are very commonly found in the human or animal gut and which, if detected, may suggest the presence of sewage. Indicator organisms are used because even when a person is infected with more pathogenic bacteria, they will still be excreting many millions times more indicator organisms than pathogens. It is therefore reasonable to surmise that if indicator organism levels are low, then pathogen levels will be very much lower or absent. Judgments as to suitability of water for use are based on very extensive precedents and relate to the probability of any sample population of bacteria being able to be infective at a reasonable statistical level of confidence. Exposure to FIB and associated pathogens may also occur through contact with contaminated beach sand, but no standards limiting levels of microbes in sand or required monitoring program has been established. As a result, the factors affecting FIB and pathogen survival/persistence in sand remain largely unstudied. A possible contamination of the sand by bacterial communities could be a source of transmission of certain pathogenic bacteria. The goal of this study was to look for a presence of certain bacteria that could be a source of illness to swimmers and compare the different levels of contamination between beach sand and sea water in four sites along the Western Oranian coast. First analysis were made during the dry season and rainy season from December 2010 to June 2012 to estimate fecal coliforms, Pseudomonas spp and total germs levels. E.coli and Enterococcus.ssp levels were estimated from September 2012 to June 2015. Highest levels of bacterial flora were detected in dry sand beach in impacted locations for almost all the period of studies. PCR or molecular biology techniques can be used in order to show the presence of pathogenic strains of E. coli like E.coli O157:H7.

  15. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage

    PubMed Central

    Quispe Calla, Nirk E.; Pavelko, Stephen D.; Cherpes, Thomas L.

    2016-01-01

    While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response. PMID:27606424

  16. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  17. Is Roesleria subterranea a primary pathogen or a minor parasite of grapevines? Risk assessment and a diagnostic decision scheme

    PubMed Central

    2011-01-01

    In the past the root rot pathogen Roesleria subterranea (Ascomycota) was generally considered as a minor parasite, a view with which we were often confronted during field work in German wine-growing regions where this ascomycete recently caused serious problems in established vineyards and at replant sites. To irrevocably demonstrate that R. subterranea is not a minor, but a primary pathogen of grapevines (and fruit trees) a pest risk analysis was carried out according to the guidelines defined by EPPO standard series PM 5, which defines the information needed, and contains standardised, detailed key questions and a decision support scheme for risk analysis. Following the provided decision scheme, it becomes apparent that R. subterranea must be considered as a serious, primary pathogen for grapevines and fruit trees that can cause massive economic losses. Based on the literature, the pathogen seems to be ubiquitous in wine growing regions in cool climates of the northern hemisphere. It is likely that because of its growth below ground, the small fruiting bodies, and ambiguous symptoms above ground, R. subterranea has been overlooked in the past and therefore, has not been considered as primary pathogen for grapevine. Available published information together with experience from field trials was implemented into a diagnostic decision scheme which will, together with the comprehensive literature provided, be the basis (a) to implement quick and efficient diagnosis of this pathogen in the field and (b) to conduct risk analysis and management in areas where R. subterranea has not established yet. PMID:22318129

  18. Pathogen survival trajectories: an eco-environmental approach to the modeling of human campylobacteriosis ecology.

    PubMed Central

    Skelly, Chris; Weinstein, Phil

    2003-01-01

    Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis. PMID:12515674

  19. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    PubMed

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  20. Human immunity against EBV—lessons from the clinic

    PubMed Central

    2017-01-01

    The mammalian immune system has evolved over many millennia to be best equipped to protect the host from pathogen infection. In many cases, host and pathogen have coevolved, each acquiring sophisticated ways of inducing or protecting from disease. Epstein-Barr virus (EBV) is a human herpes virus that infects >90% of individuals. Despite its ubiquity, infection by EBV is often subclinical; this invariably reflects the necessity of the virus to preserve its host, balanced with sophisticated host immune mechanisms that maintain viral latency. However, EBV infection can result in various, and often fatal, clinical sequelae, including fulminant infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, organomegaly, and/or malignancy. Such clinical outcomes are typically observed in immunosuppressed individuals, with the most extreme cases being Mendelian primary immunodeficiencies (PIDs). Although these conditions are rare, they have provided critical insight into the cellular, biochemical, and molecular requirements for robust and long-lasting immunity against EBV infection. Here, we review the virology of EBV, mechanisms underlying disease pathogenesis in PIDs, and developments in immune cell–mediated therapy to treat disorders associated with or induced by EBV infection. PMID:28108590

  1. Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania.

    PubMed

    Andersson, Martin O; Marga, Georgeta; Banu, Teofilia; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-05-01

    Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.

  2. 76 FR 30705 - Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9311-4] Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F...

  3. Escherichia coli K1 invasion of human brain microvascular endothelial cells.

    PubMed

    Loh, Lip Nam; Ward, Theresa H

    2012-01-01

    The pathogenic Escherichia coli strain E. coli K1 is a primary causative agent of neonatal meningitis. Understanding how these bacteria cross the blood-brain barrier is vital to develop therapeutics. Here, we describe the use of live-cell imaging techniques to study E. coli K1 interactions with cellular markers following infection of human brain microvascular endothelial cells, a model system of the blood-brain barrier. We also discuss optimization of endothelial cell transfection conditions using nonviral transfection technique, bacterial labeling techniques, and in vitro assays to screen for fluorescent bacteria that retain their ability to invade host cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    PubMed

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.

  5. Migrating microbes: what pathogens can tell us about population movements and human evolution.

    PubMed

    Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J

    2017-08-01

    The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.

  6. Bacterial phylogeny structures soil resistomes across habitats

    NASA Astrophysics Data System (ADS)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  7. Selective Infection of Antigen-Specific B Lymphocytes by Salmonella Mediates Bacterial Survival and Systemic Spreading of Infection

    PubMed Central

    de Wit, Jelle; Martinoli, Chiara; Zagato, Elena; Janssen, Hans; Jorritsma, Tineke; Bar-Ephraïm, Yotam E.; Rescigno, Maria; Neefjes, Jacques; van Ham, S. Marieke

    2012-01-01

    Background The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer’s Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. Methodology/Principal Findings Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. Conclusions/Significance This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection. PMID:23209805

  8. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J

    2009-04-01

    Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.

  9. Chlamydia muridarum with Mutations in Chromosomal Genes tc0237 and/or tc0668 Is Deficient in Colonizing the Mouse Gastrointestinal Tract

    PubMed Central

    Shao, Lili; Zhang, Tianyuan; Liu, Quanzhong; Wang, Jie

    2017-01-01

    ABSTRACT Chlamydiae colonize the gastrointestinal tracts of both animals and humans. However, their medical significance remains unknown. We have previously shown that wild-type Chlamydia muridarum spreads to and establishes stable colonization of the gastrointestinal tract following intravaginal inoculation. In the present study, we found that C. muridarum with mutations in chromosomal genes tc0237 and/or tc0668 was defective in spreading to the mouse gastrointestinal tract, which correlated with its attenuated pathogenicity in the upper genital tract. This correlation was more consistent than that of chlamydial pathogenicity with ascending infection in the genital tract, since attenuated C. muridarum spread significantly less to the gastrointestinal tract but maintained robust ascending infection of the upper genital tract. Transcervical inoculation further confirmed the correlation between C. muridarum spreading to the gastrointestinal tract and its pathogenicity in the upper genital tract. Finally, defective spreading of C. muridarum mutants was due to their inability to colonize the gastrointestinal tract since intragastric inoculation did not rescue the mutants' colonization. Thus, promoting C. muridarum colonization of the gastrointestinal tract may represent a primary function of the TC0237 and TC0668 proteins. Correlation of chlamydial colonization of the gastrointestinal tract with chlamydial pathogenicity in the upper genital tract suggests a potential role for gastrointestinal chlamydiae in genital tract pathogenicity. PMID:28584162

  10. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  11. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  12. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors.

    PubMed

    Bliss, Bishop; Tran, Kevin Ivan; Sioutas, Constantinos; Campbell, Arezoo

    2018-02-01

    Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gene expression of indoor fungal communities under damp building conditions: Implications for human health.

    PubMed

    Hegarty, B; Dannemiller, K C; Peccia, J

    2018-03-03

    Dampness and visible mold growth in homes are associated with negative human health outcomes, but causal relationships between fungal exposure and health are not well established. The purpose of this study was to determine whether dampness in buildings impacts fungal community gene expression and how, in turn, gene expression may modulate human health impacts. A metatranscriptomic study was performed on house dust fungal communities to investigate the expression of genes and metabolic processes in chamber experiments at water activity levels of 0.5, 0.85, and 1.0. Fungi at water activities as low as 0.5 were metabolically active, focusing their transcriptional resources on primary processes essential for cell maintenance. Metabolic complexity increased with water activity where communities at 1.0 displayed more diverse secondary metabolic processes. Greater gene expression at increasing water activity has important implications for human health: Fungal communities at 1.0 a w upregulated a greater number of allergen-, mycotoxin-, and pathogenicity-encoding genes versus communities at 0.85 and 0.5 a w . In damp buildings, fungi may display increases in secondary metabolic processes with the potential for greater per-cell production of allergens, toxins, and pathogenicity. Assessments in wet versus dry buildings that do not account for this elevated health impact may not accurately reflect exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Non-avian animal reservoirs present a source of influenza A PB1-F2 proteins with novel virulence-enhancing markers.

    PubMed

    Alymova, Irina V; York, Ian A; McCullers, Jonathan A

    2014-01-01

    PB1-F2 protein, expressed from an alternative reading frame of most influenza A virus (IAV) PB1 segments, may possess specific residues associated with enhanced inflammation (L62, R75, R79, and L82) and cytotoxicity (I68, L69, and V70). These residues were shown to increase the pathogenicity of primary viral and secondary bacterial infections in a mouse model. In contrast to human seasonal influenza strains, virulence-associated residues are present in PB1-F2 proteins from pandemic H1N1 1918, H2N2 1957, and H3N2 1968, and highly pathogenic H5N1 strains, suggesting their contribution to viruses' pathogenic phenotypes. Non-human influenza strains may act as donors of virulent PB1-F2 proteins. Previously, avian influenza strains were identified as a potential source of inflammatory, but not cytotoxic, PB1-F2 residues. Here, we analyze the frequency of virulence-associated residues in PB1-F2 sequences from IAVs circulating in mammalian species in close contact with humans: pigs, horses, and dogs. All four inflammatory residues were found in PB1-F2 proteins from these viruses. Among cytotoxic residues, I68 was the most common and was especially prevalent in equine and canine IAVs. Historically, PB1-F2 from equine (about 75%) and canine (about 20%) IAVs were most likely to have combinations of the highest numbers of residues associated with inflammation and cytotoxicity, compared to about 7% of swine IAVs. Our analyses show that, in addition to birds, pigs, horses, and dogs are potentially important sources of pathogenic PB1-F2 variants. There is a need for surveillance of IAVs with genetic markers of virulence that may be emerging from these reservoirs in order to improve pandemic preparedness and response.

  15. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host­-pathogen interface

    Treesearch

    A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein

    2013-01-01

    Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...

  16. Emerging Tick-Borne Viruses in the Twenty-First Century

    PubMed Central

    Mansfield, Karen L.; Jizhou, Lv; Phipps, L. Paul; Johnson, Nicholas

    2017-01-01

    Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified. PMID:28744449

  17. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  18. [Cytomegalovirus-associated infectious mononucleosis-like syndrome accompanied by transient monoclonal expansion of CD8+ T-cells].

    PubMed

    Yonezawa, Akihito; Onaka, Takashi; Imada, Kazunori

    2009-08-01

    Most cases of infectious mononucleosis (IM) are caused by Epstein-Barr virus (EBV). Other pathogens have been reported to cause heterophile-negative mononucleosis-like syndrome, including cytomegalovirus (CMV) and human immunodeficiency virus type-1 (HIV-1). Primary CMV infection is often asymptomatic in immunocompetent individuals. In this article, we describe a patient with prolonged fever and fatigue, who developed transient monoclonal CD8+ T-cell lymphocytosis after primary CMV infection. Monoclonal gene rearrangement of T-cell receptor (TCR) beta locus was transiently detected in DNA from peripheral lymphocytes. Monoclonal rearrangement and atypical lymphocytosis disappeared after treatment with anti-viral agents. These observations imply that monoclonal expansion of T-cells could be a reactive phenomenon of primary CMV infection and TCR gene rearrangement is not specific for malignancy. Physicians should carefully follow patients with monoclonal expansion of CD8+ T-cells after CMV-IM in order to rule out T cell malignancy.

  19. Overview of measles and mumps vaccine: origin, present, and future of vaccine production.

    PubMed

    Betáková, T; Svetlíková, D; Gocník, M

    2013-01-01

    Measles and mumps are common viral childhood diseases that can cause serious complications. Vaccination remains the most efficient way to control the spread of these viruses. The manufacturing capability for viral vaccines produced in embryonated hen eggs and conventional/classical cell substrates, such as chicken embryo fibroblast or primary dog kidney cell substrates, is no longer sufficient. This limitation can be overcome by utilizing other recognized cell substrates such as Madin Darby Canine Kidney (MDCK), Chinese Hamster Ovary (CHO), Vero (monkey origin) cells, MRC-5 (human diploid) or as an alternative, introducing new cell substrates of human or avian origin. A very important factor in vaccine production is the safety and immunogenicity of the final vaccine, where the proper choice of cell substrate used for virus propagation is made. All substrates used in vaccine production must be fully characterized to avoid the contamination of hidden unknown pathogens which is difficult to achieve in primary cell substrates.

  20. Helicobacter hepaticus induces an inflammatory response in primary human hepatocytes.

    PubMed

    Kleine, Moritz; Worbs, Tim; Schrem, Harald; Vondran, Florian W R; Kaltenborn, Alexander; Klempnauer, Jürgen; Förster, Reinhold; Josenhans, Christine; Suerbaum, Sebastian; Bektas, Hüseyin

    2014-01-01

    Helicobacter hepaticus can lead to chronic hepatitis and hepatocellular carcinoma in certain strains of mice. Until now the pathogenic role of Helicobacter species on human liver tissue is still not clarified though Helicobacter species identification in human liver cancer was successful in case controlled studies. Therefore we established an in vitro model to investigate the interaction of primary human hepatocytes (PHH) with Helicobacter hepaticus. Successful co-culturing of PHH with Helicobacter hepaticus was confirmed by visualization of motile bacteria by two-photon-microscopy. Isolated human monocytes were stimulated with PHH conditioned media. Changes in mRNA expression of acute phase cytokines and proteins in PHH and stimulated monocytes were determined by Real-time PCR. Furthermore, cytokines and proteins were analyzed in PHH culture supernatants by ELISA. Co-cultivation with Helicobacter hepaticus induced mRNA expression of Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha, Interleukin-8 (IL-8) and Monocyte chemotactic protein-1 (MCP-1) in PHH (p<0.05) resulting in a corresponding increase of IL-8 and MCP-1 concentrations in PHH supernatants (p<0.05). IL-8 and IL-1β mRNA expression was induced in monocytes stimulated with Helicobacter hepaticus infected PHH conditioned media (p<0.05). An increase of Cyclooxygenase-2 mRNA expression was observed, with a concomitant increase of prostaglandin E2 concentration in PHH supernatants at 24 and 48 h (p<0.05). In contrast, at day 7 of co-culture, no persistent elevation of cytokine mRNA could be detected. High expression of intercellular adhesion molecule-1 on PHH cell membranes after co-culture was shown by two-photon-microscopy and confirmed by flow-cytometry. Finally, expression of Cytochrome P450 3A4 and albumin mRNA were downregulated, indicating an impairment of hepatocyte synthesis function by Helicobacter hepaticus presence. This is the first in vitro model demonstrating a pathogenic effect of a Helicobacter spp. on human liver cells, resulting in an inflammatory response with increased synthesis of inflammatory mediators and consecutive monocyte activation.

  1. Development of a high- versus low-pathogenicity model of the free-living amoeba Naegleria fowleri.

    PubMed

    Burri, Denise C; Gottstein, Bruno; Zumkehr, Béatrice; Hemphill, Andrew; Schürch, Nadia; Wittwer, Matthias; Müller, Norbert

    2012-10-01

    Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.

  2. Prediction of bacterial associations with plants using a supervised machine-learning approach.

    PubMed

    Martínez-García, Pedro Manuel; López-Solanilla, Emilia; Ramos, Cayo; Rodríguez-Palenzuela, Pablo

    2016-12-01

    Recent scenarios of fresh produce contamination by human enteric pathogens have resulted in severe food-borne outbreaks, and a new paradigm has emerged stating that some human-associated bacteria can use plants as secondary hosts. As a consequence, there has been growing concern in the scientific community about these interactions that have not yet been elucidated. Since this is a relatively new area, there is a lack of strategies to address the problem of food-borne illnesses due to the ingestion of fruits and vegetables. In the present study, we performed specific genome annotations to train a supervised machine-learning model that allows for the identification of plant-associated bacteria with a precision of ∼93%. The application of our method to approximately 9500 genomes predicted several unknown interactions between well-known human pathogens and plants, and it also confirmed several cases for which evidence has been reported. We observed that factors involved in adhesion, the deconstruction of the plant cell wall and detoxifying activities were highlighted as the most predictive features. The application of our strategy to sequenced strains that are involved in food poisoning can be used as a primary screening tool to determine the possible causes of contaminations. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo.

    PubMed

    Roth, Anna; König, Peter; van Zandbergen, Ger; Klinger, Matthias; Hellwig-Bürgel, Thomas; Däubener, Walter; Bohlmann, Michael K; Rupp, Jan

    2010-11-09

    IFN-γ has an important role in the adaptive immune response against intracellular pathogens. In urogenital tract (UGT) infections with the obligate intracellular pathogen Chlamydia trachomatis, IFN-γ-mediated control of chlamydial growth implies the JAK-STAT signaling cascades and subsequent induction of the indoleamine 2,3-dioxygenase (IDO). As oxygen concentrations in the UGT are low under physiological conditions (O(2) < 5%) and further decrease during an inflammatory process, we wondered whether antibacterial properties of IFN-γ are maintained under hypoxic conditions. Using primary cells that were isolated from human fallopian tubes and an ex vivo human fallopian tube model (HFTM), we found that even high IFN-γ concentrations (200 units/mL) were not sufficient to limit growth of C. trachomatis under hypoxia. Reduced antibacterial activity of IFN-γ under hypoxia was restricted to the urogenital serovars D and L(2), but was not observed with the ocular serovar A. Impaired effectiveness of IFN-γ on chlamydial growth under hypoxia was accompanied by reduced phosphorylation of Stat-1 on Tyr701 and diminished IDO activity. This study shows that IFN-γ effector functions on intracellular C. trachomatis depend on the environmental oxygen supply, which could explain inadequate bacterial clearance and subsequent chronic infections eventually occurring in the UGT of women.

  4. Direct Measurement of T Cell Receptor Affinity and Sequence from Naïve Anti-Viral T Cells

    PubMed Central

    Zhang, Shuqi; Parker, Patricia; Ma, Keyue; He, Chenfeng; Shi, Qian; Cui, Zhonghao; Williams, Chad; Wendel, Ben S.; Meriwether, Amanda; Salazar, Mary A.; Jiang, Ning

    2016-01-01

    T cells recognize and kill a myriad of pathogen-infected or cancer cells using a diverse set of T cell receptors (TCR). The affinity of TCR to cognate antigen is of high interest in adoptive T cell transfer immunotherapy and antigen-specific T cell repertoire immune profiling because it is widely known to correlate with downstream T cell responses. Here, we introduce the in situ TCR affinity and sequence test (iTAST) for simultaneous measurement of TCR affinity and sequence from single primary CD8+ T cells in human blood. We demonstrate that the repertoire of primary antigen-specific T cells from pathogen inexperienced individuals has a surprisingly broad affinity range of 1000-fold composed of diverse TCR sequences. Within this range, samples from older individuals contained a reduced frequency of high affinity T cells compared to young individuals, demonstrating an age-related effect of T cell attrition that could cause holes in the repertoire. iTAST should enable the rapid selection of high affinity TCRs ex vivo for adoptive immunotherapy and measurement of T cell response for immune monitoring applications. PMID:27252176

  5. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    PubMed

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  6. Infectivity of Plasmodium falciparum sporozoites determines emerging parasitemia in infected volunteers.

    PubMed

    McCall, Matthew B B; Wammes, Linda J; Langenberg, Marijke C C; van Gemert, Geert-Jan; Walk, Jona; Hermsen, Cornelus C; Graumans, Wouter; Koelewijn, Rob; Franetich, Jean-François; Chishimba, Sandra; Gerdsen, Max; Lorthiois, Audrey; van de Vegte, Marga; Mazier, Dominique; Bijker, Else M; van Hellemond, Jaap J; van Genderen, Perry J J; Sauerwein, Robert W

    2017-06-21

    Malaria sporozoites must first undergo intrahepatic development before a pathogenic blood-stage infection is established. The success of infection depends on host and parasite factors. In healthy human volunteers undergoing controlled human malaria infection (CHMI), we directly compared three clinical Plasmodium falciparum isolates for their ability to infect primary human hepatocytes in vitro and to drive the production of blood-stage parasites in vivo. Our data show a correlation between the efficiency of strain-specific sporozoite invasion of human hepatocytes and the dynamics of patent parasitemia in study subjects, highlighting intrinsic differences in infectivity among P. falciparum isolates from distinct geographical locales. The observed heterogeneity in infectivity among strains underscores the value of assessing the protective efficacy of candidate malaria vaccines against heterologous strains in the CHMI model. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence for the ability of C. pneumoniae to evade cellular defense and to persist in human macrophages.

  8. Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans

    PubMed Central

    Mayer, François L.; Wilson, Duncan; Jacobsen, Ilse D.; Miramón, Pedro; Slesiona, Silvia; Bohovych, Iryna M.; Brown, Alistair J. P.; Hube, Bernhard

    2012-01-01

    Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen. PMID:22685587

  9. Biocontrol interventions for inactivation of foodborne pathogens on produce

    USDA-ARS?s Scientific Manuscript database

    Post-harvest interventions for control of foodborne pathogens on minimally processed foods are crucial for food safety. Biocontrol interventions have the primary objective of developing novel antagonists in combinations with physical and chemical interventions to inactivate pathogenic microbes. Ther...

  10. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  11. Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota.

    PubMed

    Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D

    2017-11-08

    Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.

  12. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F).

    PubMed

    Manilal, Aseer; Idhayadhulla, Akbar

    2014-01-01

    To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  13. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F)

    PubMed Central

    Manilal, Aseer; Idhayadhulla, Akbar

    2014-01-01

    Objective To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. Methods In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. Results The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Conclusions Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. PMID:24144126

  14. Human Granuloma In Vitro Model, for TB Dormancy and Resuscitation

    PubMed Central

    Kapoor, Nidhi; Pawar, Santosh; Sirakova, Tatiana D.; Deb, Chirajyoti; Warren, William L.; Kolattukudy, Pappachan E.

    2013-01-01

    Tuberculosis (TB) is responsible for death of nearly two million people in the world annually. Upon infection, Mycobacterium tuberculosis (Mtb) causes formation of granuloma where the pathogen goes into dormant state and can live for decades before resuscitation to develop active disease when the immune system of the host is weakened and/or suppressed. In an attempt to better understand host-pathogen interactions, several groups have been developing in vitro models of human tuberculosis granuloma. However, to date, an in vitro granuloma model in which Mtb goes into dormancy and can subsequently resuscitate under conditions that mimic weakening of the immune system has not been reported. We describe the development of a biomimetic in vitro model of human tuberculosis granuloma using human primary leukocytes, in which the Mtb exhibited characteristics of dormant mycobacteria as demonstrated by (1) loss of acid-fastness, (2) accumulation of lipid bodies (3) development of rifampicin-tolerance and (4) gene expression changes. Further, when these micro granulomas were treated with immunosuppressant anti-tumor necrosis factor-alpha monoclonal antibodies (anti-TNFα mAbs), resuscitation of Mtb was observed as has been found in humans. In this human in vitro granuloma model triacylglycerol synthase 1deletion mutant (Δtgs1) with impaired ability to accumulate triacylglycerides (TG), but not the complemented mutant, could not go into dormancy. Deletion mutant of lipY, with compromised ability to mobilize the stored TG, but not the complemented mutant, was unable to come out of dormancy upon treatment with anti-TNFα mAbs. In conclusion, we have developed an in vitro human tuberculosis granuloma model that largely exhibits functional features of dormancy and resuscitation observed in human tuberculosis. PMID:23308269

  15. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  16. Human and bovine viruses and bacteria at three Great Lakes beaches: Environmental variable associations and health risk

    USGS Publications Warehouse

    Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun

    2016-01-01

    Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.

