Human Plasmacytoid Dendritic Cells Display and Shed B Cell Maturation Antigen upon TLR Engagement.
Schuh, Elisabeth; Musumeci, Andrea; Thaler, Franziska S; Laurent, Sarah; Ellwart, Joachim W; Hohlfeld, Reinhard; Krug, Anne; Meinl, Edgar
2017-04-15
The BAFF-APRIL system is best known for its control of B cell homeostasis, and it is a target of therapeutic intervention in autoimmune diseases and lymphoma. By analyzing the expression of the three receptors of this system, B cell maturation Ag (BCMA), transmembrane activator and CAML interactor, and BAFF receptor, in sorted human immune cell subsets, we found that BCMA was transcribed in plasmacytoid dendritic cells (pDCs) in both blood and lymphoid tissue. Circulating human pDCs contained BCMA protein without displaying it on the cell surface. After engagement of TLR7/8 or TLR9, BCMA was detected also on the cell surface of pDCs. The display of BCMA on the surface of human pDCs was accompanied by release of soluble BCMA (sBCMA); inhibition of γ-secretase enhanced surface expression of BCMA and reduced the release of sBCMA by pDCs. In contrast with human pDCs, murine pDCs did not express BCMA, not even after TLR9 activation. In this study, we extend the spectrum of BCMA expression to human pDCs. sBCMA derived from pDCs might determine local availability of its high-affinity ligand APRIL, because sBCMA has been shown to function as an APRIL-specific decoy. Further, therapeutic trials targeting BCMA in patients with multiple myeloma should consider possible effects on pDCs. Copyright © 2017 by The American Association of Immunologists, Inc.
Disease-Associated Plasmacytoid Dendritic Cells
Li, Shuang; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao
2017-01-01
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases. PMID:29085361
Loures, Flávio V; Röhm, Marc; Lee, Chrono K; Santos, Evelyn; Wang, Jennifer P; Specht, Charles A; Calich, Vera L G; Urban, Constantin F; Levitz, Stuart M
2015-02-01
Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.
The involvement of plasmacytoid cells in HIV infection and pathogenesis.
Aiello, Alessandra; Giannessi, Flavia; Percario, Zulema A; Affabris, Elisabetta
2018-04-01
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reszka-Blanco, Natalia J; Sivaraman, Vijay; Zhang, Liguo; Su, Lishan
2015-08-01
Plasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1 (HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as contributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-α). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-α production, while the less pathogenic R3B did not. The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to activate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs, which contributes to pathogenesis. Plasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis remain unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-α production, while most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings thus provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs and contributes to HIV-1 pathogenesis. These novel findings will be of great interest to those working on the roles of IFN and pDCs in HIV-1 pathogenesis in general and on the interaction of HIV-1 with pDCs in particular. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Loures, Flávio V.; Röhm, Marc; Lee, Chrono K.; Santos, Evelyn; Wang, Jennifer P.; Specht, Charles A.; Calich, Vera L. G.; Urban, Constantin F.; Levitz, Stuart M.
2015-01-01
Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation. PMID:25659141
Zhan, Yifan; Carrington, Emma M; Ko, Hyun-Ja; Vikstrom, Ingela B; Oon, Shereen; Zhang, Jian-Guo; Vremec, David; Brady, Jamie L; Bouillet, Philippe; Wu, Li; Huang, David C S; Wicks, Ian P; Morand, Eric F; Strasser, Andreas; Lew, Andrew M
2015-03-01
Interferon-α (IFNα)-producing plasmacytoid dendritic cells (PDCs) are implicated in the pathogenesis of systemic lupus erythematosus (SLE). IFNα-related genes are highlighted among SLE susceptibility alleles and are characteristically expressed in the blood of patients with SLE, while in mouse models of lupus, PDC numbers and IFNα production are increased. This study was undertaken to investigate the effects of inhibitors that selectively target different antiapoptotic molecules on the survival of PDCs. PDC numbers, in vitro survival, and expression of antiapoptotic molecules were evaluated in lupus-prone (NZB × NZW)F1 (NZB/NZW) mice. The impact of Bcl-2 antagonists and glucocorticoids on PDCs was evaluated in vitro and in vivo. IFNα production by NZB/NZW mice was evaluated before and after treatment with Bcl-2 antagonists. PDCs, but not lymphoid tissue-resident conventional DCs, largely relied on the antiapoptotic protein Bcl-2 for survival. The enlarged PDC compartment in NZB/NZW mice was associated with selectively prolonged survival and increased Bcl-2 transcription. Functionally, this resulted in enhanced production of IFNα. Bcl-2 inhibitors selectively killed mouse and human PDCs, including PDCs from SLE patients, but not conventional DCs, dampened IFNα production by PDCs, and synergized with glucocorticoids to kill activated PDCs. Enhanced PDC survival is a likely contributing factor to enhanced IFNα production by lupus PDCs. Bcl-2 antagonists potently and selectively kill PDCs and reduce IFNα production. Thus, we believe that they are attractive candidates for treating PDC-associated diseases. Copyright © 2015 by the American College of Rheumatology.
Tu, Zhengkun; Zhang, Ping; Li, Haijun; Niu, Junqi; Jin, Xia; Su, Lishan
2014-01-01
Plasmacytoid dendritic cells (pDCs) are reported to be defective in HCV-infected patients, the mechanisms of which remain poorly understood. We isolated liver derived mononuclear cells (LMNCs) and pDCs from normal liver tissues of benign tumor dissections and liver transplant donors. Isolated pDCs and LMNCs were cultured with precoated HCV envelop protein E2 (HCV-E2) or anti-CD81 mAb in the presence of CpG-ODN. Our results show that cross-linking of CD81 by either HCV-E2 or anti-CD81 mAb inhibits IFN-α secretion in CpG-induced pDCs; down-regulates HLA-DR, CD80 and CD86 expression in pDCs; and suppresses CpG-ODN induced proliferation and survival of pDCs. The blockade of CD81 by soluble anti-CD81 antibody restores pDCs response to CpG-ODN. These results suggest that HCV E2 protein interacts with CD81 to inhibit pDC maturation, activation, and IFN-α production, and may thereby contribute to the impaired innate anti-viral immune response in HCV infection. PMID:23954883
Ziegler, Susanne M; Beisel, Claudia; Sutter, Kathrin; Griesbeck, Morgane; Hildebrandt, Heike; Hagen, Sven H; Dittmer, Ulf; Altfeld, Marcus
2017-02-01
The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ruscanu, Suzana; Pascale, Florentina; Bourge, Mickael; Hemati, Behzad; Elhmouzi-Younes, Jamila; Urien, Céline; Bonneau, Michel; Takamatsu, Haru; Hope, Jayne; Mertens, Peter; Meyer, Gilles; Stewart, Meredith; Roy, Polly; Meurs, Eliane F.; Dabo, Stéphanie; Zientara, Stéphan; Breard, Emmanuel; Sailleau, Corinne; Chauveau, Emilie; Vitour, Damien; Charley, Bernard
2012-01-01
Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/β) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/β production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/β induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/β in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/β. BTV replication in pDCs was not mandatory for IFN-α/β production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/β required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/β induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/β in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses. PMID:22438548
Plasmacytoid predendritic cells initiate psoriasis through interferon-α production
Nestle, Frank O.; Conrad, Curdin; Tun-Kyi, Adrian; Homey, Bernhard; Gombert, Michael; Boyman, Onur; Burg, Günter; Liu, Yong-Jun; Gilliet, Michel
2005-01-01
Psoriasis is one of the most common T cell–mediated autoimmune diseases in humans. Although a role for the innate immune system in driving the autoimmune T cell cascade has been proposed, its nature remains elusive. We show that plasmacytoid predendritic cells (PDCs), the natural interferon (IFN)-α–producing cells, infiltrate the skin of psoriatic patients and become activated to produce IFN-α early during disease formation. In a xenograft model of human psoriasis, we demonstrate that blocking IFN-α signaling or inhibiting the ability of PDCs to produce IFN-α prevented the T cell–dependent development of psoriasis. Furthermore, IFN-α reconstitution experiments demonstrated that PDC-derived IFN-α is essential to drive the development of psoriasis in vivo. These findings uncover a novel innate immune pathway for triggering a common human autoimmune disease and suggest that PDCs and PDC-derived IFN-α represent potential early targets for the treatment of psoriasis. PMID:15998792
Han, Nannan; Zhang, Zun; Jv, Houyu; Hu, Jingzhou; Ruan, Min; Zhang, Chenping
2018-06-05
The aim of the present study was to investigate whether tumor-derived supernatants down-regulate the immune function of plasmacytoid dendritic cells (pDCs) in oral cancer and the potential molecular mechanisms of this effect. Immunohistochemistry (IHC) and flow cytometry were used to detect tumor-infiltrating and peripheral blood pDCs. MTS and flow cytometry were employed to evaluate the immune response of CD4 + T cells. Real-time PCR and ELISA assays were used to identify TLR-7 and TLR-9 expression, IFN-α production and tumor-secreted soluble cytokines. The proportion of pDCs (0.121%±0.043%) was significantly higher in Oral squamous cell carcinoma (OSCC) samples than in normal tissue (0.023%±0.016%) (P = 0.021). TLR9 mRNA was significantly lower in tumor-infiltrating pDCs and positively correlated to low IFN-α production (r = 0.956; P<0.01). The supernatant of oral cancer cells negatively regulated TLR9 mRNA expression and the subsequent IFN-α production of pDCs, which inhibited the immune response of CD4 + T cells. The neutralizing antibodies blocking assay showed that the specific inhibitory effect of pDC functionality was associated with the soluble fraction of the oral cancer environment, which is mainly mediated by IL-10 and TGF-β cooperation. Tumor-derived supernatants may impair the function of tumor-infiltrating pDCs, which subsequently decreases the immune response of CD4 + T cells in human oral cancer through TGF-β- and IL-10- dependent mechanisms. Careful manipulation of these impaired pDCs may help develop an important alternative immunotherapy for the treatment of oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gou, Shanmiao; Liu, Tao; Li, Xiangsheng; Cui, Jing; Wan, Chidan; Wang, Chunyou
2012-01-01
Bone marrow-derived mesenchymal stem cells (bMSCs) contribute to tissue repair and regeneration. Cell fusion between somatic cells and bMSCs to form hybrid cells may have an important role in tissue repair through the subsequent reprogramming of the somatic cell nucleus. Few studies have assessed the mesenchymal characteristics of fusion-induced hybrid cells and their survival mechanisms. In this study, we investigated the effect of cell fusion on the biological characteristics of pancreatic ductal cells (PDCs) and on the survival mechanism of hybrid cells. To this end, we generated mouse-mouse hybrid cells in vitro by polyethylene glycol-mediated fusion of primary mouse bMSCs with primary mouse PDCs. Hybrid cells showed an enhanced capacity for proliferation and self-renewal compared with PDCs. No PDC had the capacity for anchorage-independent growth or invasion into Matrigel, but some hybrid cells were able to form colonies in soft agar and invade Matrigel. Expression of the tumor suppressor protein p53, which initiates apoptosis, was detected in hybrid cells but not in PDCs or bMSCs. However, the p53 deacetylase, sirtuin 1 (SIRT1), was also detected in hybrid cells, and the level of acetylated p53, the active form, was low. The addition of nicotinamide (Nam) inhibited the deacetylation activity of SIRT1 on p53 and induced cell apoptosis in hybrid cells. This study demonstrated that PDCs could obtain high proliferation rates, self-renewal capabilities, and mesenchymal characteristics by fusion with bMSCs. SIRT1 expression in the hybrid cells attenuated their apoptosis. Copyright © 2012 S. Karger AG, Basel.
Kim, Seung Tae; Kim, Sun Young; Kim, Nayoung K.D.; Jang, Jiryeon; Kang, Mihyun; Jang, Hyojin; Ahn, Soomin; Kim, Seok Hyeong; Park, Yoona; Cho, Yong Beom; Heo, Jeong Wook; Lee, Woo Yong; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Park, Woong-Yang; Lee, Jeeyun; Kim, Hee Cheol
2016-01-01
Background We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. Results In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Methods Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Oncology Biomarker study. The PDC culture protocol was performed for all eligible patients. All of the primary tumors from the 112 patients who provided written informed consent were genomically sequenced with targeted sequencing. In parallel, PDC establishment was attempted for all sequenced tumors. Conclusions We have prospectively sequenced a CRC cohort of 105 patients and successfully established 62 PDC in parallel. Each genomically characterized PDCs can be used as a preclinical model especially in rare genomic alteration event. PMID:26909603
Environmental alkylphenols modulate cytokine expression in plasmacytoid dendritic cells.
Hung, Chih-Hsing; Yang, San-Nan; Wang, Ya-Fang; Liao, Wei-Ting; Kuo, Po-Lin; Tsai, Eing-Mei; Lee, Chin-Lai; Chao, Yu-Shen; Yu, Hsin-Su; Huang, Shau-Ku; Suen, Jau-Ling
2013-01-01
Alkylphenols, such as nonylphenol (NP) and 4-octylphenol (4-OP), have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs) can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. Alkylphenols may influence pDCs' functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN-α and IFN-β, suggesting the potential impact of endocrine disrupting chemicals on immune regulation.
Hillaire, Marine L. B.; Dejnirattisai, Wanwisa; Mongkolsapaya, Juthathip; Screaton, Gavin R.; Davidson, Andrew D.; Dreux, Marlène
2014-01-01
Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response. PMID:25340500
Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7.
Salvi, Valentina; Gianello, Veronica; Busatto, Sara; Bergese, Paolo; Andreoli, Laura; D'Oro, Ugo; Zingoni, Alessandra; Tincani, Angela; Sozzani, Silvano; Bosisio, Daniela
2018-05-17
The excessive production of type I IFNs is a hallmark and a main pathogenic mechanism of many autoimmune diseases, including systemic lupus erythematosus (SLE). In these pathologies, the sustained secretion of type I IFNs is dependent on the improper activation of plasmacytoid DCs (pDCs) by self-nucleic acids. However, the nature and origin of pDC-activating self-nucleic acids is still incompletely characterized. Here, we report that exosomes isolated from the plasma of SLE patients can activate the secretion of IFN-α by human blood pDCs in vitro. This activation requires endosomal acidification and is recapitulated by microRNAs isolated from exosomes, suggesting that exosome-delivered microRNAs act as self-ligands of innate single-stranded endosomal RNA sensors. By using synthetic microRNAs, we identified an IFN induction motif that is responsible for the TLR7-dependent activation, maturation, and survival of human pDCs. These findings identify exosome-delivered microRNAs as potentially novel TLR7 endogenous ligands able to induce pDC activation in SLE patients. Therefore, microRNAs may represent novel pathogenic mediators in the onset of autoimmune reactions and potential therapeutic targets in the treatment of type I IFN-mediated diseases.
Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P
2018-02-21
Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.
Mandl, Judith N; Akondy, Rama; Lawson, Benton; Kozyr, Natalia; Staprans, Silvija I; Ahmed, Rafi; Feinberg, Mark B
2011-06-01
Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands. In this study, we demonstrate that SM pDCs produce significantly less IFN-α following ex vivo exposure to the live attenuated yellow fever virus 17D strain vaccine, a virus that we show is also recognized by TLR7, than do RM or human pDCs. Furthermore, in contrast to RMs, SMs mount limited activation of innate immune responses and adaptive T cell proliferative responses, along with only transient antiviral Ab responses, following infection with yellow fever vaccine 17D strain. However, SMs do raise significant and durable cellular and humoral immune responses comparable to those seen in RMs when infected with modified vaccinia Ankara, a virus whose immunogenicity does not require TLR7/9 recognition. Hence, differences in the pattern of TLR7 signaling and type I IFN production by pDCs between primate species play an important role in determining their ability to mount and maintain innate and adaptive immune responses to specific viruses, and they may also contribute to determining whether disease follows infection.
Wiedemuth, Ralf; Binner, Aline; Navratiel, Katrin; Anastassiadis, Konstantinos; Brenner, Sebastian
2018-01-01
Plasmacytoid dendritic cells (pDC) constitute a very rare blood cell population and play a significant role in immune response and immune-mediated disorders. Investigations on primary pDCs are hindered not only due to their rarity but also because they represent a heterogeneous cell population which is difficult to culture ex vivo. We generated a conditionally immortalized pDC line (Dox-pDC) from mice with Doxycycline-inducible SV40 Large T Antigen with a comparable immune profile to primary pDCs. The Dox-pDC secrete pro- and anti-inflammatory cytokines upon Toll-like receptor 9 stimulation and upregulate their MHCI, MHCII and costimulatory molecules. Further, the Dox-pDC activate and polarize naïve T cells in vivo and in vitro in response to the model antigen Ovalbumin. Due to their long-term culture stability and their robust proliferation Dox-pDC represent a reliable alternative to primary mouse pDC. PMID:29489861
Thieme, Sebastian; Holzbaur, Alexander; Wiedemuth, Ralf; Binner, Aline; Navratiel, Katrin; Anastassiadis, Konstantinos; Brenner, Sebastian; Richter, Cornelia
2018-01-01
Plasmacytoid dendritic cells (pDC) constitute a very rare blood cell population and play a significant role in immune response and immune-mediated disorders. Investigations on primary pDCs are hindered not only due to their rarity but also because they represent a heterogeneous cell population which is difficult to culture ex vivo. We generated a conditionally immortalized pDC line (Dox-pDC) from mice with Doxycycline-inducible SV40 Large T Antigen with a comparable immune profile to primary pDCs. The Dox-pDC secrete pro- and anti-inflammatory cytokines upon Toll-like receptor 9 stimulation and upregulate their MHCI, MHCII and costimulatory molecules. Further, the Dox-pDC activate and polarize naïve T cells in vivo and in vitro in response to the model antigen Ovalbumin. Due to their long-term culture stability and their robust proliferation Dox-pDC represent a reliable alternative to primary mouse pDC.
Watanabe, Tomohiro; Yamashita, Kouhei; Arai, Yasuyuki; Minaga, Kosuke; Kamata, Ken; Nagai, Tomoyuki; Komeda, Yoriaki; Takenaka, Mamoru; Hagiwara, Satoru; Ida, Hiroshi; Sakurai, Toshiharu; Nishida, Naoshi; Strober, Warren; Kudo, Masatoshi
2017-05-15
In previous studies, we found that human IgG4-related autoimmune pancreatitis (AIP) and murine AIP are driven by activation of plasmacytoid dendritic cells (pDCs) producing IFN-α. In the present studies we examined additional roles of pDC-related mechanisms in AIP pathogenesis, particularly those responsible for induction of fibrosis. We found that in murine AIP (MRL/Mp mice treated with polyinosinic-polycytidylic acid) not only the pancreatic infiltration of immune cells but also the development of fibrosis were markedly reduced by the depletion of pDCs or blockade of type I IFN signaling; moreover, such treatment was accompanied by a marked reduction of pancreatic expression of IL-33. Conversely, polyinosinic-polycytidylic acid-induced inflamed pancreatic tissue in murine AIP exhibited increased expression of type I IFNs and IL-33 (and downstream IL-33 cytokines such as IL-13 and TGF-β1). pDCs stimulated by type I IFN were the source of the IL-33 because purified populations of these cells isolated from the inflamed pancreas produced a large amount of IL-33 upon activation by TLR9 ligands, and such production was abrogated by the neutralization of type I IFN. The role of IL-33 in murine AIP pathogenesis was surprisingly important because blockade of IL-33 signaling by anti-ST2 Ab attenuated both pancreatic inflammation and accompanying fibrosis. Finally, whereas patients with both conventional pancreatitis and IgG4-related AIP exhibited increased numbers of acinar cells expressing IL-33, only the latter also exhibited pDCs producing this cytokine. These data thus suggest that pDCs producing IFN-α and IL-33 play a pivotal role in the chronic fibro-inflammatory responses underlying murine AIP and human IgG4-related AIP. Copyright © 2017 by The American Association of Immunologists, Inc.
No evidence for a direct role of HLA-B27 in pathological bone formation in axial SpA
Neerinckx, Barbara; Kollnberger, Simon; Shaw, Jacqueline; Lories, Rik
2017-01-01
Objective The strong genetic association between HLA-B27 and ankylosing spondylitis has been known for over 40 years. HLA-B27 positivity is possibly associated with severity of ankylosis. We studied the in vitro and in vivo impact of HLA-B27 in models of chondrogenesis and osteogenesis. Methods Different in vitro differentiation systems were used to mimic endochondral and direct bone formation. ATDC5 cells and primary human periosteum-derived cells (hPDCs) were transduced with lentiviral vectors expressing HLA-B27 or HLA-B7. These cells and limb bud cells (from HLA-B27 transgenic and wild-type (WT) mice) were cultured in micromasses. To study direct osteogenesis in hPDCs, cells were cultured as monolayers and stimulated with osteogenic media. Chondrogenesis (COL2, ACAN, COL10) and osteogenesis (OSC, ALP, RUNX2) marker expression was studied by quantitative RT-PCR. Colorimetric tests were performed to measure proteoglycans, mineralization and collagens. Collagen antibody-induced arthritis (CAIA) was induced in HLA-B27 transgenic and WT mice. Clinical scoring and µCTs were performed. Statistical analyses were performed by two-way ANOVA. Results There was no difference in chondrogenesis markers or in colorimetric tests between HLA-B27+ and HLA-B7+ micromasses. Expression of osteogenesis markers and Alizarin red staining was comparable in the HLA-B27+ and the HLA-B7+ hPDCs in monolayers. HLA-B27 transgenic mice showed more severe arthritis compared with WT mice in the CAIA model. µCT analysis showed no increased bone formation in HLA-B27 transgenic mice. Conclusion HLA-B27 seems to enhance joint inflammation in the CAIA model. We could not document a direct effect of HLA-B27 on chondrogenesis or osteogenesis. PMID:28879048
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors
Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir
2017-01-01
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369
NASA Astrophysics Data System (ADS)
Jenkins, S.; Komorowski, J.-C.; Baxter, P. J.; Spence, R.; Picquout, A.; Lavigne, F.; Surono
2013-07-01
The large explosive eruption of Merapi volcano, Indonesia, in 2010 presented a key, and rare, opportunity to study the impacts of a major explosive eruption in a densely populated area. Pyroclastic density currents (PDCs) produced throughout the 2010 eruption were unusually destructive, causing near complete devastation across a 22 km2 swath of the densely populated southern flanks and casualties to the end of their runout at 15.5 km from the volcano. The majority (> 120) of the more than 200 fatalities occurred more than 12 km from the volcano, where many people were caught in PDCs as they were evacuating. The 2010 eruption (VEI 4) exhibited a range of PDC behaviour in a complex multi-stage event that marked a change in eruption behaviour at Merapi, being the first eruption of this magnitude and style since 1872. This shift in style may mark a change in regime, and so understanding the potential impact of such large explosive eruptions is essential for future risk-assessment at Merapi. We describe a new impact assessment methodology that allowed us to collect important empirical geological, damage and casualty information and reconstruct impact dynamics associated with the PDCs. In contrast to previous PDC impact studies, we combined remote, field, laboratory and GIS assessments and were able to enter the affected areas safely and before their disturbance by rains or human activity. By integrating the results of our geological, damage and medical studies, we could reconstruct the spatial and temporal dynamics of the PDCs and their main hazard characteristics. Our interdisciplinary methods and preliminary findings are discussed here. In the areas damaged by PDCs, we used empirical damage data and calculations of material and structural resistance to lateral force to estimate approximate dynamic pressures. Dynamic pressures associated with the 5 November paroxysm exceeded 15 kPa more than 6 km from source and rapidly attenuated over a distance of less than 1 km at the end of the PDC runouts. Analysis of thermal indicators, such as deformed plastic, and correlation with information on burns injuries and fires provided estimates of ambient temperatures associated with the PDCs. Even at the relatively low temperatures estimated for the PDCs (200-300 °C) they were lethal to people inside as well as outside buildings, in part because of the building design that enabled the PDCs to rapidly infiltrate inside. Such detailed quantitative data can be used to support numerical PDC and impact modelling and risk assessment at dome-forming volcanoes, providing an improved understanding of the complexity of PDCs and their associated impacts on exposed populations.