  17. Pathogenic traits of Salmonella Montevideo in experimental infections in vivo and in vitro

    PubMed Central

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-01-01

    Salmonella serovar Montevideo (SM) is frequently associated with human Salmonella infections and causes gastrointestinal disease, cases are common particularly among individuals who come in close contact with live poultry or poultry meat products. To characterize SM disease in chickens, the pathogenic traits and tissue predilections of the disease were investigated. Dissemination of fluorescent-tagged SM (JOL1575GFP) was monitored after oral and intramuscular mock infections of specific-pathogen-free chickens. The spleen was predominantly affected by intramuscular infection while the cecum, spleen, and minimally liver were affected by oral infection. No conspicuous illness was observed in infected birds, and histopathological examination showed minimal damage of the intestinal epithelium and splenic parenchyma though SM was readily isolated from these tissues. Levels of SM internalization by primary chicken peritoneal macrophages were similar to that of Salmonella Typhimurium. SM was more sensitive to chicken than rabbit serum complement killing. Internal egg contamination of SM mock infected layers also occurred at trace levels and lasted for a week after inoculation. This study also confirmed that SM infection in chickens is sub-clinical and asymptomatic, which suggests that latent asymptomatic carriers may excrete a large number of bacteria and transmit the pathogen by contaminating water or food sources. PMID:28387311

  18. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri.

    PubMed

    Zysset-Burri, Denise C; Müller, Norbert; Beuret, Christian; Heller, Manfred; Schürch, Nadia; Gottstein, Bruno; Wittwer, Matthias

    2014-06-19

    The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.

  19. Comparison of the h-Index Scores Among Pathogens Identified as Emerging Hazards in North America.

    PubMed

    Cox, R; McIntyre, K M; Sanchez, J; Setzkorn, C; Baylis, M; Revie, C W

    2016-02-01

    Disease surveillance must assess the relative importance of pathogen hazards. Here, we use the Hirsch index (h-index) as a novel method to identify and rank infectious pathogens that are likely to be a hazard to human health in the North American region. This bibliometric index was developed to quantify an individual's scientific research output and was recently used as a proxy measure for pathogen impact. Analysis of more than 3000 infectious organisms indicated that 651 were human pathogen species that had been recorded in the North American region. The h-index of these pathogens ranged from 0 to 584. The h-index of emerging pathogens was greater than non-emerging pathogens as was the h-index of frequently pathogenic pathogens when compared to non-pathogenic pathogens. As expected, the h-index of pathogens varied over time between 1960 and 2011. We discuss how the h-index can contribute to pathogen prioritization and as an indicator of pathogen emergence. © 2014 Blackwell Verlag GmbH.

  20. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes

    PubMed Central

    Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.

    2016-01-01

    Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022

  1. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    PubMed

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  2. Human soil-borne pathogens and risks associated with land use change

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2017-04-01

    Soil is a source of pathogenic, neutral and beneficial microorganisms. Natural events and anthropogenic activity can affect soil biodiversity and influence the balance and distribution of soil-borne human pathogens. Important bacterial and fungal pathogens, such as Bacillus anthracis, Coxiella bernetii, Clostridium tetani, Escherichia coli 0157:H7, Listeria monocytogenes, Aspergillus fumigatus and Sporothrix schenckii will be discussed. This presentation will concentrate on soil pathogenic microorganisms and the effects of land use change on their prevalence and distribution. In particular, the potential of agricultural soil cultivation to enhance pathogen transmission to human through the release of soil microbes into the air attached to dust particles, contamination of waterways and infection of food plants and animal. Emerging solutions, such as biocontrol and probiotics, will be discussed.

  3. Chapter 21: Microsporidia in insects

    USDA-ARS?s Scientific Manuscript database

    The science of microsporidiology encompasses a diverse assemblage of pathogens from a large and varied group of hosts. Microsporidia, pathogenic protists related to the Fungi, are considered to be primary pathogens of many aquatic and terrestrial insect species and have important roles in insect po...

  4. Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast

    PubMed Central

    Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M. Dolores; Roque, Ana

    2015-01-01

    Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast. PMID:26284033

  5. Using open-access taxonomic and spatial information to create a comprehensive database for the study of mammalian and avian livestock and pet infections.

    PubMed

    McIntyre, K M; Setzkorn, C; Wardeh, M; Hepworth, P J; Radford, A D; Baylis, M

    2014-10-01

    What are all the species of pathogen that affect our livestock? As 6 out of every 10 human pathogens came from animals, with a good number from livestock and pets, it seems likely that the majority that emerge in the future, and which could threaten or devastate human health, will come from animals. Only 10 years ago, the first comprehensive pathogen list was compiled for humans; we still have no equivalent for animals. Here we describe the creation of a novel pathogen database, and present outputs from the database that demonstrate its value. The ENHanCEd Infectious Diseases database (EID2) is open-access and evidence-based, and it describes the pathogens of humans and animals, their host and vector species, and also their global occurrence. The EID2 systematically collates information on pathogens into a single resource using evidence from the NCBI Taxonomy database, the NCBI Nucleotide database, the NCBI MeSH (Medical Subject Headings) library and PubMed. Information about pathogens is assigned using data-mining of meta-data and semi-automated literature searches. Here we focus on 47 mammalian and avian hosts, including humans and animals commonly used in Europe as food or kept as pets. Currently, the EID2 evidence suggests that: • Within these host species, 793 (30.5%) pathogens were bacteria species, 395 (15.2%) fungi, 705 (27.1%) helminths, 372 (14.3%) protozoa and 332 (12.8%) viruses. • The odds of pathogens being emerging compared to not emerging differed by taxonomic division, and increased when pathogens had greater numbers of host species associated with them, and were zoonotic rather than non-zoonotic. • The odds of pathogens being zoonotic compared to non-zoonotic differed by taxonomic division and also increased when associated with greater host numbers. • The pathogens affecting the greatest number of hosts included: Escherichia coli, Giardia intestinalis, Toxoplasma gondii, Anaplasma phagocytophilum, Cryptosporidium parvum, Rabies virus, Staphylococcus aureus, Neospora caninum and Echinococcus granulosus. • The pathogens of humans and domestic animal hosts are characterised by 4223 interactions between pathogen and host species, with the greatest number found in: humans, sheep/goats, cattle, small mammals, pigs, dogs and equids. • The number of pathogen species varied by European country. The odds of a pathogen being found in Europe compared to the rest of the world differed by taxonomic division, and increased if they were emerging compared to not emerging, or had a larger number of host species associated with them. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review.

    PubMed

    Vymazal, Jan

    2005-01-01

    Domestic and municipal sewage contains various pathogenic or potentially pathogenic microorganisms which, depending on species concentration, pose a potential risk to human health and whose presence must therefore be reduced in the course of wastewater treatment. The removal of microbiological pollution is seldom a primary target for constructed treatment wetlands (CWs). However, wetlands are known to act as excellent biofilters through a complex of physical, chemical and biological factors which all participate in the reduction of the number of bacteria. Measurement of human pathogenic organisms in untreated and treated wastewater is expensive and technically challenging. Consequently, environmental engineers have sought indicator organisms that are (1) easy to monitor and (2) correlate with population of pathogenic organisms. The most frequently used indicators are total coliforms, fecal coliforms, fecal streptococci and Escherichia coli. The literature survey of 60 constructed wetlands with emergent vegetation around the world revealed that removal of total and fecal coliforms in constructed wetlands with emergent macrophytes is high, usually 95 to > 99% while removal of fecal streptococci is lower, usually 80-95%. Because bacterial removal efficiency is a function of inflow bacteria number, the high removal effects are achieved for untreated or mechanically pretreated wastewater. Therefore, the outflow numbers of bacteria are more important. For TC and FC the outflow concentrations are usually in the range of 10(2) to 10(5) CFU/ 100 ml while for FS the range is between 10(2) and 10(4) CFU/ 100 ml. Results from operating systems suggest that enteric microbe removal efficiency in CWs with emergent macrophytes is primarily influenced by hydraulic loading rate (HLR) and the resultant hydraulic residence time (HRT) and the presence of vegetation. Removal of enteric bacteria follows approximately a first-order relationship.

  7. Future challenges for parasitology: vector control and 'One health' in Europe: the veterinary medicinal view on CVBDs such as tick borreliosis, rickettsiosis and canine leishmaniosis.

    PubMed

    Mencke, Norbert

    2013-08-01

    The medical as well as the veterinary importance of parasitic arthropods or ectoparasites in general terms, is characterized by the primary or secondary impact on the health of humans and companion animals alike. The parasitic arthropods addressed here are those ectoparasites belong to the class of insects, such as fleas and sand flies, or the subclass of acarids, such as ticks. These parasitic arthropods interact intensively with their hosts by blood feeding. Fleas, sand flies and ticks hold the vector capacity to transmit pathogens such as virus, bacteria or protozoa to cats, dogs and humans. The diseases caused by these pathogens are summarized under the terms canine vector-borne diseases (CVBD), feline vector-borne diseases (FVBD) or metazoonoses. In small animal practice, it is important to understand that the transmitted pathogen may either lead to a disease with clinical signs, or more often to asymptomatic, clinically healthy, or silent infections. Blocking of the vector-host interactions, the blood feeding and subsequently the transmission of pathogens during blood feeding is a key element of CVBD control. The focus of this review is on the current knowledge of the epidemiology of parasitic vectors and three important CVBDs they transmit; rickettsiosis, tick borreliosis and canine leishmaniosis from a European perspective, and how veterinary medicine may contribute to the challenges of CVBDs and their control. Prevention of CVBDs is fundamentally based on ectoparasite control. Ectoparasite management in cats and dogs is important not only for the health and well-being of the individual companion animal but for public health in general and is therefore a perfect example of the 'One health' approach. Copyright © 2013. Published by Elsevier B.V.

  8. Lsa21, a novel leptospiral protein binding adhesive matrix molecules and present during human infection

    PubMed Central

    Atzingen, Marina V; Barbosa, Angela S; De Brito, Thales; Vasconcellos, Silvio A; de Morais, Zenáide M; Lima, Dirce MC; Abreu, Patricia AE; Nascimento, Ana LTO

    2008-01-01

    Background It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis. PMID:18445272

  9. Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells

    PubMed Central

    Tielen, Frans; Elstak, Edo; Benschop, Julian; Grimbergen, Max; Stallen, Jan; Janssen, Richard; van Marle, Andre; Essrich, Christian

    2017-01-01

    Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single “all-in-one” Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities. PMID:28800587

  10. Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or Primary Pathogens?

    PubMed Central

    Coutinho, Teresa A.; Wingfield, Michael J.

    2017-01-01

    Ralstonia solanacearum and R. pseudosolanacearum are well known primary pathogens of herbaceous crops. Reports of wilt caused by these pathogens in tree species are limited other than on Eucalyptus species. Despite the widespread occurrence of so-called bacterial wilt on eucalypts in tropical and sub-tropical parts of Africa, Asia, and the Americas, there remain many contradictions relating to the disease. Our field observations over many years in most regions where the disease occurs on Eucalyptus show that it is always associated with trees that have been subjected to severe stress. The disease is typically diagnosed by immersing cut stems in water and observing bacterial streaming, but the identity of the bacteria within this suspension is seldom considered. To add to the confusion, pathogenicity tests on susceptible species or clones are rarely successful. When they do work, they are on small plants in greenhouse trials. It has become all to easy to attribute Eucalyptus death exclusively to Ralstonia infection. Our data strongly suggest that Ralstonia species and probably other bacteria are latent colonists commonly occurring in healthy and particularly clonally propagated eucalypts. The onset of stress factors provide the bacteria with an opportunity to develop. We believe that the resulting stress weakens the defense systems of the trees allowing Ralstonia and bacterial endophytes to proliferate. Overall our research suggests that R. solanacearum and R. pseudosolanacearum are not primary pathogens of Eucalyptus. Short of clear evidence that they are primary pathogens of Eucalyptus it is inappropriate to attribute this disease solely to infection by Ralstonia species. PMID:28553301

  11. Siderophore-mediated iron acquisition mechanisms in Vibrio vulnificus biotype 2.

    PubMed Central

    Biosca, E G; Fouz, B; Alcaide, E; Amaro, C

    1996-01-01

    Vibrio vulnificus biotype 2 is a primary pathogen for eels and, as has recently been suggested, an opportunistic pathogen for humans. In this study we have investigated the ability of V. vulnificus biotype 2 to obtain iron by siderophore-mediated mechanisms and evaluated the importance of free iron in vibriosis. The virulence degree for eels was dependent on iron availability from host fluids, as was revealed by a reduction in the 50% lethal dose for iron-overloaded eels. This biotype produced both phenolate- and hydroxamate-type siderophores of an unknown nature and two new outer membrane proteins of around 84 and 72 kDa in response to iron starvation. No alterations in lipopolysaccharide patterns were detected in response to iron stress. Finally, our data suggest that V. vulnificus biotype 2 uses the hydroxamate-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein. PMID:8975620

  12. Comparison of 2 proposed MLVA protocols for subtyping non-O157:H7 verotoxigenic Escherichia coli.

    PubMed

    González, Juliana; Sanso, Andrea Mariel; Lucchesi, Paula María Alejandra; Bustamante, Ana Victoria

    2014-04-01

    Multiple locus variable number tandem repeats (VNTRs) analysis (MLVA) has become a reliable tool, able to establish genetic relationships for epidemiological surveillance and molecular subtyping of pathogens such as verotoxigenic Escherichia coli (VTEC). This emerging pathogen whose primary reservoir is the cattle causes severe disease in humans, such as hemorrhagic colitis and hemolytic uremic syndrome. With the aim of comparing a recently proposed MLVA assay with that used routinely in our laboratory, we analyzed a set of VTEC isolates (n = 72) obtained from meat using both assays. All samples could be typed by the new MLVA assay, and an increase in the number of distinct profiles (31-43) was observed. However, intraserotype resolution was not significantly enhanced; thus, the incorporation of more VNTR loci is still needed to achieve a greater discrimination among non-O157:H7 serotypes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Inflammatory signaling pathways induced by Helicobacter pylori in primary human gastric epithelial cells.

    PubMed

    Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles

    2017-02-01

    Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.

  14. Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains

    PubMed Central

    1978-01-01

    The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237

  15. Pathogen Loading From Canada Geese Faeces in Freshwater: Potential Risks to Human Health Through Recreational Water Exposure.

    PubMed

    Gorham, T J; Lee, J

    2016-05-01

    Canada geese (Branta canadensis) faeces have been shown to contain pathogenic protozoa and bacteria in numerous studies over the past 15 years. Further, increases in both the Canada geese populations and their ideal habitat requirements in the United States (US) translate to a greater presence of these human pathogens in public areas, such as recreational freshwater beaches. Combining these factors, the potential health risk posed by Canada geese faeces at freshwater beaches presents an emerging public health issue that warrants further study. Here, literature concerning human pathogens in Canada geese faeces is reviewed and the potential impacts these pathogens may have on human health are discussed. Pathogens of potential concern include Campylobacter jejuni, Salmonella Typhimurium, Listeria monocytogenes, Helicobacter canadensis, Arcobacter spp., Enterohemorragic Escherichia coli pathogenic strains, Chlamydia psitacci, Cryptosporidium parvum and Giardia lamblia. Scenarios presenting potential exposure to pathogens eluted from faeces include bathers swimming in lakes, children playing with wet and dry sand impacted by geese droppings and other common recreational activities associated with public beaches. Recent recreational water-associated disease outbreaks in the US support the plausibility for some of these pathogens, including Cryptosporidium spp. and C. jejuni, to cause human illness in this setting. In view of these findings and the uncertainties associated with the real health risk posed by Canada geese faecal pathogens to users of freshwater lakes, it is recommended that beach managers use microbial source tracking and conduct a quantitative microbial risk assessment to analyse the local impact of Canada geese on microbial water quality during their decision-making process in beach and watershed management. © 2015 Blackwell Verlag GmbH.

  16. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions.

    PubMed

    Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques

    2017-01-01

    Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.

  17. Investigation of pathogen infiltration into produce using Xradia Bio MicroCT

    USDA-ARS?s Scientific Manuscript database

    The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...

  18. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates.

    PubMed

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  19. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    PubMed Central

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932

  20. Looking at protists as a source of pathogenic viruses.

    PubMed

    La Scola, Bernard

    2014-12-01

    In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. The Battle for Iron between Humans and Microbes.

    PubMed

    Carver, Peggy L

    2018-01-01

    Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.

    PubMed

    Collado, M C; Meriluoto, J; Salminen, S

    2007-10-01

    The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.

  4. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America

    USGS Publications Warehouse

    Miller, Ryan S.; Sweeney, Steven J.; Slootmaker, Chris; Grear, Daniel A.; DiSalvo, Paul A.; Kiser, Deborah; Shwiff, Stephanie A.

    2017-01-01

    Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.

  5. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America.

    PubMed

    Miller, Ryan S; Sweeney, Steven J; Slootmaker, Chris; Grear, Daniel A; Di Salvo, Paul A; Kiser, Deborah; Shwiff, Stephanie A

    2017-08-10

    Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.

  6. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    PubMed

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  7. New trends in emerging pathogens.

    PubMed

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne pathogen and swine may serve as a source of infection in human, a most challenging issue in greater part of the world raising pigs. Tick-borne encephalitis virus infection, either thick borne or caused by consumption of raw milk, is an increasing trend in the industrialized part of the world. Consumer awareness, ethics of food, sustainability in food production, and trust in foods, are of growing importance to the consumer. The reaction of the consumer to new technology, such as nanotechnology, is unpredictable. Many efforts should be devoted to communication of non-biased information to both the food producers as well as the consumer.

  8. Myeloblastic Cell Lines Mimic Some but Not All Aspects of Human Cytomegalovirus Experimental Latency Defined in Primary CD34+ Cell Populations

    PubMed Central

    Albright, Emily R.

    2013-01-01

    Human cytomegalovirus (HCMV) is a significant human pathogen that achieves lifelong persistence by establishing latent infections in undifferentiated cells of the myeloid lineage, such as CD34+ hematopoietic progenitor cells. When latency is established, viral lytic gene expression is silenced in part by a cellular intrinsic defense consisting of Daxx and histone deacetylases (HDACs) because pp71, the tegument transactivator that travels to the nucleus and inactivates this defense at the start of a lytic infection in differentiated cells, remains in the cytoplasm. Because the current in vitro and ex vivo latency models have physiological and practical limitations, we evaluated two CD34+ myeloblastic cell lines, KG-1 and Kasumi-3, for their ability to establish, maintain, and reactivate HCMV experimental latent infections. Tegument protein pp71 was cytoplasmic, and immediate-early (IE) genes were silenced as in primary CD34+ cells. However, in contrast to what occurs in primary CD34+ cells ex vivo or in NT2 and THP-1 in vitro model systems, viral IE gene expression from the laboratory-adapted AD169 genome was not induced in the presence of HDAC inhibitors in either KG-1 or Kasumi-3 cells. Furthermore, while the clinical strain FIX was able to reactivate from Kasumi-3 cells, AD169 was not, and neither strain reactivated from KG-1 cells. Thus, KG-1 and Kasumi-3 experimental latent infections differ in important parameters from those in primary CD34+ cell populations. Aspects of latency illuminated through the use of these myeloblastoid cell lines should not be considered independently but integrated with results obtained in primary cell systems when paradigms for HCMV latency are proposed. PMID:23824798

  9. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†

    PubMed Central

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users. PMID:16820442

  10. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan.

    PubMed

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2006-07-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 x 10(3) cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 x 10(2) Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users.

  11. Pigeon paramyxovirus type 1 from a fatal human case induces pneumonia in experimentally infected cynomolgus macaques (Macaca fascicularis).

    PubMed

    Kuiken, Thijs; Buijs, Pascal; van Run, Peter; van Amerongen, Geert; Koopmans, Marion; van den Hoogen, Bernadette

    2017-11-21

    Although avian paramyxovirus type 1 is known to cause mild transient conjunctivitis in human beings, there are two recent reports of fatal respiratory disease in immunocompromised human patients infected with the pigeon lineage of the virus (PPMV-1). In order to evaluate the potential of PPMV-1 to cause respiratory tract disease, we inoculated a PPMV-1 isolate (hPPMV-1/Netherlands/579/2003) from an immunocompromised human patient into three healthy cynomolgus macaques (Macaca fascicularis) and examined them by clinical, virological, and pathological assays. In all three macaques, PPMV-1 replication was restricted to the respiratory tract and caused pulmonary consolidation affecting up to 30% of the lung surface. Both alveolar and bronchiolar epithelial cells expressed viral antigen, which co-localized with areas of diffuse alveolar damage. The results of this study demonstrate that PPMV-1 is a primary respiratory pathogen in cynomolgus macaques, and support the conclusion that PPMV-1 may cause fatal respiratory disease in immunocompromised human patients.

  12. Propagation of Human Enteropathogens in Constructed Horizontal Wetlands Used for Tertiary Wastewater Treatment ▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.

    2009-01-01

    Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland. PMID:19411413

  13. Cold plasma inactivation of human pathogens on foods and regulatory status update

    USDA-ARS?s Scientific Manuscript database

    Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...

  14. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard.

    PubMed

    Abdel-Moein, Khaled A; Hamza, Dalia A

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.

  15. Pathogens and host immunity in the ancient human oral cavity

    PubMed Central

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  16. Mining virulence genes using metagenomics.

    PubMed

    Belda-Ferre, Pedro; Cabrera-Rubio, Raúl; Moya, Andrés; Mira, Alex

    2011-01-01

    When a bacterial genome is compared to the metagenome of an environment it inhabits, most genes recruit at high sequence identity. In free-living bacteria (for instance marine bacteria compared against the ocean metagenome) certain genomic regions are totally absent in recruitment plots, representing therefore genes unique to individual bacterial isolates. We show that these Metagenomic Islands (MIs) are also visible in bacteria living in human hosts when their genomes are compared to sequences from the human microbiome, despite the compartmentalized structure of human-related environments such as the gut. From an applied point of view, MIs of human pathogens (e.g. those identified in enterohaemorragic Escherichia coli against the gut metagenome or in pathogenic Neisseria meningitidis against the oral metagenome) include virulence genes that appear to be absent in related strains or species present in the microbiome of healthy individuals. We propose that this strategy (i.e. recruitment analysis of pathogenic bacteria against the metagenome of healthy subjects) can be used to detect pathogenicity regions in species where the genes involved in virulence are poorly characterized. Using this approach, we detect well-known pathogenicity islands and identify new potential virulence genes in several human pathogens.

  17. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism

    PubMed Central

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-01-01

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies. PMID:18302996

  18. Cellular tropism of human enterovirus D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis.

    PubMed

    Smura, Teemu; Ylipaasto, Petri; Klemola, Päivi; Kaijalainen, Svetlana; Kyllönen, Lauri; Sordi, Valeria; Piemonti, Lorenzo; Roivainen, Merja

    2010-11-01

    Enterovirus 94 (EV-94) is an enterovirus serotype described recently which, together with EV-68 and EV-70, forms human enterovirus D species. This study investigates the seroprevalences of these three serotypes and their abilities to infect, replicate, and damage cell types considered to be essential for enterovirus-induced diseases. The cell types studied included human leukocyte cell lines, primary endothelial cells, and pancreatic islets. High prevalence of neutralizing antibodies against EV-68 and EV-94 was found in the Finnish population. The virus strains studied had wide leukocyte tropism. EV-94 and EV-68 were able to produce infectious progeny in leukocyte cell lines with monocytic, granulocytic, T-cell, or B-cell characteristics. EV-94 and EV-70 were capable of infecting primary human umbilical vein endothelial cells, whereas EV-68 had only marginal progeny production and did not induce cytopathic effects in these cells. Intriguingly, EV-94 was able to damage pancreatic islet β-cells, to infect, replicate, and cause necrosis in human pancreatic islets, and to induce proinflammatory and chemoattractive cytokine expression in endothelial cells. These results suggest that HEV-D viruses may be more prevalent than has been thought previously, and they provide in vitro evidence that EV-94 may be a potent pathogen and should be considered a potentially diabetogenic enterovirus type. © 2010 Wiley-Liss, Inc.