Ka, Mignane B.; Mezouar, Soraya; Ben Amara, Amira; Raoult, Didier; Ghigo, Eric; Olive, Daniel; Mege, Jean-Louis
2016-01-01
Plasmacytoid dendritic cells (pDCs) play a major role in antiviral immunity via the production of type I interferons (IFNs). There is some evidence that pDCs interact with bacteria but it is not yet clear whether they are protective or contribute to bacterial pathogenicity. We wished to investigate whether Coxiella burnetii, the agent of Q fever, interacts with pDCs. The stimulation of pDCs with C. burnetii increased the expression of activation and migratory markers (CD86 and CCR7) as determined by flow cytometry and modulated gene expression program as revealed by a microarray approach. Indeed, genes encoding for pro-inflammatory cytokines, chemokines, and type I INF were up-regulated. The up-regulation of type I IFN was correlated with an increase in IFN-α release by C. burnetii-stimulated pDCs. We also investigated pDCs in patients with Q fever endocarditis. Using flow cytometry and a specific gating strategy, we found that the number of circulating pDCs was significantly lower in patients with Q fever endocarditis as compared to healthy donors. In addition, the remaining circulating pDCs expressed activation and migratory markers. As a whole, our study identified non-previously reported activation of pDCs by C. burnetii and their modulation during Q fever. PMID:27446817
BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells.
Combes, Alexis; Camosseto, Voahirana; N'Guessan, Prudence; Argüello, Rafael J; Mussard, Julie; Caux, Christophe; Bendriss-Vermare, Nathalie; Pierre, Philippe; Gatti, Evelina
2017-10-13
Toll-like receptors (TLR) are essential components of the innate immune system. Several accessory proteins, such as UNC93B1, are required for transport and activation of nucleic acid sensing Toll-like receptors in endosomes. Here, we show that BAD-LAMP (LAMP5) controls TLR9 trafficking to LAMP1 + late endosomes in human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and TNF production upon DNA detection. An inducible VAMP3 +/ LAMP2 +/ LAMP1 - endolysosome compartment exists in pDCs from which TLR9 activation triggers type I interferon expression. BAD-LAMP-silencing enhances TLR9 retention in this compartment and consequent downstream signalling events. Conversely, sustained BAD-LAMP expression in pDCs contributes to their lack of type I interferon production after exposure to a TGF-β-positive microenvironment or isolation from human breast tumours. Hence, BAD-LAMP limits interferon expression in pDCs indirectly, by promoting TLR9 sorting to late endosome compartments at steady state and in response to immunomodulatory cues.TLR9 is highly expressed by plasmacytoid dendritic cells and detects nucleic acids, but to discriminate between host and microbial nucleic acids TLR9 is sorted into different endosomal compartments. Here the authors show that BAD-LAMP limits type 1 interferon responses by sorting TLR9 to late endosomal compartments.
Murayama, Goh; Furusawa, Nanako; Chiba, Asako; Yamaji, Ken; Tamura, Naoto; Miyake, Sachiko
2017-10-19
Interferon-α (IFN-α) is increased and plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). Plasmacytoid dendritic cells (pDCs) are the main producer of IFN-α, but their IFN-α producing capacity has been shown to be unchanged or reduced when stimulated with a Toll-like receptor 9 (TLR9) agonist in patients with SLE compared to in healthy individuals. In this study, we investigated the IFN-α-producing capacity of lupus pDCs under different stimulation. pDCs from patients with SLE and healthy controls (HC) were stimulated with TLR9 or TLR7 agonist, and their IFN-α producing capacity was examined by intracellular cytokine staining and flow cytometry. The correlation of IFN-α-producing capacity with serum IFN-α levels and disease activity was assessed. The effect of in vitro IFN-α exposure on IFN-α production by pDCs was examined. Localization of TLR7 in cellular compartments in pDCs was investigated. The IFN-α producing capacity of pDCs was reduced after TLR9 stimulation, but increased when stimulated with a TLR7 agonist in SLE compared to in HC. IFN-α production by pDCs upon TLR9 stimulation was reduced and the percentage of IFN-α + pDC was inversely correlated with disease activity and serum IFN-α levels. However, the TLR7 agonist-induced IFN-α producing capacity of lupus pDCs was enhanced and correlated with disease activity and serum IFN-α. Exposure to IFN-α enhanced IFN-α production of TLR7-stimulated pDCs, but reduced that of pDCs activated with a TLR9 agonist. TLR7 localization was increased in late endosome/lysosome compartments in pDCs from SLE patients. These findings indicate that enhanced TLR7 responses of lupus pDCs, owing to TLR7 retention in late endosome/lysosome and exposure to IFN-α, are associated with the pathogenesis of SLE.
Wang, Jennifer P; Zhang, Lei; Madera, Rachel F; Woda, Marcia; Libraty, Daniel H
2012-07-06
Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR)-mediated responses by plasmacytoid dendritic cells (pDCs). In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy.
Li, Guangming; Zhao, Juanjuan; Cheng, Liang; Jiang, Qi; Kan, Sheng; Qin, Enqiang; Tu, Bo; Zhang, Xin; Zhang, Liguo; Su, Lishan; Zhang, Zheng
2017-07-01
Chronic human immunodeficiency virus-1 (HIV-1) infection in patients leads to multi-lineage hematopoietic abnormalities or pancytopenia. The deficiency in hematopoietic progenitor cells (HPCs) induced by HIV-1 infection has been proposed, but the relevant mechanisms are poorly understood. We report here that both human CD34+CD38- early and CD34+CD38+ intermediate HPCs were maintained in the bone marrow (BM) of humanized mice. Chronic HIV-1 infection preferentially depleted CD34+CD38- early HPCs in the BM and reduced their proliferation potential in vivo in both HIV-1-infected patients and humanized mice, while CD34+CD38+ intermediate HSCs were relatively unaffected. Strikingly, depletion of plasmacytoid dendritic cells (pDCs) prevented human CD34+CD38- early HPCs from HIV-1 infection-induced depletion and functional impairment and restored the gene expression profile of purified CD34+ HPCs in humanized mice. These findings suggest that pDCs contribute to the early hematopoietic suppression induced by chronic HIV-1 infection and provide a novel therapeutic target for the hematopoiesis suppression in HIV-1 patients.
Environmental Alkylphenols Modulate Cytokine Expression in Plasmacytoid Dendritic Cells
Hung, Chih-Hsing; Yang, San-Nan; Wang, Ya-Fang; Liao, Wei-Ting; Kuo, Po-Lin; Tsai, Eing-Mei; Lee, Chin-Lai; Chao, Yu-Shen; Yu, Hsin-Su; Huang, Shau-Ku; Suen, Jau-Ling
2013-01-01
Background Alkylphenols, such as nonylphenol (NP) and 4-octylphenol (4-OP), have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs) can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. Objective The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. Methods Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. Results The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. Conclusion Alkylphenols may influence pDCs’ functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN-α and IFN-β, suggesting the potential impact of endocrine disrupting chemicals on immune regulation. PMID:24039973
Feng, Xungang; Wang, Yuzhong; Hao, Yanlei; Ma, Qun; Dai, Jun; Liang, Zhibo; Liu, Yantao; Li, Xiangyuan; Song, Yan; Si, Chuanping
2017-04-01
Plasmacytoid dendritic cells (pDCs) exert dual roles in immune responses through inducing inflammation and maintaining immune tolerance. A switch of pDC phenotype from pro-inflammation to tolerance has therapeutic promise in the treatment of autoimmune diseases. Vinpocetine, a vasoactive vinca alkaloid extracted from the periwinkle plant, has recently emerged as an immunomodulatory agent. In this study, we evaluated the effect of vinpocetine on phenotype of pDCs isolated from C57BL/6 mice and explored its possible mechanism. Our data showed that vinpocetine significantly downregulated the expression of CD40, CD80, and CD86 on pDCs and increased the expression of translocator protein (TSPO), the specific receptor of vinpocetine, in pDCs. Vinpocetine significantly inhibited the Toll-like receptor 9 signaling pathway and reduced the secretion of related cytokines in pDCs through TSPO. Furthermore, viability of pDCs was significantly promoted by vinpocetine. These findings imply that vinpocetine serves as an immunomodulatory agent for pDCs and may be applied for the treatment of pDCs-related autoimmune diseases.
Lother, Jasmin; Breitschopf, Tanja; Krappmann, Sven; Morton, C Oliver; Bouzani, Maria; Kurzai, Oliver; Gunzer, Matthias; Hasenberg, Mike; Einsele, Hermann; Loeffler, Juergen
2014-11-01
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.
Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin
2011-05-01
Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.
2012-01-01
Background Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR)-mediated responses by plasmacytoid dendritic cells (pDCs). Results In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Conclusions Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy. PMID:22769054
Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics12
Candolfi, Marianela; King, Gwendalyn D; Yagiz, Kader; Curtin, James F; Mineharu, Yohei; Muhammad, AKM Ghulam; Foulad, David; Kroeger, Kurt M; Barnett, Nick; Josien, Regis; Lowenstein, Pedro R; Castro, Maria G
2012-01-01
Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM. PMID:22952428
Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.
2017-07-05
Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature provide the first evidence of self-channelization within PDCs sustained for minutes to tens of minutes (total volume of deposits is ~0.12 km3; area covered is ~15.5 km2; Rowley and others, 1981).Our ability to interpret the deposits of PDCs is critical for understanding transport and depositional processes that control PDC dynamics. The results of extensive work on the May 18, 1980, PDC deposits show that slope and irregular topography strongly influence PDC flow path, dynamics, criticality (for example, supercritical versus subcritical), carrying capacity, and erosive capacity. However, the influence of these conditions on ultimate flow runout and damage potential warrants further exploration through the combination of field, experimental, and numerical approaches.
Boonnak, Kobporn; Vogel, Leatrice; Feldmann, Friederike; Feldmann, Heinz; Legge, Kevin L.; Subbarao, Kanta
2014-01-01
Although lymphopenia is a hallmark of severe infection with highly pathogenic H5N1 and the newly emerged H7N9 influenza viruses in humans, the mechanism(s) by which lethal H5N1 viruses cause lymphopenia in mammalian hosts remains poorly understood. Because influenza-specific T cell responses are initiated in the lung draining lymph nodes, and lymphocytes subsequently traffic to the lungs or peripheral circulation, we compared the immune responses in the lung draining lymph nodes following infection with a lethal A/HK/483/97 or non-lethal A/HK/486/97 (H5N1) virus in a mouse model. We found that lethal H5N1, but not non-lethal H5N1 virus infection in mice enhances Fas ligand (FasL) expression on plasmacytoid dendritic cells (pDCs), resulting in apoptosis of influenza-specific CD8+ T cells via a Fas-FasL mediated pathway. We also found that pDCs, but not other DC subsets, preferentially accumulate in the lung draining lymph nodes of lethal H5N1 virus-infected mice and that the induction of FasL expression on pDCs correlates with high levels of IL-12p40 monomer/homodimer in the lung draining lymph nodes. Our data suggest that one of the mechanisms of lymphopenia associated with lethal H5N1 virus infection involves a deleterious role for pDCs. PMID:24829418
Khoryati, Liliane; Augusto, Jean-François; Shipley, Emilie; Contin-Bordes, Cécile; Douchet, Isabelle; Mitrovic, Stéphane; Truchetet, Marie-Elise; Lazaro, Estibaliz; Duffau, Pierre; Couzi, Lionel; Jacquemin, Clément; Barnetche, Thomas; Vacher, Pierre; Schaeverbeke, Thierry; Blanco, Patrick; Richez, Christophe
2016-09-01
Plasmacytoid dendritic cells (PDCs) play a central role in pathogenesis of systemic lupus erythematosus (SLE) through their unique ability to produce large amounts of type I interferon (IFN) upon Toll-like receptor 7 (TLR-7) and TLR-9 triggering. PDCs express specific surface regulatory receptors involved in negative regulation of IFNα secretion. These receptors use the γ-chain of high-affinity Fc receptor (FcR) for IgE, FcɛRI. We undertook this study to test our hypothesis that IgE engagement of FcɛRI on PDCs may impact IFNα production in SLE patients. Serum levels of total IgE were measured in healthy volunteers, SLE patients, and patients with IgE-dependent allergic disorders. FcɛRI expression on PDCs from SLE patients was evaluated by flow cytometry. Purified PDCs were incubated with monoclonal IgE for 24 hours, then stimulated for 18 hours with TLR agonists or immune complexes (ICs). IFNα production by PDCs was detected by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Expression of TLR-7, TLR-9, and IFN regulatory factor 7 (IRF-7) in PDCs was quantified by quantitative real-time PCR. We observed significantly higher IgE levels in SLE patients with quiescent disease than in those with active disease. In SLE patients, IgE levels correlated inversely with disease activity. IgE levels were not associated with the presence of antinuclear IgE. Purified PDCs treated for 24 hours with monoclonal IgE up-regulated FcɛRI expression in an IgE dose-dependent manner. IgE-treated PDCs significantly decreased IFNα secretion and down-regulated CCR7 expression upon stimulation with TLR-7 and TLR-9 ligands and ICs from lupus patients. IgE treatment down-regulated expression of TLR-9 and IRF-7. Our results support the notion that IgE plays a protective role in SLE pathogenesis through the modulation of inflammatory response by PDCs. © 2016, American College of Rheumatology.
NASA Astrophysics Data System (ADS)
Zobin, Vyacheslav M.
2018-02-01
The 10-11 July 2015 partial collapses of the lava dome in the crater of Volcán de Colima, México, were accompanied by a sequence of two-stage multiple PDCs, separated by a 15-h interval, with a total bulk volume of 14.2 × 106 m3 of fragmentary material and runout distances reaching 9.1 and 10.3 km, respectively (Reyes-Dávila et al., 2016). Broad-band seismic signals, associated with the PDCs and recorded at seismic station EZ5 installed at a distance of 4 km from the crater, were used for analysis of the 20-h eruption process. This process included two stages of the multiple PDCs emplacements, two one-hour periods of preliminary events to each of the stages, and the inter-stage period. Analysis of seismic signals allowed us to identify the types of volcanic events composing this eruption episode and estimate their quantitative characteristics and spectral parameters of generated seismic signals. It was shown that the seismic signals produced by PDCs emplacements, recorded during the two stages, were characterized by different characteristics. The second stage PDCs had radiated greater seismic energy than the PDCs emplaced during the first stage. Spectral analysis of the seismic signals, produced by PDCs, indicates a clearly separation in frequency content at 1.95 Hz between the higher-frequency events of the first stage and the lower-frequency events of the second stage of the PDCs emplacements. The obtained difference in the spectral contents of the seismic signals, produced by the movement of two multiple PDCs, may be supposed as a consequence of the proposed relative difference in the volumes of the PDCs of two multiple sequences due to a difference in the level of radiated seismic energy and a change in bottom conditions of the ravines during their passing along the ravines. Results of seismic study were used in discussion of the nature of the two-stage eruptive process.
Skrzeczynska-Moncznik, Joanna; Zabieglo, Katarzyna; Bossowski, Jozef P; Osiecka, Oktawia; Wlodarczyk, Agnieszka; Kapinska-Mrowiecka, Monika; Kwitniewski, Mateusz; Majewski, Pawel; Dubin, Adam; Cichy, Joanna
2017-03-01
Eosinophils constitute an important component of helminth immunity and are not only associated with various allergies but are also linked to autoinflammatory disorders, including the skin disease psoriasis. Here we demonstrate the functional relationship between eosinophils and plasmacytoid dendritic cells (pDCs) as related to skin diseases. We previously showed that pDCs colocalize with neutrophil extracellular traps (NETs) in psoriatic skin. Here we demonstrate that eosinophils are found in psoriatic skin near neutrophils and NETs, suggesting that pDC responses can be regulated by eosinophils. Eosinophils inhibited pDC function in vitro through a mechanism that did not involve cell contact but depended on soluble factors. In pDCs stimulated by specific NET components, eosinophil-conditioned media attenuated the production of interferon α (IFNα) but did not affect the maturation of pDCs as evidenced by the unaltered expression of the costimulatory molecules CD80 and CD86. As pDCs and IFNα play a key role in autoimmune skin inflammation, these data suggest that eosinophils may influence autoinflammatory responses through their impact on the production of IFNα by pDCs.
Mavragani, Clio P.; Sagalovskiy, Irina; Guo, Qiu; Nezos, Adrianos; Kapsogeorgou, Efstathia K.; Lu, Pin; Zhou, Jun Liang; Kirou, Kyriakos A.; Seshan, Surya V.; Moutsopoulos, Haralampos M.; Crow, Mary K.
2016-01-01
Objective Increased type I interferon (IFN-I) and a broad signature of IFN-I-induced gene transcripts are observed in patients with SLE and other systemic autoimmune diseases. To identify disease-relevant triggers of the IFN-I pathway we investigated whether endogenous virus-like genomic repeat elements, normally silent, might be expressed in patients with systemic autoimmune disease, activate an innate immune response and induce IFN-I. Methods Expression of IFN-I and long interspersed nuclear element-1 (LINE-1; L1) was studied in kidney tissue from lupus patients and minor salivary gland (MSG) tissue from patients with primary Sjogren’s syndrome (SS) by PCR, western blot and immunohistochemistry. Induction of IFN-I by L1 was investigated by transfection of plasmacytoid dendritic cells (pDCs) or monocytes with an L1-encoding plasmid or L1 RNA. Involvement of innate immune pathways and altered L1 methylation were assessed. Results L1 mRNA transcripts were increased in lupus nephritis kidneys and in MSG from SS patients and correlated with IFN-I expression and L1 DNA demethylation. L1 open reading frame 1/p40 protein and IFNβ were expressed in MSG ductal epithelial cells and in lupus kidneys, and IFNα was detected in infiltrating pDCs. Transfection of pDCs or monocytes with L1-encoding DNA or RNA induced IFN-I. Inhibition of TLR7/8 reduced L1 induction of IFNα in pDCs and an inhibitor of IKKε/TBK1 abrogated induction of IFN-I by L1 RNA in monocytes. Conclusion L1 genomic repeat elements represent endogenous nucleic acid triggers of the IFN-I pathway in SLE and SS and may contribute to initiation or amplification of autoimmune disease. PMID:27338297
Waller, Edmund K.; Logan, Brent R.; Harris, Wayne A.C.; Devine, Steven M.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Gonzalez, Corina E.; Spitzer, Thomas R.; Krijanovski, Oleg I.; Linenberger, Michael L.; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L.; Anasetti, Claudio
2014-01-01
Purpose To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor–mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Patients and Methods Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Results Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8+ T cells (CD8Tns), or naïve CD4+ T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Conclusion Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. PMID:24982459
Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio
2014-08-01
To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.
Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick
2008-03-01
A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.
Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S
2015-07-01
Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001). Copyright © 2015 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Mothes, P. A.
2016-07-01
The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.
Bailey-Bucktrout, Samantha L.; Caulkins, Sarah C.; Goings, Gwendolyn; Fischer, Jens A. A.; Dzionek, Andrzej; Miller, Stephen D.
2010-01-01
Plasmacytoid dendritic cells (pDC) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating DC population during experimental autoimmune encephalomyelitis (EAE), but unlike myeloid DCs (mDC) have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of EAE resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4+ T cell activation, as well as IL-17 and IFN-γ production. Moreover, CNS pDCs suppressed CNS mDC-driven production of IL-17, IFN-γ and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4+ T cell responses highlighting a new role for pDCs in inflammatory autoimmune disease. PMID:18453561
The multifaceted biology of plasmacytoid dendritic cells
Swiecki, Melissa; Colonna, Marco
2015-01-01
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613
Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation.
Bonnefoy, Francis; Perruche, Sylvain; Couturier, Mélanie; Sedrati, Abdeslem; Sun, Yunwei; Tiberghien, Pierre; Gaugler, Béatrice; Saas, Philippe
2011-05-15
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.
Reineks, Edmunds Z; Osei, Ebenezer S; Rosenberg, Arlene; Auletta, Jeffrey; Meyerson, Howard J
2009-07-01
We identified CD22 expression on a blastic plasmacytoid dendritic cell (pDC) neoplasm presenting as a leukemia in a child. CD22 expression, as determined by the antibody s-HCL-1, was also noted on the neoplastic cells from three additional patients with blastic pDC tumors identified at our institution. Subsequently we determined that peripheral blood pDCs react with the s-HCL-1 antibody demonstrating that normal pDCs express CD22. Evaluation of five additional anti-CD22 antibodies indicated that staining of pDCs with these reagents was poor except for s-HCL-1. Therefore, the detection of CD22 on pDCs is best demonstrated with the use of this specific antibody clone. All anti-CD22 antibodies stained conventional DCs. We also evaluated the reactivity of the anti-CD22 antibodies with basophils and noted that the pattern of staining was similar to that seen with pDCs. The studies demonstrate that normal DCs and pDC neoplasms express CD22, and highlight clone specific differences in anti-CD22 antibody reactivity patterns on pDCs and basophils. (c) 2009 Clinical Cytometry Society.
García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M
2015-01-01
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901
Plasmacytoid dendritic cells and type I interferon in the immunological response against warts.
Saadeh, D; Kurban, M; Abbas, O
2017-12-01
Plasmacytoid dendritic cells (pDCs) are the most potent producers of type I interferons (IFNs), and are involved in the pathogenesis of several cutaneous infectious (especially viral), inflammatory/autoimmune and neoplastic entities. Their role in the pathogenesis and regression of human papilloma virus (HPV)-induced skin lesions has not been well studied. To investigate pDC occurrence and activity in HPV-induced skin lesions, including inflamed and uninflamed warts as well as epidermodysplasia verruciformis (EDV)-associated lesions. In total 20 inflamed and 20 uninflamed HPV-induced skin lesions (including 7 EDV lesions) were retrieved from our database, and the tissue was immunohistochemically tested for pDC occurrence and activity using anti-BDCA-2 and anti-MxA antibodies, respectively. pDCs were present in all 20 inflamed warts and absent from all 20 uninflamed cases. MxA expression was also diffuse and strong in 75% (15/20) inflamed warts, but not in any of the uninflamed warts. pDCs constitute a central component of the inflammatory host response in inflamed warts, possibly contributing to their regression through production of type I interferons. © 2017 British Association of Dermatologists.
Montoya, Carlos J; Jie, Hyun-Bae; Al-Harthi, Lena; Mulder, Candice; Patiño, Pablo J; Rugeles, María T; Krieg, Arthur M; Landay, Alan L; Wilson, S Brian
2006-07-15
CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation
Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-01-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385
Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.
Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian
2017-01-01
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.
Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells
Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P.; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M.; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian
2017-01-01
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders. PMID:28861085
Kelly, Aoife; Robinson, Mark W; Roche, Gerard; Biron, Christine A; O'Farrelly, Cliona; Ryan, Elizabeth J
2016-12-01
The interferon lambda (IFN-λ) cytokines have well-known antiviral properties, yet their contribution to immune regulation is not well understood. Epithelial cells represent the major target cell of IFN-λ; peripheral blood mononuclear cells are generally considered nonresponsive, with the exception of plasmacytoid dendritic cells (pDCs). In this study we aimed to define the potential for discrete subpopulations of cells to directly respond to IFN-λ. Analysis of peripheral blood leukocytes reveals that, while pDCs uniformly express the highest levels of IFN-λ receptor, a small proportion of B cells and monocytes also express the receptor. Nevertheless, B cells and monocytes respond poorly to IFN-λ stimulation in vitro, with minimal STAT phosphorylation and interferon-stimulated gene (ISG) induction observed. We confirm that pDCs respond to IFN-λ in vitro, upregulating their expression of pSTAT1, pSTAT3, and pSTAT5. However, we found that pDCs do not upregulate pSTAT6 in response to IFN-λ treatment. Our results highlight unique aspects of the response to IFN-λ and confirm that while the IFN-λ receptor is expressed by a small proportion of several different circulating immune cell lineages, under normal conditions only pDCs respond to IFN-λ stimulation with robust STAT phosphorylation and ISG induction. The difference in STAT6 responsiveness of pDCs to type I and type III interferons may help explain the divergence in their biological activities.
Medina, Kay L; Tangen, Sarah N; Seaburg, Lauren M; Thapa, Puspa; Gwin, Kimberly A; Shapiro, Virginia Smith
2013-01-01
B-cell-biased lymphoid progenitors (BLPs) and Pre-pro B cells lie at a critical juncture between B cell specification and commitment. However, both of these populations are heterogenous, which hampers investigation into the molecular changes that occur as lymphoid progenitors commit to the B cell lineage. Here, we demonstrate that there are PDCA-1(+)Siglec H(+) plasmacytoid dendritic cells (pDCs) that co-purify with BLPs and Pre-pro B cells, which express little or no CD11c or Ly6C. Removal of PDCA-1(+) pDCs separates B cell progenitors that express high levels of a Rag1-GFP reporter from Rag1-GFP(low/neg) pDCs within the BLP and Pre-pro B populations. Analysis of Flt3-ligand knockout and IL-7Rα knockout mice revealed that there is a block in B cell development at the all-lymphoid progenitor (ALP) stage, as the majority of cells within the BLP or Pre-pro B gates were PDCA-1(+) pDCs. Thus, removal of PDCA-1(+) pDCs is critical for analysis of BLP and Pre-pro B cell populations. Analysis of B cell potential within the B220(+)CD19(-) fraction demonstrated that AA4.1(+)Ly6D(+)PDCA-1(-) Pre-pro B cells gave rise to CD19(+) B cells at high frequency, while PDCA-1(+) pDCs in this fraction did not. Interestingly, the presence of PDCA-1(+) pDCs within CLPs may help to explain the conflicting results regarding the origin of these cells.
Konishi, Tsuyoshi; Shimada, Yoshifumi; Lee, Lik Hang; Cavalcanti, Marcela S; Hsu, Meier; Smith, Jesse Joshua; Nash, Garrett M; Temple, Larissa K; Guillem, José G; Paty, Philip B; Garcia-Aguilar, Julio; Vakiani, Efsevia; Gonen, Mithat; Shia, Jinru; Weiser, Martin R
2018-06-01
This study aimed to compare common histologic markers at the invasive front of colon adenocarcinoma in terms of prognostic accuracy and interobserver agreement. Consecutive patients who underwent curative resection for stages I to III colon adenocarcinoma at a single institution in 2007 to 2014 were identified. Poorly differentiated clusters (PDCs), tumor budding, perineural invasion, desmoplastic reaction, and Crohn-like lymphoid reaction at the invasive front, as well as the World Health Organization (WHO) grade of the entire tumor, were analyzed. Prognostic accuracies for recurrence-free survival (RFS) were compared, and interobserver agreement among 3 pathologists was assessed. The study cohort consisted of 851 patients. Although all the histologic markers except WHO grade were significantly associated with RFS (PDCs, tumor budding, perineural invasion, and desmoplastic reaction: P<0.001; Crohn-like lymphoid reaction: P=0.021), PDCs (grade 1 [G1]: n=581; G2: n=145; G3: n=125) showed the largest separation of 3-year RFS in the full cohort (G1: 94.1%; G3: 63.7%; hazard ratio [HR], 6.39; 95% confidence interval [CI], 4.11-9.95; P<0.001), stage II patients (G1: 94.0%; G3: 67.3%; HR, 4.15; 95% CI, 1.96-8.82; P<0.001), and stage III patients (G1: 89.0%; G3: 59.4%; HR, 4.50; 95% CI, 2.41-8.41; P<0.001). PDCs had the highest prognostic accuracy for RFS with the concordance probability estimate of 0.642, whereas WHO grade had the lowest. Interobserver agreement was the highest for PDCs, with a weighted kappa of 0.824. The risk of recurrence over time peaked earlier for worse PDCs grade. Our findings indicate that PDCs are the best invasive-front histologic marker in terms of prognostic accuracy and interobserver agreement. PDCs may replace WHO grade as a prognostic indicator.
Sigler, Lauren M; Baccetti, Tiziano; McNamara, James A
2011-03-01
Our aim was to investigate the effect of rapid maxillary expansion and transpalatal arch therapy combined with deciduous canine extraction on the eruption rate of palatally displaced canines (PDCs) in patients in the late mixed dentition in a 2-center prospective study. Seventy subjects were enrolled based on PDCs diagnosed on panoramic radiographs. The treatment group (TG, 40 subjects) underwent RME followed by TPA therapy and extraction of the deciduous canines. The control group (CG, 30 subjects) received no orthodontic treatment. At the start of the trial, panoramic radiographs and dental casts were compared between the TG and the CG with the Mann-Whitney U test (P <0.05). At the second observation (cervical vertebral maturation stage 5 or 6), all subjects were reevaluated, and the eruption of the maxillary permanent canines was assessed. The rates of success in the TG were compared with those in the CG by means of chi-square tests (P <0.05). The association of PDCs with other dental anomalies was reported. No statistically significant difference was found for any measurement at the start of the trial between the 2 groups. The prevalence rates of eruption of the maxillary canines were 80% for the TG and 28% in the CG, a statistically significant difference (chi-square =16.26, P <0.001). The prevalence rate at the start for the pubertal stages of cervical vertebral maturation (63%) was significantly greater in the unsuccessfully treated subjects than in the successfully treated ones (16%). In the CG, all successful subjects had PDCs that overlapped the corresponding deciduous canine or the distal aspect of the lateral incisor. Eruption of PDCs in both groups was associated significantly with an open root apex. Rapid maxillary expansion therapy followed by a transpalatal arch combined with extraction of the deciduous canine is effective in treating patients in the late mixed dentition with PDCs. Pretreatment variables indicating success of treatment on the eruption of PDCs were less severe sectors of displacement, prepubertal stages of skeletal maturity, and open root apices of PDCs. Several dental anomalies were associated significantly with PDCs, thus confirming the genetic etiology of this eruption disturbance. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Functions of TGF-β-exposed plasmacytoid dendritic cells.
Saas, Philippe; Perruche, Sylvain
2012-01-01
Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.
Blasius, Amanda L; Krebs, Philippe; Sullivan, Brian M; Oldstone, Michael B; Popkin, Daniel L
2012-09-01
Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.
Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-02-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.
Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki
2011-02-25
Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Iwasaki, Masaharu; Sharma, Siddhartha M; Marro, Brett S; de la Torre, Juan C
2017-11-01
Plasmacytoid dendritic cells (pDCs), a main source of type I interferon in response to viral infection, are an early cell target during lymphocytic choriomeningitis virus (LCMV) infection, which has been associated with the LCMV's ability to establish chronic infections. Human blood-derived pDCs have been reported to be refractory to ex vivo LCMV infection. In the present study we show that human pDC CAL-1 cells are refractory to infection with cell-free LCMV, but highly susceptible to infection with recombinant LCMVs carrying the surface glycoprotein of VSV, indicating that LCMV infection of CAL-1 cells is restricted at the cell entry step. Co-culture of uninfected CAL-1 cells with LCMV-infected HEK293 cells enabled LCMV to infect CAL-1 cells. This cell-to-cell spread required direct cell-cell contact and did not involve exosome pathway. Our findings indicate the presence of a novel entry pathway utilized by LCMV to infect pDC. Copyright © 2017. Published by Elsevier Inc.
Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews
NASA Astrophysics Data System (ADS)
Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro
2016-05-01
A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.
Yu, Xiao; Cai, Baowei; Wang, Mingjun; Tan, Peng; Ding, Xilai; Wu, Jian; Li, Jian; Li, Qingtian; Liu, Pinghua; Xing, Changsheng; Wang, Helen Y; Su, Xin-Zhuan; Wang, Rong-Fu
2016-11-15
Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-β (IFN-α/β) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/β production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/β-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Castelli, Chiara; Triebel, Frédéric; Rivoltini, Licia; Camisaschi, Chiara
2014-11-01
We have recently reported that lymphocyte activation gene-3 (LAG-3,CD223) mediates the alternative, IFNα-deficient activation of plasmacytoid dendritic cells (pDCs) at tumor sites. Our findings define a novel tumor-driven strategy that promotes immunosuppression by pDCs, and we have provided more detailed information regarding the immunomodulatory role of of LAG-3. The translational relevance of our results for the treatment of tumors and autoimmune diseases is discussed herein.
Maternal allergy is associated with surface-bound IgE on cord blood basophils.
Matson, Adam P; Cloutier, Michelle M; Dhongade, Ashish; Puddington, Lynn; Rafti, Ektor
2013-09-01
The cell type(s) mediating the maternal influence on allergic disease in children remain unclear. We set out to define the relationship between maternal allergy and frequencies of cord blood (CB) basophils, and plasmacytoid dendritic cells (pDCs); to characterize surface-bound IgE and FcεRI expressions on these cells; and to investigate the association between maternal and CB serum IgE levels with surface-bound IgE and FcεRI expressions. One hundred and three mother/infant dyads were recruited prenatally, and maternal allergic history was recorded. Maternal blood was collected prior to delivery, and CB was collected after birth. Flow cytometry was used to identify CB basophils and pDCs and to determine surface-bound IgE and FcεRI expressions. Frequencies of CB basophils and pDCs were low and not related to maternal history of allergy. Percentages of CB basophils with surface-bound IgE were significantly higher in infants of allergic mothers compared with infants of non-allergic mothers (median, 59.60% vs. 19.70%, p = 0.01). IgE on CB basophils correlated with CB IgE levels (r = 0.72, p < 0.0001), but not with maternal IgE levels (r = 0.26, p = 0.06). IgE on CB pDCs was low and not significantly associated with maternal or CB IgE levels. Similarly, FcεRI expression by CB basophils and pDCs was not significantly associated with maternal or CB IgE levels. Frequencies of CB basophils and pDCs are not influenced by maternal allergy. CB basophils and pDCs have surface-bound IgE and express FcεRI; however, only IgE on CB basophils appears influenced by maternal allergy. © 2013 The Authors. Pediatric Allergy and Immunology published by John Wiley & Sons Ltd.
Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8.
Ah Kioon, Marie Dominique; Tripodo, Claudio; Fernandez, David; Kirou, Kyriakos A; Spiera, Robert F; Crow, Mary K; Gordon, Jessica K; Barrat, Franck J
2018-01-10
Systemic sclerosis (SSc) is a multisystem life-threatening fibrosing disorder that lacks effective treatment. The link between the inflammation observed in organs such as the skin and profibrotic mechanisms is not well understood. The plasmacytoid dendritic cell (pDC) is a key cell type mediating Toll-like receptor (TLR)-induced inflammation in autoimmune disease patients, including lupus and skin diseases with interface dermatitis. However, the role of pDCs in fibrosis is less clear. We show that pDCs infiltrate the skin of SSc patients and are chronically activated, leading to secretion of interferon-α (IFN-α) and CXCL4, which are both hallmarks of the disease. We demonstrate that the secretion of CXCL4 is under the control of phosphatidylinositol 3-kinase δ and is due to the aberrant presence of TLR8 on pDCs of SSc patients, which is not seen in healthy donors or in lupus pDCs, and that CXCL4 primarily acts by potentiating TLR8- but also TLR9-induced IFN production by pDCs. Depleting pDCs prevented disease in a mouse model of scleroderma and could revert fibrosis in mice with established disease. In contrast, the disease was exacerbated in mice transgenic for TLR8 with recruitment of pDCs to the fibrotic skin, whereas TLR7 only partially contributed to the inflammatory response, indicating that TLR8 is the key RNA-sensing TLR involved in the establishment of fibrosis. We conclude that the pDC is an essential cell type involved in the pathogenesis of SSc and its removal using depleting antibodies or attenuating pDC function could be a novel approach to treat SSc patients. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Heterocyclic Drug-polymer Conjugates for Cancer Targeted Drug Delivery.
Kaur, Harmeet; Desai, Sapna D; Kumar, Virender; Rathi, Pooja; Singh, Jasbir
2016-01-01
New polymer therapeutics like polymer-drug conjugates (PDCs) are developing day by day. Heterocyclic drugs with excellent cytotoxic properties are available, but lack of their specificity makes them available to the normal cells also, which is the main cause of their toxicity. Drugs in the form of PDCs make delivery possible to the specific sites. Most of the PDCs are designed with the aim to either target and/or to get activated in specific cancer microenvironments. Therefore, the most exploited targets for cancer drug delivery are; cancer cell enzymes, heat shock protein 90 (HSP90), multi-drug resistance (MDR) proteins, angiogenesis, apoptosis and cell membrane receptors (e.g., folates, transferrin, etc.). In this review, we will summarize PDCs of heterocyclic drugs, like doxorubicin (DOX), daunorubicin, paclitaxel (PTX), docetaxel (DTX), cisplatin, camptothecin (CPT), geldanamycin (GDM), etc., and some of their analogs for efficient delivery of drugs to cancer cells.
Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan
2017-10-27
TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zanella, E.; Gurioli, L.; Pareschi, M. T.; Lanza, R.
2007-05-01
During the A.D. 79 eruption of Vesuvius, Italy, the Roman town of Pompeii was covered by 2.5 m of pyroclastic fall pumice and then partially destroyed by pyroclastic density currents (PDCs). Thermal remanent magnetization measurements performed on the lithic and roof tile fragments embedded in the PDC deposits allow us to quantify the variations in the temperature (Tdep) of the deposits within and around Pompeii. These results reveal that the presence of buildings strongly influenced the deposition temperature of the erupted products. The first two currents, which entered Pompeii at a temperature around 300-360°C, show drastic decreases in the Tdep, with minima of 100-140°C, found in the deposits within the town. We interpret these decreases in temperature as being the result of localized interactions between the PDCs and the city structures, which were only able to affect the lower part of the currents. Down flow of Pompeii, the lowermost portion of the PDCs regained its original physical characteristics, emplacing hot deposits once more. The final, dilute PDCs entered a town that was already partially destroyed by the previous currents. These PDCs left thin ash deposits, which mantled the previous ones. The lack of interaction with the urban fabric is indicated by their uniform temperature everywhere. However, the relatively high temperature of the deposits, between 140 and 300°C, indicates that even these distal, thin ash layers, capped by their accretionary lapilli bed, were associated with PDCs that were still hot enough to cause problems for unsheltered people.
IgE in lupus pathogenesis: Friends or foes?
Augusto, Jean-François; Truchetet, Marie-Elise; Charles, Nicolas; Blanco, Patrick; Richez, Christophe
2018-04-01
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immunological pathways. Recently, several studies have suggested an implication of Immunoglobulin E (IgE) in the pathophysiology of SLE. In the Lyn -/- and FcγIIB -/- .Yaa lupus mouse models, autoreactive IgE activate basophils, and promote a Th2 environment with, subsequently, production of autoantibodies by plasma cells. Autoreactive IgE has been also shown to play a role in the activation of human plasmacytoid dendritic cells (pDCs), in synergy with IgG, which results in an increase of interferon-alpha (IFN-α) production. In contrast, a protective effect of total non-autoreactive IgE has also been suggested, through a decreased ability of FcεRI-triggered pDCs to secrete IFN-α. This review summarizes in a comprehensive manner the emerging recent literature in the field, and propose new concepts to reconcile the observations. Copyright © 2018 Elsevier B.V. All rights reserved.
Ma, Jian-Ping; Xia, Hou-Jun; Zhang, Gao-Hong; Han, Jian-Bao; Zhang, Li-Guo; Zheng, Yong-Tang
2012-01-01
It is currently widely accepted that immune activation in HIV-infected individuals leads to a severe loss of CD4+ T cells and the progression to AIDS. However, the underlying mechanism of this immune activation remains unclear. Experimental data suggest that the activation of plasmacytoid dendritic cells (pDCs) by plasma viremia may play a critical role in HIV-induced immune activation. In this study, we found that the level of immune activation was higher in the late phase of SIVmac239 infection compared with chronic infection, which suggests that immune activation might be related to disease progression in SIVmac239-infected non-human primate models. Our work also showed that chloroquine could effectively inhibit the activation of pDCs in vitro and in vivo. However, chloroquine treatment of SIVmac239-infected macaques had no significant influence on the Cellular composition of peripheral blood in these animals. PMID:22885523
NASA Astrophysics Data System (ADS)
Bendana, S.; Self, S.; Dufek, J.
2012-12-01
The infamous, May 18th, 1980 eruption of Mt St Helens in the state of Washington produced several episodes of pyroclastic density currents (PDCs) including the initial lateral blast, which traveled nearly 30 km, and later PDCs, which filled in the area up to 8 km north of the volcano. The focus of this research is on the later PDCs, which differed from the lateral blast in that they have a higher particle concentration and filled in the topography up to 40 m. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The dilute PDCs deposited thin, cross-stratified and stratified pyroclastic deposits, known as the proximal bedded deposits, which differ greatly in depositional characteristics from the thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow. We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs. The collected data will be used to validate numerical models that attempt to quantify the hazards of decoupled, dilute PDCs.
Smirnov, Anna; Pohlmann, Stephanie; Nehring, Melanie; Ali, Shafaqat; Mann-Nüttel, Ritu; Scheu, Stefanie; Antoni, Anne-Charlotte; Hansen, Wiebke; Büettner, Manuela; Gardiasch, Miriam J.; Westendorf, Astrid M.; Wirsdörfer, Florian; Pastille, Eva; Dudda, Marcel; Flohé, Stefanie B.
2017-01-01
Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated in the bone marrow and induce functional reprogramming of differentiating BMDC toward an immunosuppressive phenotype. PMID:29218051
NASA Technical Reports Server (NTRS)
Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith
2012-01-01
Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.
Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC
Tai, Lee-Hwa; Goulet, Marie-Line; Belanger, Simon; Toyama-Sorimachi, Noriko; Fodil-Cornu, Nassima; Vidal, Silvia M.; Troke, Angela D.; McVicar, Daniel W.; Makrigiannis, Andrew P.
2008-01-01
Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo. PMID:19075287
Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state.
Swiecki, M; Miller, H L; Sesti-Costa, R; Cella, M; Gilfillan, S; Colonna, M
2017-07-01
Plasmacytoid dendritic cells (pDCs) detect viruses initiating antiviral type I interferon responses. The microbiota is known to shape immune responses, but whether it influences pDC homeostasis and/or function is poorly understood. By comparing pDCs in germ-free and specific pathogen-free mice, we found that the microbiota supports homeostatic trafficking by eliciting constitutive levels of the chemokine CCL2 that engages CCR2. Mononuclear phagocytes were required for tonic CCL2 levels. CCL2 was particularly important for trafficking of a CCR2 hi subset of pDCs that produced proinflammatory cytokines and was prone to apoptosis. We further demonstrated that CCR2 was also essential for pDC migration during inflammation. Wild-type (WT):Ccr2 -/- mixed bone marrow chimeras revealed that CCR2 promotes pDC migration in a cell-intrinsic manner. Overall, we identify a novel role for the microbiota in shaping immunity, which includes induction of CCL2 levels that control homeostatic trafficking of pDCs.
NASA Astrophysics Data System (ADS)
Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.
2014-12-01
Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, <13.6 ka) are massive pumice-rich deposits that are preserved at least 7km from source (North Crater) and correlate with Ruapehu's largest plinian eruptions. Overlying these, the pumice-rich Pourahu PDC deposit reaches >10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and infrastructure may be generated even from small eruptions and across a wide range of eruption styles.
Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise
2016-02-01
Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN-α-mediated TRAIL expression at the surface of pDCs and NK cells, and they suggest a novel mechanism of innate control of HIV-1 infection.
Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise
2016-01-01
Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell–cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN-α-mediated TRAIL expression at the surface of pDCs and NK cells, and they suggest a novel mechanism of innate control of HIV-1 infection. PMID:26871575
NASA Astrophysics Data System (ADS)
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug ( S )-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Type I interferon dependence of plasmacytoid dendritic cell activation and migration
Asselin-Paturel, Carine; Brizard, Géraldine; Chemin, Karine; Boonstra, Andre; O'Garra, Anne; Vicari, Alain; Trinchieri, Giorgio
2005-01-01
Differential expression of Toll-like receptor (TLR) by conventional dendritic cells (cDCs) and plasmacytoid DC (pDCs) has been suggested to influence the type of immune response induced by microbial pathogens. In this study we show that, in vivo, cDCs and pDCs are equally activated by TLR4, -7, and -9 ligands. Type I interferon (IFN) was important for pDC activation in vivo in response to all three TLR ligands, whereas cDCs required type I IFN signaling only for TLR9- and partially for TLR7-mediated activation. Although TLR ligands induced in situ migration of spleen cDC into the T cell area, spleen pDCs formed clusters in the marginal zone and in the outer T cell area 6 h after injection of TLR9 and TLR7 ligands, respectively. In vivo treatment with TLR9 ligands decreased pDC ability to migrate ex vivo in response to IFN-induced CXCR3 ligands and increased their response to CCR7 ligands. Unlike cDCs, the migration pattern of pDCs required type I IFN for induction of CXCR3 ligands and responsiveness to CCR7 ligands. These data demonstrate that mouse pDCs differ from cDCs in the in vivo response to TLR ligands, in terms of pattern and type I IFN requirement for activation and migration. PMID:15795237
Kanstrup, Anne Marie; Madsen, Jacob; Nøhr, Christian; Bygholm, Ann; Bertelsen, Pernille
2017-01-01
The landscape of Participatory Design (PD) of Health Information Technology (HIT) is diverse and constantly evolving. This paper reviews the publications in the proceedings from the Participatory Design Conferences (PDCs) that have been held every two years since 1990. We used the Matrix Method to identify, describe and synthesise HIT publications from the proceedings. A total of 47 papers were included in the review and analysed in relation to six themes. The analysis reveals a significant volume of HIT research at PDCs, with a large amount of attention to digitalisation of health information, work procedures, records, secondary healthcare and health professionals. However, the analysis also shows a development from a primary focus on health workers and hospitals to a recent attention on HIT in everyday life and PD with patients, relatives, neighbourhoods and citizens in general. Additionally, the review shows a growing number of PD methods being applied. This paper concludes that research on PD and HIT appears to be maturing and developing with ongoing technological and societal development.