  19. Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans.

    PubMed

    Mora, Azucena; Viso, Susana; López, Cecilia; Alonso, María Pilar; García-Garrote, Fernando; Dabhi, Ghizlane; Mamani, Rosalía; Herrera, Alexandra; Marzoa, Juan; Blanco, Miguel; Blanco, Jesús E; Moulin-Schouleur, Maryvonne; Schouler, Catherine; Blanco, Jorge

    2013-12-27

    Escherichia coli strains O45:K1:H7 are implicated in severe human infections such as meningitis. Since an increasing prevalence of serogroup O45 among avian pathogenic (APEC) and human extraintestinal pathogenic (ExPEC) E. coli strains isolated in Spain have been noticed, the aims of the present study were to investigate similarities between poultry and human O45 isolates, and to investigate the evolutionary relationship of ST95 types. The genetic relatedness and virulence gene profiles of 55 O45 APEC obtained from an avian colibacillosis collection (1991-2011) and 19 human O45 ExPEC from a human septicemic/uropathogenic (UPEC) E. coli collection (1989-2010) were determined by multilocus sequence typing (MLST), pulsed-field-gel-electrophoresis (PFGE), ECOR phylogrouping, and PCR-based genotyping. Two main clonal groups were established. The most prevalent and highly pathogenic O45:K1:H7-B2-ST95 shows a successful persistence since the 90s to the present, with parallel evolution both in human and poultry, on the basis of their PFGE and virulence gene profile similarities (9 human strains and 15 avian strains showed ≥85% PFGE identity). Comparison of this group with other ST95 closely related members (O1:K1:H7 and O18:K1:H7 isolates from our collections) shows pathogenic specialization through conserved virulence genotypes. The other prevalent O45 clonal group characterized in this study, the O45:HNM/H19-D-ST371/ST2676 was only detected in APEC strains suggesting host specificity. In conclusion, poultry could be acting as a reservoir of O45:K1:H7-B2-ST95 and other pathogenic ST95 serotypes in humans. Further studies would be necessary to clarify if pathogenic mechanisms used by ST95 strains are the same in avian and human hosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.

    PubMed Central

    Harms, Alexander

    2012-01-01

    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease. PMID:22232371

  1. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    PubMed

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  2. Participation of women and children in hunting activities in Sierra Leone and implications for control of zoonotic infections

    PubMed Central

    Kandeh, Martin; Dawson, Michael; Ansumana, Rashid; Sahr, Foday; Kelly, Ann H.; Brown, Hannah

    2017-01-01

    The emergence of infectious diseases of zoonotic origin highlights the need to understand social practices at the animal-human interface. This study provides a qualitative account of interactions between humans and wild animals in predominantly Mende villages of southern Sierra Leone. We conducted fieldwork over 4 months including participant and direct observations, semi-structured interviews (n = 47), spontaneously occurring focus group discussions (n = 12), school essays and informal interviews to describe behaviours that may serve as pathways for zoonotic infection. In this region, hunting is the primary form of contact with wild animals. We describe how these interactions are shaped by socio-cultural contexts, including opportunities to access economic resources and by social obligations and constraints. Our research suggests that the potential for exposure to zoonotic pathogens is more widely distributed across different age, gender and social groups than previously appreciated. We highlight the role of children in hunting, an age group that has previously not been discussed in the context of hunting. The breadth of the "at risk" population forces reconsideration of how we conceptualize, trace and monitor pathogen exposure. PMID:28749933

  3. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  4. Amoeba provide insight into the origin of virulence in pathogenic fungi.

    PubMed

    Casadevall, Arturo

    2012-01-01

    Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.

  5. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    PubMed Central

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  6. Identification and Quantification of Archaea Involved in Primary Endodontic Infections

    PubMed Central

    Vianna, M. E.; Conrads, G.; Gomes, B. P. F. A.; Horz, H. P.

    2006-01-01

    Members of the domain Archaea, one of the three domains of life, are a highly diverse group of prokaryotes, distinct from bacteria and eukaryotes. Despite their abundance and ubiquity on earth, including their close association with humans, animals, and plants, so far no pathogenic archaea have been described. As some archaea live in close proximity to anaerobic bacteria, for instance, in the human gut system and in periodontal pockets, the aim of our study was to assess whether archaea might possibly be involved in human endodontic infections, which are commonly polymicrobial. We analyzed 20 necrotic uniradicular teeth with radiographic evidence of apical periodontitis and with no previous endodontic treatment. Using real-time quantitative PCR based on the functional gene mcrA (encoding the methyl coenzyme M reductase, specific to methanogenic archaea) and on archaeal 16S rRNA genes, we found five cases to be positive. Direct sequencing of PCR products from both genes showed that the archaeal community was dominated by a Methanobrevibacter oralis-like phylotype. The size of the archaeal population at the diseased sites ranged from 1.3 × 105 to 6.8 × 105 16S rRNA gene target molecule numbers and accounted for up to 2.5% of the total prokaryotic community (i.e., bacteria plus archaea). Our findings show that archaea can be intimately connected with infectious diseases and thus support the hypothesis that members of the domain Archaea may have a role as human pathogens. PMID:16597851

  7. Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: estimation of bathing-associated disease risks.

    PubMed

    Betancourt, Walter Q; Duarte, Diana C; Vásquez, Rosa C; Gurian, Patrick L

    2014-08-15

    Sewage is a major contributor to pollution problems involving human pathogens in tropical coastal areas. This study investigated the occurrence of intestinal protozoan parasites (Giardia and Cryptosporidium) in tropical recreational marine waters contaminated with sewage. The potential risks of Cryptosporidium and Giardia infection from recreational water exposure were estimated from the levels of viable (oo) cysts (DIC+, DAPI+, PI-) found in near-shore swimming areas using an exponential dose response model. A Monte Carlo uncertainty analysis was performed in order to determine the probability distribution of risks. Microbial indicators of recreational water quality (enterococci, Clostridium perfringens) and genetic markers of sewage pollution (human-specific Bacteroidales marker [HF183] and Clostridium coccoides) were simultaneously evaluated in order to estimate the extent of water quality deterioration associated with human wastes. The study revealed the potential risk of parasite infections via primary contact with tropical marine waters contaminated with sewage; higher risk estimates for Giardia than for Cryptosporidium were found. Mean risks estimated by Monte Carlo were below the U.S. EPA upper bound on recreational risk of 0.036 for cryptosporidiosis and giardiasis for both children and adults. However, 95th percentile estimates for giardiasis for children exceeded the 0.036 level. Environmental surveillance of microbial pathogens is crucial in order to control and eradicate the effects that increasing anthropogenic impacts have on marine ecosystems and human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Human Health Risk Implications of Multiple Sources of Faecal Indicator Bacteria in a Recreational Waterbody

    EPA Science Inventory

    We evaluate the influence of multiple sources of faecal indicator bacteria in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrat...

  9. Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    PubMed Central

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132

  10. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  11. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    PubMed

    Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa

    2015-01-01

    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  12. Detection of bacterial pathogens including potential new species in human head lice from Mali

    PubMed Central

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077

  13. Detection of bacterial pathogens including potential new species in human head lice from Mali.

    PubMed

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.

  14. Isolation of the etiological agent of primary amoebic meningoencephalitis from artificially heated waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.R.; Tyndall, R.L.; Coutant, C.C.

    1977-12-01

    To determine whether artificial heating of water by power plant discharges facilitates proliferation of the pathogenic free-living amoebae that cause primary amoebic meningoencephalitis, water samples (250 ml) were taken from discharges within 3,000 feet (ca. 914.4 m) of power plants and were processed for amoeba culture. Pathogenic Naegleria fowleri grew out of water samples from two of five lakes and rivers in Florida and from one of eight man-made lakes in Texas. Pathogenic N. fowleri did not grow from water samples taken from cooling towers and control lakes, the latter of which had no associated power plants. The identification ofmore » N. fowleri was confirmed by pathogenicity in mice and by indirect immunofluorescence analyses, by using a specific antiserum.« less

  15. Isolation, Characterization, and Functional Analysis of Ferret Lymphatic Endothelial Cells

    PubMed Central

    Berendam, Stella J.; Fallert-Junecko, Beth A.; Murphy-Corb, Michael A.; Fuller, Deborah H.; Reinhart, Todd A.

    2014-01-01

    The lymphatic endothelium (LE) serves as a conduit for transport of immune cells and soluble antigens from peripheral tissues to draining lymph nodes (LNs), contributing to development of host immune responses and possibly dissemination of microbes. Lymphatic endothelial cells (LECs) are major constituents of the lymphatic endothelium. These specialized cells could play important roles in initiation of host innate immune responses through sensing of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), including toll-like receptors (TLRs). LECs secrete pro-inflammatory cytokines and chemokines to create local inflammatory conditions for recruitment of naïve antigen presenting cells (APCs) such as dendritic cells (DCs) to sites of infection and/or vaccine administration. In this study, we examined the innate immune potential of primary LEC populations derived from multiple tissues of an animal model for human infectious diseases -- the ferret. We generated a total of six primary LEC populations from lung, tracheal, and mesenteric LN tissues from three different ferrets. Standard RT-PCR characterization of these primary LECs showed that they varied in their expression of LEC markers. The ferret LECs were examined for their ability to respond to poly I:C (TLR3 and RIG-1 ligand) and other known TLR ligands as measured by production of proinflammatory cytokine (IFNα, IL6, IL10, Mx1, and TNFα) and chemokine (CCL5, CCL20, and CXCL10) mRNAs using real time RT-PCR. Poly I:C exposure induced robust proinflammatory responses by all of the primary ferret LECs. Chemotaxis was performed to determine the functional activity of CCL20 produced by the primary lung LECs and showed that the LEC-derived CCL20 was abundant and functional. Taken together, our results continue to reveal the innate immune potential of primary LECs during pathogen-host interactions and expand our understanding of the roles of LECs might play in health and disease in animal models. PMID:25540877

  16. Isolation, characterization, and functional analysis of ferret lymphatic endothelial cells.

    PubMed

    Berendam, Stella J; Fallert Junecko, Beth A; Murphey-Corb, Michael A; Fuller, Deborah H; Reinhart, Todd A

    2015-02-15

    The lymphatic endothelium (LE) serves as a conduit for transport of immune cells and soluble antigens from peripheral tissues to draining lymph nodes (LNs), contributing to development of host immune responses and possibly dissemination of microbes. Lymphatic endothelial cells (LECs) are major constituents of the lymphatic endothelium. These specialized cells could play important roles in initiation of host innate immune responses through sensing of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), including toll-like receptors (TLRs). LECs secrete pro-inflammatory cytokines and chemokines to create local inflammatory conditions for recruitment of naïve antigen presenting cells (APCs) such as dendritic cells (DCs) to sites of infection and/or vaccine administration. In this study, we examined the innate immune potential of primary LEC populations derived from multiple tissues of an animal model for human infectious diseases - the ferret. We generated a total of six primary LEC populations from lung, tracheal, and mesenteric LN tissues from three different ferrets. Standard RT-PCR characterization of these primary LECs showed that they varied in their expression of LEC markers. The ferret LECs were examined for their ability to respond to poly I:C (TLR3 and RIG-I ligand) and other known TLR ligands as measured by production of proinflammatory cytokine (IFNα, IL6, IL10, Mx1, and TNFα) and chemokine (CCL5, CCL20, and CXCL10) mRNAs using real time RT-PCR. Poly I:C exposure induced robust proinflammatory responses by all of the primary ferret LECs. Chemotaxis was performed to determine the functional activity of CCL20 produced by the primary lung LECs and showed that the LEC-derived CCL20 was abundant and functional. Taken together, our results continue to reveal the innate immune potential of primary LECs during pathogen-host interactions and expand our understanding of the roles LECs might play in health and disease in animal models. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells.

    PubMed

    Gründling, Angelika; Gonzalez, Mark D; Higgins, Darren E

    2003-11-01

    In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.

  18. Evaluating the importance of faecal sources in human-impacted waters.

    PubMed

    Schoen, Mary E; Soller, Jeffrey A; Ashbolt, Nicholas J

    2011-04-01

    Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL(-1) enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method. Published by Elsevier Ltd.

  19. Pathogens transmitted in animal feces in low- and middle-income countries.

    PubMed

    Delahoy, Miranda J; Wodnik, Breanna; McAliley, Lydia; Penakalapati, Gauthami; Swarthout, Jenna; Freeman, Matthew C; Levy, Karen

    2018-05-01

    Animals found in close proximity to humans in low-and middle-income countries (LMICs) harbor many pathogens capable of infecting humans, transmissible via their feces. Contact with animal feces poses a currently unquantified-though likely substantial-risk to human health. In LMIC settings, human exposure to animal feces may explain some of the limited success of recent water, sanitation, and hygiene interventions that have focused on limiting exposure to human excreta, with less attention to containing animal feces. We conducted a review to identify pathogens that may substantially contribute to the global burden of disease in humans through their spread in animal feces in the domestic environment in LMICs. Of the 65 potentially pathogenic organisms considered, 15 were deemed relevant, based on burden of disease and potential for zoonotic transmission. Of these, five were considered of highest concern based on a substantial burden of disease for which transmission in animal feces is potentially important: Campylobacter, non-typhoidal Salmonella (NTS), Lassa virus, Cryptosporidium, and Toxoplasma gondii. Most of these have a wide range of animal hosts, except Lassa virus, which is spread through the feces of rats indigenous to sub-Saharan Africa. Combined, these five pathogens cause close to one million deaths annually. More than half of these deaths are attributed to invasive NTS. We do not estimate an overall burden of disease from improperly managed animal feces in LMICs, because it is unknown what proportion of illnesses caused by these pathogens can be attributed to contact with animal feces. Typical water quantity, water quality, and handwashing interventions promoted in public health and development address transmission routes for both human and animal feces; however, sanitation interventions typically focus on containing human waste, often neglecting the residual burden of disease from pathogens transmitted via animal feces. This review compiles evidence on which pathogens may contribute to the burden of disease through transmission in animal feces; these data will help prioritize intervention types and regions that could most benefit from interventions aimed at reducing human contact with animal feces. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    PubMed Central

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and acquired human diseases affecting cells of erythroid lineage. PMID:9573295

  1. Hostile takeover: Manipulation of HIF-1 signaling in pathogen-associated cancers (Review).

    PubMed

    Zhu, Caixia; Zhu, Qing; Wang, Chong; Zhang, Liming; Wei, Fang; Cai, Qiliang

    2016-10-01

    Hypoxia-inducible factor (HIF)-1 is a central regulator in the adaptation process of cell response to hypoxia (low oxygen). Emerging evidence has demonstrated that HIF-1 plays an important role in the development and progression of many types of human diseases, including pathogen-associated cancers. In the present review, we summarize the recent understandings of how human pathogenic agents including viruses, bacteria and parasites deregulate cellular HIF-1 signaling pathway in their associated cancer cells, and highlight the common molecular mechanisms of HIF-1 signaling activated by these pathogenic infection, which could act as potential diagnostic markers and new therapeutic strategies against human infectious cancers.

  2. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    PubMed

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  3. Contact-Independent Cell Death of Human Microglial Cells due to Pathogenic Naegleria fowleri Trophozoites

    PubMed Central

    Kim, Jong-Hyun

    2008-01-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increasse of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death. PMID:19127326

  4. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo

    PubMed Central

    Roth, Anna; König, Peter; van Zandbergen, Ger; Klinger, Matthias; Hellwig-Bürgel, Thomas; Däubener, Walter; Bohlmann, Michael K.; Rupp, Jan

    2010-01-01

    IFN-γ has an important role in the adaptive immune response against intracellular pathogens. In urogenital tract (UGT) infections with the obligate intracellular pathogen Chlamydia trachomatis, IFN-γ–mediated control of chlamydial growth implies the JAK-STAT signaling cascades and subsequent induction of the indoleamine 2,3-dioxygenase (IDO). As oxygen concentrations in the UGT are low under physiological conditions (O2 < 5%) and further decrease during an inflammatory process, we wondered whether antibacterial properties of IFN-γ are maintained under hypoxic conditions. Using primary cells that were isolated from human fallopian tubes and an ex vivo human fallopian tube model (HFTM), we found that even high IFN-γ concentrations (200 units/mL) were not sufficient to limit growth of C. trachomatis under hypoxia. Reduced antibacterial activity of IFN-γ under hypoxia was restricted to the urogenital serovars D and L2, but was not observed with the ocular serovar A. Impaired effectiveness of IFN-γ on chlamydial growth under hypoxia was accompanied by reduced phosphorylation of Stat-1 on Tyr701 and diminished IDO activity. This study shows that IFN-γ effector functions on intracellular C. trachomatis depend on the environmental oxygen supply, which could explain inadequate bacterial clearance and subsequent chronic infections eventually occurring in the UGT of women. PMID:20974954

  5. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth, Australia (PMH HREC REF 2014117EP). Findings will be disseminated at research conferences and in peer-reviewed journals. PMID:29549211

  6. Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries

    USGS Publications Warehouse

    Lenaker, Peter L.; Corsi, Steven; Borchardt, Mark A.; Spencer, Susan K.; Baldwin, Austin K.; Lutz, Michelle A.

    2017-01-01

    Great Lakes tributaries are known to deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal patterns of waterborne pathogens (i.e. protozoa (2), pathogenic bacteria (4) human viruses, (8) and bovine viruses (8)) eight rivers were monitored in the Great Lakes Basin over 29 months from February 2011 to June 2013. Sampling locations represented a wide variety of land cover classes from urban to agriculture to forest. A custom automated pathogen sampler was deployed at eight sampling locations which provided unattended, flow-weighted, large-volume (120–1630 L) sampling. Human and bovine viruses and pathogenic bacteria were detected by real-time qPCR in 16%, 14%, and 1.4% of 290 samples collected while protozoa were never detected. The most frequently detected pathogens were: bovine polyomavirus (11%), and human adenovirus C, D, F (9%). Human and bovine viruses were present in 16.9% and 14.8% of runoff-event samples (n = 189) resulting from precipitation and snowmelt, and 13.9% and 12.9% of low-flow samples (n = 101), respectively, indicating multiple delivery mechanisms could be influential. Data indicated human and bovine virus prevalence was different depending on land cover within the watershed. Occurrence, concentration, and flux of human viruses were greatest in samples from the three sampling locations with greater than 25% urban influence than those with less than 25% urban influence. Similarly, occurrence, concentration, and flux of bovine viruses were greatest in samples from the two sampling locations with greater than 50 cattle/km2 than those with less than 50 cattle/km2. In seasonal analysis, human and bovine viruses occurred more frequently in spring and winter seasons than during the fall and summer. Concentration, occurrence, and flux in the context of hydrologic condition, seasonality, and land use must be considered for each watershed individually to develop effective watershed management strategies for pathogen reduction.

  7. Contamination of soils with microbial pathogens originating from effluent water used for agricultural irrigation

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2009-04-01

    The use of wastewater for agricultural irrigation is steadily increasing world-wide and due to shortages of fresh water is common today in most arid regions of the world. The use of treated wastewater for agricultural irrigation may result in soil exposure to pathogens, creating potential public health problems. A variety of human pathogens are present in raw sewage water. Although their concentrations decrease during the wastewater reclamation process, the secondary treated effluents most commonly used for irrigation today still contain bacterial human pathogens. A range of bacterial pathogens, introduced through contaminated irrigation water or manure, are capable of surviving for long periods in soil and water where they have the potential to contaminate crops in the field. Therefore, there is a risk of direct contamination of crops by human pathogens from the treated effluents used for irrigation, as well as a risk of indirect contamination of the crops from contaminated soil at the agricultural site. Contradictory to previous notion, recent studies have demonstrated that human pathogens can enter plants through their roots and translocate and survive in edible, aerial plant tissues. The practical implications of these new findings for food safety are still not clear, but no doubt reflect the pathogenic microorganisms' ability to survive and multiply in the irrigated soil, water, and the harvested edible crop.

  8. Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: Fucosylation is a key factor.

    PubMed

    Wang, Wen-Li; Wang, Wei; Du, Ya-Min; Wu, Hong; Yu, Xiao-Bo; Ye, Ke-Ping; Li, Chun-Bao; Jung, Yong-Sam; Qian, Ying-Juan; Voglmeir, Josef; Liu, Li

    2017-11-15

    Health differences between breast- and formula-fed infants have long been apparent despite great efforts in improving the function of baby formula by adjusting the levels of various milk nutritional components. However, the N-glycome, a type of oligosaccharide decorating a diverse range of proteins, has not been extensively studied in milk regarding its biological function. In this study, the anti-pathogenic function of the enzymatically released human and bovine milk N-glycome against 5 food-borne pathogens was investigated. The human milk N-glycome showed significantly higher activity than bovine milk. After enzymatic defucosylation of human and bovine N-glycan pool, UHPLC peak shifts were observed in both suggesting heavy fucosylation of samples. Furthermore, the anti-pathogenic activity of the defulosylated N-glycome decreased significantly, and the significance of functional difference between the two almost disappeared. This result indicates the essential role of fucosylation for the anti-pathogenic function of the milk N-glycome, especially in human milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  10. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE PAGES

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; ...

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  11. The National Ebola Training and Education Center: Preparing the United States for Ebola and Other Special Pathogens.

    PubMed

    Kratochvil, Christopher J; Evans, Laura; Ribner, Bruce S; Lowe, John J; Harvey, Melissa Cole; Hunt, Richard C; Tumpey, Abbigail J; Fagan, Ryan P; Schwedhelm, Michelle M; Bell, Sonia; Maher, John; Kraft, Colleen S; Cagliuso, Nicholas V; Vanairsdale, Sharon; Vasa, Angela; Smith, Philip W

    The National Ebola Training and Education Center (NETEC) was established in 2015 in response to the 2014-2016 Ebola virus disease outbreak in West Africa. The US Department of Health and Human Services office of the Assistant Secretary for Preparedness and Response and the US Centers for Disease Control and Prevention sought to increase the competency of healthcare and public health workers, as well as the capability of healthcare facilities in the United States, to deliver safe, efficient, and effective care to patients infected with Ebola and other special pathogens nationwide. NYC Health + Hospitals/Bellevue, Emory University, and the University of Nebraska Medical Center/Nebraska Medicine were awarded this cooperative agreement, based in part on their experience in safely and successfully evaluating and treating patients with Ebola virus disease in the United States. In 2016, NETEC received a supplemental award to expand on 3 initial primary tasks: (1) develop metrics and conduct peer review assessments; (2) develop and provide educational materials, resources, and tools, including exercise design templates; (3) provide expert training and technical assistance; and, to add a fourth task, create a special pathogens clinical research network.

  12. A comprehensive collection of systems biology data characterizing the host response to viral infection.

    PubMed

    Aevermann, Brian D; Pickett, Brett E; Kumar, Sanjeev; Klem, Edward B; Agnihothram, Sudhakar; Askovich, Peter S; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R W; Dash, Pradyot; Diercks, Alan H; Eisfeld, Amie J; Ellis, Amy; Fan, Shufang; Ferris, Martin T; Gralinski, Lisa E; Green, Richard R; Gritsenko, Marina A; Hatta, Masato; Heegel, Robert A; Jacobs, Jon M; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M; Kelly, Sara; Law, G Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O; Mitchell, Hugh; Monroe, Matthew E; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L; Purvine, Samuel O; Rosenberger, Carrie M; Sanders, Catherine J; Schepmoes, Athena A; Shukla, Anil K; Sims, Amy; Sova, Pavel; Tam, Vincent C; Tchitchek, Nicolas; Thomas, Paul G; Tilton, Susan C; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D; Waters, Katrina M; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G; Scheuermann, Richard H

    2014-01-01

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.

  13. A comprehensive collection of systems biology data characterizing the host response to viral infection

    PubMed Central

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R.W.; Dash, Pradyot; Diercks, Alan H.; Eisfeld, Amie J.; Ellis, Amy; Fan, Shufang; Ferris, Martin T.; Gralinski, Lisa E.; Green, Richard R.; Gritsenko, Marina A.; Hatta, Masato; Heegel, Robert A.; Jacobs, Jon M.; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M.; Kelly, Sara; Law, G. Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L.; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O.; Mitchell, Hugh; Monroe, Matthew E.; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L.; Purvine, Samuel O.; Rosenberger, Carrie M.; Sanders, Catherine J.; Schepmoes, Athena A.; Shukla, Anil K.; Sims, Amy; Sova, Pavel; Tam, Vincent C.; Tchitchek, Nicolas; Thomas, Paul G.; Tilton, Susan C.; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M.; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D.; Waters, Katrina M.; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G.; Scheuermann, Richard H.

    2014-01-01

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection. PMID:25977790

  14. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    NASA Astrophysics Data System (ADS)

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó.; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O'Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-07-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

  15. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo)

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium mungi, a novel M. tuberculosis complex pathogen (MtbC), has emerged in wild banded mongoose (Mungos mungo) in Northern Botswana, causing significant mortality. Unlike other members of the MtbC, M. mungi is not transmitted through a primary aerosol route. Rather, pathogen invasion occur...

  16. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    USDA-ARS?s Scientific Manuscript database

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the...

  17. Use of a tick-borne disease manual increases accuracy of tick identification among primary care providers in Lyme disease endemic areas.

    PubMed

    Butler, Amber D; Carlson, Meredith L; Nelson, Christina A

    2017-02-01

    Given the high incidence of tick bites and tick-borne diseases in the United States, it is important for primary care providers to recognize common ticks and the pathogens they may transmit. If a patient has removed and saved an attached tick, identifying the tick helps guide clinical management and determine whether antibiotic prophylaxis for Lyme disease is appropriate. To investigate providers' ability to recognize common ticks and the pathogens they may transmit, we asked 76 primary care providers from Lyme disease endemic areas to identify the common name or genus of preserved ticks found in their area. At baseline, 10.5%, 46.1%, and 57.9% of participants correctly identified an adult female blacklegged tick (engorged), dog tick, and lone star tick, respectively. Less than half of participants identified the three pathogens most frequently transmitted by blacklegged ticks. Use of a reference manual with tick photographs and drawings substantially improved identification of ticks and associated pathogens and therefore should be encouraged in clinical practice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  19. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses

    PubMed Central

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J.; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission. PMID:27009368

  20. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses.

    PubMed

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J; Rossman, Jeremy S; Michaelis, Martin; Wass, Mark N

    2016-03-24

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission.

  1. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment

    PubMed Central

    Okoh, Anthony I.; Sibanda, Thulani; Gusha, Siyabulela S.

    2010-01-01

    Human enteric viruses are causative agents in both developed and developing countries of many non-bacterial gastrointestinal tract infections, respiratory tract infections, conjunctivitis, hepatitis and other more serious infections with high morbidity and mortality in immunocompromised individuals such as meningitis, encephalitis and paralysis. Human enteric viruses infect and replicate in the gastrointestinal tract of their hosts and are released in large quantities in the stools of infected individuals. The discharge of inadequately treated sewage effluents is the most common source of enteric viral pathogens in aquatic environments. Due to the lack of correlation between the inactivation rates of bacterial indicators and viral pathogens, human adenoviruses have been proposed as a suitable index for the effective indication of viral contaminants in aquatic environments. This paper reviews the major genera of pathogenic human enteric viruses, their pathogenicity and epidemiology, as well as the role of wastewater effluents in their transmission. PMID:20644692

  2. Drug-resistant human Staphylococcus aureus in sanctuary apes pose a threat to endangered wild ape populations.

    PubMed

    Schaumburg, Frieder; Mugisha, Lawrence; Peck, Bruce; Becker, Karsten; Gillespie, Thomas R; Peters, Georg; Leendertz, Fabian H

    2012-12-01

    Reintroduction of sanctuary apes to natural habitat is considered an important tool for conservation; however, reintroduction has the potential to endanger resident wild apes through the introduction of human pathogens. We found a high prevalence of drug-resistant, human-associated lineages of Staphylococcus aureus in sanctuary chimpanzees (Pan troglodytes) from Zambia and Uganda. This pathogen is associated with skin and soft tissue diseases and severe invasive infections (i.e. pneumonia and septicemia). Colonization by this bacterium is difficult to clear due to frequent recolonization. In addition to its pathogenic potential, human-related S. aureus can serve as an indicator organism for the transmission of other potential pathogens like pneumococci or mycobacteria. Plans to reintroduce sanctuary apes should be reevaluated in light of the high risk of introducing human-adapted S. aureus into wild ape populations where treatment is impossible. © 2012 Wiley Periodicals, Inc.

  3. Microbial (Pathogen)/Recreational Water Quality Criteria

    EPA Pesticide Factsheets

    Documents pertaining to Recreational Human Health Ambient Water Quality Criteria for Microbial Organisms (Pathogens). These documents include safe levels for cyanotoxins microcystin and cylindrospermopsin, and Coliphage to protect human health.

  4. Ecological consequences of sea-ice decline.

    PubMed

    Post, Eric; Bhatt, Uma S; Bitz, Cecilia M; Brodie, Jedediah F; Fulton, Tara L; Hebblewhite, Mark; Kerby, Jeffrey; Kutz, Susan J; Stirling, Ian; Walker, Donald A

    2013-08-02

    After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.

  5. Surviving Naegleria fowleri infections: A successful case report and novel therapeutic approach.

    PubMed

    Heggie, Travis W; Küpper, Thomas

    Naegleria fowleri is a deadly human pathogen recognized as the causative agent of Primary Amoebic Meningitis (PAM). N. fowleri is commonly found in warm freshwater environments such as natural or man-made lakes, hot springs, and resort spas frequented by tourists. PAM infections have a mortality rate between 95 and 99% with minimal progress being made toward a successful treatment therapy. We report the case of a 12-year old American female who survived a PAM infection and propose a new drug therapy which includes the antimicrobial drug Miltefosine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks

    USGS Publications Warehouse

    McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather

    2018-01-01

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.

  7. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks.

    PubMed

    McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M

    2018-07-15

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Bloodborne Pathogens and Needlestick Prevention

    MedlinePlus

    ... must also describe how an employer will use engineering and work practice controls, personal protective clothing and ... OSHA's Bloodborne Pathogens Standard ( 29 CFR 1910.1030 ). Engineering controls are the primary means of eliminating or ...

  9. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools.

    PubMed

    Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-11-24

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.

  10. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools

    PubMed Central

    Bittar, Fadi; Keita, Mamadou B.; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-01-01

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence. PMID:25417711

  11. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    NASA Technical Reports Server (NTRS)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, however, it is recommended that EVA suits be decontaminated when astronauts enter surface habitats when returning from field activity and that biosafety protocol approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human Mars mission and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.

  12. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed the molecular features and compared the relative characteristics of one H7N9 LPAIV and two H7N9 HPAIVs isolated from chickens and two human-origin H7N9 HPAIVs in chicken and mouse models. We found that all HPAIVs both are highly pathogenic and have valid transmissibility in chickens. Strikingly, the human-origin viruses were more highly pathogenic than the avian-origin viruses in mice, and dynamic mutations were confirmed by NGS and Sanger sequencing. Our findings offer important insight into the origin, adaptation, pathogenicity, and transmissibility of these viruses to both poultry and mammals. Copyright © 2018 American Society for Microbiology.

  13. Bruton's tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment.

    PubMed

    Page, Theresa H; Urbaniak, Anna M; Espirito Santo, Ana I; Danks, Lynett; Smallie, Timothy; Williams, Lynn M; Horwood, Nicole J

    2018-05-05

    Tumour necrosis factor (TNF) is produced by primary human macrophages in response to stimulation by exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) via Toll-like receptor (TLR) signalling. However, uncontrolled TNF production can be deleterious and hence it is tightly controlled at multiple stages. We have previously shown that Bruton's tyrosine kinase (Btk) regulates TLR4-induced TNF production via p38 MAP Kinase by stabilising TNF messenger RNA. Using both gene over-expression and siRNA-mediated knockdown we have examined the role of Btk in TLR7/8 mediated TNF production. Our data shows that Btk acts in the TLR7/8 pathway and mediates Ser-536 phosphorylation of p65 RelA and subsequent nuclear entry in primary human macrophages. These data show an important role for Btk in TLR7/8 mediated TNF production and reveal distinct differences for Btk in TLR4 versus TLR7/8 signalling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans.

    PubMed

    Gauthier, Gregory M; Keller, Nancy P

    2013-12-01

    The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Development of saliva-based exposure assays for detecting exposure to waterborne pathogens

    EPA Pesticide Factsheets

    Identifying which pathogens we are exposed to can be challenging because many types of pathogens can be found in water and many pathogens have similar symptoms. EPA scientists have developed a simple way to measure human exposure to waterborne pathogens.

  16. General and specialized media routinely employed for primary isolation of bacterial pathogens of fishes

    USGS Publications Warehouse

    Starliper, C.E.

    2008-01-01

    There are a number of significant diseases among cultured and free-ranging freshwater fishes that have a bacterial etiology; these represent a variety of gram-negative and gram-positive genera. Confirmatory diagnosis of these diseases involves primary isolation of the causative bacterium on bacteriologic media. Frequently used "general" bacteriologic media simply provide the essential nutrients for growth. For most of the major pathogens, however, there are differential and/or selective media that facilitate primary recovery. Some specialized media are available as "ready-to-use" from suppliers, while others must be prepared. Differential media employ various types of indicator systems, such as pH indicators, that allow diagnosticians to observe assimilation of selected substrates. An advantage to the use of differential media for primary isolation is that they hasten bacterial characterization by yielding the appropriate positive or negative result for a particular substrate, often leading to a presumptive identification. Selective media also incorporate agent(s) that inhibit the growth of contaminants typically encountered with samples from aquatic environments. Media that incorporate differential and/or selective components are ideally based on characters that are unique to the targeted bacterium, and their use can reduce the time associated with diagnosis and facilitate early intervention in affected fish populations. In this review, the concepts of general and differential/selective bacteriologic media and their use and development for fish pathogens are discussed. The media routinely employed for primary isolation of the significant bacterial pathogens of fishes are presented. ?? Wildlife Disease Association 2008.

  17. Identification of a Naegleria fowleri Membrane Protein Reactive with Anti-Human CD59 Antibody

    PubMed Central

    Fritzinger, Angela E.; Toney, Denise M.; MacLean, Rebecca C.; Marciano-Cabral, Francine

    2006-01-01

    Naegleria fowleri, the causative agent of primary amebic meningoencephalitis, is resistant to complement lysis. The presence of a complement regulatory protein on the surface of N. fowleri was investigated. Southern blot and Northern blot analyses demonstrated hybridization of a radiolabeled cDNA probe for CD59 to genomic DNA and RNA, respectively, from pathogenic N. fowleri. An 18-kDa immunoreactive protein was detected on the membrane of N. fowleri by Western immunoblot and immunofluorescence analyses with monoclonal antibodies for human CD59. Complement component C9 immunoprecipitated with the N. fowleri “CD59-like” protein from amebae incubated with normal human serum. In contrast, a gene or protein similar to CD59 was not detected in nonpathogenic, complement-sensitive N. gruberi amebae. Collectively, our studies suggest that a protein reactive with antibodies to human CD59 is present on the surface of N. fowleri amebae and may play a role in resistance to lysis by cytolytic proteins. PMID:16428768

  18. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano

    PubMed Central

    Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.

    2016-01-01

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426

  19. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.

    PubMed

    Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S

    2016-11-15

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.

  20. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  1. Human quarantine: Toward reducing infectious pressure on chimpanzees at the Taï Chimpanzee Project, Côte d'Ivoire.

    PubMed

    Grützmacher, Kim; Keil, Verena; Leinert, Vera; Leguillon, Floraine; Henlin, Arthur; Couacy-Hymann, Emmanuel; Köndgen, Sophie; Lang, Alexander; Deschner, Tobias; Wittig, Roman M; Leendertz, Fabian H

    2018-01-01

    Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human-great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5-day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine-in combination with monitoring for symptoms-is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human-borne infectious disease. © 2017 Wiley Periodicals, Inc.

  2. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    PubMed Central

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  3. Understanding Virulence in the Brucellae and Francisellae: Towards Efficacious Treatments for Two Potential Biothreat Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasley, A; Parsons, D A; El-Etr, S

    2009-12-30

    Francisella tularensis, Yersinia pestis and Brucellae species are highly infectious pathogens classified as select agents by the Centers for Disease Control and Prevention (CDC) with the potential for use in bioterrorism attacks. These organisms are known to be facultative intracellular pathogens that preferentially infect human monocytes. As such, understanding how the host responds to infection with these organisms is paramount in detecting and combating human disease. We have compared the ability of fully virulent strains of each pathogen and their non-pathogenic near neighbors to enter and survive inside the human monocytic cell line THP-1 and have quantified the cellular responsemore » to infection with the goal of identifying both unique and common host response patterns. We expanded the scope of these studies to include experiments with pathogenic and non-pathogenic strains of Y. pestis, the causative agent of plague. Nonpathogenic strains of each organism were impaired in their ability to survive intracellularly compared with their pathogenic counterparts. Furthermore, infection of THP-1 cells with pathogenic strains of Y. pestis and F. tularensis resulted in marked increases in the secretion of the inflammatory chemokines IL-8, RANTES, and MIP-1{beta}. In contrast, B. melitensis infection failed to elicit any significant increases in a panel of cytokines tested. These differences may underscore distinct strategies in pathogenic mechanisms employed by these pathogens.« less

  4. Fungi that Infect Humans.

    PubMed

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  5. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    PubMed Central

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  6. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    PubMed

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  7. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  8. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    PubMed

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  9. Natural selection and infectious disease in human populations

    PubMed Central

    Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.

    2015-01-01

    The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769

  10. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape

    USGS Publications Warehouse

    Lee, Justin S.; Ruell, Emily W.; Boydston, Erin E.; Lyren, Lisa M.; Alonso, Robert S.; Troyer, Jennifer L.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured--exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.

  12. DISINFECTION

    EPA Science Inventory

    The primary goal of the disinfection process in drinking water treatment is the inactivation of microbial pathogens. These pathogens comprise a diverse group of organisms which serve as the etiological agents of waterborne disease. Included in this group are bacterial, viral and ...

  13. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China.

    PubMed

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F

    2009-09-27

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the 'well-known' reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China.

  14. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  15. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

    PubMed Central

    2012-01-01

    Background In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. Results Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. Conclusion Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new targets for more efficacious anti-adhesion O157 vaccines. PMID:22691138

  16. Foodborne pathogen detection using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...

  17. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    PubMed

    Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.

  18. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    PubMed Central

    Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable “steady state” after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions. PMID:28419128

  19. Characterization of Methicillin Resistant Staphylococcus aureus isolated from human and animal samples in Egypt.

    PubMed

    Bendary, M M; Solyman, S M; Azab, M M; Mahmoud, N F; Hanora, A M

    2016-02-29

    Staphylococcus aureus (S. aureus) has been one of the most problematic pathogens. Methicillin Resistant S. aureus (MRSA) has emerged as a major concern for both human and animal. Antibiotic resistance genes dissemination might be possible between human and animal bacteria. The aim of this study is to show phenotypic and genotypic diversity of human and animal MRSA isolates. Antibiogram typing and biofilm production were used as a primary phenotypic typing tool for the characterization of (40) animal and (38) human MRSA isolates. Genetic typing based on sequencing of 16S rRNA gene and virulence gene profiles were done. Antimicrobial resistance profiles of the animal isolates showed little evidence of widespread of resistance, although this was seen in many human isolates. The biofilm production was detected in higher percentage among animal isolates. Based on the genetic typing and multiple antibiotic resistance (MAR) index, the majority of animal isolates clustered into lineages that were not found in human isolates. Animal and human MRSA isolates showed diversity in antibiotic resistance and virulence gene profiles may be due to host adaptation or chances for contamination between the two hosts were not present in our study.

  20. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease.

    PubMed

    Hoyer, Isaiah J; Blosser, Erik M; Acevedo, Carolina; Thompson, Anna Carels; Reeves, Lawrence E; Burkett-Cadena, Nathan D

    2017-10-01

    Invasive apex predators have profound impacts on natural communities, yet the consequences of these impacts on the transmission of zoonotic pathogens are unexplored. Collapse of large- and medium-sized mammal populations in the Florida Everglades has been linked to the invasive Burmese python, Python bivittatus Kuhl. We used historic and current data to investigate potential impacts of these community effects on contact between the reservoir hosts (certain rodents) and vectors of Everglades virus, a zoonotic mosquito-borne pathogen that circulates in southern Florida. The percentage of blood meals taken from the primary reservoir host, the hispid cotton rat, Sigmodon hispidus Say and Ord, increased dramatically (422.2%) from 1979 (14.7%) to 2016 (76.8%), while blood meals from deer, raccoons and opossums decreased by 98.2%, reflecting precipitous declines in relative abundance of these larger mammals, attributed to python predation. Overall species diversity of hosts detected in Culex cedecei blood meals from the Everglades declined by 40.2% over the same period ( H (1979) = 1.68, H (2016) = 1.01). Predictions based upon the dilution effect theory suggest that increased relative feedings upon reservoir hosts translate into increased abundance of infectious vectors, and a corresponding upsurge of Everglades virus occurrence and risk of human exposure, although this was not tested in the current study. This work constitutes the first indication that an invasive predator can increase contact between vectors and reservoirs of a human pathogen and highlights unrecognized indirect impacts of invasive predators. © 2017 The Author(s).

  1. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    PubMed Central

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  2. Biohazard potential of putative Martian organisms during missions to Mars.

    PubMed

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E; McKay, David S

    2007-04-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of the 1970s have been generally interpreted as inconclusive for surface organisms, and attributed to active but nonbiological chemistries, the possibility of native surface life has never been ruled out completely. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether future human landing sites harbor extant life forms. If native life were found to exist, it would be problematic to determine whether any of its species might present a medical danger to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to biohazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anti-contamination protocol and recommendations of the National Research Council's Space Studies Board regarding Mars were reviewed. Organisms can emerge in Nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are therefore theoretically possible on Mars. Although remote, the prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the probability of human pathogens on Mars, while low, is not zero. Still, since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, it is recommended that EVA (extravehicular activity) suits be decontaminated when astronauts enter surface habitats upon returning from field activity and that biosafety protocols approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human mission to Mars, and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.

  3. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.

    PubMed

    Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos

    2016-12-01

    Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.

  4. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis.

    PubMed

    Afonso, Marta B; Rodrigues, Pedro M; Carvalho, Tânia; Caridade, Marta; Borralho, Paula; Cortez-Pinto, Helena; Castro, Rui E; Rodrigues, Cecília M P

    2015-10-01

    Hepatocyte cell death, inflammation and oxidative stress constitute key pathogenic mechanisms underlying non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of necroptosis in human and experimental NAFLD and its association with tumour necrosis factor α (TNF-α) and oxidative stress. Serum markers of necrosis, liver receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) were evaluated in control individuals and patients with NAFLD. C57BL/6 wild-type (WT) or RIP3-deficient (RIP3(-/-)) mice were fed a high-fat choline-deficient (HFCD) or methionine and choline-deficient (MCD) diet, with subsequent histological and biochemical analysis of hepatic damage. In primary murine hepatocytes, necroptosis and oxidative stress were also assessed after necrostatin-1 (Nec-1) treatment or RIP3 silencing. We show that circulating markers of necrosis and TNF-α, as well as liver RIP3 and MLKL phosphorylation were increased in NAFLD. Likewise, RIP3 and MLKL protein levels and TNF-α expression were increased in the liver of HFCD and MCD diet-fed mice. Moreover, RIP3 and MLKL sequestration in the insoluble protein fraction of NASH (non-alcoholic steatohepatitis) mice liver lysates represented an early event during stetatohepatitis progression. Functional studies in primary murine hepatocytes established the association between TNF-α-induced RIP3 expression, activation of necroptosis and oxidative stress. Strikingly, RIP3 deficiency attenuated MCD diet-induced liver injury, steatosis, inflammation, fibrosis and oxidative stress. In conclusion, necroptosis is increased in the liver of NAFLD patients and in experimental models of NASH. Further, TNF-α triggers RIP3-dependent oxidative stress during hepatocyte necroptosis. As such, targeting necroptosis appears to arrest or at least impair NAFLD progression. © 2015 Authors; published by Portland Press Limited.

  5. Identification of a salivary vasodilator in the primary North American vector of bluetongue viruses, Culicoides variipennis.

    PubMed

    Perez de Leon, A A; Ribeiro, J M; Tabachnick, W J; Valenzuela, J G

    1997-09-01

    Several species of Culicoides biting midges are important pests and vectors of pathogens affecting humans and other animals. Bluetongue is the most economically important arthropod-borne animal disease in the United States. Culicoides variipennis is the primary North American vector of the bluetongue viruses. A reddish halo surrounding a petechial hemorrhage was noticed at the site of C. variipennis blood feeding in previously unexposed sheep and rabbits. Salivary gland extracts of nonblood-fed C. variipennis injected intradermally into sheep and rabbits induced cutaneous vasodilation in the form of erythema. A local, dose-dependent erythema, without edema or pruritus, was noted 30 min after injection. Erythema was inapparent with salivary gland extracts obtained after blood feeding. This observation suggested that the vasodilatory activity was inoculated into the host skin at the feeding site. The vasodilatory activity was insoluble in ethanol and destroyed by trypsin or chymotrypsin, which indicated that vasodilation was due to a protein. The association of cutaneous vasodilation with a salivary protein was corroborated by reversed-phase, high-performance liquid chromatography (HPLC). Fractionation of salivary gland extracts by molecular sieving HPLC resulted in maximal vasodilatory activity that coeluted with a protein having a relative molecular weight (MWr) of 22.45 kD. The C. variipennis vasodilator appears to be biologically active at the nanogram level. This vasodilator likely assists C. variipennis during feeding by increasing blood flow from host superficial blood vessels surrounding the bite site. The identification of a salivary vasodilator in C. variipennis may have implications for the transmission of Culicoides-borne pathogens and in the development of dermatitis resulting from the sensitization of humans and animals to Culicoides salivary antigens.

  6. Is there an agrarian imperative?

    PubMed

    Cole, Henry P

    2010-04-01

    This paper examines the assertion that a genetically programmed instinct referred to as the agrarian imperative underlies a territorial drive that compels farmers and their biological heirs to hang on to their land at all costs while working hard, taking risks, enduring pain, and hardship. Research from multiple fields refutes the assumption. Basic physiologic instincts are not primary drivers of animal or human behavior. Their expression is greatly modified by the physical and social environments in which animals mature and learn. The human cerebral cortex with forethought and reflection greatly modifies basic instinctual drives. As a result, human behavior is to a large degree self-reflective and self-determined within the limits of the opportunities and resources available to individuals. The primary factors involved in continued successful farm operations across generations are not genetic, but rather farmers' access to economic, cultural, and social capital resources. These forms of capital and their distribution explain the evolution of human societies from preagricultural hunter-gather tribes to agrarian family kinship groups to complex nation states. Current highly mechanized, large-scale agricultural production focused on a few genetic strains of plants and animals provides abundant food at low cost, but is vulnerable to man-made and natural pandemics of human, animal, and plant pathogens as well as to disasters that can destroy the infrastructure required to support the system. A critical agrarian imperative is to ensure in perpetuity a pool of small farm operators capable of using simple farming technology for raising multiple cultivars and species of plants and animals.

  7. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    PubMed Central

    Zydek, Martin; Petitt, Matthew; Fang-Hoover, June; Adler, Barbara; Kauvar, Lawrence M.; Pereira, Lenore; Tabata, Takako

    2014-01-01

    Human cytomegalovirus (HCMV) is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs), the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs) give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs). Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A) showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb), TRL345, reactive with glycoprotein B (gB), but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease. PMID:24651029

  8. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure.

    PubMed

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-11-07

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  9. The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research.

    PubMed

    Fuller, Trevon; Bensch, Staffan; Müller, Inge; Novembre, John; Pérez-Tris, Javier; Ricklefs, Robert E; Smith, Thomas B; Waldenström, Jonas

    2012-03-01

    Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.

  10. Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link.

    PubMed

    Taylor-Mulneix, Dawn L; Hamidou Soumana, Illiassou; Linz, Bodo; Harvill, Eric T

    2017-01-01

    The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis , a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that B. bronchiseptica can evade amoebic predation and utilize Dictyostelium discoideum as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. B. pertussis is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of Bordetella species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens.

  11. The virulence of human pathogenic fungi: notes from the South of France.

    PubMed

    Reedy, Jennifer L; Bastidas, Robert J; Heitman, Joseph

    2007-08-16

    The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.

  12. Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination.