Wang, Yang; McGivern, David R; Cheng, Liang; Li, Guangming; Lemon, Stanley M; Niu, Junqi; Su, Lishan; Reszka-Blanco, Natalia J
2015-01-01
Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production.
NASA Technical Reports Server (NTRS)
Cocchiaro, James E. (Editor); Mulder, Edwin J. (Editor); Gomez-Knight, Sylvia J. (Editor)
1999-01-01
This volume contains 37 unclassified/unlimited-distribution technical papers that were presented at the JANNAF 28th Propellant Development & Characterization Subcommittee (PDCS) and 17th Safety & Environmental Protection Subcommittee (S&EPS) Joint Meeting, held 26-30 April 1999 at the Town & Country Hotel and the Naval Submarine Base, San Diego, California. Volume II contains 29 unclassified/limited-distribution papers that were presented at the 28th PDCS and 17th S&EPS Joint Meeting. Volume III contains a classified paper that was presented at the 28th PDCS Meeting on 27 April 1999. Topics covered in PDCS sessions include: solid propellant rheology; solid propellant surveillance and aging; propellant process engineering; new solid propellant ingredients and formulation development; reduced toxicity liquid propellants; characterization of hypergolic propellants; and solid propellant chemical analysis methods. Topics covered in S&EPS sessions include: space launch range safety; liquid propellant hazards; vapor detection methods for toxic propellant vapors and other hazardous gases; toxicity of propellants, ingredients, and propellant combustion products; personal protective equipment for toxic liquid propellants; and demilitarization/treatment of energetic material wastes.
Wang, Yang; McGivern, David R; Cheng, Liang; Li, Guangming; Lemon, Stanley M; Niu, Junqi; Su, Lishan; Reszka-Blanco, Natalia J
2015-01-01
Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production. PMID:26274905
Peptide-Drug Conjugate: A Novel Drug Design Approach.
Ma, Liang; Wang, Chao; He, Zihao; Cheng, Biao; Zheng, Ling; Huang, Kun
2017-01-01
More than 100 years ago, German physician Paul Ehrlich first proposed the concept of selectively delivering "magic bullets" to tumors through targeting agents. The targeting therapy with antibody-drug conjugates (ADCs) and peptide-drug conjugate (PDCs), which are usually composed of monoclonal antibodies or peptides, toxic payloads and cleavage/ noncleavage linkers, has been extensively studied for decades. The conjugates enable selective delivery of cytotoxic payloads to target cells, which results in improved efficacy, reduced systemic toxicity and improved pharmacokinetics (PK)/pharmacodynamics (PD) compared with traditional chemotherapy. PDC and ADC share similar concept, but with vastly different structures and properties. Humanized antibodies introduce high specificity and prolonged half-life, while small molecule weight peptides exhibit higher drug loading and enhanced tissue penetration capacity, and the flexible linear or cyclic peptides are also modified more easily. In this review, the principles of design, synthesis approaches and the latest advances of PDCs are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; Eudaly, Jackie G; Gilkeson, Gary S
2015-12-15
Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease. Copyright © 2015 by The American Association of Immunologists, Inc.
Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; EuDaly, Jackie G; Gilkeson, Gary S
2016-01-01
Female lupus prone NZM2410 estrogen receptor alpha (ERα) deficient mice are protected from renal disease and have prolonged survival compared to wild type (WT) littermates, however the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I interferon (IFN) drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in pre-disease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHCII+ pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of toll-like receptor (TLR) mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in pre-disease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupus like disease. PMID:26553076
NASA Astrophysics Data System (ADS)
Smith, Victoria C.; Isaia, Roberto; Engwell, Sam L.; Albert, Paul. G.
2016-06-01
The Campanian Ignimbrite eruption dispersed ash over much of the central eastern Mediterranean Sea and eastern Europe. The eruption started with a Plinian phase that was followed by a series of pyroclastic density currents (PDCs) associated with the collapse of the Plinian column and the caldera. The glass compositions of the deposits span a wide geochemical range, but the Plinian fallout and PDCs associated with column collapse, the Lower Pumice Flow, only erupted the most evolved compositions. The later PDCs, the Breccia Museo and Upper Pumice Flow, erupted during and after caldera collapse, tap a less evolved component, and intermediate compositions that represent mixing between the end-members. The range of glass compositions in the Campanian Ignimbrite deposits from sites across the central and eastern Mediterranean Sea allow us to trace the dispersal of the different phases of this caldera-forming eruption. We map the fallout from the Plinian column and the plumes of fine material associated with the PDCs (co-PDCs) across the entire dispersal area. This cannot be done using the usual grain-size methods as deposits in these distal regions do not retain characteristics that allow attribution to either the Plinian or co-PDC phases. The glass compositions of the tephra at ultra-distal sites (>1500 km from the vent) match those of the uppermost PDC units, suggesting that most of the ultra-distal dispersal was associated with the late co-PDC plume that was generated during caldera collapse.
Effect of particle entrainment on the runout of pyroclastic density currents
NASA Astrophysics Data System (ADS)
Fauria, Kristen E.; Manga, Michael; Chamberlain, Michael
2016-09-01
Pyroclastic density currents (PDCs) can erode soil and bedrock, yet we currently lack a mechanistic understanding of particle entrainment that can be incorporated into models and used to understand how PDC bulking affects runout. Here we quantify how particle splash, the ejection of particles due to impact by a projectile, entrains particles into dilute PDCs. We use scaled laboratory experiments to measure the mass of sand ejected by impacts of pumice, wood, and nylon spheres. We then derive an expression for particle splash that we validate with our experimental results as well as results from seven other studies. We find that the number of ejected particles scales with the kinetic energy of the impactor and the depth of the crater generated by the impactor. Last, we use a one-dimensional model of a dilute, compressible density current—where runout distance is controlled by air entrainment and particle exchange with the substrate—to examine how particle entrainment by splash affects PDC density and runout. Splash-driven particle entrainment can increase the runout distance of dilute PDCs by an order of magnitude. Furthermore, the temperature of entrained particles greatly affects runout and PDCs that entrain ambient temperature particles runout farther than those that entrain hot particles. Particle entrainment by splash therefore not only increases the runout of dilute PDCs but demonstrates that the temperature and composition of the lower boundary have consequences for PDC density, temperature, runout, hazards and depositional record.
Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii
Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M.
2010-01-01
Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250°C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes. PMID:20559555
Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.
Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M
2010-06-15
The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Sandri, Laura; Ramona Stefanescu, Elena; Patra, Abani; Marzocchi, Warner; Costa, Antonio; Sulpizio, Roberto
2014-05-01
Explosive volcanoes and, especially, Pyroclastic Density Currents (PDCs) pose an enormous threat to populations living in the surroundings of volcanic areas. Difficulties in the modeling of PDCs are related to (i) very complex and stochastic physical processes, intrinsic to their occurrence, and (ii) to a lack of knowledge about how these processes actually form and evolve. This means that there are deep uncertainties (namely, of aleatory nature due to point (i) above, and of epistemic nature due to point (ii) above) associated to the study and forecast of PDCs. Consequently, the assessment of their hazard is better described in terms of probabilistic approaches rather than by deterministic ones. What is actually done to assess probabilistic hazard from PDCs is to couple deterministic simulators with statistical techniques that can, eventually, supply probabilities and inform about the uncertainties involved. In this work, some examples of both PDC numerical simulators (Energy Cone and TITAN2D) and uncertainty quantification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature -PCQ- and Bayesian Linear Emulation -BLE-) are presented, and their advantages, limitations and future potential are underlined. The key point in choosing a specific method leans on the balance between its related computational cost, the physical reliability of the simulator and the pursued target of the hazard analysis (type of PDCs considered, time-scale selected for the analysis, particular guidelines received from decision-making agencies, etc.). Although current numerical and statistical techniques have brought important advances in probabilistic volcanic hazard assessment from PDCs, some of them may be further applicable to more sophisticated simulators. In addition, forthcoming improvements could be focused on three main multidisciplinary directions: 1) Validate the simulators frequently used (through comparison with PDC deposits and other simulators), 2) Decrease simulator runtimes (whether by increasing the knowledge about the physical processes or by doing more efficient programming, parallelization, ...) and 3) Improve uncertainty quantification techniques.
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2016-10-01
Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are necessary to fully understand these processes.
NASA Astrophysics Data System (ADS)
Atlas, Z. D.; Macorps, E.; Charbonnier, S. J.; Varley, N. R.
2016-12-01
Small-volume pyroclastic density currents (PDCs) occur relatively frequently and pose severe threats to surrounding populations and infrastructures at active explosive volcanoes. They are characterized by short duration and complex multiphase flow dynamics due to time and space variability in their properties, which include amongst others, particle concentration, granulometry, componentry, bulk rheology and velocity. Field investigations of the deposits emplaced by small-volume concentrated PDCs aim to improve our understanding of the transport and depositional processes of these flows: time and space variations in flow dynamics within a PDC moving downslope will reflect on the distribution, grainsize and component characteristics of its deposits. Our study focuses on the recent events of July 10th and 11th, 2015 at Volcán de Colima (Mexico) where the collapse of the recent lava dome complex and a portion of the southern crater rim led to the emplacement of successive pulses of small-volume concentrated PDCs on the southern flank, along the Montegrande and San Antonio ravines. A 3-dimensional field analysis of the PDCs' deposit architecture, total grain size distribution and component properties together with a geomorphic analysis of the affected ravines provide new insights on the lateral and vertical variations of flow dynamics for some of these small-volume concentrated PDCs. Preliminary results reveal three stratigraphic units with massive block, lapilli, ash facies within the valley confined and concentrated overbank deposits with increasing content in fines with distance from the summit, suggesting an increase in fragmentation processes within the PDCs. The middle unit is characterized by a finer grainsize, a higher accidental lithic content and a lower free crystal content. Moreover, direct correlations are found between rapid changes in channel morphology and generation of overbank (unconfined) flows that escaped valley confines, which could provide the basis for defining hazard zonations of key areas at risk from future eruptions at Colima.
NASA Astrophysics Data System (ADS)
Capra, L.; Macías, J. L.; Cortés, A.; Dávila, N.; Saucedo, R.; Osorio-Ocampo, S.; Arce, J. L.; Gavilanes-Ruiz, J. C.; Corona-Chávez, P.; García-Sánchez, L.; Sosa-Ceballos, G.; Vázquez, R.
2016-01-01
On July 10-11, 2015 an eruption occurred at Colima volcano produced 10.5 km long pyroclastic density currents (PDCs) along the Montegrande, and 6.5 km long along the San Antonio ravines. The summit dome was destroyed and a new crater excavated and breached to the south. This new breach connects to a narrow channel that descends along Colima's southern flank and was used by a subsequent lava flow. The Montegrande PDCs represent the longest and hottest flow of this type recorded during the past 30 years but are still smaller in comparison to the 15-km long PDCs produced during the 1913 Plinian eruption. Data obtained from field reconnaissance, lahar monitoring stations, and satellite imagery suggest that at least six PDCs occurred. The two largest PDCs (H/L 0.2) were able to surmount topographic barriers or bends. Based on field reconnaissance and digital elevation models extracted from SPOT satellite imageries we estimate a minimum volume for the valley-pond and distal fan deposits of 4.5 × 106 m3. After one week, the deposits were still hot with burning trees on the surface and millimeter-sized holes from which fumes were emanating. The juvenile components of the deposits consist of gray dense blocks and vesicular dark-gray blocks and bombs with bread-crust textures and cooling joints. The mineral association of these rocks consists of plagioclase + clinopyroxene + orthopyroxene + FeTi-oxides ± olivine and resorbed hornblende in a dark glassy matrix that corresponds to an andesitic composition.
Counterintuitive effects of substrate roughness on PDCs
NASA Astrophysics Data System (ADS)
Andrews, B. J.; Manga, M.
2012-12-01
We model dilute pyroclastic density currents (PDCs) using scaled, warm, particle-laden density currents in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. In this set of experiments, we run currents over substrates with characteristic roughness scales, hr, ranging over ~3 orders of magnitude from smooth, through 250 μm sandpaper, 0.1-, 1-, 2-, 5-, and 10 cm hemispheres. As substrate roughness increases, runout distance increases until a critical roughness height, hrc, is reached; further increases in roughness height decrease runout. The critical roughness height appears to be 0.25-0.5 htb, the thickness of the turbulent lower layer of the density currents. The dependence of runout on hr is most likely the result of increases in substrate roughness decreasing the average current velocity and converting that energy into increased turbulence intensity. Small values of hr thus result in increased runout as sedimentation is inhibited by the increased turbulence intensity. At larger values of hr current behavior is controlled by much larger decreases in average current velocity, even though sedimentation decreases. Scaling our experiments up to the size of real volcanic eruptions suggests that landscapes must have characteristic roughness hr>10 m to reduce the runout of natural PDCs, smaller roughness scales can increase runout. Comparison of relevant bulk (Reynolds number, densimetric and thermal Richardson numbers, excess buoyant thermal energy density) and turbulent (Stokes and settling numbers) between our experiments and natural dilute PDCs indicates that we are accurately modeling at least the large scale behaviors and dynamics of dilute PDCs.
Venous gas embolism after an open-water air dive and identical repetitive dive.
Schellart, N A M; Sterk, W
2012-01-01
Decompression tables indicate that a repetitive dive to the same depth as a first dive should be shortened to obtain the same probability of occurrence of decompression sickness (pDCS). Repetition protocols are based on small numbers, a reason for re-examination. Since venous gas embolism (VGE) and pDCS are related, one would expect a higher bubble grade (BG) of VGE after the repetitive dive without reducing bottom time. BGs were determined in 28 divers after a first and an identical repetitive air dive of 40 minutes to 20 meters of sea water. Doppler BG scores were transformed to log number of bubbles/cm2 (logB) to allow numerical analysis. With a previously published model (Model2), pDCS was calculated for the first dive and for both dives together. From pDCS, theoretical logBs were estimated with a pDCS-to-logB model constructed from literature data. However, pDCS the second dive was provided using conditional probability. This was achieved in Model2 and indirectly via tissue saturations. The combination of both models shows a significant increase of logB after the second dive, whereas the measurements showed an unexpected lower logB. These differences between measurements and model expectations are significant (p-values < 0.01). A reason for this discrepancy is uncertain. The most likely speculation would be that the divers, who were relatively old, did not perform physical activity for some days before the first dive. Our data suggest that, wisely, the first dive after a period of no exercise should be performed conservatively, particularly for older divers.
NASA Astrophysics Data System (ADS)
Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.
2010-05-01
Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (< 5mm) has been performed at approximately 50 sites at varying longitudinal, lateral and vertical positions, and show a correlation with run-out distance, morphology, and stratigraphic context. Sedimentary structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its dynamics. We also present optical microscopic analysis of ash and lapilli particles which portray the fundamental processes occurring during PDCs.
Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.
Giordano, Guido; Doronzo, Domenico M
2017-06-30
The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.
Schwartz, Jordan Ari; Clayton, Kiera L; Mujib, Shariq; Zhang, Hongliang; Rahman, A K M Nur-Ur; Liu, Jun; Yue, Feng Yun; Benko, Erika; Kovacs, Colin; Ostrowski, Mario A
2017-04-15
In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1 + lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation. Copyright © 2017 by The American Association of Immunologists, Inc.
Crozat, Karine; Guiton, Rachel; Contreras, Vanessa; Feuillet, Vincent; Dutertre, Charles-Antoine; Ventre, Erwan; Vu Manh, Thien-Phong; Baranek, Thomas; Storset, Anne K.; Marvel, Jacqueline; Boudinot, Pierre; Hosmalin, Anne; Schwartz-Cornil, Isabelle
2010-01-01
Human BDCA3+ dendritic cells (DCs) were suggested to be homologous to mouse CD8α+ DCs. We demonstrate that human BDCA3+ DCs are more efficient than their BDCA1+ counterparts or plasmacytoid DCs (pDCs) in cross-presenting antigen and activating CD8+ T cells, which is similar to mouse CD8α+ DCs as compared with CD11b+ DCs or pDCs, although with more moderate differences between human DC subsets. Yet, no specific marker was known to be shared between homologous DC subsets across species. We found that XC chemokine receptor 1 (XCR1) is specifically expressed and active in mouse CD8α+, human BDCA3+, and sheep CD26+ DCs and is conserved across species. The mRNA encoding the XCR1 ligand chemokine (C motif) ligand 1 (XCL1) is selectively expressed in natural killer (NK) and CD8+ T lymphocytes at steady-state and is enhanced upon activation. Moreover, the Xcl1 mRNA is selectively expressed at high levels in central memory compared with naive CD8+ T lymphocytes. Finally, XCR1−/− mice have decreased early CD8+ T cell responses to Listeria monocytogenes infection, which is associated with higher bacterial loads early in infection. Therefore, XCR1 constitutes the first conserved specific marker for cell subsets homologous to mouse CD8α+ DCs in higher vertebrates and promotes their ability to activate early CD8+ T cell defenses against an intracellular pathogenic bacteria. PMID:20479118
Ma, Lin; Tong, Weijun; Chen, Hongguang; Sun, Jian; Wu, Zhenbin; He, Feng
2018-04-01
The pond-ditch circulation system (PDCS) is an efficient and economical solution for the restoration of degraded rural water environments. However, little is known about nitrous oxide (N 2 O) and nitric oxide (NO) emissions in the microbial removal process of nitrogen in PDCSs, and their contribution to nitrogen removal. The aim of this study was to quantify N 2 O and NO emissions from the PDCS, evaluate their capacities, and elucidate the key environmental factors controlling them. The results showed that N 2 O and NO fluxes were in the ranges 1.1-2055.1μgNm -2 h -1 and 0.1-6.8μgNm -2 h -1 for the PDCS, respectively. Meanwhile, the N 2 O and NO fluxes from the two ponds in the PDCS were significantly higher than those in the static system. Moreover, the amount of N 2 O and NO emissions in the PDCS accounted for 0.17-4.32% of the total nitrogen (TN) removal. According to the partial least squares (PLS) approach and Pearson's correlation coefficients, nitrate nitrogen in water (W-NO 3 - -N), dissolved oxygen in water (W-DO), dissolved oxygen in sediment (DO), pH in water (W-pH), pH in sediment (pH), total kjeldahl nitrogen (TKN), and soil organic carbon (SOC) significantly affected the N 2 O flux (p<0.05), whereas W-NO 3 - -N, DO, and nitrite nitrogen in sediment (NO 2 - -N) significantly affected the NO emission (p<0.05). Copyright © 2017 Elsevier B.V. All rights reserved.
Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers
NASA Astrophysics Data System (ADS)
Fauria, K.; Andrews, B. J.; Manga, M.
2014-12-01
We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.
Sathe, Priyanka; Metcalf, Donald; Vremec, David; Naik, Shalin H; Langdon, Wallace Y; Huntington, Nicholas D; Wu, Li; Shortman, Ken
2014-07-17
The relationship between dendritic cells (DCs) and macrophages is often debated. Here we ask whether steady-state, lymphoid-tissue-resident conventional DCs (cDCs), plasmacytoid DCs (pDCs), and macrophages share a common macrophage-DC-restricted precursor (MDP). Using new clonal culture assays combined with adoptive transfer, we found that MDP fractions isolated by previous strategies are dominated by precursors of macrophages and monocytes, include some multipotent precursors of other hematopoietic lineages, but contain few precursors of resident cDCs and pDCs and no detectable common precursors restricted to these DC types and macrophages. Overall we find no evidence for a common restricted MDP leading to both macrophages and FL-dependent, resident cDCs and pDCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Kerrin, Aoife; Fitch, Paul; Errington, Claire; Kerr, Dennis; Waxman, Liz; Riding, Kay; McCormack, Jon; Mehendele, Felicity; McSorley, Henry; MacKenzie, Karen; Wronski, Sabine; Braun, Armin; Levin, Richard; Theilen, Ulf; Schwarze, Jürgen
2017-07-01
The pathogenesis of respiratory syncytial virus (RSV) bronchiolitis in infants remains poorly understood. Mouse models implicate pulmonary T cells in the development of RSV disease. T cell responses are initiated by dendritic cells (DCs), which accumulate in lungs of RSV-infected mice. In infants with RSV bronchiolitis, previous reports have shown that DCs are mobilised to the nasal mucosa, but data on lower airway DC responses are lacking. To determine the presence and phenotype of DCs and associated immune cells in bronchoalveolar lavage (BAL) and peripheral blood samples from infants with RSV bronchiolitis. Infants intubated and ventilated due to severe RSV bronchiolitis or for planned surgery (controls with healthy lungs) underwent non-bronchoscopic BAL. Immune cells in BAL and blood samples were characterised by flow cytometry and cytokines measured by Human V-Plex Pro-inflammatory Panel 1 MSD kit. In RSV cases, BAL conventional DCs (cDCs), NK T cells, NK cells and pro-inflammatory cytokines accumulated, plasmacytoid DCs (pDCs) and T cells were present, and blood cDCs increased activation marker expression. When stratifying RSV cases by risk group, preterm and older (≥4 months) infants had fewer BAL pDCs than term born and younger (<4 months) infants, respectively. cDCs accumulate in the lower airways during RSV bronchiolitis, are activated systemically and may, through activation of T cells, NK T cells and NK cells, contribute to RSV-induced inflammation and disease. In addition, the small population of airway pDCs in preterm and older infants may reveal a distinct endotype of RSV bronchiolitis with weak antiviral pDC responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Gurioli, L.; Zanella, E.; Pareschi, M. T.; Lanza, R.
2007-05-01
To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.
NASA Astrophysics Data System (ADS)
Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio; De Carolis, Ernesto; Patricelli, Giovanni; Ciarallo, Annamaria
2003-08-01
Detailed descriptions of the effects of explosive eruptions on urban settlements available to volcanologists are relatively rare. Apart from disease and starvation, the largest number of human deaths caused by explosive eruptions in the twentieth century are due to pyroclastic flows. The relationship between the number of victims related to a specific hazard and the presence of urban settlements in the area covered by the eruption has been shown. However, pyroclastic falls are also extremely dangerous under certain conditions. These conclusions are based on archaeological and volcanological studies carried out on the victims of the well-known AD 79 eruption of Vesuvius that destroyed and buried the Roman city of Pompeii. The stratigraphic level in the pyroclastic deposit and the location of all the casualties found are described and discussed. The total number of victims recovered during the archaeological excavations amounts to 1150. Of these, 1044 well recognisable bodies plus an additional group of 100 individuals were identified based on the analysis of several groups of scattered bones. Of the former, 394 were found in the lower pumice lapilli fall deposit and 650 in the upper stratified ash and pumice lapilli pyroclastic density currents (PDCs) deposits. In addition, a tentative evaluation suggests that 464 corpses may still be buried in the unexcavated part of the city. According to the reconstruction presented in this paper, during the first phase of the eruption (August 24, AD 79) a huge quantity of pumice lapilli fell on Pompeii burying the city under 3 m of pyroclastic material. During this eruptive phase, most of the inhabitants managed to leave the city. However, 38% of the known victims were killed during this phase mainly as a consequence of roofs and walls collapsing under the increasing weight of the pumice lapilli deposit. During the second phase of the eruption (August 25, AD 79) 49% of the total victims were on the roadways and 51% inside buildings. All of these inhabitants, regardless of their location, were killed by the unanticipated PDCs overrunning the city. New data concerning the stratigraphic level of the victims in the pyroclastic succession allow us to discriminate between the sequential events responsible for their deaths. In fact, casts of some recently excavated corpses lay well above the lower PDCs deposit, testifying that some of the inhabitants survived the first pyroclastic current. Finally, during the PDCs phase the victims died quite rapidly by ash asphyxiation. From the attitude of some casts, it seems that some people survived the initial impact of the second pyroclastic current and tried to support head and bust during the progressive aggradation of the deposit at the base of the current.