    PubMed

    Meunier, M; Guyard-Nicodème, M; Dory, D; Chemaly, M

    2016-05-01

    Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union, and ranks second in the United States only behind salmonellosis. In Europe, there are about nine million cases of campylobacteriosis every year, making the disease a major public health issue. Human cases are mainly caused by the zoonotic pathogen Campylobacter jejuni. The main source of contamination is handling or consumption of poultry meat. Poultry constitutes the main reservoir of Campylobacter, substantial quantities of which are found in the intestines following rapid, intense colonization. Reducing Campylobacter levels in the poultry chain would decrease the incidence of human campylobacteriosis. As primary production is a crucial step in Campylobacter poultry contamination, controlling the infection at this level could impact the following links along the food chain (slaughter, retail and consumption). This review describes the control strategies implemented during the past few decades in primary poultry production, including the most recent studies. In fact, the implementation of biosecurity and hygiene measures is described, as well as the immune strategy with passive immunization and vaccination trials and the nutritional strategy with the administration of organic and fatty acids, essential oil and plant-derived compound, probiotics, bacteriocins and bacteriophages. © 2015 The Society for Applied Microbiology.

  13. Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts.

    PubMed

    Tank, Juliane; Lindner, Diana; Wang, Xiaomin; Stroux, Andrea; Gilke, Leona; Gast, Martina; Zietsch, Christin; Skurk, Carsten; Scheibenbogen, Carmen; Klingel, Karin; Lassner, Dirk; Kühl, Uwe; Schultheiss, Heinz-Peter; Westermann, Dirk; Poller, Wolfgang

    2014-01-01

    Therapeutic targets of broad relevance are likely located in pathogenic pathways common to disorders of various etiologies. Screening for targets of this type revealed CCN genes to be consistently upregulated in multiple cardiomyopathies. We developed RNA interference (RNAi) to silence CCN2 and found this single-target approach to block multiple proinflammatory and profibrotic pathways in activated primary cardiac fibroblasts (PCFBs). The RNAi-strategy was developed in murine PCFBs and then investigated in "individual" human PCFBs grown from human endomyocardial biopsies (EMBs). Screening of short hairpin RNA (shRNA) sequences for high silencing efficacy and specificity yielded RNAi adenovectors silencing CCN2 in murine or human PCFBs, respectively. Comparison of RNAi with CCN2-modulating microRNA (miR) vectors expressing miR-30c or miR-133b showed higher efficacy of RNAi. In murine PCFBs, CCN2 silencing resulted in strongly reduced expression of stretch-induced chemokines (Ccl2, Ccl7, Ccl8), matrix metalloproteinases (MMP2, MMP9), extracellular matrix (Col3a1), and a cell-to-cell contact protein (Cx43), suggesting multiple signal pathways to be linked to CCN2. Immune cell chemotaxis towards CCN2-depleted PCFBs was significantly reduced. We demonstrate here that this RNAi strategy is technically applicable to "individual" human PCFBs, too, but that these display individually strikingly different responses to CCN2 depletion. Either genomically encoded factors or stable epigenetic modification may explain different responses between individual PCFBs. The new RNAi approach addresses a key regulator protein induced in cardiomyopathies. Investigation of this and other molecular therapies in individual human PCBFs may help to dissect differential pathogenic processes between otherwise similar disease entities and individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A golden jackal (Canis aureus) from Austria bearing Hepatozoon canis--import due to immigration into a non-endemic area?

    PubMed

    Duscher, Georg Gerhard; Kübber-Heiss, Anna; Richter, Barbara; Suchentrunk, Franz

    2013-02-01

    The protozoan Hepatozoon canis, which is transmitted via ingestion of infected ticks by canine hosts, is not endemic to mid-latitude regions in Europe. Its distribution is supposed to be linked to the occurrence of its primary tick vector Rhipicephalus sanguineus. A young male golden jackal (Canis aureus) found as road kill close to Vienna, Austria, was infected by this pathogen. Cloning and sequencing of the PCR product revealed 6 different haplotypes of H. canis. Based on the sequences, no clear relationship to the origin of infection could be traced. This is the first report of H. canis for Austria, and wild canines such as the currently found jackal may provide a source of natural spread of this parasite into non-endemic areas. This natural immigration of wild animals represents a way of pathogen introduction, which has to be considered in disease prevention in addition to human-made introduction due to animal import and export. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Wildlife health implications of sewage disposal in wetlands

    USGS Publications Warehouse

    Friend, M.; Godfrey, P.J.; Kaynor, E.R.; Pelczarski, S.

    1985-01-01

    Wildlife health concerns associated with disposal of sewage effluent in wetlands are of three primary types: (1) introduction of pathogens, (2) introduction of pollutants that adversely impact on host body defense mechanisms, and (3) changes in the physical and chemical properties of wetlands that favor the development and maintenance of disease problems. Unlike the situation with human health concerns, introduction of pathogens is not the major concern regarding wildlife health. Instead, the focus of attention needs to be directed at environmental changes likely to take place as a result of effluent discharges into different types of wetlands. Unless these changes are adequately addressed from a disease perspective, marshes utilized for sewage disposal could become disease incubators and wildlife death traps. This result would be unfortunate because the backlash would likely negate the potentially beneficial aspects of the use of sewage wastewater for the creation of new wetlands and have a severe impact on progress being made towards evaluation of the compatibility of wildlife and sewage effluents.

  16. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    PubMed Central

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  17. Comparative Genomic Analysis of Pathogenic and Probiotic Enterococcus faecalis Isolates, and Their Transcriptional Responses to Growth in Human Urine

    PubMed Central

    Snipen, Lars; Nes, Ingolf F.; Brede, Dag A.

    2010-01-01

    Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits. PMID:20824220

  18. De Novo Synthesis and Functional Analysis of Polyphosphate-Loaded Poly(Ethylene) Glycol Hydrogel Nanoparticles Targeting Pyocyanin and Pyoverdin Production in Pseudomonas aeruginosa as a Model Intestinal Pathogen

    PubMed Central

    Yin, Yushu; Papavasiliou, Georgia; Zaborina, Olga Y.; Alverdy, John C.; Teymour, Fouad

    2017-01-01

    The human gastrointestinal tract is the primary site of colonization of multidrug resistant pathogens and the major source of life-threatening complications in critically ill and immunocompromised patients. Eradication measures using antibiotics carry further risk of antibiotic resistance. Furthermore, antibiotic treatment can adversely shift the intestinal microbiome toward domination by resistant pathogens. Therefore, approaches directed to prevent replacement of health promoting microbiota with resistant pathogens should be developed. The use of non-microbicidal drugs to create microenvironmental conditions that suppress virulence of pathogens is an attractive strategy to minimize the negative consequences of intestinal microbiome disruption. We have previously shown that phosphate is depleted in the intestinal tract following surgical injury, that this depletion is a major “cue” that triggers bacterial virulence, and that the maintenance of phosphate abundance prevents virulence expression. However, the use of inorganic phosphate may not be a suitable agent to deliver to the site of the host-pathogen interaction since it is readily adsorbed in small intestine. Here we propose a novel drug delivery approach that exploits the use of nanoparticles that allow for prolonged release of phosphates. We have synthesized phosphate (Pi) and polyphosphate (PPi) crosslinked poly (ethylene) glycol (PEG) hydrogel nanoparticles (NP-Pi and NP-PPi, respectively) that result in sustained delivery of Pi and PPi. NP-PPi demonstrated more prolonged release of PPi as compared to the release of Pi from NP-Pi. In vitro studies indicate that free PPi as well NP-PPi are effective compounds for suppressing pyoverdin and pyocyanin production, two global virulence systems of virulence of P. aeruginosa. These studies suggest that sustained release of polyphosphate from NP-PPi can be exploited as a target for virulence suppression of lethal pathogenic phenotypes in the gastrointestinal tract. PMID:27761766

  19. Growth rate, transmission mode and virulence in human pathogens.

    PubMed

    Leggett, Helen C; Cornwallis, Charlie K; Buckling, Angus; West, Stuart A

    2017-05-05

    The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.

  20. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System

    PubMed Central

    Carter, Chris

    2011-01-01

    Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction. PMID:22254144

  1. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.

    PubMed

    Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan

    2018-06-22

    Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.

  2. Molecular characterization of the microbial flora residing at the apical portion of infected root canals of human teeth.

    PubMed

    Chugal, Nadia; Wang, Jen-Kuei; Wang, Renke; He, Xuesong; Kang, Mo; Li, Jiyao; Zhou, Xuedong; Shi, Wenyuan; Lux, Renate

    2011-10-01

    This study investigated the bacterial communities residing in the apical portion of human teeth with apical periodontitis in primary and secondary infections by using a culture-independent molecular biology approach. Root canal samples from the apical root segments of extracted teeth were collected from 18 teeth with necrotic pulp and 8 teeth with previous endodontic treatment. Samples were processed for amplification via polymerase chain reaction and separated with denaturing gradient gel electrophoresis. Selected bands were excised from the gel and sequenced for identification. Comparable to previous studies of entire root canals, the apical bacterial communities in primary infections were significantly more diverse than in secondary infections (P = .0003). Interpatient and intrapatient comparisons exhibited similar variations in profiles. Different roots of the same teeth with secondary infections displayed low similarity in bacterial composition, whereas an equivalent sample collected from primary infection contained almost identical populations. Sequencing revealed a high prevalence of Fusobacteria, Actinomyces species, and oral Anaeroglobus geminatus in both types of infection. Many secondary infections contained Burkholderiales or Pseudomonas species, both of which represent opportunistic environmental pathogens. Certain microorganisms exhibit similar prevalence in primary and secondary infection, indicating that they are likely not eradicated during endodontic treatment. The presence of Burkholderiales and Pseudomonas species underscores the problem of environmental contamination. Treatment appears to affect the various root canals of multirooted teeth differently, resulting in local changes of the microbiota. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Effect of Intermediate Hosts on Emerging Zoonoses.

    PubMed

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  4. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay

    PubMed Central

    Augustine, Swinburne A. J.; Simmons, Kaneatra J.; Eason, Tarsha N.; Curioso, Clarissa L.; Griffin, Shannon M.; Wade, Timothy J.; Dufour, Alfred; Fout, G. Shay; Grimm, Ann C.; Oshima, Kevin H.; Sams, Elizabeth A.; See, Mary Jean; Wymer, Larry J.

    2017-01-01

    Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations. PMID:28507984

  5. Microbiological Safety of Animal Wastes Processed by Physical Heat Treatment: An Alternative To Eliminate Human Pathogens in Biological Soil Amendments as Recommended by the Food Safety Modernization Act.

    PubMed

    Chen, Zhao; Jiang, Xiuping

    2017-03-01

    Animal wastes have high nutritional value as biological soil amendments of animal origin for plant cultivation in sustainable agriculture; however, they can be sources of some human pathogens. Although composting is an effective way to reduce pathogen levels in animal wastes, pathogens may still survive under certain conditions and persist in the composted products, which potentially could lead to fresh produce contamination. According to the U.S. Food and Drug Administration Food Safety Modernization Act, alternative treatments are recommended for reducing or eliminating human pathogens in raw animal manure. Physical heat treatments can be considered an effective method to inactivate pathogens in animal wastes. However, microbial inactivation in animal wastes can be affected by many factors, such as composition of animal wastes, type and physiological stage of the tested microorganism, and heat source. Following some current processing guidelines for physical heat treatments may not be adequate for completely eliminating pathogens from animal wastes. Therefore, this article primarily reviews the microbiological safety and economic value of physically heat-treated animal wastes as biological soil amendments.

  6. Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis.

    PubMed

    Zhang, Xudong; Mou, Zhonglin

    2012-09-01

    Plant systemic acquired resistance (SAR) is a long-lasting, broad-spectrum immune response that is mounted after primary pathogen infection. Although SAR has been extensively researched, the molecular mechanisms underlying its activation have not been completely understood. We have previously shown that the electron carrier NAD(P) leaks into the plant extracellular compartment upon pathogen attack and that exogenous NAD(P) activates defense gene expression and disease resistance in local treated leaves, suggesting that extracellular NAD(P) [eNAD(P)] might function as a signal molecule activating plant immune responses. To further establish the function of eNAD(P) in plant immunity, we tested the effect of exogenous NAD(P) on resistance gene-mediated hypersensitive response (HR) and SAR. We found that exogenous NAD(P) completely suppresses HR-mediated cell death but does not affect HR-mediated disease resistance. Local application of exogenous NAD(P) is unable to induce SAR in distal tissues, indicating that eNAD(P) is not a sufficient signal for SAR activation. Using transgenic Arabidopsis plants expressing the human NAD(P)-metabolizing ectoenzyme CD38, we demonstrated that altering eNAD(P) concentration or signaling compromises biological induction of SAR. This result suggests that eNAD(P) may play a critical signaling role in activation of SAR.

  7. Discovery of an ultra-short linear antibacterial tetrapeptide with anti-MRSA activity from a structure-activity relationship study.

    PubMed

    Lau, Qiu Ying; Ng, Fui Mee; Cheong, Jin Wei Darryl; Yap, Yi Yong Alvin; Tan, Yoke Yan Fion; Jureen, Roland; Hill, Jeffrey; Chia, Cheng San Brian

    2015-11-13

    The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Health-Promoting Properties of Lactobacillus helveticus

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2012-01-01

    Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic. PMID:23181058

  9. Virological and pathological characterization of an avian H1N1 influenza A virus.

    PubMed

    Koo, Bon-Sang; Kim, Hye Kwon; Song, Daesub; Na, Woonsung; Song, Min-Suk; Kwon, Jin Jung; Wong, Sook-San; Noh, Ji Yeong; Ahn, Min-Ju; Kim, Doo-Jin; Webby, Richard J; Yoon, Sun-Woo; Jeong, Dae Gwin

    2018-05-01

    Gene segments from avian H1N1 influenza A viruses have reassorted with other influenza viruses to generate pandemic strains over the past century. Nevertheless, little effort has been invested in understanding the characteristics of avian H1N1 influenza viruses. Here, we present the genome sequence and a molecular and virological characterization of an avian influenza A virus, A/wild bird/Korea/SK14/2014 (A/SK14, H1N1), isolated from migratory birds in South Korea during the winter season of 2014-2015. Full-genome sequencing and phylogenetic analysis revealed that the virus belongs to the Eurasian avian lineage. Although it retained avian-receptor binding preference, A/SK14 virus also exhibited detectable human-like receptor binding and was able to replicate in differentiated primary normal human bronchial epithelial cells. In animal models, A/SK14 virus was moderately pathogenic in mice, and virus was detected in nasal washes from inoculated guinea pigs, but not in direct-contact guinea pigs. Although A/SK14 showed moderate pathogenicity and no evidence of transmission in a mammalian model, our results suggest that the dual receptor specificity of A/SK14-like virus might allow for a more rapid adaptation to mammals, emphasizing the importance of further continuous surveillance and risk-assessment activities.

  10. PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species ▿ ‡ #

    PubMed Central

    Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.; Gabbard, Joseph L.; Shukla, Maulik P.; Dalay, Oral; Driscoll, Timothy; Hix, Deborah; Mane, Shrinivasrao P.; Mao, Chunhong; Nordberg, Eric K.; Scott, Mark; Schulman, Julie R.; Snyder, Eric E.; Sullivan, Daniel E.; Wang, Chunxia; Warren, Andrew; Williams, Kelly P.; Xue, Tian; Seung Yoo, Hyun; Zhang, Chengdong; Zhang, Yan; Will, Rebecca; Kenyon, Ronald W.; Sobral, Bruno W.

    2011-01-01

    Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided. PMID:21896772

  11. Isolation and characterization of Escherichia coli pili from diverse clinical sources.

    PubMed

    Salit, I E; Vavougios, J; Hofmann, T

    1983-11-01

    Bacteria which attach to different mucous membranes should have differing specificities of adherence in vitro. Human Escherichia coli isolates from blood and urine (pathogens) and from stool and throat (commensals) were characterized as to the patterns of hemagglutination (HA), as well as the structure and function of their pili. Bacterial HA was done in microtiter plates and on slides after bacterial growth in broth or agar. Human erythrocytes were agglutinated by 95% of the pathogens and 65 to 70% of the commensals grown in broth or agar. Mannose-resistant HA was characteristically caused by pathogens, and commensals characteristically caused mannose-sensitive HA of guinea pig cells. Strains often had both mannose-resistant and mannose-sensitive reactions, or even a mannose-paradoxical reaction. Pathogens more often caused HA, but titers were lower than those for commensals. Slide HA was less sensitive than the microtiter method. All isolates were piliated. Commensals also had more pili than pathogens when grown in broth (117.8 versus 38.3 pili per bacterium), but pathogens had more pili after growth on agar (32.1 versus 8.1 pili per bacterium). Isolates causing high-titer HA had large numbers of pili (greater than 85 pili per bacterium), but some well-piliated strains were non-hemagglutinating. Pili were purified from seven E. coli strains from different sites of isolation and with different erythrocyte-binding specificity. Pili usually migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, more than one type of pilus could be copurified from some strains since there were two or more bands after separation in octyl-glucoside and two different amino terminal sequences. Protein sequencing was done on five different pili: four resembled type 1 pili and one was a P fimbria. The type 1-like pili (strains 2239 and 9353) had an initial variable sequence of 1 to 5 residues, followed by a common region of 21 residues. The P fimbria (strain 7714) had different erythrocyte-binding specificity but was still 27% homologous with 2239 and 9353. E. coli strains from different body sites have characteristic attachments to erythrocytes. Pili derived from these different sources may also have different binding specificity, but they are similar in primary structure.

  12. Isolation and characterization of Escherichia coli pili from diverse clinical sources.

    PubMed Central

    Salit, I E; Vavougios, J; Hofmann, T

    1983-01-01

    Bacteria which attach to different mucous membranes should have differing specificities of adherence in vitro. Human Escherichia coli isolates from blood and urine (pathogens) and from stool and throat (commensals) were characterized as to the patterns of hemagglutination (HA), as well as the structure and function of their pili. Bacterial HA was done in microtiter plates and on slides after bacterial growth in broth or agar. Human erythrocytes were agglutinated by 95% of the pathogens and 65 to 70% of the commensals grown in broth or agar. Mannose-resistant HA was characteristically caused by pathogens, and commensals characteristically caused mannose-sensitive HA of guinea pig cells. Strains often had both mannose-resistant and mannose-sensitive reactions, or even a mannose-paradoxical reaction. Pathogens more often caused HA, but titers were lower than those for commensals. Slide HA was less sensitive than the microtiter method. All isolates were piliated. Commensals also had more pili than pathogens when grown in broth (117.8 versus 38.3 pili per bacterium), but pathogens had more pili after growth on agar (32.1 versus 8.1 pili per bacterium). Isolates causing high-titer HA had large numbers of pili (greater than 85 pili per bacterium), but some well-piliated strains were non-hemagglutinating. Pili were purified from seven E. coli strains from different sites of isolation and with different erythrocyte-binding specificity. Pili usually migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, more than one type of pilus could be copurified from some strains since there were two or more bands after separation in octyl-glucoside and two different amino terminal sequences. Protein sequencing was done on five different pili: four resembled type 1 pili and one was a P fimbria. The type 1-like pili (strains 2239 and 9353) had an initial variable sequence of 1 to 5 residues, followed by a common region of 21 residues. The P fimbria (strain 7714) had different erythrocyte-binding specificity but was still 27% homologous with 2239 and 9353. E. coli strains from different body sites have characteristic attachments to erythrocytes. Pili derived from these different sources may also have different binding specificity, but they are similar in primary structure. Images PMID:6139339

  13. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan

    USGS Publications Warehouse

    Ishii, S.; Yan, T.; Shively, D.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attachedCladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC),Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. WhileShigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/gCladophora in 60 to 100% of lake- and ditchside samples. The Campylobacterdensities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat forCampylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users.

  14. Emerging pathogens in the fish farming industry and sequencing-based pathogen discovery.

    PubMed

    Tengs, Torstein; Rimstad, Espen

    2017-10-01

    The use of large scale DNA/RNA sequencing has become an integral part of biomedical research. Reduced sequencing costs and the availability of efficient computational resources has led to a revolution in how problems concerning genomics and transcriptomics are addressed. Sequencing-based pathogen discovery represents one example of how genetic data can now be used in ways that were previously considered infeasible. Emerging pathogens affect both human and animal health due to a multitude of factors, including globalization, a shifting environment and an increasing human population. Fish farming represents a relevant, interesting and challenging system to study emerging pathogens. This review summarizes recent progress in pathogen discovery using sequence data, with particular emphasis on viruses in Atlantic salmon (Salmo salar). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microsporidian entomopathogens

    USDA-ARS?s Scientific Manuscript database

    Microsporidia, pathogenic protists related to the Fungi, are considered to be primary pathogens of many aquatic and terrestrial insect species and have important roles in insect population dynamics, managed insect disease, and biological control of insect pests. Hosts are infected when spores are i...

  16. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  17. Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment.

    PubMed

    Kwan, Grace; Charkowski, Amy O; Barak, Jeri D

    2013-02-12

    Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal and human hosts. Their populations are higher on plants cocolonized with the common bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum, turning edible plants into a risk factor for human disease. We inoculated leaves with P. carotovorum subsp. carotovorum and S. enterica or E. coli O157:H7 to study the interactions between these bacteria. While P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7, these human pathogens affected P. carotovorum subsp. carotovorum fundamentally differently. S. enterica reduced P. carotovorum subsp. carotovorum growth and acidified the environment, leading to less soft rot on leaves; E. coli O157:H7 had no such effects. As soft rot signals a food safety risk, the reduction of soft rot symptoms in the presence of S. enterica may lead consumers to eat healthy-looking but S. enterica-contaminated produce.

  18. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Colwell, Rita

    2018-05-14

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  19. MICROBES, MONITORING AND HUMAN HEALTH

    EPA Science Inventory

    There are about 20,000 wastewater treatment plants in the United States. These plants discharge about 50 trillion gallons of wastewater daily into the nation's surface waters. Most wastewater contains human feces, which are a potential source of microbial pathogens. Pathogens ...

  20. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, Rita

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  1. Setosphaeria rostrata: Insights from the sequenced genome of Setosphaeria turcica.

    PubMed

    Wu, Dongliang; Turgeon, B Gillian

    2013-12-01

    Exserohilum rostratum, also known as Setosphaeria rostrata caused an outbreak of meningitis in 2012. S. rostrata is known as a minor pathogen of grasses and a member of the Dothideomycetes, a group that includes saprobes as well as mild to aggressive plant pathogens. A few taxa in this group, such as E. rostratum and Cochliobolus lunatus (Curvularia lunata) can be human pathogens, in favorable circumstances. Fortunately, human disease caused by E. rostratum is rare. However, the increasing number of formerly inconsequential fungi surfacing as significant pathogens demands efforts to identify determinants of crossover pathogenicity in general, and S. rostrata in particular. Very few genetic and molecular data are available for S. rostrata. The first genome sequence for any species in the genus Setosphaeria (Setosphaeria turcica) was published this year. The literature to date related to virulence determinants of S. rostrata and S. turcica to plants and a summary of S. turcica genome features that may inform future studies with the human pathogen, S. rostrata, are presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance.

    PubMed

    Gondard, Mathilde; Cabezas-Cruz, Alejandro; Charles, Roxanne A; Vayssier-Taussat, Muriel; Albina, Emmanuel; Moutailler, Sara

    2017-01-01

    Ticks are obligate hematophagous arthropods of significant importance to human and veterinary medicine. They transmit a vast array of pathogens, including bacteria, viruses, protozoa, and helminths. Most epidemiological data on ticks and tick-borne pathogens (TBPs) in the West Indies are limited to common livestock pathogens such as Ehrlichia ruminantium, Babesia spp. (i.e., B. bovis and B. bigemina ), and Anaplasma marginale , and less information is available on companion animal pathogens. Of note, human tick-borne diseases (TBDs) remain almost completely uncharacterized in the West Indies. Information on TBP presence in wildlife is also missing. Herein, we provide a comprehensive review of the ticks and TBPs affecting human and animal health in the Caribbean, and introduce the challenges associated with understanding TBD epidemiology and implementing successful TBD management in this region. In particular, we stress the need for innovative and versatile surveillance tools using high-throughput pathogen detection (e.g., high-throughput real-time microfluidic PCR). The use of such tools in large epidemiological surveys will likely improve TBD prevention and control programs in the Caribbean.

  3. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: a narrative review

    PubMed Central

    Uddin Khan, Salah; Atanasova, Kalina R; Krueger, Whitney S; Ramirez, Alejandro; Gray, Gregory C

    2013-01-01

    We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second, we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012. Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation requires an interdisciplinary collaborative “One Health” approach from veterinarians, environmental and public health professionals, and the swine industry. PMID:26038451

  4. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  5. Novel methods for pathogen control in livestock preharvest: An update

    USDA-ARS?s Scientific Manuscript database

    Pathogenic bacteria are found asymptomatically within and on food animals, which often results in pathogen entry into the food chain, causing human illnesses. Slaughter and processing plants do an outstanding job in reducing pathogen contamination through the use of intervention strategies after sl...

  6. Pathogen reduction in human plasma using an ultrashort pulsed laser

    USDA-ARS?s Scientific Manuscript database

    Pathogen reduction is an ideal approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses, and they introduce chemicals with concerns of side effects which prevent...

  7. Statistical Physics of T-Cell Development and Pathogen Specificity

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.

    2013-04-01

    In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.

  8. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy

    PubMed Central

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects. PMID:26576418

  9. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy.

    PubMed

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.

  10. Humans and Cattle: A Review of Bovine Zoonoses

    PubMed Central

    Cardwell, Diana M.; Moeller, Robert B.; Gray, Gregory C.

    2014-01-01

    Abstract Infectious disease prevention and control has been among the top public health objectives during the last century. However, controlling disease due to pathogens that move between animals and humans has been challenging. Such zoonotic pathogens have been responsible for the majority of new human disease threats and a number of recent international epidemics. Currently, our surveillance systems often lack the ability to monitor the human–animal interface for emergent pathogens. Identifying and ultimately addressing emergent cross-species infections will require a “One Health” approach in which resources from public veterinary, environmental, and human health function as part of an integrative system. Here we review the epidemiology of bovine zoonoses from a public health perspective. PMID:24341911

  11. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa

    PubMed Central

    Fakoli, Lawrence S.; Bolay, Kpehe; Bolay, Fatorma K.; Diclaro, Joseph W.; Brackney, Doug E.; Stenglein, Mark D.; Ebel, Gregory D.

    2018-01-01

    Background Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. Methodology/Principal findings We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. Conclusions/Significance This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens. PMID:29561834

  12. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.

  13. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa.

    PubMed

    Fauver, Joseph R; Weger-Lucarelli, James; Fakoli, Lawrence S; Bolay, Kpehe; Bolay, Fatorma K; Diclaro, Joseph W; Brackney, Doug E; Foy, Brian D; Stenglein, Mark D; Ebel, Gregory D

    2018-03-01

    Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens.

  14. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets.

    PubMed

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2016-07-15

    Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Identification of potentially human-pathogenic Enterocytozoon bieneusi genotypes in various birds.

    PubMed

    Lobo, Maria Luísa; Xiao, Lihua; Cama, Vitaliano; Magalhães, Nuno; Antunes, Francisco; Matos, Olga

    2006-11-01

    Enterocytozoon bieneusi was detected in 24 of 83 samples from birds of the orders Columbiformes, Passeriformes, and Psittaciformes. It was identical to or closely related to the Peru6 genotype, which was previously found in humans in Peru. Thus, various birds can be a significant source of environmental contamination by potentially human-pathogenic E. bieneusi.

  16. QUANTITATIVE ASSESSMENT OF PATHOGENS IN DRINKING WATER

    EPA Science Inventory

    The project has been summarized in a series of peer-reviewed published papers as outlined in the Publication section of this report. Pathogens capable of causing waterborne diseases include bacteria, protozoa, and viruses. Fecal indicator bacteria are the primary microorganisms u...

  17. Postnatal Passive Immunization of Neonatal Macaques with a Triple Combination of Human Monoclonal Antibodies against Oral Simian-Human Immunodeficiency Virus Challenge

    PubMed Central

    Hofmann-Lehmann, Regina; Vlasak, Josef; Rasmussen, Robert A.; Smith, Beverly A.; Baba, Timothy W.; Liska, Vladimir; Ferrantelli, Flavia; Montefiori, David C.; McClure, Harold M.; Anderson, Daniel C.; Bernacky, Bruce J.; Rizvi, Tahir A.; Schmidt, Russell; Hill, Lori R.; Keeling, Michale E.; Katinger, Hermann; Stiegler, Gabriela; Cavacini, Lisa A.; Posner, Marshall R.; Chou, Ting-Chao; Andersen, Janet; Ruprecht, Ruth M.

    2001-01-01

    To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351–357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu+ challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200–206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu+ challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encoding env of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4+ T-cell decline. In contrast, all control animals had dramatic drops in their CD4+ T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1. PMID:11462019

  18. From Exit to Entry: Long-term Survival and Transmission of Salmonella

    PubMed Central

    Waldner, Landon L.; MacKenzie, Keith D.; Köster,, Wolfgang; White, Aaron P.

    2012-01-01

    Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens. PMID:25436767

  19. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines

    PubMed Central

    Kim, Shin-Hee; Samal, Siba K.

    2016-01-01

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578

  20. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2016-07-04

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.

  1. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.

    PubMed

    Gordon, Stephen V; Parish, Tanya

    2018-04-01

    Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.

  2. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    PubMed

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-02

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed. Copyright © 2016. Published by Elsevier Inc.

  3. Machine learning for the meta-analyses of microbial pathogens' volatile signatures.

    PubMed

    Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A

    2018-02-20

    Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.

  4. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig.

    PubMed

    Tungatt, Katie; Dolton, Garry; Morgan, Sophie B; Attaf, Meriem; Fuller, Anna; Whalley, Thomas; Hemmink, Johanneke D; Porter, Emily; Szomolay, Barbara; Montoya, Maria; Hammond, John A; Miles, John J; Cole, David K; Townsend, Alain; Bailey, Mick; Rizkallah, Pierre J; Charleston, Bryan; Tchilian, Elma; Sewell, Andrew K

    2018-05-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens.

  5. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig

    PubMed Central

    Morgan, Sophie B.; Attaf, Meriem; Szomolay, Barbara; Miles, John J.; Townsend, Alain; Bailey, Mick; Charleston, Bryan; Tchilian, Elma

    2018-01-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens. PMID:29772011

  6. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai–Tibet plateau of China

    PubMed Central

    Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo

    2016-01-01

    Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai–Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli. PMID:27924811

  7. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai-Tibet plateau of China.

    PubMed

    Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo

    2016-12-07

    Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai-Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli.

  8. Foodborne illness outbreaks from microbial contaminants in spices, 1973-2010.

    PubMed

    Van Doren, Jane M; Neil, Karen P; Parish, Mickey; Gieraltowski, Laura; Gould, L Hannah; Gombas, Kathy L

    2013-12-01

    This review identified fourteen reported illness outbreaks attributed to consumption of pathogen-contaminated spice during the period 1973-2010. Countries reporting outbreaks included Canada, Denmark, England and Wales, France, Germany, New Zealand, Norway, Serbia, and the United States. Together, these outbreaks resulted in 1946 reported human illnesses, 128 hospitalizations and two deaths. Infants/children were the primary population segments impacted by 36% (5/14) of spice-attributed outbreaks. Four outbreaks were associated with multiple organisms. Salmonella enterica subspecies enterica was identified as the causative agent in 71% (10/14) of outbreaks, accounting for 87% of reported illnesses. Bacillus spp. was identified as the causative agent in 29% (4/10) of outbreaks, accounting for 13% of illnesses. 71% (10/14) of outbreaks were associated with spices classified as fruits or seeds of the source plant. Consumption of ready-to-eat foods prepared with spices applied after the final food manufacturing pathogen reduction step accounted for 70% of illnesses. Pathogen growth in spiced food is suspected to have played a role in some outbreaks, but it was not likely a contributing factor in three of the larger Salmonella outbreaks, which involved low-moisture foods. Root causes of spice contamination included contributions from both early and late stages of the farm-to-table continuum. Published by Elsevier Ltd.

  9. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection

    PubMed Central

    Bhattarai, Shanta Raj; Yoo, So Young; Lee, Seung-Wuk; Dean, Deborah

    2012-01-01

    Developing materials that are effective against sexually transmitted pathogens such as Chlamydia trachomatis (Ct) and HIV-1 is challenging both in terms of material selection and improving bio-membrane and cellular permeability at desired mucosal sites. Here, we engineered the prokaryotic bacterial virus (M13 phage) carrying two functional peptides, integrin binding peptide (RGD) and a segment of the polymorphic membrane protein D (PmpD) from Ct, as a phage-based material that can ameliorate Ct infection. Ct is a globally prevalent human pathogen for which there are no effective vaccines or microbicides. We show that engineered phage stably express both RGD motifs and Ct peptides and traffic intracellularly and into the lumen of the inclusion in which the organism resides within the host cell. Engineered phage were able to significantly reduce Ct infection in both HeLa and primary endocervical cells compared with Ct infection alone. Polyclonal antibodies raised against PmpD and co-incubated with constructs prior to infection did not alter the course of infection, indicating that PmpD is responsible for the observed decrease in Ct infection. Our results suggest that phage-based design approaches to vector delivery that overcome mucosal cellular barriers may be effective in preventing Ct and other sexually transmitted pathogens. PMID:22494890

  10. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    PubMed Central

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-01-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496

  11. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams

    USGS Publications Warehouse

    Givens, Carrie E.; Kolpin, Dana W.; Borchardt, Mark A.; Duris, Joseph W.; Moorman, Thomas B.; Spencer, Susan K.

    2016-01-01

    Manure application is a source of pathogens to the environment. Through overland runoff and tile drainage, zoonotic pathogens can contaminate surface water and streambed sediment and could affect both wildlife and human health. This study examined the environmental occurrence of gene markers for livestock-related bacterial, protozoan, and viral pathogens and antibiotic resistance in surface waters within the South Fork Iowa River basin before and after periods of swine manure application on agricultural land. Increased concentrations of indicator bacteria after manure application exceeding Iowa's state bacteria water quality standards suggest that swine manure contributes to diminished water quality and may pose a risk to human health. Additionally, the occurrence of HEV and numerous bacterial pathogen genes for Escherichia coli, Enterococcus spp., Salmonella sp., and Staphylococcus aureus in both manure samples and in corresponding surface water following periods of manure application suggests a potential role for swine in the spreading of zoonotic pathogens to the surrounding environment. During this study, several zoonotic pathogens were detected including Shiga-toxin producing E. coli, Campylobacter jejuni, pathogenic enterococci, and S. aureus; all of which can pose mild to serious health risks to swine, humans, and other wildlife. This research provides the foundational understanding required for future assessment of the risk to environmental health from livestock-related zoonotic pathogen exposures in this region. This information could also be important for maintaining swine herd biosecurity and protecting the health of wildlife near swine facilities.

  12. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    PubMed Central

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  13. Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications.

    PubMed

    Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M

    2018-05-05

    Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pathogen Specific, IRF3-Dependent Signaling and Innate Resistance to Human Kidney Infection

    PubMed Central

    Fischer, Hans; Lutay, Nataliya; Ragnarsdóttir, Bryndís; Yadav, Manisha; Jönsson, Klas; Urbano, Alexander; Al Hadad, Ahmed; Rämisch, Sebastian; Storm, Petter; Dobrindt, Ulrich; Salvador, Ellaine; Karpman, Diana; Jodal, Ulf; Svanborg, Catharina

    2010-01-01

    The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3−/− mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3−/− mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response. PMID:20886096

  15. Salmonella enterica Suppresses Pectobacterium carotovorum subsp. carotovorum Population and Soft Rot Progression by Acidifying the Microaerophilic Environment

    PubMed Central

    Kwan, Grace; Charkowski, Amy O.; Barak, Jeri D.

    2013-01-01

    ABSTRACT Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. PMID:23404399

  16. REAL-TIME PCR DETECTION OF THREE HUMAN-PATHOGENIC SPECIES FROM THE MICROSPORIDIAL GENUS ENCEPHALITOZOON

    EPA Science Inventory

    Three microsporidial species from the genus Encephalitozoon, E. hellem, E. cuniculi and E. intestinalis, have emerged as important opportunistic pathogens of humans affecting organ transplant recipients, AIDS patients, and other immunocompromised patients. Even though these thre...

  17. Heat Inactivation of Human Pathogens on Catfish

    USDA-ARS?s Scientific Manuscript database

    In the National Advisory Committee on Microbiological Criteria for Food (NACMCF) determined that the cooking (time/temperature) for finfish would be different than for meat products and identified a need for time/temperature requirements to assure the thermal inactivation of the human pathogens: Sa...

  18. Meeting Regulatory Requirements And Moving To Class A (Presentation)

    EPA Science Inventory

    The United States' regulations for the management of sewage sludge were designed to protect human health from infectious disease causing organisms by minimizing the contact of humans with pathogenic microorganisms. This paper reviews the pathogens that may be found in sewage slu...

  19. Meeting Regulatory Requirements And Moving To Class A

    EPA Science Inventory

    The United States' regulations for the management of sewage sludge were designed to protect human health from infectious disease causing organisms by minimizing the contact of humans with pathogenic microorganisms. This paper reviews the pathogens that may be found in sewage slu...

  20. Hydrologic, land cover and seasonal patterns of waterborne pathogens in great lakes tributaries

    USDA-ARS?s Scientific Manuscript database

    Great Lakes tributaries deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal variability of waterborne pathogens, protozoa (2), pathogenic bacteria (4) and human (8) and bovine (8) viruses from eight rivers were monitored in the Great Lakes watersh...

  1. Correlation between Tick Density and Pathogen Endemicity, New Hampshire

    PubMed Central

    Walk, Seth T.; Xu, Guang; Stull, Jason W.

    2009-01-01

    To assess the endemicity of tick-borne pathogens in New Hampshire, we surveyed adult tick vectors. Pathogens were more prevalent in areas of high tick density, suggesting a correlation between tick establishment and pathogen endemicity. Infection rates in ticks correlated with disease frequency in humans. PMID:19331738

  2. The bacterial microbiome of dermacentor andersoni ticks influences pathogen susceptibility

    USDA-ARS?s Scientific Manuscript database

    Ticks are of medical and veterinary importance due to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Al...

  3. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams

    USDA-ARS?s Scientific Manuscript database

    Manure application is a major source of pathogens to the environment. Through overland runoff and tile drainage, these pathogens contaminate surface water and stream bed sediment. Some of these pathogens are zoonotic that can potentially affect both animal and human health. This study examined the p...

  4. Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1.

    PubMed

    Kuchipudi, Suresh V; Dunham, Stephen P; Nelli, Rahul; White, Gavin A; Coward, Vivien J; Slomka, Marek J; Brown, Ian H; Chang, Kin Chow

    2012-01-01

    Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and 'classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host-pathogen relationships for highly pathogenic and zoonotic avian influenza.

  5. Adhesins of human pathogens from the genus Yersinia.

    PubMed

    Leo, Jack C; Skurnik, Mikael

    2011-01-01

    Bacteria of the Gram-negative genus Yersinia are environmentally ubiquitous. Three species are of medical importance: the intestinal pathogens Y. enterocolitica and Y. pseudotuberculosis, and the plague bacillus Y. pestis. The two former species, spread by contaminated food or water, cause a range of gastrointestinal symptoms and, rarely, sepsis. On occasion, the primary infection is followed by autoimmune sequelae such as reactive arthritis. Plague is a systemic disease with high mortality. It is a zoonosis spread by fleas, or more rarely by droplets from individuals suffering from pneumonic plague. Y. pestis is one of the most virulent of bacteria, and recent findings of antibiotic-resistant strains together with its potential use as a bioweapon have increased interest in the species. In addition to being significant pathogens in their own right, the yersiniae have been used as model systems for a number of aspects of pathogenicity. This chapter reviews the molecular mechanisms of adhesion in yersiniae. The enteropathogenic species share three adhesins: invasin, YadA and Ail. Invasin is the first adhesin required for enteric infection; it binds to β(1) integrins on microfold cells in the distal ileum, leading to the ingestion of the bacteria and allows them to cross the intestinal epithelium. YadA is the major adhesin in host tissues. It is a multifunctional protein, conferring adherence to cells and extracellular matrix components, serum and phagocytosis resistance, and the ability to autoagglutinate. Ail has a minor role in adhesion and serum resistance. Y. pestis lacks both invasin and YadA, but expresses several other adhesins. These include the pH 6 antigen and autotransporter adhesins. Also the plasminogen activator of Y. pestis can mediate adherence to host cells. Although the adhesins of the pathogenic yersiniae have been studied extensively, their exact roles in the biology of infection remain elusive.

  6. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    PubMed Central

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-01-01

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges. PMID:19025676

  7. Meat Science and Muscle Biology Symposium: Ecological and dietary impactors of foodborne pathogens and methods to reduce fecal shedding in cattle.

    PubMed

    Callaway, T R; Edrington, T S; Nisbet, D J

    2014-04-01

    Pathogenic bacteria can live asymptomatically within and on cattle and can enter the food chain but also can be transmitted to humans by fecal or direct animal contact. Reducing pathogenic bacterial incidence and populations within live cattle represents an important step in improving food safety. A broad range of preslaughter intervention strategies are being developed, which can be loosely classified as 1) directly antipathogen strategies, 2) competitive enhancement strategies (that use the microbiome's competitive nature against pathogens), and 3) animal management strategies. Included within these broad categories are such diverse methods as vaccination against foodborne pathogens, probiotics and prebiotics, bacterial viruses (i.e., bacteriophages), sodium chlorate feeding, and dietary and management changes that specifically alter the microbiome. The simultaneous application of 1 or more preharvest strategies has the potential to reduce human foodborne illnesses by erecting multiple hurdles preventing entry into humans. However, economic factors that govern producer profitability must be kept in mind while improving food safety.

  8. Sensitivity of the brown dog tick, Rhipicephalus sanguineus to fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    The brown dog tick, Rhipicephalus sanguineus, remains a primary ectoparasite concern in many dog kennels, shelters and residential homes. Challenges such as effective pesticide delivery and pesticide resistance confound control efforts. Use of biological control approaches such as fungal pathogen...

  9. Partitioning of human and sheep forms of the pathogenic prion protein during the purification of therapeutic proteins from human plasma.

    PubMed

    Stenland, Christopher J; Lee, Douglas C; Brown, Paul; Petteway, Stephen R; Rubenstein, Richard

    2002-11-01

    Therapeutic proteins derived from human plasma and other biologic sources have demonstrated an excellent safety record relative to the potential threat of transmissible spongiform encephalopathy (TSE) transmission. Previously, hamster-adapted scrapie was used as a model agent to assess TSE clearance in purification steps leading to the isolation of biopharmaceutical proteins. The current study investigated the validity of hamster scrapie as a model for human TSE clearance studies. The partitioning of the pathogenic forms of the prion protein associated with human variant CJD (PrP(vCJD)), human sporadic CJD (PrP(sCJD)) and Gerstmann-Sträussler-Scheinker (PrP(GSS)) syndrome was compared to the partitioning of hamster scrapie (PrP(Sc)) in three plasma protein purification steps. Sheep scrapie (PrP(Sc)) was similarly evaluated. The starting materials for three plasma protein purification steps, cryoseparation, 3 percent PEG separation, and 11.5 percent PEG separation, were spiked with brain homogenates containing human PrP(vCJD), human PrP(sCJD), human PrP(GSS), sheep PrP(Sc), and hamster 263K PrP(Sc). The partitioning of the pathogenic form of the PrP was analyzed. Clearance of the pathogenic form of the PrP was measured relative to the effluent fraction. Regardless of the source of the pathogenic prion, clearance was similar to hamster PrP(Sc). A nominal amount of clearance (approx., 1 log), an intermediate amount of clearance (approx., 2 log), and a substantial amount of clearance (> or = 3 log) were observed for the cryoseparation, 3 percent PEG separation, and 11.5 percent PEG separation steps, respectively. In the latter step, no PrP was detected in the effluents. These data demonstrate that human prions, including vCJD prions, can be removed during the purification of human therapeutic proteins and indicate that partitioning of human prions is similar to that observed in the hamster scrapie model.

  10. Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression*

    PubMed Central

    Buggele, William A.; Johnson, Karen E.; Horvath, Curt M.

    2012-01-01

    The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems. PMID:22822053

  11. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  12. Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria

    PubMed Central

    Kamani, Joshua; Baneth, Gad; Mumcuoglu, Kosta Y.; Waziri, Ndadilnasiya E.; Eyal, Osnat; Guthmann, Yifat; Harrus, Shimon

    2013-01-01

    Background Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. Methodology/Principal Findings Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi) collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%), Ehrlichia canis (12.7%), Rickettsia spp. (8.8%), Babesia rossi (6.6%), Anaplasma platys (6.6%), Babesia vogeli (0.6%) and Theileria sp. (0.6%) was detected in the blood samples. DNA of E. canis (23.7%), H. canis (21.1%), Rickettsia spp. (10.5%), Candidatus Neoehrlichia mikurensis (5.3%) and A. platys (1.9%) was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. Conclusions/Significance The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents. PMID:23505591

  13. Coinfections acquired from ixodes ticks.

    PubMed

    Swanson, Stephen J; Neitzel, David; Reed, Kurt D; Belongia, Edward A

    2006-10-01

    The pathogens that cause Lyme disease (LD), human anaplasmosis, and babesiosis can coexist in Ixodes ticks and cause human coinfections. Although the risk of human coinfection differs by geographic location, the true prevalence of coinfecting pathogens among Ixodes ticks remains largely unknown for the majority of geographic locations. The prevalence of dually infected Ixodes ticks appears highest among ticks from regions of North America and Europe where LD is endemic, with reported prevalences of < or =28%. In North America and Europe, the majority of tick-borne coinfections occur among humans with diagnosed LD. Humans coinfected with LD and babesiosis appear to have more intense, prolonged symptoms than those with LD alone. Coinfected persons can also manifest diverse, influenza-like symptoms, and abnormal laboratory test results are frequently observed. Coinfecting pathogens might alter the efficiency of transmission, cause cooperative or competitive pathogen interactions, and alter disease severity among hosts. No prospective studies to assess the immunologic effects of coinfection among humans have been conducted, but animal models demonstrate that certain coinfections can modulate the immune response. Clinicians should consider the likelihood of coinfection when pursuing laboratory testing or selecting therapy for patients with tick-borne illness.

  14. Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G

    2018-04-02

    Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.

  15. Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G

    2019-03-01

    Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.

  16. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    PubMed

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  17. Zoonoses of occupational health importance in contemporary laboratory animal research.

    PubMed

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  18. Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations

    PubMed Central

    Allocati, N; Petrucci, A G; Di Giovanni, P; Masulli, M; Di Ilio, C; De Laurenzi, V

    2016-01-01

    Bats are natural reservoir hosts and sources of infection of several microorganisms, many of which cause severe human diseases. Because of contact between bats and other animals, including humans, the possibility exists for additional interspecies transmissions and resulting disease outbreaks. The purpose of this article is to supply an overview on the main pathogens isolated from bats that have the potential to cause disease in humans. PMID:27551536

  19. Evaluation of PCR electrospray-ionization mass spectrometry for rapid molecular diagnosis of bovine mastitis.

    PubMed

    Perreten, Vincent; Endimiani, Andrea; Thomann, Andreas; Wipf, Juliette R K; Rossano, Alexandra; Bodmer, Michèle; Raemy, Andreas; Sannes-Lowery, Kristin A; Ecker, David J; Sampath, Rangarajan; Bonomo, Robert A; Washington, Cicely

    2013-06-01

    Bovine mastitis, an inflammatory disease of the mammary gland, is one of the most costly diseases affecting the dairy industry. The treatment and prevention of this disease is linked heavily to the use of antibiotics in agriculture and early detection of the primary pathogen is essential to control the disease. Milk samples (n=67) from cows suffering from mastitis were analyzed for the presence of pathogens using PCR electrospray-ionization mass spectrometry (PCR/ESI-MS) and were compared with standard culture diagnostic methods. Concurrent identification of the primary mastitis pathogens was obtained for 64% of the tested milk samples, whereas divergent results were obtained for 27% of the samples. The PCR/ESI-MS failed to identify some of the primary pathogens in 18% of the samples, but identified other pathogens as well as microorganisms in samples that were negative by culture. The PCR/ESI-MS identified bacteria to the species level as well as yeasts and molds in samples that contained a mixed bacterial culture (9%). The sensitivity of the PCR/ESI-MS for the most common pathogens ranged from 57.1 to 100% and the specificity ranged from 69.8 to 100% using culture as gold standard. The PCR/ESI-MS also revealed the presence of the methicillin-resistant gene mecA in 16.2% of the milk samples, which correlated with the simultaneous detection of staphylococci including Staphylococcus aureus. We demonstrated that PCR/ESI-MS, a more rapid diagnostic platform compared with bacterial culture, has the significant potential to serve as an important screening method in the diagnosis of bovine clinical mastitis and has the capacity to be used in infection control programs for both subclinical and clinical disease. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice.