Lab-scale ash production by abrasion and collision experiments of porous volcanic samples
NASA Astrophysics Data System (ADS)
Mueller, S. B.; Lane, S. J.; Kueppers, U.
2015-09-01
In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances ( 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs and can be observed as co-ignimbrite clouds above density currents. Finally, a significant dependency was found between material density and the mass of fines produced, also observable in the total particle size distribution: higher values of open porosity promote the generation of finer-grained particles and overall greater ratios of ash. While this paper draws on numerous previous studies of particle comminution processes, it is the first to analyze and compare results of several comminution experiments with each other in order to characterize these mechanisms.
Literature Review of Polymer Derived Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Reuben James
2016-05-25
Polymer Derived Ceramics (PDCs), also known as preceramic polymers, are valuable coating agents that are used to produce surface barriers on substrates such as stainless steel. These barriers protect against a multitude of environmental threats, and have been used since their research and development in 19772. This paper seeks to review and demonstrate the remarkable properties and versatility that PDCs have to offer, while also giving a brief overview of the processing techniques used today.
ERIC Educational Resources Information Center
Saad, Khaled; Zahran, Asmaa M.; Elsayh, Khalid I.; Abdel-Rahman, Ahmed A.; Al-Atram, Abdulrahman A.; Hussein, Almontaser; El-Gendy, Yasmin G.
2017-01-01
The aim of our study was to evaluate the frequencies of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) in children with ASD. Subjects were 32 children with ASD and 30 healthy children as controls. The numbers of mDCs and pDCs and the expression of CD86 and CD80 on the entire DCs were detected by flow cytometry. ASD children…
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.
The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcán de Colima (Mexico)
NASA Astrophysics Data System (ADS)
Capra, L.; Sulpizio, R.; Márquez-Ramirez, V. H.; Coviello, V.; Doronzo, D. M.; Arambula-Mendoza, R.; Cruz, S.
2018-04-01
Pyroclastic density currents (PDCs) represent one of the most dangerous phenomena occurring in explosive volcanic eruptions, and any advance in the physical understanding of their transport and sedimentation processes can contribute to improving their hazard assessment. The 10-11 July 2015 eruption at Volcán de Colima provided a unique opportunity to better understand the internal behaviour of PDCs based on seismic monitoring data. On 10 July 2015, the summit dome collapsed, producing concentrated PDCs that filled the main channel of the Montegrande ravine. A lahar monitoring station installed 6 km from the volcano summit recorded a PDC before being completely destroyed. Real-time data acquisition from a camcorder and a geophone that were part of the station, along with field observations and grain-size data of the pyroclastic deposits, are used here to interpret the internal flow structure and time-variant transport dynamics of low-volume, valley-confined concentrated PDCs. The PDC that reached the monitoring station moved at a velocity of 7 m/s and filled a 12-m-deep channel. The outcrops show massive, block-and-ash flow deposits with trains of coarse clasts in the middle and towards the top of the depositional units. The seismic record gathered with the geophone was analysed for the time window when the flow travelled past the sensor. The geophone record was also compared with the recordings of a broadband seismic station located nearby. Two main frequency ranges were recognised which could be correlated with the basal frictional forces exerted by the flow on the channel bed (10-20 Hz) and a collisional regime (20-40 Hz) interpreted to be associated with a clast segregation process (i.e. kinematic squeezing). This latter regime promoted the upward migration of large blocks, which subsequently deviated towards the margin of the flow where they interacted with the sidewall of the main channel. The energy calculated for both seismic components shows that the collisional regime represents 30% of the total energy including an important sidewall-stress component. These results, gathered directly from a moving flow, contribute to unravelling the internal behaviour of concentrated PDCs providing information on energy partitioning and particle-particle interactions. This confirms previous assumptions inferred from field observations, and tested by analogue or numerical modelling. The nature of the contact between grains is still poorly documented in natural PDCs, and there is still much uncertainty and discussion about dominant forces in such currents. Data reported here may thus be useful to better constrain the physics of low-volume, valley-confined concentrated PDCs and our findings need to be considered in theoretical models. In parallel, this study shows how geophones can provide a cheap alternative for PDC detection.
Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine
2016-01-01
Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate–binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. PMID:27702801
Fu, Z-X; Han, J-S; Liu, F; Zhao, Z-L; Li, D-B; Shi, L; Dong, J-T; Zhou, Y; Cai, J-H
2017-05-01
This study is to observe the immunosuppression of CD137L transfected umbilical blood Dcs (Dendritic cell) vaccine to tumor development of SCID/ Beige nude mice. Samples of umbilical blood in the childbirth pregnant women were collected by density gradient centrifugation. Umbilical cord blood dendritic cells (Dcs) were transfected by specific CD137L via LipofectamineTM method and cells were harvested. Meanwhile, the peripheral blood of volunteers was collected to isolate Dcs, the Dcs were cultured for 5 days and hatched with SW-1116 cells antigen. The mature Dcs were harvested. The male SCID/Beige nude mice were subcutaneously injected with human SW-1116 cells in axillary to build colorectal carcinoma model as blank control (Blank). The naked peripheral blood Dc vaccine group (cPBMCs), the SW-1116 antigen-specific peripheral blood Dc vaccine group (pDcs) and the CD137L specific umbilical blood Dc vaccine group (tuDcs) were injected 24 h before tumor cells injection, respectively to recur the humanized immune reconstruction. The general life, living habits changes, tumor growing time and tumor size were observed. The nude mice were sacrificed 18 days after tumor formation. The tumor size, mice weight, in vitro tumor weight, liver weight and spleen weight of mice were recorded to evaluate the anti-tumor effect of the specific immune cells. The nude mice in pDcs group showed better general living condition, slower tumor growth, smaller tumor volume and no ulceration, necrosis, and death in nude mice. The tumor formation time in different groups was 4.71 ± 0.18 ds (blank), 7.71 ± 0.29 ds (cPBMCs), 7.86 ± 0.26 ds (pDcs) and 8.14 ± 0.69 ds (tuDcs) respectively. There were significant differences between blank and other three groups (F = 40.96, p < 0.01). Compared to mice in blank group, the tumor volume of cPBMCs group was significantly smaller (201.43 ± 69.84 mm³ vs. 436.04 ± 54.50 mm³, p < 0.01) and the tumor weight were significantly smaller (1.25 ± 0.12 g vs. 2.83 ± 0.24 g, p < 0.01). The tumor volume of tuDcs mice was significantly smaller than that of blank (92.11 ± 11.55 mm³ vs. 436.04 ± 54.50 mm³, p < 0.01) and cPBMCs mice (92.11 ± 11.55 mm³ vs. 201.43 ± 69.84 mm³, p < 0.01). Similarly, the tumor weight of tuDcs mice was significantly smaller than that of blank (0.66 ± 0.07 g vs. 2.83 ± 0.24 g, p < 0.01) and cPBMCs mice (0.66 ± 0.07 g vs. 1.25 ± 0.12 g, p < 0.01). There was no significant difference in tumor volume (92.11 ± 11.55 mm³ vs. 85.61 ± 11.59 mm³, p = 0.69) and tumor weight (0.66 ± 0.07 g vs. 0.63 ± 0.09 g, p = 0.75) between tuDcs group and pDcs group. The specific CD137L transfected umbilical blood Dc vaccine had significant anti-tumor effect against human colon cancer in nude mice via increasing the number of immune effector cell in tumor microenvironment.
Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor.
Schlitzer, Andreas; Heiseke, Alexander F; Einwächter, Henrik; Reindl, Wolfgang; Schiemann, Matthias; Manta, Calin-Petru; See, Peter; Niess, Jan-Hendrik; Suter, Tobias; Ginhoux, Florent; Krug, Anne B
2012-06-21
The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Sandri, Laura; Costa, Antonio; Zaccarelli, Lucia; Di Vito, Mauro Antonio; Sulpizio, Roberto; Marzocchi, Warner
2016-11-01
Pyroclastic density currents (PDCs) are gravity-driven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ˜8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.
Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record
NASA Astrophysics Data System (ADS)
Gurioli, L.; Sulpizio, R.; Cioni, R.; Sbrana, A.; Santacroce, R.; Luperini, W.; Andronico, D.
2010-11-01
During the past 22 ka of activity at Somma-Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma-Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma-Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.
Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection.
Maldonado, Samuel; Fitzgerald-Bocarsly, Patricia
2017-01-01
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body's most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans , and Pneumocystis jirovecii . Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro , while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Steadiness in Dilute Pyroclastic Density Currents
NASA Astrophysics Data System (ADS)
Andrews, B. J.
2015-12-01
Pyroclastic density currents (PDCs) are often unsteady, as evidenced by direct observations of dilute lobes or jets emerging from the fronts of larger currents and by deposits that indicate transient transport and depositional regimes. We used scaled experiments to investigate unsteadiness in dilute PDCs. The experimental currents were run in an 8.5x6.1x2.6 m tank and comprised heated or ambient temperature 20-μm talc powder turbulently suspended in air. Experiments were scaled such that densimetric and thermal Richardson numbers, Froude number, and particle Stokes and settling numbers were dynamically similar to natural dilute PDCs. Although the experiment Reynolds numbers are substantially lower than those of natural PDCs, the experiments are fully turbulent. Experiments were observed with video and high-speed cameras and high-frequency thermocouples. Currents were generated with total eruption durations of 100 s. Unsteadiness in source conditions was produced by interrupting supply for intervals, t, with durations of 1, 2.5, 5, and 10 s in the experimental runs at 35 and 70 s. When t<2.5 s, the currents are indistinguishable from currents with steady supply. In runs with t=2.5-5 s, the individual pulses comprising each current are readily apparent near the source, but decay with distance downstream until the currents appear as single (e.g. steady) flows. In experiments with t=10 s, the 3 pulses comprising each run never merge and the currents remain unsteady. Comparison with the integral turbulent timescale, τ, and current velocity, U, show that unsteadiness is persistent when t>3<τ but currents are steady when t<τ. In currents with 3τ>t>τ, unsteadiness decays such that at a distance of ~4Ut, the currents are again steady. Applied to natural dilute PDCs, our results suggest that currents and their resulting deposits, will only show evidence of unsteadiness if they are disrupted for many seconds and those breaks may "heal" over distances of 100s of meters.
Harima, Hirofumi; Hamabe, Kouichi; Hisano, Fusako; Matsuzaki, Yuko; Itoh, Tadahiko; Sanuki, Kazutoshi; Sakaida, Isao
2018-05-23
An 89-year-old man was referred to our hospital for treatment of hepatolithiasis causing recurrent cholangitis. He had undergone a prior Whipple procedure. Computed tomography demonstrated left-sided hepatolithiasis. First, we conducted peroral direct cholangioscopy (PDCS) using an ultraslim endoscope. Although PDCS was successfully conducted, it was unsuccessful in removing all the stones. The stones located in the B2 segment were difficult to remove because the endoscope could not be inserted deeply into this segment due to the small size of the intrahepatic bile duct. Next, we substituted the endoscope with an upper gastrointestinal endoscope. After positioning the endoscope, the SpyGlass digital system (SPY-DS) was successfully inserted deep into the B2 segment. Upon visualizing the residual stones, we conducted SPY-DS-guided electrohydraulic lithotripsy. The stones were disintegrated and completely removed. In cases of PDCS failure, a treatment strategy using the SPY-DS can be considered for patients with hepatolithiasis after a Whipple procedure.
Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine; Saas, Philippe
2016-12-08
Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. © 2016 by The American Society of Hematology.
Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations
NASA Astrophysics Data System (ADS)
Doronzo, D. M.; Valentine, G. A.; Dellino, P.; de Tullio, M. D.
2012-04-01
Explosive activity and lava dome collapse at stratovolcanoes can lead to pyroclastic density currents (PDCs; mixtures of volcanic gas, air, and volcanic particles) that produce complex deposits and pose a hazard to surrounding populations. Two-dimensional numerical simulations of dilute PDCs (characterized by a turbulent suspended load and deposition through a bed load) are carried out with the Euler-Lagrange approach of multiphase physics. The fluid phase is modeled as a dusty gas (1.88 kg/m3 dense), and the solid phase is modeled as discrete particles (1 mm, 5 mm, and 10 mm; 1500 kg/m3 dense and irregularly-shaped), which are two-way coupled to the gas, i.e. they affect the fluid turbulence. The initial PDC, which enters a volcano domain 5 km long and 1.9 km high, has the following characteristics: thickness of 200 m, velocity of 20 m/s, temperature of 573 K, turbulence of 5 %, and sediment concentration of 3 % by volume. The actual physics of flow boundary zone is simulated at the PDC base, by monitoring the sediment flux toward the substrate, which acts through the flow boundary zone, and the grain-size distribution. Also, the PDC velocity and dynamic pressure are calculated. The simulations show that PDC transport, deposition, and hazard potential are sensitive to the shape of the volcano slope (profile) down which they flow. In particular, three generic volcano profiles, straight, concave-upward, and convex-upward are focused on. Dilute PDCs that flow down a constant slope gradually decelerate over the simulated run-out distance (5 km in the horizontal direction) due to a combination of sedimentation, which reduces the density of the PDC, and mixing with the atmosphere. However, dilute PDCs down a concave-upward slope accelerate high on the volcano flanks and have less sedimentation until they begin to decelerate over the shallow lower slopes. A convex-upward slope causes dilute PDCs to lose relatively more of their pyroclast load on the upper slopes of a volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). The dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations. Details are found in Valentine et al. (2011). Reference Valentine G.A., Doronzo D.M., Dellino P., de Tullio M.D. (2011), Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations, Geology, 39, 947-950.
Davidson, Sophia; Kaiko, Gerard; Loh, Zhixuan; Lalwani, Amit; Zhang, Vivian; Spann, Kirsten; Foo, Shen Yun; Hansbro, Nicole; Uematsu, Satoshi; Akira, Shizuo; Matthaei, Klaus I.; Rosenberg, Helene F.; Foster, Paul S.; Phipps, Simon
2012-01-01
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12 and IL-6. However, RSV-infected pDCs are refractory to TLR7-mediated activation. Here, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7-signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type (WT) but not TLR7- or myeloid differentiation protein 88 (MyD88)-deficient mice, PVM inoculation led to a marked infiltration of pDCs and increased expression of type I, II and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8+ T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient but not TLR7-deficient pDC to TLR7-gene-deleted mice recapitulated the antiviral responses observed in WT mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants. PMID:21482736
HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells
Veenhuis, Rebecca T.; Freeman, Zachary T.; Korleski, Jack; Cohen, Laura K.; Tomasi, Alessandra; Boesch, Austin W.; Ackerman, Margaret E.; Margolick, Joseph B.; Blankson, Joel N.; Chattergoon, Michael A.; Cox, Andrea L.
2017-01-01
Type I IFN production is essential for innate control of acute viral infection; however, prolonged high-level IFN production is associated with chronic immune activation in HIV-infected individuals. Although plasmacytoid DCs (pDCs) are a primary source of IFN, the mechanisms that regulate IFN levels following the acute phase are unknown. We hypothesized that HIV-specific Ab responses regulate late IFN production. We evaluated the mechanism through which HIV-activated pDCs produce IFN as well as how both monoclonal HIV-specific Abs and Abs produced in natural HIV infection modulated normal pDC sensing of HIV. We found that HIV-induced IFN production required TLR7 signaling, receptor-mediated entry, fusion, and viral uncoating, but not endocytosis or HIV life cycle stages after uncoating. Abs directed against the HIV envelope that do not interfere with CD4 binding markedly enhanced the IFN response, irrespective of their ability to neutralize CD4+ T cell infection. Ab-mediated enhancement of IFN production required Fc γ receptor engagement, bypassed fusion, and initiated signaling through both TLR7 and TLR9, which was not utilized in the absence of Ab. Polyclonal Abs isolated from HIV-infected subjects also enhanced pDC production of IFN in response to HIV. Our data provide an explanation for high levels of IFN production and immune activation in chronic HIV infection. PMID:29083319
Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand
NASA Astrophysics Data System (ADS)
Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.
2012-12-01
The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (<1 m in diameter) that were blown down by dilute PDCs up to 0.7-0.9 km from the vent. Beyond this trees were encapsulated and buried in growth position up to the total runout distance of 1.6-1.8 km. This observation suggests that the dynamic pressure of the current quickly dropped as it travelled away from source. Using the tree diameter and yield strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and <10 kPa beyond 0.9 km, and (b) the total run-out distance must be between 1.6 and 1.8 km. Model results suggest the two main forces controlling the runout distance and Pdyn over the extent of the current are sedimentation rate and entrainment of ambient atmosphere, which are a function of the grain size and initial bulk density, thickness and velocity of a given current. Initial velocities of 60 m s-1, initial bulk densities of 35 kg m-3 and initial current thickness of 70 m are the input parameters that reproduce the best fit to our field data. This preliminary validation of the model allows us to estimate the impact of dilute PDCs from future larger phreatomagmatic eruptions. In the case of a dilute PDC traveling 5-7 km from source: Pdyn >35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and extent of past and future eruptions in the AVF or other similar volcanically active regions.
Experimental Determination of Bed Conditions in Concentrated Pyroclastic Density Currents
NASA Astrophysics Data System (ADS)
Winner, A.; Ferrier, K.; Dufek, J.
2016-12-01
Pyroclastic density currents (PDCs) are ground-hugging mixtures of hot gas and rock that can reach temperatures > 800 oC and speeds of 200 m/s. These flows are capable of eroding and entraining the underlying bed material into the flow, which can strongly influence flow momentum, runout distance, and hazards associated with PDCs. However, the mechanism of erosion remains poorly constrained, with proposed mechanisms including under-pressure following the head of the fluidized current, force chain enhanced stresses at the bed, and discrete particle impacts and friction. The interactions between PDCs and the bed have been difficult to observe in the field, as their infrequent occurrence, opacity, and hostile environment make real-time measurement difficult. This study is aimed at obtaining a better understanding of the interactions between PDCs and the bed through a quantitative analysis of bed forces. Our experimental apparatus consists of a rotating cylindrical flume of radius 22 cm, within which gas-rich granular material flows along the interior of the cylinder as it rotates. By using a rotating cylinder, we are able to simulate long-duration flows, allowing us to observe impact forces at the bed over timescales comparable to the flow duration of natural PDCs. To measure the distribution and evolution of forces imparted by the flow on the bed, we constructed a cylindrical insert with a non-erodible bed in which we embedded force sensor arrays parallel and perpendicular to the direction of flow. To measure the forces felt by the particles in the flow, we added "smart particles" 25 to 50 mm in diameter to the flow. Each smart particle contains a three-axis accelerometer and a micro SD card enclosed in a spherical plastic casing, and possesses a density similar to that of the pumice in the experimental flow. Each smart particle also contains a three-axis magnetometer which permits its location to be tracked by means of a unique applied magnetic field. Ultimately, data from these experiments will provide a robust basis for describing the distribution of basal forces given a set of macroscopic flow properties such as grain size, particle concentration, shear rate, and particle elasticity.
Small Barriers Trigger Liftoff of Unconfined Dilute Heated Laboratory Density Currents
NASA Astrophysics Data System (ADS)
Fauria, K.; Andrews, B. J.; Manga, M.
2015-12-01
Dilute pyroclastic density currents (PDCs) are hot, turbulent, particle-laden flows that propagate because they are denser than air. PDCs can traverse tens to hundreds of kilometers and surmount ridges 100s of m tall, yet the effects of complex topography on PDC liftoff and runout distance are uncertain. Here we used scaled laboratory experiments to explore how barriers affect dilute density current dynamics and the occurrence of liftoff. We created dilute density currents by heating and suspending 20 μm diameter talc in air in an 8.5 x 6.1 x 2.6 m tank. We scaled the currents with respect to Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers such that they were dynamically similar to natural PDCs. While currents were fully turbulent, their Reynolds numbers were not as high as those for natural PDCs. We performed the first set of experiments in a laterally unconfined volume, used laser sheets to illuminate the currents, measured bulk sedimentation rates down the current centerlines, and positioned four to twenty-four cm tall ridge-like barriers in the path of the currents. We found that relatively small barriers (~ half the current height) caused PDC liftoff. By comparison, conservation of kinetic and potential energy predicts that incompressible density currents are able to surmount barriers twice their height. Furthermore, we observed increased sedimentation immediately upstream of barriers and conclude that small barriers initiated buoyancy reversal through a combination of increased air entrainment and sedimentation. We conducted a second set of experiments with the same thermal scaling and mass flux rates but where the currents were laterally confined within a 0.6 m wide channel. We found that small barriers also triggered liftoff of confined currents, but that the body of these currents reattached after liftoff. Those results suggest that lateral confinement inhibits buoyancy reversal by limiting the surface area of the current-air interface and air entrainment. Real dilute PDCs that originate in confined valleys may therefore have different fates and longer runout distances than those on unconfined planes.
Soulas, Caroline; Autissier, Patrick J.; Burdo, Tricia H.; Lifson, Jeffrey D.; Williams, Kenneth C.
2015-01-01
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs. PMID:25915601
An RCT on treatment of palatally displaced canines with RME and/or a transpalatal arch.
Baccetti, Tiziano; Sigler, Lauren M; McNamara, James A
2011-12-01
To investigate the effect of rapid maxillary expansion (RME) and/or transpalatal arch (TPA) therapy in combination with deciduous canine extraction on the eruption of palatally displaced canines (PDCs). Hundred and twenty subjects were enrolled in an RCT based on PDCs diagnosed on panoramic radiographs and they were randomly assigned to one of four study groups. Three treatment groups (TGs) (RME followed by TPA therapy plus extraction of deciduous canines, RME/TPA/EC group, 40 subjects; TPA therapy plus extraction of deciduous canines, TPA/EC group, 25 subjects; extraction of deciduous canines, EC group, 25 subjects) were analyzed. A control group (CG, 30 subjects) received no orthodontic treatment. Prevalence rates of eruption of PDCs in the three TGs were compared with the CG at T2. Predictive features at T1 for successful canine eruption were tested in the three TGs. The prevalence of canine eruption was 80 per cent for the RME/TPA/EC group, 79 per cent for the TPA/EC group, 62.5 per cent for the EC group, versus 28 per cent in the CG, with statistically significant differences between all the groups, with the exception of the comparison between RME/TPA/EC and TPA/EC. Predictive pretreatment variables for the success of treatment were less severe sectors of canine displacement, prepubertal stages of skeletal maturity, and an open root apex of PDCs. The use of a TPA in absence of RME can be equally effective than the RME/TPA combination in PDC cases not requiring maxillary expansion, thus reducing the burden of treatment for the patient.
NASA Astrophysics Data System (ADS)
Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola
2016-11-01
Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.
Brewitz, Anna; Eickhoff, Sarah; Dähling, Sabrina; Quast, Thomas; Bedoui, Sammy; Kroczek, Richard A; Kurts, Christian; Garbi, Natalio; Barchet, Winfried; Iannacone, Matteo; Klauschen, Frederick; Kolanus, Waldemar; Kaisho, Tsuneyasu; Colonna, Marco; Germain, Ronald N; Kastenmüller, Wolfgang
2017-02-21
Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8 + T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8 + T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8 + T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1 + DCs, thereby optimizing XCR1 + DC maturation and cross-presentation. These data support a model in which CD8 + T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition. Published by Elsevier Inc.
RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity.
Chopin, Michaël; Preston, Simon P; Lun, Aaron T L; Tellier, Julie; Smyth, Gordon K; Pellegrini, Marc; Belz, Gabrielle T; Corcoran, Lynn M; Visvader, Jane E; Wu, Li; Nutt, Stephen L
2016-04-26
Plasmacytoid dendritic cells (pDCs) represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Perdomo-Celis, Federico; Salgado, Doris M; Narváez, Carlos F
2017-07-01
During dengue virus (DENV) infection, a blockage of secretion of cytokines such as tumor necrosis factor (TNF)-α and members of the interferon (IFN) family has been described in vitro. We evaluated the functionality of monocytes as well as dendritic, B and T cells isolated from children with mild and severe dengue. Compared with those of healthy children, stimulated monocytes, CD4 + T cells and dendritic cells from children with dengue had lower production of proinflammatory cytokines. The interferon axis was dramatically modulated by infection as plasmacytoid dendritic cells (pDCs) and CD4 + T cells had low production of IFN-α and IFN-γ, respectively; plasma levels of IFN-α and IFN-γ were lower in severely ill children, suggesting a protective role. Patients with antigenemia had the highest levels of IFN-α in plasma but the lowest frequency of IFN-α-producing pDCs, suggesting that DENV infection stimulates a systemic type I IFN response but affects the pDCs function. Copyright © 2017 Elsevier Inc. All rights reserved.
Shen, Hong; Iwasaki, Akiko
2006-01-01
Topical microbicides represent a promising new approach to preventing HIV and other sexually transmitted infections. TLR agonists are ideal candidates for microbicides, as they trigger a multitude of antiviral genes effective against a broad range of viruses. Although vaginal application of CpG oligodeoxynucleotides (ODNs) and poly I:C has been shown to protect mice from genital herpes infection, the mechanism by which these agents provide protection remains unclear. Here, we show that plasmacytoid DCs (pDCs) are required for CpG ODN–mediated protection against lethal vaginal challenge with herpes simplex virus type 2 (HSV-2). Moreover, we demonstrate that cells of both the hematopoietic and stromal compartments must respond to CpG ODN via TLR9 and to type I IFNs through IFN-αβ receptor (IFN-αβR) for protection. Thus, crosstalk between pDCs and vaginal stromal cells provides for optimal microbicide efficacy. Our results imply that temporally and spatially controlled targeting of CpG ODN to pDCs and epithelial cells can potentially maximize their effectiveness as microbicides while minimizing the associated inflammatory responses. PMID:16878177
A new look at mobility metrics for pyroclastic density currents: collection, interpretation, and use
NASA Astrophysics Data System (ADS)
Ogburn, S. E.; Lopes, D.; Calder, E. S.
2012-12-01
Mitigation of risk associated with pyroclastic density currents (PDCs) depends upon accurate forecasting of possible flow paths, often using empirical models that rely on mobility metrics or the stochastic application of computational flow models. Mobility metrics often inform computational models, sometimes as direct model inputs (e.g. energy cone model), or as estimates for input parameters (e.g. basal friction parameter in TITAN2D). These mobility metrics are often compiled from PDCs at many volcanoes, generalized to reveal empirical constants, or sampled for use in probabilistic models. In practice, however, there are often inconsistencies in how mobility metrics have been collected, reported, and used. For instance, the runout of PDCs often varies depending on the method used (e.g. manually measured from a paper map, automated using GIS software); and the distance traveled by the center of mass of PDCs is rarely reported due to the difficulty in locating it. This work reexamines the way we measure, report, and analyze PDC mobility metrics. Several metrics, such as the Heim coefficient (height dropped/runout, H/L) and the proportionality of inundated area to volume (A∝V2/3) have been used successfully with PDC data (Sparks 1976; Nairn and Self 1977; Sheridan 1979; Hayashi and Self 1992; Calder et al. 1999; Widiwijayanti et al. 2008) in addition to the non-volcanic flows they were originally developed for. Other mobility metrics have been investigated by the debris avalanche community but have not yet been extensively applied to pyroclastic flows (e.g. the initial aspect ratio of collapsing pile). We investigate the relative merits and suitability of contrasting mobility metrics for different types of PDCs (e.g. dome-collapse pyroclastic flows, ash-cloud surges, pumice flows), and indicate certain circumstances under which each model performs optimally. We show that these metrics can be used (with varying success) to predict the runout of a PDC of given volume, or vice versa. The problem of locating the center of mass of PDCs is also investigated by comparing field measurements, geometric centroids, linear thickness models, and computational flow models. Comparing center of mass measurements with runout provides insight into the relative roles of sliding vs. spreading in PDC emplacement. The effect of topography on mobility is explored by comparing mobility metrics to valley morphology measurements, including sinuosity, cross-sectional area, and valley slope. Lastly, we examine the problem of compiling and generalizing mobility data from worldwide databases using a hierarchical Bayes model for weighting mobility metrics for use as model inputs, which offers an improved method over simple space-filling strategies. This is especially useful for calibrating models at data-sparse volcanoes.
NASA Astrophysics Data System (ADS)
Lube, Gert; Breard, Eric C. P.; Cronin, Shane J.; Procter, Jonathan N.; Brenna, Marco; Moebis, Anja; Pardo, Natalia; Stewart, Robert B.; Jolly, Arthur; Fournier, Nicolas
2014-10-01
The 6 August 2012 Te Maari eruption produced violent and widespread "cold" Pyroclastic Density Currents (PDCs) following unroofing of the pressurized hydrothermal system. Despite an erupted volume of only ~ 5 × 105 m3, and lacking any juvenile component, the 340,000 m3 of PDCs spread over an area of 6.1 km2 and had mobilities that were on the order of volcanic blasts or blast-like PDCs. This great mobility was due to strong lateral focussing of explosion energy, producing jets with initial velocities > 100 m/s. We present a type-stratigraphy for these hydrothermal-derived low-temperature PDCs that show a tripartite deposit sequence. Each of the deposit units dominates respectively three outward-gradational sedimentary facies, reflecting transitions in the propagating PDC transport and depositional mechanisms. The largest PDCs, directed west and east of the Upper Te Maari area were generated from outer-cone breccias and tuffs that were mostly highly hydrothermally altered. Landsliding and the geometry of the hydrothermal area led to the directed jetting. Initial particle-laden jets laid sheets, grading into lobes of proximal massive sand to gravel-rich facies dominated by unit A and extending up to 1 km from the vents. As the jets were collapsing, a vertically and longitudinally stratified PDC developed within the first few hundred metres from source. Exponential thinning and coarse-tail grading-dominated fining with radial distance of massive unit A resulted from fast deposition and progressive depletion of the most concentrated flow region behind the PDC head. Markedly slower tractional sedimentation from the passing PDC body and tail deposited the highly stratified and ripple-bedded fine-coarse ash of unit B. This formed distinctive dune fields of the medial dune-bedded ash-rich facies. Upwards in depositional sequences the waning of the current can be seen, by replacement of higher-energy bedforms to progressively lower ones. Downstream progressive waning and further depletion are characterised by the development of the distal wavy to planar-bedded ash-rich facies. This is increasingly dominated by the uppermost deposition unit C of laminated fine-med ash deposited by gently turbulent, dilute phoenix clouds. These high energy PDCs, sourced from flank hydrothermal systems should be regarded as a serious threat in any multihazard assessment of a stratovolcano, even though they may not be one of the major magmatic vent sites. In addition, further detailed studies of these hydrothermal jetting events and their deposits should be pursued in order to better understand large-volume volcanic blasts, which appear to be a larger scale sibling phenomenon.
Fooksman, David; Moore, Jamie M.; Saidi, Alex; Feintuch, Catherine M.; Reizis, Boris; Chorro, Laurent; Daily, Johanna; Lauvau, Grégoire
2016-01-01
Malaria remains a global health burden causing significant morbidity, yet the mechanisms underlying disease outcomes and protection are poorly understood. Herein, we analyzed the peripheral blood of a unique cohort of Malawian children with severe malaria, and performed a comprehensive overview of blood leukocytes and inflammatory mediators present in these patients. We reveal robust immune cell activation, notably of CD14+ inflammatory monocytes, NK cells and plasmacytoid dendritic cells (pDCs) that is associated with very high inflammation. Using the Plasmodium yoelii 17X YM surrogate mouse model of lethal malaria, we report a comparable pattern of immune cell activation and inflammation and found that type I IFN represents a key checkpoint for disease outcomes. Compared to wild type mice, mice lacking the type I interferon (IFN) receptor exhibited a significant decrease in immune cell activation and inflammatory response, ultimately surviving the infection. We demonstrate that pDCs were the major producers of systemic type I IFN in the bone marrow and the blood of infected mice, via TLR7/MyD88-mediated recognition of Plasmodium parasites. This robust type I IFN production required priming of pDCs by CD169+ macrophages undergoing activation upon STING-mediated sensing of parasites in the bone marrow. pDCs and macrophages displayed prolonged interactions in this compartment in infected mice as visualized by intravital microscopy. Altogether our findings describe a novel mechanism of pDC activation in vivo and precise stepwise cell/cell interactions taking place during severe malaria that contribute to immune cell activation and inflammation, and subsequent disease outcomes. PMID:27792766
NASA Technical Reports Server (NTRS)
Cox, Sarah; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.
Carbon substitution for oxygen in silicates in planetary interiors
Sen, Sabyasachi; Widgeon, Scarlett J.; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf
2013-01-01
Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiOxC4-x tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiOxC4-x tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10–100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle. PMID:24043830
Carbon substitution for oxygen in silicates in planetary interiors.
Sen, Sabyasachi; Widgeon, Scarlett J; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf
2013-10-01
Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiO(x)C(4-x) tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiO(x)C(4-x) tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10-100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle.
Walsh, Noreen M; Lai, Jonathan; Hanly, John G; Green, Peter J; Bosisio, Francesca; Garcias-Ladaria, Juan; Cerroni, Lorenzo
2015-01-01
Hypertrophic discoid lupus erythematosus (HDLE), a rare variant of lupus skin disease, is difficult to distinguish from squamous neoplasms and certain dermatoses microscopically. Recently, recognition of the pathogenetic significance of plasmacytoid dendritic cells (PDCS) in cutaneous lupus erythematosus (LE) and of their patterns of distribution in different manifestations of the disease prompted us to study their diagnostic value in the context of HDLE. Using immunohistochemistry (CD123) to label the cells, we examined their quantities and patterns of distribution in 27 tissue samples of HDLE from nine patients compared with 39 inflammatory and neoplastic control samples from 36 patients. Using three parameters pertaining to PDCs: (i) their representation of 10% or more of the inflammatory infiltrate, (ii) their arrangement in clusters of 10 cells or more and (iii) their presence at the dermoepidermal junction, we found them to have significant diagnostic value, with accuracies of 77%, 74% and 71%, respectively. This study supports the careful descriptive observations of previous authors in the field. It also lends validity to the diagnostic step of mapping, immunohistochemically, the density and distribution of PDCs in suspected cases of HDLE. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo
2005-01-01
Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370
Prescription drug coupons: evolution and need for regulation in direct-to-consumer advertising.
Mackey, Tim K; Yagi, Nozomi; Liang, Bryan A
2014-01-01
Pharmaceutical marketing in the United States had undergone a shift from largely exclusively targeting physicians to considerable efforts in targeting patients through various forms of direct-to-consumer advertising ("DTCA"). This includes the use of DTCA in prescription drug coupons ("PDCs"), a new form of DTCA that offers discounts and rebates directly to consumers to lower costs of drug purchasing. Our examination of PDCs reveals that the use and types of PDC programs is expanding and includes promotion of the vast majority of top grossing pharmaceuticals. However, controversy regarding this emerging form of DTCA has given rise to health policy concerns about their overall impact on prescription drug expenditures for consumers, payers, and the health care system, and whether they lead to optimal long-term utilization of pharmaceuticals. In response to these concerns and the growing popularity of PDCs, what we propose here are clearer regulation and regulatory guidance for PDC DTCA use. This would include review for appropriate disclosure of marketing claims, increased transparency in PDC use for pharmaceutical pricing, and leveraging potential positive benefits of PDC use for vulnerable or underserved patient populations. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gase, A.; Brand, B. D.; Bradford, J.
2016-12-01
The causes and consequences of substrate erosion are among the least understood attributes of pyroclastic density current (PDC) dynamics. Field evidence of substrate erosion is often limited by the location and quality of exposed PDC deposits. Here we present evidence for one of the most spatially extensive cases of PDC erosion to date, found within the 18 May 1980 deposits of Mt. St. Helens, Washington (USA). An 8 m deep and 300 m wide PDC scour and fill feature, which extends into PDC deposits from earlier in the eruption, is exposed along a distal outcrop of the shallow-dipping (<15º) pumice plain. Near surface geophysical techniques allow us to investigate the nature, extent, and cause of this large scour. We used 50 MHz ground-penetrating radar to track the distal scour from outcrop toward its source. Beginning 700 m up-flow from the large scour and fill exposure, the feature progressively widens from 205 m to 280 m and deepens from 10 m to 13 m, suggesting the PDCs became more erosive along the length of the scour. We extended our transects across the pumice plain to locate additional scours and to establish the topography at the time of erosion. We found a second 420 m wide and 11 m deep scour that extends at least 500 m from its inception point. Apparent dips of the sides of both channels are asymmetrical, due to pronounced erosion on the up-slope side of the flow in cross-section. Our data show no evidence of subsurface topographic irregularities or high slope angles up-flow from either erosional feature. These features imply large PDCs from semi-sustained or fluctuating eruptions can self-channelize by erosional mechanisms. Our findings suggest that (1) concentrated PDCs are capable of producing large scours on shallow slopes with negligible surface roughness, analogous to the erosional channels of submarine turbidity currents, (2) substrate properties, including partial fluidization of fresh PDC deposits, may facilitate substrate erosion during semi-sustained eruptions, and (3) large PDCs can undergo self-channelization, whereby axial zones of high flow energy erode channels that confine subsequent flows. Erosion and self-channelization of this nature is not accounted for in models of concentrated PDCs, which may result in underestimates of run-out distance.
Targeted drug delivery for cancer therapy: the other side of antibodies
2012-01-01
Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144
Mendes, Luis Filipe; Tam, Wai Long; Chai, Yoke Chin; Geris, Liesbet; Luyten, Frank P; Roberts, Scott J
2016-05-01
Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p < 0.001), which in combination with BMP6 synergistically enhanced cartilage-like tissue formation that displayed in vitro mineralization capacity at day 14 (p < 0.001). Gene expression of μMasses cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches.
Detergent-Specific Membrane Protein Crystallization Screens
NASA Technical Reports Server (NTRS)
Wiener, Michael
2007-01-01
A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.
Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.
Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun
2017-11-10
Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.
Bashari, O; Redko, B; Cohen, A; Luboshits, G; Gellerman, G; Firer, M A
2017-11-01
Metastatic castration-resistant prostate cancer (mCRPC) remains essentially incurable. Targeted Drug Delivery (TDD) systems may overcome the limitations of current mCRPC therapies. We describe the use of strict criteria to isolate novel prostate cancer cell targeting peptides that specifically deliver drugs into target cells. Phage from a libraries displaying 7mer peptides were exposed to PC-3 cells and only internalized phage were recovered. The ability of these phage to internalize into other prostate cancer cells (LNCaP, DU-145) was validated. The displayed peptides of selected phage clones were synthesized and their specificity for target cells was validated in vitro and in vivo. One peptide (P12) which specifically targeted PC-3 tumors in vivo was incorporated into mono-drug (Chlorambucil, Combretastatin or Camptothecin) and dual-drug (Chlorambucil/Combretastatin or Chlorambucil/Camptothecin) PDCs and the cytotoxic efficacy of these conjugates for target cells was tested. Conjugation of P12 into dual-drug PDCs allowed discovery of new drug combinations with synergistic effects. The use of strict selection criteria can lead to discovery of novel peptides for use as drug carriers for TDD. PDCs represent an effective alternative to current modes of free drug chemotherapy for prostate cancer. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.
Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)
NASA Astrophysics Data System (ADS)
Takahashi, Hiromitsu; Chauvin, Maxime; Fukazawa, Yasushi; Jackson, Miranda; Kamae, Tuneyoshi; Kawano, Takafumi; Kiss, Mozsi; Kole, Merlin; Mikhalev, Victor; Mizuno, Tsunefumi; Moretti, Elena; Pearce, Mark; Rydström, Stefan
2014-07-01
The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The "pathfinder" flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.
Tsuzuki, Y; Koottatep, T; Jiawkok, S; Saengpeng, S
2010-01-01
In developing countries with large Millennium Development Goals (MDGs) sanitation indicator, pollutant discharge reduction function of wastewater treatment systems should be considered. In this paper, pollutant generations per capita (PGCs) and pollutant discharges per capita (PDCs) are estimated as a base dataset for wastewater management in Thailand. PDCs of black water, i.e. toilet wastewater, are found to be much smaller than PGCs of black water. However, PDCs of gray water, i.e. municipal wastewater other than toilet wastewater are large. Gray water is often discharged without treatment and contributes much to ambient water deterioration. Moreover, possible 5-day biological oxygen demand (BOD5) discharge reductions with "soft interventions", i.e. measurements in households to reduce wastewater pollutant discharge such as using a paper filter or a plastic net in kitchen sinks and so on, are estimated as 39, 21 and 34% for BOD5, total Kjeldahl nitrogen (TKN) and phosphate (PO4-P), respectively. For the estimation, environmental accounting housekeeping (EAH) books of domestic wastewater, spreadsheets with pollutant discharges by water usages and possible effects of "soft interventions" are applied. The framework of this study with "soft intervention" effects on pollutant discharge reductions should enhance wastewater management especially in the areas under development of wastewater treatment systems.
NASA Astrophysics Data System (ADS)
Romero, Jorge Eduardo; Douillet, Guilhem Amin; Vallejo Vargas, Silvia; Bustillos, Jorge; Troncoso, Liliana; Díaz Alvarado, Juan; Ramón, Patricio
2017-06-01
The ongoing eruptive cycle of Tungurahua volcano (Ecuador) since 1999 has been characterised by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included one Subplinian as well as several Strombolian and Vulcanian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs) and lava flows. The 1 February 2014 eruption occurred after 75 days of quiescence and only 2 days of pre-eruptive seismic crisis. Two short-lived Vulcanian explosions marked the onset of the paroxysmal phase, characterised by a 13.4 km eruptive column and the trigger of PDCs. After 40 min of paroxysm, the activity evolved into sporadic Strombolian explosions with discrete ash emissions and continued for several weeks. Both tephra fall and PDCs were studied for their dispersal, sedimentology, volume and eruption source parameters. At large scale, the tephra cloud dispersed toward the SSW. Based on the field data, two dispersal scenarios were developed forming either elliptical isopachs or proximally PDC-influenced isopachs. The minimum bulk tephra volumes are estimated to 4.55 × 106 m3, for an eruption size estimated at volcanic explosivity index (VEI) 2-3. PDCs, although of small volume, descended by nine ravines of the NNW flanks down to the base of the edifice. The 1 February 2014 eruptions show a similar size to the late 1999 and August 2001 events, but with a higher intensity (I 9-10) and shorter duration. The Vulcanian eruptive mechanism is interpreted to be related to a steady magma ascent and the rise in over-pressure in a blocked conduit (plug) and/or a depressurised solidification front. The transition to Strombolian style is well documented from the tephra fall componentry. In any of the interpretative scenarios, the short-lived precursors for such a major event as well as the unusual tephra dispersion pattern urge for renewed hazard considerations at Tungurahua.
NASA Astrophysics Data System (ADS)
Garman, K. A.; Swarr, G. J.; Dufek, J.; Harpp, K. S.; Geist, D.
2009-12-01
Clasts within pyroclastic density current deposits (PDCs) record information about the dynamic processes and thermal history of erosion, transportation, and deposition. The August 2006 eruption of Tungurahua produced PDCs with exceptional clast abundances and morphologies. This eruption was of the “boiling over” type, where the PDCs were not accompanied by a high column. Rather, they were fed by strong, low (less than 2 km), and persistent fountaining. Granulometric, clast morphology, and flow dimension data were obtained by detailed study of the four largest PDC deposits produced during this eruption. The individual flow units have ratios of height loss to travel distance (H/L) ranging from 0.38 to 0.51, which lie in the upper range of H/L ratios for pyroclastic density currents, generally typical of small-volume events. The flow deposits are characterized by oblate scoria bombs up to 1.78 m in diameter, and the bombs are best preserved in levees, flow snouts, and the upper parts of some deposits. The interiors of the deposits are all poorly sorted, with particles less than 8 mm in diameter ranging from 0.55 to 0.87 weight percent. Pyroclastic surges originated from PDCs at locations of abrupt topographic steepening and channel curvature. In both of these locations, we observed evidence of bedload deposition and enhanced mobility of surge material. Some of the bombs were solid at the time of their deposition, whereas others deformed plastically after deposition, which constrains their thermal history. Clast size controls the internal forces and thermal evolution of a clast, which are critical in determining its post-fragmentation plastic deformation. Heating experiments on slabs made from the bombs constrain the deformation of the clasts as a function of temperature and torque. We will discuss the thermal history of individual clasts, field observation of individual clast deformation, and the information they provide on the entrainment of the ambient atmosphere.
Ji, Jianjian; Fan, Hongye; Li, Fanlin; Li, Xiaojing; Dong, Guanjun; Gong, Wei; Song, Yuxian; Liu, Fei; Hua, Chunyan; Tan, Renxiang; Dou, Huan; Hou, Yayi
2015-12-01
Systemic lupus erythematosus (SLE) is an autoimmune disease with prominent chronic inflammatory aspects. Plasmacytoid dendritic cells (pDCs), which are the principal interferon-α (IFN-α)-producing cells, have known to be critically involved in SLE pathogenesis. Our previous research demonstrated that a benzenediamine derivative FC-99 possessed anti-inflammatory activities. However, the effects of FC-99 on SLE have not been investigated to date. In this study, we found that FC-99 attenuated lupus-like pathological symptoms and lupus nephritis as well as the expression of pro-inflammatory cytokines in kidneys of MRL/lpr mice. FC-99 also decreased both the total IgM, total IgG and anti-dsDNA IgG levels in sera and the activation of B cells in the PBMCs and spleens of MRL/lpr mice. Moreover, FC-99 inhibited the abnormal activation and number of pDCs from PBMCs and spleens and levels of IFN-α in MRL/lpr mice. Notably, FC-99 significantly suppressed the expression of IFN-inducible genes in peripheral blood mononuclear cells (PBMCs) and spleens from MRL/lpr mice. As expected, in vitro experiments demonstrated that FC-99 decreased both the activation and IFN-α production of pDCs and inhibited IRAK4 phosphorylation in pDCs upon TLR7 and TLR9 stimulation. We further confirm that the inhibition of FC-99 on B cell activation depended on level of pDCs-secreting IFN-α. These data indicate that FC-99 attenuated lupus-like syndrome in MRL/lpr mice related to suppression of pDC activation, especially pDCs-secreting IFN-α. This study suggests that FC-99 may be a potential therapeutic candidate for the treatment of SLE. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Komorowski, Jean-Christophe; Jenkins, Susanna; Baxter, Peter J.; Picquout, Adrien; Lavigne, Franck; Charbonnier, Sylvain; Gertisser, Ralf; Preece, Katie; Cholik, Noer; Budi-Santoso, Agus; Surono
2013-07-01
An 11-minute sequence of laterally-directed explosions and retrogressive collapses on 5 November 2010 at Merapi (Indonesia) destroyed a rapidly-growing dome and generated high-energy pyroclastic density currents (PDCs) spreading over 22 km2 with a runout of 8.4 km while contemporaneous co-genetic valley-confined PDCs reached 15.5 km. This event formed Stage 4 of the multi-stage 2010 eruption, the most intense eruptive episode at Merapi since 1872. The deposits and the widespread devastating impact of associated high-energy PDCs on trees and buildings show striking similarities with those from historical volcanic blasts (Montagne Pelée, Martinique, Bezymianny, Russia, Mount St. Helens, USA, Soufrière Hills, Montserrat). We provide data from stratigraphic and sedimentologic analyses of 62 sections of the first unequivocal blast-like deposits in Merapi's recent history. We used high resolution satellite imagery to map eruptive units and flow direction from the pattern of extensive tree blowdown. The stratigraphy of Stage 4 consists of three depositional units (U0, U1, U2) that we correlate to the second, third and fourth explosions of the seismic record. Both U1 and U2 show a bi-partite layer stratigraphy consisting each of a lower L1 layer and an upper L2 layer. The lower L1 layer is typically very coarse-grained, fines-poor, poorly-sorted and massive, and was deposited by the erosive waxing flow head. The overlying L2 layer is much finer grained, fines-rich, moderately to well-sorted, with laminar to wavy stratification. L2 was deposited from the waning upper part and wake of the PDC. Field observations indicate that PDC height reached ~ 330 m with an internal velocity of ~ 100 m s- 1 within 3 km from the source. The summit's geometry and the terrain morphology formed by a major transversal ridge and a funneling deep canyon strongly focused PDC mass towards a major constriction, thereby limiting the loss of kinetic energy. This favored elevated PDC velocities and high particle concentration, promoted overspilling of PDCs across high ridges into other river valleys, and generated significant dynamic pressures to distances of 6 km that caused total destruction of buildings and the forest. The Merapi 2010 eruption highlights that explosive and gravitational disintegration of a rapidly growing dome can generate devastating high-energy, high-velocity PDCs. This constitutes a credible high impact scenario for future multi-stage eruptions at Merapi and at other volcanoes that pose particular monitoring, crisis response, and risk reduction challenges.
Kajimura, Junko; Lynch, Heather E; Geyer, Susan; French, Benjamin; Yamaoka, Mika; Shterev, Ivo D; Sempowski, Gregory D; Kyoizumi, Seishi; Yoshida, Kengo; Misumi, Munechika; Ohishi, Waka; Hayashi, Tomonori; Nakachi, Kei; Kusunoki, Yoichiro
2017-11-30
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Kajimura, Junko; Lynch, Heather E; Geyer, Susan; French, Benjamin; Yamaoka, Mika; Shterev, Ivo D; Sempowski, Gregory D; Kyoizumi, Seishi; Yoshida, Kengo; Misumi, Munechika; Ohishi, Waka; Hayashi, Tomonori; Nakachi, Kei; Kusunoki, Yoichiro
2018-01-01
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Thewissen, Kristof; Nuyts, Amber H; Deckx, Nathalie; Van Wijmeersch, Bart; Nagels, Guy; D'hooghe, Marie; Willekens, Barbara; Cras, Patrick; Eijnde, Bert O; Goossens, Herman; Van Tendeloo, Viggo F I; Stinissen, Piet; Berneman, Zwi N; Hellings, Niels; Cools, Nathalie
2014-04-01
The role of the adaptive immune system and more specifically T cells in the pathogenesis of multiple sclerosis (MS) has been studied extensively. Emerging evidence suggests that dendritic cells (DCs), which are innate immune cells, also contribute to MS. This study aimed to characterize circulating DC populations in MS and to investigate the contribution of MS-associated genetic risk factors to DCs. Ex vivo analysis of conventional (cDCs) and plasmacytoid DCs (pDCs) was carried out on peripheral blood of MS patients (n = 110) and age- and gender-matched healthy controls (n = 112). Circulating pDCs were significantly decreased in patients with chronic progressive MS compared to relapsing-remitting MS and healthy controls. While no differences in cDCs frequency were found between the different study groups, HLA-DRB1*1501(+) MS patients and patients not carrying the protective IL-7Rα haplotype 2 have reduced frequencies of circulating cDCs and pDCs, respectively. MS-derived DCs showed enhanced IL-12p70 production upon TLR ligation and had an increased expression of the migratory molecules CCR5 and CCR7 as well as an enhanced in vitro chemotaxis. DCs in MS are in a pro-inflammatory state, have a migratory phenotype and are affected by genetic risk factors, thereby contributing to pathogenic responses.
Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes
NASA Astrophysics Data System (ADS)
Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.
2015-12-01
Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.
NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes.
Maslennikov, Innokentiy; Kefala, Georgia; Johnson, Casey; Riek, Roland; Choe, Senyon; Kwiatkowski, Witek
2007-11-08
Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.
NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes
Maslennikov, Innokentiy; Kefala, Georgia; Johnson, Casey; Riek, Roland; Choe, Senyon; Kwiatkowski, Witek
2007-01-01
Background Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required. PMID:17988403
NASA Astrophysics Data System (ADS)
Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas
2016-07-01
Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain ( 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were partially confined in steep slot canyons, suggesting that basal shear stress is an important control on erosive capacity, and (2) bedform amplitude, wavelength and the presence of regressive bedforms increase with increasing slope and proximity to source along the steep flank, suggesting a link between bedform morphology, flow velocity, and flow criticality. While our results indicate that slope and irregular topography strongly influence PDC dynamics, criticality and erosive capacity, the influence of these conditions on ultimate flow runout distance is unclear. The work here also highlights the issue that relationships between the controls on bedform size and morphology in density stratified flows remain poorly constrained, limiting our ability to extract important information about the currents that produced them. These final two points warrant further exploration through the combination of field, experimental and numerical approaches.
NASA Astrophysics Data System (ADS)
Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.
2010-12-01
Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow unit, depositional features can vary from massive, diffusely-stratified to stratified, and cross stratified. We interpret this variability as a result of interaction with nearby topography, rapid sedimentation of large blocks, or a combination of the two; this implies rapid spatial and temporal instabilities in the current. For each flow unit we measure deposit thickness, bedding style, clast size, density and sorting, and degree of pumice rounding with distance from source. We use this data to better understand and interpret flow dynamics from depositional characteristics. The data we collect will be used to refine and validate numerical models of PDCs, ultimately providing a more accurate hazard assessment for explosive eruptions.
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2017-12-01
The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.
Deng, Fangge; Tang, Qing; Zeng, Guangqiao; Wu, Hua; Zhang, Nuofu; Zhong, Nanshan
2015-05-01
The authors aimed to determine the effectiveness of infrared thermal imaging (IRTI) as a novel, noninvasive technique in adjunctive diagnostic screening for lower limb deep venous thrombosis (DVT). The authors used an infrared thermal imaging sensor to examine the lower limbs of 64 DVT patients and 64 healthy volunteers. The DVT patients had been definitively diagnosed with either Doppler vascular compression ultrasonography or angiography. The mean area temperature (T_area) and mean linear temperature (T_line) in the region of interest were determined with infrared thermal imaging. Images were evaluated with qualitative pseudocolor analysis to verify specific color-temperature responses and with quantitative temperature analysis. Differences in T_area and T_line between the DVT limb and the nonaffected limb in each DVT patient and temperature differences (TDs) in T_area (TDarea) and T_line (TDline) between DVT patients and non-DVT volunteers were compared. Qualitative pseudocolor analysis revealed visible asymmetry between the DVT side and non-DVT side in the presentation and distribution characteristics (PDCs) of infrared thermal images. The DVT limbs had areas of abnormally high temperature, indicating the presence of DVT. Of the 64 confirmed DVT patients, 62 (96.88%) were positive by IRTI detection. Among these 62 IRTI-positive cases, 53 (82.81%) showed PDCs that agreed with the DVT regions detected by Doppler vascular compression ultrasonography or angiography. In nine patients (14.06%), IRTI PDCs did not definitively agree with the DVT regions established with other testing methods, but still correctly indicated the DVT-affected limb. There was a highly significant difference between DVT and non-DVT sides in DVT patients (P < 0.01). The TDarea and TDline in non-DVT volunteers ranged from 0.19 ± 0.15 °C to 0.21 °C ± 0.17 °C; those in DVT patients ranged from 0.86 °C ± 0.71 °C to 1.03 °C ± 0.79 °C (P < 0.01). Infrared thermal imaging can be effectively used in DVT detection and adjunctive diagnostic screening because of its specific infrared PDCs and TDs values.
Wang, Xingyu; Wang, Junmei; Zheng, Hong; Xie, Mengyu; Hopewell, Emily L.; Albrecht, Randy A.; Nogusa, Shoko; García-Sastre, Adolfo; Balachandran, Siddharth; Beg, Amer A.
2014-01-01
Host innate-immune responses are tailored by cell-type to control and eradicate specific infectious agents. For example, an acute RNA virus infection can result in high-level expression of type 1 interferons (IFNs) by both conventional (cDCs) and plasmacytoid dendritic cells (pDCs), but while cDCs preferentially utilize RIG-I-like Receptor (RLR) signaling to produce type 1 IFNs, pDCs predominantly employ Toll-like Receptors (TLR) to induce these cytokines. We previously found that the IKKβ/NF-κB pathway regulates early IFN-β expression but not the magnitude of type 1 IFN expression following RLR engagement. In this study, we use IKKβ inhibition and mice deficient in IKKβ or canonical NF-κB subunits (p50, RelA/p65 and cRel) to demonstrate that the IKKβ/NF-κB axis is critically important for virus-induced type 1 IFN expression in pDCs, but not in cDCs. We also reveal a crucial and more general requirement for IKKβ/NF-κB in TLR - but not RLR- induced expression of type 1 IFNs and inflammatory cytokines. Together, these findings reveal a previously unappreciated specificity of the IKKβ/NF-κB signaling axis in regulation of anti-microbial responses by different classes of PRR, and therefore by individual cell-types reliant on particular PRRs for their innate-immune transcriptional responses. PMID:25057006
Rao, Sambasiva P.; Sancho, Jose; Campos-Rivera, Juanita; Boutin, Paula M.; Severy, Peter B.; Weeden, Timothy; Shankara, Srinivas; Roberts, Bruce L.; Kaplan, Johanne M.
2012-01-01
Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact. PMID:22761788
Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.
Lambrechts, Toon; Papantoniou, Ioannis; Rice, Brent; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie
2016-09-01
With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Lube, Gert
2017-01-01
Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non-turbulent/turbulent interface, as well as vertical velocity and density profiles in the ash-cloud surge, which strongly differ from current theoretical predictions. Observed generation of successive pulses of high dynamic pressure within the upper dilute levels of the PDC may be important to understand the destructive potential of PDCs. The experiments further show that a wide range in the degree of coupling between particle and gas phases is critical to the vertical and longitudinal segregation of the currents into reaches that have starkly contrasting sediment transport capacities. In particular, the formation of mesoscale turbulence clusters under strong particle-gas feedback controls vertical stratification inside the turbulent upper levels of the current (ash-cloud surge) and triggers significant transfers of mass and momentum from the ash-cloud surge onto the granular-fluid basal flow. These results open up new pathways to advance current computational PDC hazard models and to describe and interpret PDCs as well as other types of high-density gravity currents transported across the surfaces of Earth and other planets and across marine basins.
Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans
2011-01-01
The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke
2018-05-01
The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.
2009-04-01
Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.
TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets
Han, Sun Murray; Na, Hye Young; Ham, Onju; Choi, Wanho; Sohn, Moah; Ryu, Seul Hye; In, Hyunju; Hwang, Ki-Chul
2016-01-01
Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s). PMID:26937233
Venturini, James; Cavalcante, Ricardo Souza; Moris, Daniela Vanessa; Golim, Márjorie de Assis; Levorato, Adriele Dandara; Reis, Karoline Hagatha Dos; Arruda, Maria Sueli Parreira de; Mendes, Rinaldo Poncio
2017-09-01
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi from the genus Paracoccidioides in Latin America. PCM-patients (PCM-p) are classified as having acute/subacute or chronic (CF) clinical forms. CF is responsible for 75%-90% of all cases, affects mainly adults over 30 years old and the clinical manifestation are associated mainly with lungs and mucosa of upper airdigestive tract. In addition, the CF patients exhibit fibrosis of the lungs, oral mucous membranes and adrenals, and pulmonary emphysema. Consequently, CF PCM-p with active disease, as well as those that have been apparently cured, seem to be an interesting model for studies aiming to understand the long-term host-fungi relationship and hypoxia. Dendritic cells (DCs) constitute a system that serve as a major link between innate and adaptive immunity composed of several subpopulations of cells including two main subsets: myeloid (mDCs) and plasmacytoid (pDCs). The present study aimed to access the distribution of PBDC subsets of CF PCM-p who were not treated (NT) or treated (apparently cured - AC). CF PCM-p were categorized into two groups, consisting of 9 NTs and 9 ACs. Twenty-one healthy individuals were used as the control group. The determination of the PBDC subsets was performed by FACS (fluorescence-activated cell sorting) and the dosage of serum TNF-α, IL1β, IL-18, CCL3, IL-10 and basic fibroblast growth factor (bFGF) by ELISA (enzyme-linked immunosorbent assay). A high count and percentage of mDCs was observed before treatment, along with a low count of pDCs in treated patients. Furthermore, the mDC:pDC ratio and serum levels of TNF-α was higher in both of the PCM-p groups than in the control group. In conclusion, our findings demonstrated that active PCM influences the distribution of mDCs and pDCs, and after treatment, PCM-p retained a lower count of pDCs associated with pro-inflammatory profile. Therefore, we identified new evidences of persistent immunological abnormalities in PCM-p after treatment. Even these patients showing fungal clearance after successful antifungal treatment; the hypoxia, triggered by the persistent pulmonary sequelae, possibly continues to interfere in the immune response. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in many different organ systems, activation of leukocytes and production of pro-inflammatory cytokines. The heterodimer of the cytosolic calcium-binding proteins S100A8 and S100A9 (S100A8/A9) is secreted by activated polymorphonuclear neutrophils (PMNs) and monocytes and serves as a serum marker for several inflammatory diseases. Furthermore, S100A8 and S100A9 have many pro-inflammatory properties such as binding to Toll-like receptor 4 (TLR4). In this study we investigated if aberrant cell surface S100A8/A9 could be seen in SLE and if plasmacytoid dendritic cells (pDCs) could synthesize S100A8/A9. Methods Flow cytometry, confocal microscopy and real-time PCR of flow cytometry-sorted cells were used to measure cell surface S100A8/A9, intracellular S100A8/A9 and mRNA levels of S100A8 and S100A9, respectively. Results Cell surface S100A8/A9 was detected on all leukocyte subpopulations investigated except for T cells. By confocal microscopy, real-time PCR and stimulation assays, we could demonstrate that pDCs, monocytes and PMNs could synthesize S100A8/A9. Furthermore, pDC cell surface S100A8/A9 was higher in patients with active disease as compared to patients with inactive disease. Upon immune complex stimulation, pDCs up-regulated the cell surface S100A8/A9. SLE patients had also increased serum levels of S100A8/A9. Conclusions Patients with SLE had increased cell surface S100A8/A9, which could be important in amplification and persistence of inflammation. Importantly, pDCs were able to synthesize S100A8/A9 proteins and up-regulate the cell surface expression upon immune complex-stimulation. Thus, S100A8/A9 may be a potent target for treatment of inflammatory diseases such as SLE. PMID:21492422
Long-term multi-hazard assessment for El Misti volcano (Peru)
NASA Astrophysics Data System (ADS)
Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto
2014-02-01
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.
Ogburn, Sarah E.; Calder, Eliza S
2017-01-01
High concentration pyroclastic density currents (PDCs) are hot avalanches of volcanic rock and gas and are among the most destructive volcanic hazards due to their speed and mobility. Mitigating the risk associated with these flows depends upon accurate forecasting of possible impacted areas, often using empirical or physical models. TITAN2D, VolcFlow, LAHARZ, and ΔH/L or energy cone models each employ different rheologies or empirical relationships and therefore differ in appropriateness of application for different types of mass flows and topographic environments. This work seeks to test different statistically- and physically-based models against a range of PDCs of different volumes, emplaced under different conditions, over different topography in order to test the relative effectiveness, operational aspects, and ultimately, the utility of each model for use in hazard assessments. The purpose of this work is not to rank models, but rather to understand the extent to which the different modeling approaches can replicate reality in certain conditions, and to explore the dynamics of PDCs themselves. In this work, these models are used to recreate the inundation areas of the dense-basal undercurrent of all 13 mapped, land-confined, Soufrière Hills Volcano dome-collapse PDCs emplaced from 1996 to 2010 to test the relative effectiveness of different computational models. Best-fit model results and their input parameters are compared with results using observation- and deposit-derived input parameters. Additional comparison is made between best-fit model results and those using empirically-derived input parameters from the FlowDat global database, which represent “forward” modeling simulations as would be completed for hazard assessment purposes. Results indicate that TITAN2D is able to reproduce inundated areas well using flux sources, although velocities are often unrealistically high. VolcFlow is also able to replicate flow runout well, but does not capture the lateral spreading in distal regions of larger-volume flows. Both models are better at reproducing the inundated area of single-pulse, valley-confined, smaller-volume flows than sustained, highly unsteady, larger-volume flows, which are often partially unchannelized. The simple rheological models of TITAN2D and VolcFlow are not able to recreate all features of these more complex flows. LAHARZ is fast to run and can give a rough approximation of inundation, but may not be appropriate for all PDCs and the designation of starting locations is difficult. The ΔH/L cone model is also very quick to run and gives reasonable approximations of runout distance, but does not inherently model flow channelization or directionality and thus unrealistically covers all interfluves. Empirically-based models like LAHARZ and ΔH/L cones can be quick, first-approximations of flow runout, provided a database of similar flows, e.g., FlowDat, is available to properly calculate coefficients or ΔH/L. For hazard assessment purposes, geophysical models like TITAN2D and VolcFlow can be useful for producing both scenario-based or probabilistic hazard maps, but must be run many times with varying input parameters. LAHARZ and ΔH/L cones can be used to produce simple modeling-based hazard maps when run with a variety of input volumes, but do not explicitly consider the probability of occurrence of different volumes. For forward modeling purposes, the ability to derive potential input parameters from global or local databases is crucial, though important input parameters for VolcFlow cannot be empirically estimated. Not only does this work provide a useful comparison of the operational aspects and behavior of various models for hazard assessment, but it also enriches conceptual understanding of the dynamics of the PDCs themselves.
NASA Astrophysics Data System (ADS)
Lube, G.; Cronin, S. J.; Breard, E.; Valentine, G.; Bursik, M. I.; Hort, M. K.; Freundt, A.
2013-12-01
We report on the first systematic series of large-scale Pyroclastic Density Current (PDC) experiments using the New Zealand PDC Generator, a novel international research facility in Physical Volcanology recently commissioned at Massey University. Repeatable highly energetic and hot PDCs are synthesized by the controlled ';eruption column-collapse' of up to 3500 kg of homogenously aerated Taupo ignimbrite material from a 15 m-elevated hopper onto an instrumented inclined flume. At discharge rates between 250-1300 kg/s and low- to moderate gas injection rates (yielding initial solids concentration of 15-70 vol%) channelized gas-particle mixture flows life-scaled to dense PDCs can be generated. The flow fronts of the currents reach velocities of up to 9.5 m/s over their first 12 m of travel and rapidly develop strong vertical density stratification. The PDCs typically form a highly mobile, <60 cm-thick dense and channel-confined underflow, with an overriding dilute and turbulent ash cloud surge that also laterally escapes the flume boundaries. Depending on the PDC starting conditions underflows with 1-45 vol% solids concentration are formed, while the upper surge contains <<1 vol.% solids. A characteristic feature of the underflow is the occurrence of 'ignitive' front breakouts, producing jetted lobes that accelerate outward from the flow front, initially forming a lobe-cleft structure, followed by segregation downslope into multiple flow pulses. Depending on initial solids concentration and discharge rate, stratified, dune-bedded and inversely graded bedforms are created whose thicknesses are remarkably uniform along the medial to distal runout path characterising highly mobile flow runout. Along with high-speed video footage we present time-series data of basal arrays of load- and gas-pore pressure transducers to characterise the mobile dense underflows. Data shows that the PDCs are comprised of a turbulent coarse-grained and air-ingesting front with particle-solids concentrations of 1-5 vol%. The front shows a brief phase of negative pore pressure due to the entrainment and upward elutriation of ambient air inside this front. It is immediately followed by the fine-ash rich and highly impermeable main flow body. Passage of the flow body is accompanied by strongly increasing pore-pressures of 1-3 kPa that almost fully supports the weight of the entire underflow - depicting flow-induced fluidisation of the main flow part. The remainder of the flow body shows further increases in pore-pressure aside with strong reductions in flow mass. This suggests the occurrence of zones of air-cushions forming at the base of the underflow that largely aid its inviscid runout. This sequence is repeated during arrival and passage of up to three more flow pulses. The low-permeability deposits maintain high internal gas pore pressures for several minutes after emplacement, before sudden deaeration, settling and gas loss is caused by fracturing. Flow-induced fluidisation and basal air-cushioning provide key processes behind the enigmatic long runout behaviour of dense PDCs.
Role for Dendritic Cells in Immunoregulation during Experimental Vaginal Candidiasis
LeBlanc, Dana M.; Barousse, Melissa M.; Fidel, Paul L.
2006-01-01
Vulvovaginal candidiasis (VVC) caused by the commensal organism Candida albicans remains a significant problem among women of childbearing age, with protection against and susceptibility to infection still poorly understood. While cell-mediated immunity by CD4+ Th1-type cells is protective against most forms of mucosal candidiasis, no protective role for adaptive immunity has been identified against VVC. This is postulated to be due to immunoregulation that prohibits a more profound Candida-specific CD4+ T-cell response against infection. The purpose of this study was to examine the role of dendritic cells (DCs) in the induction phase of the immune response as a means to understand the initiation of the immunoregulatory events. Immunostaining of DCs in sectioned murine lymph nodes draining the vagina revealed a profound cellular reorganization with DCs becoming concentrated in the T-cell zone throughout the course of experimental vaginal Candida infection consistent with cell-mediated immune responsiveness. However, analysis of draining lymph node DC subsets revealed a predominance of immunoregulation-associated CD11c+ B220+ plasmacytoid DCs (pDCs) under both uninfected and infected conditions. Staining of vaginal DCs showed the presence of both DEC-205+ and pDCs, with extension of dendrites into the vaginal lumen of infected mice in close contact with Candida. Flow cytometric analysis of draining lymph node DC costimulatory molecules and activation markers from infected mice indicated a lack of upregulation of major histocompatibility complex class II, CD80, CD86, and CD40 during infection, consistent with a tolerizing condition. Together, the results suggest that DCs are involved in the immunoregulatory events manifested during a vaginal Candida infection and potentially through the action of pDCs. PMID:16714548
Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan
2017-10-01
Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.