    PubMed

    Pakavathkumar, Prateep; Noël, Anastasia; Lecrux, Clotilde; Tubeleviciute-Aydin, Agne; Hamel, Edith; Ahlfors, Jan-Eric; LeBlanc, Andrea C

    2017-02-28

    The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. The IC 50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC 50 ) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 μM and 3.63 μM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.

  1. An efficient method for gene silencing in human primary plasmacytoid dendritic cells: silencing of the TLR7/IRF-7 pathway as a proof of concept

    PubMed Central

    Smith, Nikaïa; Vidalain, Pierre-Olivier; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2016-01-01

    Plasmacytoid dendritic cells (pDC) are specialized immune cells that produce massive levels of type I interferon in response to pathogens. Unfortunately, pDC are fragile and extremely rare, rendering their functional study a tough challenge. However, because of their central role in numerous pathologies, there is a considerable need for an efficient and reproducible protocol for gene silencing in these cells. In this report, we tested six different methods for siRNA delivery into primary human pDC including viral-based, lipid-based, electroporation, and poly-ethylenimine (PEI) technologies. We show that lipid-based reagent DOTAP was extremely efficient for siRNA delivery into pDC, and did not induce cell death or pDC activation. We successfully silenced Toll-Like Receptor 7 (TLR7), CXCR4 and IFN regulatory factor 7 (IRF-7) gene expression in pDC as assessed by RT-qPCR or cytometry. Finally, we showed that TLR7 or IRF-7 silencing in pDC specifically suppressed IFN-α production upon stimulation, providing a functional validation of our transfection protocol. PMID:27412723

  2. BK virus-associated renal problems--clinical implications.

    PubMed

    Pahari, Amitava; Rees, Lesley

    2003-08-01

    BK virus (BKV), a human polyomavirus, infects most of the human population, but clinically relevant infections are usually limited to individuals who are immunosuppressed. After primary infection, BKV remains latent in the kidneys and can be reactivated in immune deficiency conditions, including transplantation. As primary infection occurs in childhood, BKV may be particularly important in the pediatric transplant population. BKV is associated with tubulointerstitial nephritis and ureteric stenosis in renal transplant recipients and hemorrhagic cystitis in bone marrow transplant recipients. There are increasing reports of BKV causing nephropathy and cystitis in non-renal solid organ transplant recipients and other immunodeficiency diseases. This might be related to the use of more potent immunosuppressive regimens or increasing awareness of BKV as an important pathogen. Diagnosis of BKV disease is by biopsy. Histopathological changes in renal biopsy specimens may mimic rejection or drug toxicity, but BKV nuclear inclusions can be seen. Treatment is by reduction of immunosuppression. Antiviral agents such as cidofovir are showing promise. BKV DNA polymerase chain reaction in blood or biopsy may be helpful in monitoring therapy. The impact of BKV disease in children is not well understood and prospective studies are needed to elucidate this further. This article reviews the current understanding of BKV-associated renal problems.

  3. Behavior of Yersinian enteriocolitica in foods

    USDA-ARS?s Scientific Manuscript database

    Yersinia enterocolitica, a zoonotic pathogen that causes yersiniosis in humans and animals, is discussed. The prevalence in foods and infection of this pathogen to humans and animals was investigated, and most of the biochemical tests used to biogroup Y. enterocolitica stated. In this study, the pos...

  4. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome

    PubMed Central

    Ferlaino, Michael; Rogers, Mark F.; Shihab, Hashem A.; Mort, Matthew; Cooper, David N.; Gaunt, Tom R.; Campbell, Colin

    2018-01-01

    Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. PMID:28985712

  5. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.

    PubMed

    Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin

    2017-10-06

    Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.

  6. Human milk inactivates pathogens individually, additively, and synergistically.

    PubMed

    Isaacs, Charles E

    2005-05-01

    Breast-feeding can reduce the incidence and the severity of gastrointestinal and respiratory infections in the suckling neonate by providing additional protective factors to the infant's mucosal surfaces. Human milk provides protection against a broad array of infectious agents through redundancy. Protective factors in milk can target multiple early steps in pathogen replication and target each step with more than one antimicrobial compound. The antimicrobial activity in human milk results from protective factors working not only individually but also additively and synergistically. Lipid-dependent antimicrobial activity in milk results from the additive activity of all antimicrobial lipids and not necessarily the concentration of one particular lipid. Antimicrobial milk lipids and peptides can work synergistically to decrease both the concentrations of individual compounds required for protection and, as importantly, greatly reduce the time needed for pathogen inactivation. The more rapidly pathogens are inactivated the less likely they are to establish an infection. The total antimicrobial protection provided by human milk appears to be far more than can be elucidated by examining protective factors individually.

  7. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    PubMed Central

    de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.

    2017-01-01

    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499

  8. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    PubMed

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Allovahlkampfia spelaea Causing Keratitis in Humans

    PubMed Central

    Tolba, Mohammed Essa Marghany; Huseein, Enas Abdelhameed Mahmoud; Farrag, Haiam Mohamed Mahmoud; Mohamed, Hanan El Deek; Kobayashi, Seiki; Suzuki, Jun; Ali, Tarek Ahmed Mohamed; Sugano, Sumio

    2016-01-01

    Background Free-living amoebae are present worldwide. They can survive in different environment causing human diseases in some instances. Acanthamoeba sp. is known for causing sight-threatening keratitis in humans. Free-living amoeba keratitis is more common in developing countries. Amoebae of family Vahlkampfiidae are rarely reported to cause such affections. A new genus, Allovahlkampfia spelaea was recently identified from caves with no data about pathogenicity in humans. We tried to identify the causative free-living amoeba in a case of keratitis in an Egyptian patient using morphological and molecular techniques. Methods Pathogenic amoebae were culture using monoxenic culture system. Identification through morphological features and 18S ribosomal RNA subunit DNA amplification and sequencing was done. Pathogenicity to laboratory rabbits and ability to produce keratitis were assessed experimentally. Results Allovahlkampfia spelaea was identified as a cause of human keratitis. Whole sequence of 18S ribosomal subunit DNA was sequenced and assembled. The Egyptian strain was closely related to SK1 strain isolated in Slovenia. The ability to induce keratitis was confirmed using animal model. Conclusions This the first time to report Allovahlkampfia spelaea as a human pathogen. Combining both molecular and morphological identification is critical to correctly diagnose amoebae causing keratitis in humans. Use of different pairs of primers and sequencing amplified DNA is needed to prevent misdiagnosis. PMID:27415799

  10. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    PubMed Central

    Khan, Abdul Viqar; Ahmed, Qamar Uddin; Mir, M Ramzan; Shukla, Indu; Khan, Athar Ali

    2011-01-01

    Objective To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections. PMID:23569812

  11. Replacing and Additive Horizontal Gene Transfer in Streptococcus

    PubMed Central

    Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam

    2012-01-01

    The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954

  12. A novel porcine model of ventilator-associated pneumonia caused by oropharyngeal challenge with Pseudomonas aeruginosa.

    PubMed

    Li Bassi, Gianluigi; Rigol, Montserrat; Marti, Joan-Daniel; Saucedo, Lina; Ranzani, Otavio T; Roca, Ignasi; Cabanas, Maria; Muñoz, Laura; Giunta, Valeria; Luque, Nestor; Rinaudo, Mariano; Esperatti, Mariano; Fernandez-Barat, Laia; Ferrer, Miquel; Vila, Jordi; Ramirez, Jose; Torres, Antoni

    2014-05-01

    Animal models of ventilator-associated pneumonia (VAP) in primates, sheep, and pigs differ in the underlying pulmonary injury, etiology, bacterial inoculation methods, and time to onset. The most common ovine and porcine models do not reproduce the primary pathogenic mechanism of the disease, through the aspiration of oropharyngeal pathogens, or the most prevalent human etiology. Herein the authors characterize a novel porcine model of VAP due to aspiration of oropharyngeal secretions colonized by Pseudomonas aeruginosa. Ten healthy pigs were intubated, positioned in anti-Trendelenburg, and mechanically ventilated for 72 h. Three animals did not receive bacterial challenge, whereas in seven animals, a P. aeruginosa suspension was instilled into the oropharynx. Tracheal aspirates were cultured and respiratory mechanics were recorded. On autopsy, lobar samples were obtained to corroborate VAP through microbiological and histological studies. In animals not challenged, diverse bacterial colonization of the airways was found and monolobar VAP rarely developed. In animals with P. aeruginosa challenge, colonization of tracheal secretion increased up to 6.39 ± 0.34 log colony-forming unit (cfu)/ml (P < 0.001). VAP was confirmed in six of seven pigs, in 78% of the cases developed in the dependent lung segments (right medium and lower lobes, P = 0.032). The static respiratory system elastance worsened to 41.5 ± 5.8 cm H2O/l (P = 0.001). The authors devised a VAP model caused by aspiration of oropharyngeal P. aeruginosa, a frequent causative pathogen of human VAP. The model also overcomes the practical and legislative limitations associated with the use of primates. The authors' model could be employed to study pathophysiologic mechanisms, as well as novel diagnostic/preventive strategies.

  13. Original antigenic sin: A comprehensive review.

    PubMed

    Vatti, Anup; Monsalve, Diana M; Pacheco, Yovana; Chang, Christopher; Anaya, Juan-Manuel; Gershwin, M Eric

    2017-09-01

    The concept of "original antigenic sin" was first proposed by Thomas Francis, Jr. in 1960. This phenomenon has the potential to rewrite what we understand about how the immune system responds to infections and its mechanistic implications on how vaccines should be designed. Antigenic sin has been demonstrated to occur in several infectious diseases in both animals and humans, including human influenza infection and dengue fever. The basis of "original antigenic sin" requires immunological memory, and our immune system ability to autocorrect. In the context of viral infections, it is expected that if we are exposed to a native strain of a pathogen, we should be able to mount a secondary immune response on subsequent exposure to the same pathogen. "Original antigenic sin" will not contradict this well-established immunological process, as long as the subsequent infectious antigen is identical to the original one. But "original antigenic sin" implies that when the epitope varies slightly, then the immune system relies on memory of the earlier infection, rather than mount another primary or secondary response to the new epitope which would allow faster and stronger responses. The result is that the immunological response may be inadequate against the new strain, because the immune system does not adapt and instead relies on its memory to mount a response. In the case of vaccines, if we only immunize to a single strain or epitope, and if that strain/epitope changes over time, then the immune system is unable to mount an accurate secondary response. In addition, depending of the first viral exposure the secondary immune response can result in an antibody-dependent enhancement of the disease or at the opposite, it could induce anergy. Both of them triggering loss of pathogen control and inducing aberrant clinical consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water.

    PubMed

    Guo, Li; Xu, Ruobing; Gou, Lu; Liu, Zhichao; Zhao, Yiming; Liu, Dingxin; Zhang, Lei; Chen, Hailan; Kong, Michael G

    2018-06-18

    Viruses are serious pathogenic contamination that severely affect the environment and human health. Cold atmospheric-pressure plasma efficiently inactivates pathogenic bacteria, however, the mechanism of virus inactivation by plasma is not fully understood. In this study, surface plasma in argon mixed with 1% air and plasma-activated water were used to treat water containing bacteriophages. Both agents efficiently inactivated bacteriophages T4, Φ174, and MS2 in a time-dependent manner. Prolonged storage had marginal effects on the anti-viral activity of plasma-activated water. DNA and protein analysis revealed that the reactive species generated by plasma damaged both nucleic acid and proteins, in consistent with the morphological examination showing that plasma treatment caused the aggregation of bacteriophages. The inactivation of bacteriophages was alleviated by the singlet oxygen scavengers, demonstrating that singlet oxygen played a primary role in this process. Our findings provide a potentially effective disinfecting strategy to combat the environmental viruses using cold atmospheric-pressure plasma and plasma-activated water. Importance Contamination with pathogenic and infectious viruses severely threaten human health and animal husbandry. Current methods for disinfection have different disadvantages, such as inconvenience and contamination of disinfection by-products (e.g. chlorine disinfection). In this study, atmospheric surface plasma in argon mixed with air and plasma-activated water were found to efficiently inactivate bacteriophages, and plasma-activated water still had strong anti-viral activity after prolonged storage. Furthermore, it was shown that bacteriophage inactivation was associated with the damage to nucleic acid and proteins by singlet oxygen. The understanding of the biological effects of plasma-based treatment is useful to inform the development of plasma into a novel disinfecting strategy with convenience and no by-product. Copyright © 2018 Guo et al.

  15. Characterization of Environmental Sources of the Human and Animal Pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States▿

    PubMed Central

    Kidd, Sarah E.; Chow, Yat; Mak, Sunny; Bach, Paxton J.; Chen, Huiming; Hingston, Adrian O.; Kronstad, James W.; Bartlett, Karen H.

    2007-01-01

    Cryptococcus gattii has recently emerged as a primary pathogen of humans and wild and domesticated animals in British Columbia, particularly on Vancouver Island. C. gattii infections are typically infections of the pulmonary and/or the central nervous system, and the incidence of infection in British Columbia is currently the highest reported globally. Prior to this emergence, the environmental distribution of and the extent of colonization by C. gattii in British Columbia were unknown. We characterized the environmental sources and potential determinants of colonization in British Columbia. C. gattii was isolated from tree surfaces, soil, air, freshwater, and seawater, and no seasonal prevalence was observed. The C. gattii concentrations in air samples were significantly higher during the warm, dry summer months, although potentially infectious propagules (<3.3 μm in diameter) were present throughout the year. Positive samples were obtained from many different areas of British Columbia, and some locations were colonization “hot spots.” C. gattii was generally isolated from acidic soil, and geographic differences in soil pH may influence the extent of colonization. C. gattii soil colonization also was associated with low moisture and low organic carbon contents. Most of the C. gattii isolates recovered belonged to the VGIIa genetic subtype; however, sympatric colonization by the VGIIb strain was observed at most locations. At one sampling site, VGIIa, VGIIb, VGI, and the Cryptococcus neoformans serotype AD hybrid all were coisolated. Our findings indicate extensive colonization by C. gattii within British Columbia and highlight an expansion of the ecological niche of this pathogen. PMID:17194837

  16. Occurrence of Escherichia coli in the Cuyahoga River in the Cuyahoga Valley National Park, Ohio

    USGS Publications Warehouse

    Brady, Amie M.G.; Plona, Meg B.

    2010-01-01

    There are several measures of the 'cleanliness' of a natural body of water, including concentrations of indicator bacteria, anthropogenic chemicals (chemicals derived from human activities), and nutrients, such as nitrogen and phosphorous. Escherichia coli (E. coli) is a bacterium that lives in the intestinal tract of warm-blooded animals, such as humans, deer, cows, and dogs. Most strains of E. coli are not harmful and are in fact beneficial to humans by aiding in the digestive process. A few strains, such as the O157 strain, produce toxins that can cause gastrointestinal illness, but occurrence of toxic strains in the environment is not common. E. coli is considered a good indicator bacterium because its occurrence in the environment indicates the presence of fecal contamination and therefore the possible presence of pathogenic organisms associated with feces. The U.S. Environmental Protection Agency (USEPA) recommends using measurements of E. coli to monitor freshwaters and set criteria for the concentration of bacteria that can be present in the water with minimal adverse human-health effects. Typically, a State's waters are assigned a recreational-use designation, such as bathing, primary-contact, or secondary contact waters, which is used to set the State's water-quality standards based on the USEPA criteria. The Cuyahoga River in the Cuyahoga Valley National Park is designated for primary-contact recreation; therefore, when concentrations of E. coli exceed 298 CFU/100mL, the river would be considered potentially unsafe for recreation.

  17. Pathogen-tested, or certified planting material

    USDA-ARS?s Scientific Manuscript database

    Certification programs have been developed to provide plant material that meets a predetermined level of plant health. The primary objective of these programs is to limit pathogen incidence in plant material in order to minimize losses by growers. For many fruit and nut crops plantings are expecte...

  18. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP) Proteins with Implications for Human Disease

    PubMed Central

    Williams, Marshall V.; Cox, Brandon; Ariza, Maria Eugenia

    2016-01-01

    The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person’s lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase), as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein–Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer. PMID:28036046

  19. Effectiveness of traveller screening for emerging pathogens is shaped by epidemiology and natural history of infection

    PubMed Central

    Gostic, Katelyn M; Kucharski, Adam J; Lloyd-Smith, James O

    2015-01-01

    During outbreaks of high-consequence pathogens, airport screening programs have been deployed to curtail geographic spread of infection. The effectiveness of screening depends on several factors, including pathogen natural history and epidemiology, human behavior, and characteristics of the source epidemic. We developed a mathematical model to understand how these factors combine to influence screening outcomes. We analyzed screening programs for six emerging pathogens in the early and late stages of an epidemic. We show that the effectiveness of different screening tools depends strongly on pathogen natural history and epidemiological features, as well as human factors in implementation and compliance. For pathogens with longer incubation periods, exposure risk detection dominates in growing epidemics, while fever becomes a better target in stable or declining epidemics. For pathogens with short incubation, fever screening drives detection in any epidemic stage. However, even in the most optimistic scenario arrival screening will miss the majority of cases. DOI: http://dx.doi.org/10.7554/eLife.05564.001 PMID:25695520

  20. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. Comparative Profiling of Ubiquitin Proteasome System Interplay with Influenza A Virus PB2 Polymerase Protein Recapitulating Virus Evolution in Humans.

    PubMed

    Biquand, Elise; Poirson, Juline; Karim, Marwah; Declercq, Marion; Malausse, Nicolas; Cassonnet, Patricia; Barbezange, Cyril; Straub, Marie-Laure; Jones, Louis; Munier, Sandie; Naffakh, Nadia; van der Werf, Sylvie; Jacob, Yves; Masson, Murielle; Demeret, Caroline

    2017-01-01

    The optimized exploitation of cell resources is one cornerstone of a successful infection. Differential mapping of host-pathogen protein-protein interactions (PPIs) on the basis of comparative interactomics of multiple strains is an effective strategy to highlight correlations between host proteome hijacking and biological or pathogenic traits. Here, we developed an interactomic pipeline to deliver high-confidence comparative maps of PPIs between a given pathogen and the human ubiquitin proteasome system (UPS). This subarray of the human proteome represents a range of essential cellular functions and promiscuous targets for many viruses. The screening pipeline was applied to the influenza A virus (IAV) PB2 polymerase proteins of five strains representing different levels of virulence in humans. An extensive PB2-UPS interplay has been detected that recapitulates the evolution of IAVs in humans. Functional validation with several IAV strains, including the seasonal H1N1 pdm09 and H3N2 viruses, confirmed the biological relevance of most identified UPS factors and revealed strain-independent and strain-specific effects of UPS factor invalidation on IAV infection. This strategy is applicable to proteins from any other virus or pathogen, providing a valuable resource with which to explore the UPS-pathogen interplay and its relationship with pathogenicity. IMPORTANCE Influenza A viruses (IAVs) are responsible for mild-to-severe seasonal respiratory illness of public health concern worldwide, and the risk of avian strain outbreaks in humans is a constant threat. Elucidating the requisites of IAV adaptation to humans is thus of prime importance. In this study, we explored how PB2 replication proteins of IAV strains with different levels of virulence in humans hijack a major protein modification pathway of the human host cell, the ubiquitin proteasome system (UPS). We found that the PB2 protein engages in an extended interplay with the UPS that evolved along with the virus's adaptation to humans. This suggests that UPS hijacking underlies the efficient infection of humans and can be used as an indicator for evaluation of the potential of avian IAVs to infect humans. Several UPS factors were found to be necessary for infection with circulating IAV strains, pointing to potential targets for therapeutic approaches.

  2. Cryptococcus: from environmental saprophyte to global pathogen

    PubMed Central

    May, Robin C.; Stone, Neil R.H.; Wiesner, Darin L.; Bicanic, Tihana; Nielsen, Kirsten

    2016-01-01

    Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development. PMID:26685750

  3. Cryptococcus: from environmental saprophyte to global pathogen.

    PubMed

    May, Robin C; Stone, Neil R H; Wiesner, Darin L; Bicanic, Tihana; Nielsen, Kirsten

    2016-02-01

    Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.

  4. Global and local environmental changes as drivers of Buruli ulcer emergence.

    PubMed

    Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie

    2017-04-26

    Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.

  5. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    PubMed Central

    Emperador, Sonia; Pacheu-Grau, David; Bayona-Bafaluy, M. Pilar; Garrido-Pérez, Nuria; Martín-Navarro, Antonio; López-Pérez, Manuel J.; Montoya, Julio; Ruiz-Pesini, Eduardo

    2015-01-01

    Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA. PMID:25642242

  6. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  7. Airborne transmission of highly pathogenic influenza virus during processing of infected poultry

    USDA-ARS?s Scientific Manuscript database

    Human infections with H5N1 highly pathogenic avian influenza (HPAI) virus occur following exposure to virus-infected poultry, often during the slaughter processes. Infectious virus within bioaerosols was detected during laboratory-simulated processing of asymptomatic chickens infected with human- (c...

  8. Draft Genome Sequence of the Serratia rubidaea CIP 103234T Reference Strain, a Human-Opportunistic Pathogen.

    PubMed

    Bonnin, Rémy A; Girlich, Delphine; Imanci, Dilek; Dortet, Laurent; Naas, Thierry

    2015-11-19

    We provide here the first genome sequence of a Serratia rubidaea isolate, a human-opportunistic pathogen. This reference sequence will permit a comparison of this species with others of the Serratia genus. Copyright © 2015 Bonnin et al.

  9. Vector-borne Infections

    PubMed Central

    Ben Beard, C.

    2011-01-01

    Infections with vector-borne pathogens are a major source of emerging diseases. The ability of vectors to bridge spatial and ecologic gaps between animals and humans increases opportunities for emergence. Small adaptations of a pathogen to a vector can have profound effects on the rate of transmission to humans. PMID:21529382

  10. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens

    EPA Science Inventory

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to devel...

  11. A hydrodynamics-based approach to evaluating the risk of waterborne pathogens entering drinking water intakes in a large, stratified lake.

    PubMed

    Hoyer, Andrea B; Schladow, S Geoffrey; Rueda, Francisco J

    2015-10-15

    Pathogen contamination of drinking water lakes and reservoirs is a severe threat to human health worldwide. A major source of pathogens in surface sources of drinking waters is from body-contact recreation in the water body. However, dispersion pathways of human waterborne pathogens from recreational beaches, where body-contact recreation is known to occur to drinking water intakes, and the associated risk of pathogens entering the drinking water supply remain largely undocumented. A high spatial resolution, three-dimensional hydrodynamic and particle tracking modeling approach has been developed to analyze the risk and mechanisms presented by pathogen dispersion. The pathogen model represents the processes of particle release, transport and survival. Here survival is a function of both water temperature and cumulative exposure to ultraviolet (UV) radiation. Pathogen transport is simulated using a novel and computationally efficient technique of tracking particle trajectories backwards, from a drinking water intake toward their source areas. The model has been applied to a large, alpine lake - Lake Tahoe, CA-NV (USA). The dispersion model results reveal that for this particular lake (1) the risk of human waterborne pathogens to enter drinking water intakes is low, but significant; (2) this risk is strongly related to the depth of the thermocline in relation to the depth of the intake; (3) the risk increases with the seasonal deepening of the surface mixed layer; and (4) the risk increases at night when the surface mixed layer deepens through convective mixing and inactivation by UV radiation is eliminated. While these risk factors will quantitatively vary in different lakes, these same mechanisms will govern the process of transport of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Streptococcus iniae, a Human and Animal Pathogen: Specific Identification by the Chaperonin 60 Gene Identification Method

    PubMed Central

    Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.

    1998-01-01

    It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992

  13. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols.

    PubMed

    Bomar, Lindsey; Brugger, Silvio D; Yost, Brian H; Davies, Sean S; Lemon, Katherine P

    2016-01-05

    Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization. Copyright © 2016 Bomar et al.

  14. [Animals as a potential source of human fungal infections].

    PubMed

    Dworecka-Kaszak, Bozena

    2008-01-01

    Changing environment is a reason, that many saprotrophic fungi became opportunists and in the end also maybe a pathogenic. Host specific adaptation is not so strong among fungi, so there are many common fungal pathogens for people and for animals. Animals suffering from dermatomycosis are well recognize as source of human superficial mycoses. Breeding of different exotic animals such as parrots, various Reptiles and Amphibians, miniature Rodents and keeping them as a pets in the peoples houses, have become more and more popular in the recent years. This article is shortly presenting which animals maybe a potential source of fungal infections for humans. Looking for the other mycoses as systemic mycoses, especially candidiasis or aspergilosis there are no data, which allow excluding sick animals as a source of infection for human, even if those deep mycoses have endogenic reactivation mechanism. Immunocompromised people are in high-risk group when they take care of animals. Another important source of potentially pathogenic, mostly air-born fungi may be animal use in experimental laboratory work. During the experiments is possible that laboratory workers maybe hurt and these animals and their environment, food and house boxes could be the possible source of microorganisms, pathogenic for humans or other animals. Unusual way to inoculate these potentially pathogens into the skin of laboratory personnel may cause granulomatous, local lesions on their hands.

  15. Integrated pest management and allocation of control efforts for vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2001-01-01

    Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.

  16. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches

    PubMed Central

    Argôlo-Filho, Ronaldo Costa; Loguercio, Leandro Lopes

    2013-01-01

    Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains. PMID:26462580

  17. A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen

    PubMed Central

    Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita

    2013-01-01

    Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature. PMID:23935449

  18. Origin, Spread and Demography of the Mycobacterium tuberculosis Complex

    PubMed Central

    Wirth, Thierry; Hildebrand, Falk; Allix-Béguec, Caroline; Wölbeling, Florian; Kubica, Tanja; Kremer, Kristin; van Soolingen, Dick; Rüsch-Gerdes, Sabine; Locht, Camille; Brisse, Sylvain; Meyer, Axel

    2008-01-01

    The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations. PMID:18802459

  19. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  20. A bacterial siren song: intimate interactions between neutrophils and pathogenic Neisseria

    PubMed Central

    Criss, Alison K.; Seifert, H. Steven

    2012-01-01

    Preface Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria–neutrophil relationship and proposes potential benefits of this relationship for the pathogen. PMID:22290508

  1. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    PubMed

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  2. Hybrid selection for sequencing pathogen genomes from clinical samples

    PubMed Central

    2011-01-01

    We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla. PMID:21835008

  3. Control of extraintestinal foodborne pathogens using intervention technologies

    USDA-ARS?s Scientific Manuscript database

    In recent years it has become apparent that emerging foodborne pathogens including Extraintestinal Pathogenic Escherichia coli (ExPEC), Staphylococcus saprophyticus, and Klebsiella pneumoniae are associated with human health conditions such as inflammatory bowel disease (IBD), ulcerative colitis (UC...

  4. STUDY OF PATHOGENIC FREE-LIVING AMEBAS IN FRESH-WATER LAKES IN VIRGINIA

    EPA Science Inventory

    Pathogenic free-living amebas may produce fatal infection of the central nervous system known as Primary Amebic Meningoencephalitis (PAM). In Richmond, Virginia, 17 cases have occurred, more than in any other location in the world. The objectives were to examine freshwater lakes ...

  5. Isolation of Propionibacterium acnes among the microbiota of primary endodontic infections with and without intraoral communication.

    PubMed

    Niazi, Sadia Ambreen; Al Kharusi, Hana Suleiman; Patel, Shanon; Bruce, Kenneth; Beighton, David; Foschi, Federico; Mannocci, Francesco

    2016-11-01

    The presence of opportunistic pathogens such as Propionibacterium acnes (P. acnes) may contribute to the endodontic pathology. The presence of P. acnes may be influenced by different endodontic conditions. The aims of the study were firstly, to identify P. acnes within the whole cultivable microbiota of primary endodontic infections, to investigate which P. acnes phylotypes predominate in such infections and secondly to determine if the presence of an "open" communication (e.g. a sinus) can be associated with the isolation of P. acnes from the root canal. The predominant cultivable microbiota of 15 primary endodontic lesions (7 without communication with the oral environment and 8 with an open communication) were identified using partial 16S ribosomal RNA (rRNA) gene sequence analysis. The identification of the organism was determined by interrogating the Human Oral Microbiome Database. The P. acnes isolates were typed on the basis of the recA gene sequence comparison. A neighbor-joining tree was constructed using MEGA 4.1 with the inclusion of known recA sequences. There was no difference in the number of species identified from lesions without communication (5.86 ± 3.7) and those with communication (5.37 ± 3.6) (P > 0.05). PCR-based 16S rRNA gene sequencing revealed P. acnes as the most prevalent isolate recovered from lesions with communication. recA gene sequencing revealed two phylogenetic lineages present in lesion with communication, with mainly type I (further split into type IA and type IB) and type II. The presence of P. acnes as opportunistic pathogens has been confirmed and may sustain the traits observed in specific clinical presentations. Clinical management of open lesions may require further disinfection to eliminate opportunistic bacteria.

  6. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity

    PubMed Central

    Keasey, Sarah L.; Pugh, Christine L.; Jensen, Stig M. R.; Smith, Jessica L.; Hontz, Robert D.; Durbin, Anna P.; Dudley, Dawn M.; O'Connor, David H.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics. PMID:28228395

  7. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity.

    PubMed

    Keasey, Sarah L; Pugh, Christine L; Jensen, Stig M R; Smith, Jessica L; Hontz, Robert D; Durbin, Anna P; Dudley, Dawn M; O'Connor, David H; Ulrich, Robert G

    2017-04-01

    Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics. Copyright © 2017 American Society for Microbiology.

  8. Asymptomatic memory CD8+ T cells

    PubMed Central

    Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir

    2014-01-01

    Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824

  9. Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry

    PubMed Central

    Pick, Neora; Cameron, Scott; Arad, Dorit

    2004-01-01

    The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI) exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death. PMID:15472722

  10. Marine recreation and public health microbiology: Quest for the ideal indicator

    USGS Publications Warehouse

    Griffin, Dale W.; Lipp, Erin K.; McLaughlin, Molly R.; Rose, Joan B.

    2001-01-01

    Four-fifths of the population of the United States live in close proximity to the oceans or Great Lakes, and approximately 100 million Americans use the marine environment for recreation each year (Thurman 1994). Consequently, contamination of lakes, rivers, and coastal waters raises significant public health issues. Among the leading sources of chemical and biological contamination of these waters and associated beaches are sewer systems, septic tanks, stormwater runoff, industrial wastes, wastewater injection wells, cesspits, animal wastes, commercial and private boat wastes, and human recreation. In 1997, 649 beach closings or advisories were caused by sewage spills and overflows (NRDC 1998). In Florida alone, approximately 500 million gallons of sewage were released along the coast each year during the late 1980s (Neshyba 1987). Thus one of the primary concerns in public health is the risk that humans using the marine environment for recreational activities will encounter microbial pathogens.

  11. Marine recreation and public health microbiology: quest for the ideal indicator

    USGS Publications Warehouse

    Griffin, Dale W.; Lipp, Erin K.; McLaughlin, Molly R.; Rose, Joan B.

    2001-01-01

    Four-fifths of the population of the United States live in close proximity to the oceans or Great Lakes, and approximately 100 million Americans use the marine environment for recreation each year (Thurman 1994). Consequently, contamination of lakes, rivers, and coastal waters raises significant public health issues. Among the leading sources of chemical and biological contamination of these waters and associated beaches are sewer systems, septic tanks, stormwater runoff, industrial wastes, wastewater injection wells, cesspits, animal wastes, commercial and private boat wastes, and human recreation. In 1997, 649 beach closings or advisories were caused by sewage spills and overflows (NRDC 1998). In Florida alone, approximately 500 million gallons of sewage were released along the coast each year during the late 1980s (Neshyba 1987). Thus one of the primary concerns in public health is the risk that humans using the marine environment for recreational activities will encounter microbial pathogens.

  12. Selective Downregulation of Rhesus Macaque and Sooty Mangabey Major Histocompatibility Complex Class I Molecules by Nef Alleles of Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 2▿

    PubMed Central

    DeGottardi, M. Quinn; Specht, Anke; Metcalf, Benjamin; Kaur, Amitinder; Kirchhoff, Frank; Evans, David T.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) Nef downregulates HLA-A and -B molecules, but not HLA-C or -E molecules, based on amino acid differences in their cytoplasmic domains to simultaneously evade cytotoxic T lymphocyte (CTL) and natural killer cell surveillance. Rhesus macaques and sooty mangabeys express orthologues of HLA-A, -B, and -E, but not HLA-C, and many of these molecules have unique amino acid differences in their cytoplasmic tails. We found that these differences also resulted in differential downregulation by primary simian immunodeficiency virus (SIV) SIVsmm/mac and HIV-2 Nef alleles. Thus, selective major histocompatibility complex class I downregulation is a conserved mechanism of immune evasion for pathogenic SIV infection of rhesus macaques and nonpathogenic SIV infection of sooty mangabeys. PMID:18199657

  13. Human immunodeficiency virus (HIV) is highly associated with giant idiopathic esophageal ulcers in acquired immunodeficiency syndrome (AIDS) patients.

    PubMed

    Lv, Bei; Cheng, Xin; Gao, Jackson; Zhao, Hong; Chen, Liping; Wang, Liwei; Huang, Shaoping; Fan, Zhenyu; Zhang, Renfang; Shen, Yinzhong; Li, Lei; Liu, Baochi; Qi, Tangkai; Wang, Jing; Cheng, Jilin

    2016-01-01

    This study aimed to determine whether the human immunodeficiency virus (HIV) exists in giant idiopathic esophageal ulcers in the patients with acquired immune deficiency syndrome (AIDS). 16 AIDS patients with a primary complaint of epigastric discomfort were examined by gastroscopy. Multiple and giant esophageal ulcers were biopsied and analyzed with pathology staining and reverse transcription-polymerase chain reaction (RT-PCR) to determine the potential pathogenic microorganisms, including HIV, cytomegalovirus (CMV) and herpes simplex viruses (HSV). HIV was detected in ulcer samples from 12 out of these 16 patients. Ulcers in 2 patients were infected with CMV and ulcers in another 2 patients were found HSV positive. No obvious cancerous pathological changes were found in these multiple giant esophageal ulcer specimens. HIV may be one of the major causative agents of multiple benign giant esophageal ulcers in AIDS patients.

  14. Human immunodeficiency virus (HIV) is highly associated with giant idiopathic esophageal ulcers in acquired immunodeficiency syndrome (AIDS) patients

    PubMed Central

    Lv, Bei; Cheng, Xin; Gao, Jackson; Zhao, Hong; Chen, Liping; Wang, Liwei; Huang, Shaoping; Fan, Zhenyu; Zhang, Renfang; Shen, Yinzhong; Li, Lei; Liu, Baochi; Qi, Tangkai; Wang, Jing; Cheng, Jilin

    2016-01-01

    Objective: This study aimed to determine whether the human immunodeficiency virus (HIV) exists in giant idiopathic esophageal ulcers in the patients with acquired immune deficiency syndrome (AIDS). Methods: 16 AIDS patients with a primary complaint of epigastric discomfort were examined by gastroscopy. Multiple and giant esophageal ulcers were biopsied and analyzed with pathology staining and reverse transcription-polymerase chain reaction (RT-PCR) to determine the potential pathogenic microorganisms, including HIV, cytomegalovirus (CMV) and herpes simplex viruses (HSV). Results: HIV was detected in ulcer samples from 12 out of these 16 patients. Ulcers in 2 patients were infected with CMV and ulcers in another 2 patients were found HSV positive. No obvious cancerous pathological changes were found in these multiple giant esophageal ulcer specimens. Conclusion: HIV may be one of the major causative agents of multiple benign giant esophageal ulcers in AIDS patients. PMID:27830031

  15. SPECIES-SPECIFIC DETECTION OF THREE HUMAN-PATHOGENIC MICROSPORIDIAL SPECIES FROM THE GENUS ENCEPHALITOZOON VIA FLUOROGENIC 5' NUCLEASE PCR ASSAYS

    EPA Science Inventory

    This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...

  16. Thermal and non-thermal surface treatments of fresh cantaloupes and other melons for inactivating human pathogens

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of salmonellosis by Salmonella Poona and listeriosis by Listeria monocytogenes have been associated with the consumption of cantaloupes. Commercial washing processes for cantaloupes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop...

  17. Laser system for identification, tracking, and control of flying insects

    USDA-ARS?s Scientific Manuscript database

    Flying insects are common vectors for transmission of pathogens and inflict significant harm on humans in large parts of the developing world. Besides the direct impact to humans, these pathogens also cause harm to crops and result in agricultural losses. Here, we present a laser-based system that c...

  18. Inactivating Methicillin Resistant Staphylococcus aureus (MRSA) and Other Pathogens by Bacteriocins OR-7 and E 50-52.

    USDA-ARS?s Scientific Manuscript database

    Worldwide, reports document the increasing frequency of methicillin resistant Staphylococcus aureus (MRSA) infections. Other human pathogens are recognized as unresponsive to antibiotics of last resort. These previously treatable infections now account for increased numbers of human disease and de...

  19. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes.

    PubMed

    Borruso, Luigimaria; Salomone-Stagni, Marco; Polsinelli, Ivan; Schmitt, Armin Otto; Benini, Stefano

    2017-12-01

    The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.

  20. Microbial Vertical Transmission during Human Pregnancy.

    PubMed

    Arora, Nitin; Sadovsky, Yoel; Dermody, Terence S; Coyne, Carolyn B

    2017-05-10

    Congenital infections with pathogens such as Zika virus, Toxoplasma gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, varicella zoster virus, Rubella, Cytomegalovirus, and Herpesviruses are a major cause of morbidity and mortality worldwide. Despite the devastating impact of microbial infections on the developing fetus, relatively little is known about how pathogens associated with congenital disease breach the placental barrier to transit vertically during human pregnancy. In this Review, we focus on transplacental transmission of pathogens during human gestation. We introduce the structure of the human placenta and describe the innate mechanisms by which the placenta restricts microbial access to the intrauterine compartment. Based on current knowledge, we also discuss the potential pathways employed by microorganisms to overcome the placental barrier and prospects for the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  2. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria

    PubMed Central

    Khan, Usman Ali; Niaz, Zeeshan; Qasim, Muhammad; Khan, Jafar; Tayyaba; Rehman, Bushra

    2013-01-01

    Medicinal plants are traditionally used for the treatment of human infections. The present study was undertaken to investigate Bergenia ciliata, Jasminum officinale, and Santalum album for their potential activity against human bacterial pathogens. B. ciliata, J. officinale, and S. album extracts were prepared in cold and hot water. The activity of plant extracts and selected antibiotics was evaluated against five bacterial pathogens including Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli using agar well diffusion method. Among the three medicinal plants, B. ciliata extracts displayed potential activity against bacterial pathogens. Cold water extract of Bergenia ciliate showed the highest activity against B. subtilis, which is comparable with a zone of inhibition exhibited by ceftriaxone and erythromycin. J. officinale and S. album extracts demonstrated variable antibacterial activity. Further studies are needed to explore the novel antibacterial bioactive molecules. PMID:24294497

  3. Chemical ecology of animal and human pathogen vectors in a changing global climate.

    PubMed

    Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S

    2010-01-01

    Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.

  4. Tracing the role of human civilization in the globalization of plant pathogens

    Treesearch

    Alberto Santini; Andrew Liebhold; Duccio Migliorini; Steve Woodward

    2018-01-01

    Co-evolution between plants and parasites, including herbivores and pathogens, has arguably generated much of Earth’s biological diversity. Within an ecosystem, coevolution of plants and pathogens is a stepwise reciprocal evolutionary interaction: epidemics result in intense selection pressures on both host and pathogen populations, ultimately allowing long-term...

  5. DEVELOPMENT OF HUMAN BIOMARKERS OF EXPOSURE TO WATERBORNE PATHOGENS

    EPA Science Inventory

    Contaminated drinking water is major source of waterborne diseases. EPA has published a drinking water contaminant candidate list (CCL) that contains a number of pathogens that potentially could be regulated in drinking water. Studies indicate that certain viral pathogens (adenov...

  6. NATURAL ATYPICAL LISTERIA INNOCUA STRAINS WITH LISTERIA MONOCYTOGENES PATHOGENICITY ISLAND 1 GENES

    EPA Science Inventory

    The detection of the human foodborne pathogen, Listeria monocytogenes, in food, environmental samples and clinical specimens associated with cases of listeriosis, a rare but high mortality-rate disease, requires distinguishing the pathogen from other Listeria species. Speciation...

  7. The behavioural immune system and the psychology of human sociality.

    PubMed

    Schaller, Mark

    2011-12-12

    Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context-contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour-including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system--including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being.

  8. The behavioural immune system and the psychology of human sociality

    PubMed Central

    Schaller, Mark

    2011-01-01

    Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context–contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour—including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system—including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being. PMID:22042918

  9. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  10. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis.

    PubMed

    Wyrsch, Ethan R; Roy Chowdhury, Piklu; Chapman, Toni A; Charles, Ian G; Hammond, Jeffrey M; Djordjevic, Steven P

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.

  11. Multiple disease resistance to fungal and oomycete pathogens using a recombinant inbred line population in pepper

    USDA-ARS?s Scientific Manuscript database

    Incorporating disease resistance into cultivars is a primary focus of modern breeding programs. Resistance to pathogens is often introgressed from landrace or wild individuals with poor fruit quality into commercial-quality cultivars. Sites of multiple disease resistance (MDR) are regions or “hotspo...

  12. Factors influencing Phytophthora ramorum infectivity on Umbellularia californica and testing of a defoliation-based control method

    Treesearch

    Christine Windsor Colijn; Michael Cohen; Steve Johnston; Whalen Dillon; Nathan Rank

    2013-01-01

    The primary foliar host for Phytophthora ramorum is California bay laurel, Umbellularia californica (Hook. & Arn.) Nutt., a main reservoir for the pathogen in California woodlands. We investigated environmental and pathogen-mediated influences on incidence and severity of P. ramorum infection of

  13. Molecular characterization and pathogenicity of fungal isolates for use against the small hive beetle (Aethina tumida)

    USDA-ARS?s Scientific Manuscript database

    The analysis of DNA sequences from fungal pathogens obtained from cadavers of the small hive beetle (SHB) collected from several apiaries in Florida revealed a mixture of saprobes and two potential primary entomopathogens, Metarhizium anisopliae and Beauveria bassiana. Spray tower bioassays indicate...

  14. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    USDA-ARS?s Scientific Manuscript database

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  15. Behavioural defences in animals against pathogens and parasites: parallels with the pillars of medicine in humans

    PubMed Central

    Hart, Benjamin L.

    2011-01-01

    No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants. PMID:22042917

  16. Transition metals at the host–pathogen interface: How Neisseria exploit human metalloproteins for acquiring iron and zinc

    PubMed Central

    Neumann, Wilma; Hadley, Rose C.; Nolan, Elizabeth M.

    2017-01-01

    Transition metals are essential nutrients for all organisms and important players in the host-microbe interaction. During bacterial infection, a tug-of-war between the host and microbe for nutrient metals occurs: the host innate immune system responds to the pathogen by reducing metal availability and the pathogen tries to outmaneuver this response. The outcome of this competition, which involves metal-sequestering host-defense proteins and microbial metal acquisition machinery, is an important variable for whether infection occurs. One strategy bacterial pathogens employ to overcome metal restriction involves hijacking abundant host metalloproteins. The obligate human pathogens Neisseria spp. express TonB-dependent transport systems that capture human metalloproteins, extract the bound metal ions, and deliver these nutrients into the bacterial cell. This Essay highlights structural and mechanistic investigations that provide insights into how Neisseria acquire iron from the Fe(III)-transport protein transferrin, the Fe(III)-chelating host-defense protein lactoferrin, and the oxygen-transport protein hemoglobin, and obtain zinc from the metal-sequestering antimicrobial protein calprotectin. PMID:28487398

  17. Early innate immune responses to Sin Nombre hantavirus occur independently of IFN regulatory factor 3, characterized pattern recognition receptors, and viral entry.

    PubMed

    Prescott, Joseph B; Hall, Pamela R; Bondu-Hawkins, Virginie S; Ye, Chunyan; Hjelle, Brian

    2007-08-01

    Sin Nombre virus (SNV) is a highly pathogenic New World virus and etiologic agent of hantavirus cardiopulmonary syndrome. We have previously shown that replication-defective virus particles are able to induce a strong IFN-stimulated gene (ISG) response in human primary cells. RNA viruses often stimulate the innate immune response by interactions between viral nucleic acids, acting as a pathogen-associated molecular pattern, and cellular pattern-recognition receptors (PRRs). Ligand binding to PRRs activates transcription factors which regulate the expression of antiviral genes, and in all systems examined thus far, IFN regulatory factor 3 (IRF3) has been described as an essential intermediate for induction of ISG expression. However, we now describe a model in which IRF3 is dispensable for the induction of ISG transcription in response to viral particles. IRF3-independent ISG transcription in human hepatoma cell lines is initiated early after exposure to SNV virus particles in an entry- and replication-independent fashion. Furthermore, using gene knockdown, we discovered that this activation is independent of the best-characterized RNA- and protein-sensing PRRs including the cytoplasmic caspase recruitment domain-containing RNA helicases and the TLRs. SNV particles engage a heretofore unrecognized PRR, likely located at the cell surface, and engage a novel IRF3-independent pathway that activates the innate immune response.

  18. Opportunistic pathogens enriched in showerhead biofilms

    PubMed Central

    Feazel, Leah M.; Baumgartner, Laura K.; Peterson, Kristen L.; Frank, Daniel N.; Harris, J. Kirk; Pace, Norman R.

    2009-01-01

    The environments we humans encounter daily are sources of exposure to diverse microbial communities, some of potential concern to human health. In this study, we used culture-independent technology to investigate the microbial composition of biofilms inside showerheads as ecological assemblages in the human indoor environment. Showers are an important interface for human interaction with microbes through inhalation of aerosols, and showerhead waters have been implicated in disease. Although opportunistic pathogens commonly are cultured from shower facilities, there is little knowledge of either their prevalence or the nature of other microorganisms that may be delivered during shower usage. To determine the composition of showerhead biofilms and waters, we analyzed rRNA gene sequences from 45 showerhead sites around the United States. We find that variable and complex, but specific, microbial assemblages occur inside showerheads. Particularly striking was the finding that sequences representative of non-tuberculous mycobacteria (NTM) and other opportunistic human pathogens are enriched to high levels in many showerhead biofilms, >100-fold above background water contents. We conclude that showerheads may present a significant potential exposure to aerosolized microbes, including documented opportunistic pathogens. The health risk associated with showerhead microbiota needs investigation in persons with compromised immune or pulmonary systems. PMID:19805310

  19. Pathogen-driven selection in the human genome.

    PubMed

    Cagliani, Rachele; Sironi, Manuela

    2013-01-01

    Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.

  20. Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors.

    PubMed

    Sauerhering, Lucie; Müller, Helena; Behner, Laura; Elvert, Mareike; Fehling, Sarah Katharina; Strecker, Thomas; Maisner, Andrea

    2017-10-01

    Highly pathogenic Nipah virus (NiV) generally causes severe encephalitis in humans. Respiratory symptoms are infrequently observed, likely reflecting variations in infection kinetics in human airways. Supporting this idea, we recently identified individual differences in NiV replication kinetics in cultured airway epithelia from different human donors. As type III interferons (IFN-λ) represent major players in the defence mechanism against viral infection of the respiratory mucosa, we studied IFN-λ induction and antiviral activity in NiV-infected primary differentiated human bronchial epithelial cells (HBEpCs) cultured under air-liquid interface conditions. Our studies revealed that IFN-λ was upregulated in airway epithelia upon NiV infection. We also show that IFN-λ pretreatment efficiently inhibited NiV replication. Interestingly, the antiviral activity of IFN-λ varied in HBEpCs from two different donors. Increased sensitivity to IFN-λ was associated with higher expression levels of IFN-λ receptors, enhanced phosphorylation of STAT1, as well as enhanced induction of interferon-stimulated gene expression. These findings suggest that individual variations in IFN-λ receptor expression affecting IFN responsiveness can play a functional role for NiV replication kinetics in human respiratory epithelial cells of different donors.

Top