Diaz, F; Komuniecki, R W
1994-10-01
The pyruvate dehydrogenase complex (PDC) has been purified to apparent homogeneity from 2 parasitic helminths exhibiting anaerobic mitochondrial metabolism, the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum. The P. equorum PDC yielded 7 major bands when separated by SDS-PAGE. The bands of 72, 55-53.5, 41 and 36 kDa corresponded to E2, E3, E1 alpha and E1 beta, respectively. The complex also contained additional unidentified proteins of 43 and 45 kDa. Incubation of the complex with [2-14C]pyruvate resulted in the acetylation of only E2. These results suggest that the P. equorum PDC lacks protein X and exhibits an altered subunit composition, as has been described previously for the PDC of the related nematode, Ascaris suum. In contrast, the D. caninum PDC yielded only four major bands after SDS-PAGE of 59, 58, 39 and 34 kDa, which corresponded to E3, E2, E1 alpha and E1 beta, respectively. Incubation of the D. caninum complex with [2-14C]pyruvate resulted in the acetylation of E2 and a second protein which comigrated with E3, suggesting that the D. caninum complex contained protein X and had a subunit composition similar to PDCs from other eukaryotic organisms. Both helminth complexes appeared less sensitive to inhibition by elevated NADH/NAD+ ratios than complexes isolated from aerobic organisms, as would be predicted for PDCs from organisms exploiting microaerobic habitats. These results suggest that although these helminths have similar anaerobic mitochondrial pathways, they contain significantly different PDCs.
Dendritic cells in uninfected infants born to hepatitis B virus-positive mothers.
Koumbi, Lemonica J; Papadopoulos, Nikolaos G; Anastassiadou, Vassiliki; Machaira, Maria; Kafetzis, Dimitris A; Papaevangelou, Vassiliki
2010-07-01
Plasmacytoid dendritic cells (pDCs) play a central role in antiviral immunity, detecting viruses via Toll-like receptors (TLR) and producing in response vast amounts of type I interferons (IFNs). Hepatitis B virus (HBV) causes chronic infection after vertical transmission. This study investigated whether an HBV-infected maternal environment might influence DC numbers and pDC function in uninfected infants. Blood was collected from inactive HBsAg carrier and control mothers and their infants at birth and 1 and 6 months of age. HBV DNA was measured in maternal and neonatal perinatal sera using real-time PCR. The circulating frequencies of myeloid DCs (mDCs) and pDCs were determined in the babies by flow cytometry. Peripheral blood mononuclear cells (PBMCs) and cord blood pDCs were stimulated with resiquimod, and alpha interferon (IFN-alpha) production and the pDC phenotype were assessed. The effect of the common-cold virus, rhinovirus (RV), on resiquimod stimulation was also determined. HBV DNA was detected in 62.3% of the mothers and 41% of their infants. DC numbers and pDC functions were similar between subjects and controls and were not correlated with maternal or neonatal viremia. RV infection did not induce pDC maturation until the age of 6 months, and it reduced TLR7-dependent resiquimod-induced IFN-alpha production similarly in both groups. Although the DC system is immature at birth, DCs of uninfected neonates of HBV-positive mothers are competent to initiate and maintain T-cell responses. RV is a weak inducer of IFN-alpha production until the age of 6 months and inhibits IFN-alpha responses triggered by the TLR7 pathway.
What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents
NASA Astrophysics Data System (ADS)
Marshall, B. J.; Andrews, B. J.; Fauria, K.
2015-12-01
A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.
Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian
2017-06-14
A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.
NASA Astrophysics Data System (ADS)
Kubo, A. I.; Dufek, J.
2017-12-01
Around explosive volcanic centers such as Mount Saint Helens, pyroclastic density currents (PDCs) pose a great risk to life and property. Understanding of the mobility and dynamics of PDCs and other gravity currents is vital to mitigating hazards of future eruptions. Evidence from pyroclastic deposits at Mount Saint Helens and one-dimensional modeling suggest that channelization of flows effectively increases run out distances. Dense flows are thought to scour and erode the bed leading to confinement for subsequent flows and could result in significant changes to predicted runout distance and mobility. Here, we present the results of three-dimensional multiphase models comparing confined and unconfined flows using simplified geometries. We focus on bed stress conditions as a proxy for conditions that could influence subsequent erosion and self-channelization. We also explore the controls on gas entrainment in all scenarios to determine how confinement impacts the particle concentration gradient, granular interactions, and mobility.
Highly branched penta-saccharide-bearing amphiphiles for membrane protein studies
Ehsan, Muhammad; Du, Yang; Scull, Nicola J.; Tikhonova, Elena; Tarrasch, Jeffrey; Mortensen, Jonas S.; Loland, Claus J.; Skiniotis, Georgios; Guan, Lan; Byrne, Bernadette; Kobilka, Brian K.; Chae, Pil Seok
2016-01-01
Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, making structural and functional analysis feasible. Although a number of novel agents have been developed to overcome the limitations of conventional detergents, most of them have traditional head groups such as glucoside or maltoside. In this study, we introduce a class of amphiphiles, the PSA’Es with a novel highly branched penta-saccharide hydrophilic group. The PSA’Es conferred markedly increased stability to a diverse range of membrane proteins compared to conventional detergents, indicating a positive role for the new hydrophilic group in maintaining the native protein integrity. In addition, PDCs formed by PSA’Es were smaller and more suitable for electron microscopic analysis than those formed by DDM, indicating that the new agents have significant potential for the structure-function studies of membrane proteins. PMID:26966956
Performance assessment study of the balloon-borne astronomical soft gamma-ray polarimeter PoGOLite
NASA Astrophysics Data System (ADS)
Arimoto, M.; Kanai, Y.; Ueno, M.; Kataoka, J.; Kawai, N.; Tanaka, T.; Yamamoto, K.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Axelsson, M.; Kiss, M.; Marini Bettolo, C.; Carlson, P.; Klamra, W.; Pearce, M.; Chen, P.; Craig, B.; Kamae, T.; Madejski, G.; Ng, J. S. T.; Rogers, R.; Tajima, H.; Thurston, T. S.; Saito, Y.; Takahashi, T.; Gunji, S.; Bjornsson, C.-I.; Larsson, S.; Ryde, F.; Bogaert, G.; Varner, G.
2007-12-01
Measurements of polarization play a crucial role in the understanding of the dominant emission mechanism of astronomical sources. Polarized Gamma-ray Observer-Light version (PoGOLite) is a balloon-borne astronomical soft gamma-ray polarimeter at the 25 80 keV band. The PoGOLite detector consists of a hexagonal close-packed array of 217 Phoswich detector cells (PDCs) and side anti-coincidence shields (SASs) made of BGO crystals surrounding PDCs. Each PDC consists of a slow hollow scintillator, a fast scintillator and a BGO crystal that connects to a photomultiplier tube at the end. To examine the PoGOLite's capability and estimate the performance, we conducted experiments with the PDC using radioisotope 241Am. In addition, we compared this result with performance expected by Monte Carlo simulation with Geant4. As a result, we found that the actual PDC has the capability to detect a 100 m Crab source until 80 keV.
Culturing primary mouse pancreatic ductal cells.
Reichert, Maximilian; Rhim, Andrew D; Rustgi, Anil K
2015-06-01
The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles ductal cells morphologically. To study pancreatic ductal cell (PDC) and pancreatic intraepithelial neoplasia (PanIN)/PDAC biology, it is essential to have reliable in vitro culture conditions. Here we describe a methodology to isolate, culture, and passage PDCs and duct-like cells from the mouse pancreas. It can be used to isolate cells from genetically engineered mouse models (GEMMs), providing a valuable tool to study disease models in vitro to complement in vivo findings. The culture conditions allow epithelial cells to outgrow fibroblast and other "contaminating" cell types within a few passages. However, the resulting cultures, although mostly epithelial, are not completely devoid of fibroblasts. Regardless, this protocol provides guidelines for a robust in vitro culture system to isolate, maintain, and expand primary pancreatic ductal epithelial cells. It can be applied to virtually all GEMMs of pancreatic disease and other diseases and cancers that arise from ductal structures. Because most carcinomas resemble ductal structures, this protocol has utility in the study of other cancers in addition to PDAC, such as breast and prostate cancers. © 2015 Cold Spring Harbor Laboratory Press.
Train the Trainer. Final Report. Fiscal Year 1997-1998.
ERIC Educational Resources Information Center
TIU Adult Education and Job Training Center, Lewistown, PA.
A project designed an operational system and develop a skilled pool of trainers, in conjunction with Pennsylvania's Regional Professional Development Centers (PDCs), to deliver high-quality, uniform training modules in needed content areas to adult basic and literacy education (ABLE) staff throughout Pennsylvania. Procedures for identifying,…
Zafirova, Biljana; This, Sébastien; Coléon, Séverin; Décembre, Elodie; Paidassi, Helena; Bouvier, Isabelle; Joubert, Pierre-Emmanuel; Duffy, Darragh; Walzer, Thierry
2018-01-01
Type I interferon (IFN-I) responses are critical for the control of RNA virus infections, however, many viruses, including Dengue (DENV) and Chikungunya (CHIKV) virus, do not directly activate plasmacytoid dendritic cells (pDCs), robust IFN-I producing cells. Herein, we demonstrated that DENV and CHIKV infected cells are sensed by pDCs, indirectly, resulting in selective IRF7 activation and IFN-I production, in the absence of other inflammatory cytokine responses. To elucidate pDC immunomodulatory functions, we developed a mouse model in which IRF7 signaling is restricted to pDC. Despite undetectable levels of IFN-I protein, pDC-restricted IRF7 signaling controlled both viruses and was sufficient to protect mice from lethal CHIKV infection. Early pDC IRF7-signaling resulted in amplification of downstream antiviral responses, including an accelerated natural killer (NK) cell-mediated type II IFN response. These studies revealed the dominant, yet indirect role of pDC IRF7-signaling in directing both type I and II IFN responses during arbovirus infections. PMID:29914621
NASA Astrophysics Data System (ADS)
Gase, Andrew C.; Brand, Brittany D.; Bradford, John H.
2017-03-01
The causes and effects of erosion are among the least understood aspects of pyroclastic density current (PDC) dynamics. Evidence is especially limited for erosional self-channelization, a process whereby PDCs erode a channel that confines the body of the eroding flow or subsequent flows. We use ground-penetrating radar imaging to trace a large PDC scour and fill from outcrop to its point of inception and discover a second, larger PDC scour and fill. The scours are among the largest PDC erosional features on record, at >200 m wide and at least 500 m long; estimated eroded volumes are on the order of 106 m3. The scours are morphologically similar to incipient channels carved by turbidity currents. Erosion may be promoted by a moderate slope (5-15°), substrate pore pressure retention, and pulses of increased flow energy. These findings are the first direct evidence of erosional self-channelization by PDCs, a phenomenon that may increase flow velocity and runout distance through confinement and substrate erosion.
Chai, Xiao-qing; Shu, Shu-hua; Zhang, Xiao-lin; Xie, Yan-hu; Wei, Xin; Wu, Yu-jing; Wei, Wei
2016-01-01
The present study evaluated whether flurbiprofen increased the naturally circulating dendritic cells (DCs) subsets in patients with esophageal squamous cell carcinoma (ESCC) undergoing esophageal resection. Compared to healthy donors (n=20), the significantly depressed percentages of plasmacytoid DCs (pDCs), CD1c+ myeloid DCs (mDCs), and CD141+ mDCs among ESCC patients (n=60) were confirmed. Flurbiprofen was administered before skin incision and at the end of operation in group F (n=30), as well as placebo in group C (n=30). The postoperative suppressed percentages of pDCs, CD1c+ mDCs, and CD141+ mDCs increased significantly following the perioperative treatment with flurbiprofen. Flurbiprofen also significantly stimulated the postoperative IFN-f and IL-17 production, but inhibited the immunosuppressive IL-10 and TGF-β levels. Furthermore, flurbiprofen exerted a similar analgesic effect and brought a significantly less sufentanil consumption compared to group C. Taken together, flurbiprofen provided a short-term increase of postoperative naturally circulating DCs in ESCC patients. PMID:26959879
Wang, Di; Yang, Xin-lu; Chai, Xiao-qing; Shu, Shu-hua; Zhang, Xiao-lin; Xie, Yan-hu; Wei, Xin; Wu, Yu-jing; Wei, Wei
2016-04-05
The present study evaluated whether flurbiprofen increased the naturally circulating dendritic cells (DCs) subsets in patients with esophageal squamous cell carcinoma (ESCC) undergoing esophageal resection. Compared to healthy donors (n=20), the significantly depressed percentages of plasmacytoid DCs (pDCs), CD1c+ myeloid DCs (mDCs), and CD141+ mDCs among ESCC patients (n=60) were confirmed. Flurbiprofen was administered before skin incision and at the end of operation in group F (n=30), as well as placebo in group C (n=30). The postoperative suppressed percentages of pDCs, CD1c+ mDCs, and CD141+ mDCs increased significantly following the perioperative treatment with flurbiprofen. Flurbiprofen also significantly stimulated the postoperative IFN-f and IL-17 production, but inhibited the immunosuppressive IL-10 and TGF-β levels. Furthermore, flurbiprofen exerted a similar analgesic effect and brought a significantly less sufentanil consumption compared to group C. Taken together, flurbiprofen provided a short-term increase of postoperative naturally circulating DCs in ESCC patients.
NASA Astrophysics Data System (ADS)
Pensa, Alessandra; Capra, Lucia; Giordano, Guido; Corrado, Sveva
2018-05-01
The recent 10th-11th of July 2015 Volcán de Colima eruption involved the collapse of the summit dome that breached to the south generating pyroclastic density currents (PDCs) along the Montegrande ravine on the southern flank of the volcano. Trees within the valley were buried, uprooted and variably transported by the PDCs, while the trees on the edges of the valley and on the overbanks, were mainly burned and folded. The emplacement temperature of valley confined and overbank PDC deposits were reconstructed using Partial Thermal Remanent Magnetization (pTRM) analysis of lithic clasts and Charcoal Reflectance analysis (Ro %) applied to the charred wood. A total of 13 sites were sampled for the pTRM study and 39 charcoaled wood fragments were collected for the charcoal optical analysis along the entire deposit length in order to detect temperature variation from proximal to distal zone. The result overlap from both data sets display a T max from ≃345°-385 °C in valley-confined area (from 3.5 to 8.5 km from the vent) and ≃170°-220 °C (from 8.0 to 10.5 km from the vent) in unconfined distal area. The emplacement temperature pattern along the 10.5 km long deposit appears related to the degree of topography confinement: valley confined and unconfined. In particular the valley confined setting is very conservative in terms of temperature, while the major drop occurs in a very narrow space where the PDC expanded over unconfined flat topography just at the exit of the main valley. This study represents the first attempt in determining the relationship between PDCs flow dynamics variation and topographic confining using deposit emplacement temperature as key proxy.
Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo
2013-01-01
Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related to another collapse of the new lava dome on 19 February 2009 traveled to within 3 km of the village of Chaitén, 10 km downstream of the volcano. It deposited as much as 8-10 m of diamict having sedimentary characteristics very similar to the previous BAF deposit. Charred trees locally encased within the BAD deposits suggest that the flows were of moderate temperature, perhaps as much as 300°C. Erosion of the BAD deposits filling the Chaitén River channel has delivered substantial sediment loads downstream, contributing to channel instability and challenged river management.
NASA Astrophysics Data System (ADS)
Burns, F. A.; Bonadonna, C.; Pioli, L.; Cole, P. D.; Stinton, A.
2017-04-01
On 11 February 2010, Soufrière Hills Volcano, Montserrat, underwent a partial dome collapse ( 50 × 106 m3) and a short-lived Vulcanian explosion towards the end. Three main pyroclastic units were identified N and NE of the volcano: dome-collapse pyroclastic density current (PDC) deposits, fountain-collapse PDC deposits formed by the Vulcanian explosion, and tephra-fallout deposits associated with elutriation from the dome-collapse and fountain-collapse PDCs (i.e. co-PDC fallout deposit). The fallout associated with the Vulcanian explosion was mostly dispersed E and SE by high altitude winds. All units N and NE of the volcano contain variable amounts and types of particle aggregates, although the co-PDC fallout deposit is associated with the largest abundance (i.e. up to 24 wt%). The size of aggregates found in the co-PDC fallout deposit increases with distance from the volcano and proximity to the sea, reaching a maximum diameter of 12 mm about 500 m from the coast. The internal grain size of all aggregates have nearly identical distributions (with Mdϕ ≈ 4-5), with particles in the size categories > 3 ϕ (i.e. < 250 μm) being distributed in similar proportions within the aggregates but in different proportions within distinct internal layers. In fact, most aggregates are characterized by a coarse grained central core occupying the main part of the aggregate, coated by a thin layer of finer ash (single-layer aggregates), while others have one or two additional layers accreted over the core (multiple-layer aggregates). Calculated aggregate porosity and settling velocity vary between 0.3 and 0.5 and 11-21 m s- 1, respectively. The aggregate size shows a clear correlation with both the core size and the size of the largest particles found in the core. The large abundance of aggregates in the co-PDC fallout deposits suggests that the buoyant plumes elutriated above PDCs represent an optimal environment for the formation (particle collision) and development (aggregate layering) of particle aggregates. However, specific conditions are required, including i) a large availability of water (in this case provided by the steam plumes associated with the entrance of PDCs into the ocean), ii) presence of plume regions with different grain-size features (i.e. both median size and sorting) that allows for the development of multiple layers, iii) strong turbulence that permits both particle collision and the transition of the aggregates through different plume regions, iv) presence of hot regions (e.g. PDCs) that promote aggregate preservation (in this case also facilitated by the presence of sea salt).
NASA Astrophysics Data System (ADS)
Baxter, Peter J.; Boyle, Robin; Cole, Paul; Neri, Augusto; Spence, Robin; Zuccaro, Giulio
2005-04-01
We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1-5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelée (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts.
Comstock, Sarah S; Li, Min; Wang, Mei; Monaco, Marcia H; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Donovan, Sharon M
2017-06-01
Background: Human milk oligosaccharides (HMOs) have antimicrobial and immunomodulatory actions. It has previously been reported that these oligosaccharides contribute to the reduced duration of rotavirus-induced diarrhea in pigs. Objective: We measured the effects of HMOs and prebiotic oligosaccharides on immune cell populations from noninfected and rotavirus-infected pigs. We hypothesized that dietary HMOs would modulate systemic and gastrointestinal immunity. Methods: Colostrum-deprived newborn pigs were fed formula, formula with 4 g HMOs/L (2'-fucosyllactose, lacto- N -neotetraose, 6'-sialyllactose, 3'-sialyllactose, and free sialic acid), or formula with 3.6 g short-chain galactooligosaccharides/L and 0.4 g long-chain fructooligosaccharides/L. On day 10, half of the pigs were infected with the porcine rotavirus strain OSU. Peripheral blood mononuclear cell (PBMC), mesenteric lymph node (MLN), and ileal Peyer's patch immune cell populations were assessed with the use of flow cytometry 5 d postinfection. Interferon-γ (IFN-γ)-producing cells were assessed with the use of Enzyme-Linked ImmunoSpot assay. Results: Infection changed immune cell populations with more systemic natural killer (NK) cells, memory effector T cells, and major histocompatibility complex II + cells in infected than noninfected pigs ( P < 0.06). Regardless of infection status, HMO-fed pigs had nearly twice as many PBMC NK cells, 36% more MLN effector memory T cells, and 5 times more PBMC basophils than formula-fed pigs ( P < 0.04). These populations were intermediate in pigs fed prebiotics. PBMCs from HMO-fed noninfected pigs had twice as many IFN-γ-producing cells as did those from formula-fed noninfected pigs ( P = 0.017). The PBMCs and MLNs of formula-fed noninfected pigs had 3 times more plasmacytoid dendritic cells (pDCs) than those of HMO-fed noninfected and formula-fed infected pigs ( P < 0.04). In the MLNs, the formula-fed noninfected pigs had more macrophages, pDCs, and mature DCs ( P < 0.04) but fewer immature DCs than HMO-fed noninfected pigs ( P = 0.022). Conclusions: Dietary HMOs were more effective than prebiotics in altering systemic and gastrointestinal immune cells in pigs. These altered immune cell populations may mediate the effects of dietary HMOs on rotavirus infection susceptibility. © 2017 American Society for Nutrition.
Chemokine and lymph node homing receptor expression on pDC vary by graft source.
Hosoba, Sakura; Harris, Wayne Ac; Lin, Kaifeng L; Waller, Edmund K
2014-11-01
A randomized clinical trial of BM vs. blood stem cell transplants from unrelated donors showed that more plasmacytoid dendritic cells (pDCs) in BM grafts was associated with better post-transplant survival. Here, we describe differences in homing-receptor expression on pDC to explain observed differences following BM vs. blood stem cell transplantation.
Space vehicle electrical power processing distribution and control study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Krausz, A.
1972-01-01
A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).
Wang, Yaming; Swiecki, Melissa; Cella, Marina; Alber, Gottfried; Schreiber, Robert D; Gilfillan, Susan; Colonna, Marco
2013-01-01
Summary Type I Interferons (IFN-I) promote antiviral CD8+T cell responses, but the contribution of different IFN-I sources and signaling pathways are ill-defined. While plasmacytoid dendritic cells (pDCs) produce IFN-I upon TLR stimulation, IFN-I are induced in most cells by helicases like MDA5. Using acute and chronic lymphocytic choriomeningitis virus (LCMV) infection models, we determined that pDCs transiently produce IFN-I that minimally impacts CD8+T cell responses and viral persistence. Rather, MDA5 is the key sensor that induces IFN-I required for CD8+T cell responses. In the absence of MDA5, CD8+T cell responses to acute infection rely on CD4+T cell help, and loss of both CD4+T cells and MDA5 results in CD8+T cell exhaustion and persistent infection. Chronic LCMV infection rapidly attenuates IFN-I responses, but early administration of exogenous IFN-I rescues CD8+T cells, promoting viral clearance. Thus, effective antiviral CD8+T cell responses depend on the timing and magnitude of IFN-I responses. PMID:22704623
Standish, Katherine; Kuan, Guillermina; Avilés, William; Balmaseda, Angel; Harris, Eva
2010-01-01
Dengue is a major public health problem in tropical and subtropical regions; however, under-reporting of cases to national surveillance systems hinders accurate knowledge of disease burden and costs. Laboratory-confirmed dengue cases identified through the Nicaraguan Pediatric Dengue Cohort Study (PDCS) were compared to those reported from other health facilities in Managua to the National Epidemiologic Surveillance (NES) program of the Nicaraguan Ministry of Health. Compared to reporting among similar pediatric populations in Managua, the PDCS identified 14 to 28 (average 21.3) times more dengue cases each year per 100,000 persons than were reported to the NES. Applying these annual expansion factors to national-level data, we estimate that the incidence of confirmed pediatric dengue throughout Nicaragua ranged from 300 to 1000 cases per 100,000 persons. We have estimated a much higher incidence of dengue than reported by the Ministry of Health. A country-specific expansion factor for dengue that allows for a more accurate estimate of incidence may aid governments and other institutions calculating disease burden, costs, resource needs for prevention and treatment, and the economic benefits of drug and vaccine development. PMID:20300515
Wang, Yaming; Swiecki, Melissa; Cella, Marina; Alber, Gottfried; Schreiber, Robert D; Gilfillan, Susan; Colonna, Marco
2012-06-14
Type I interferon (IFN-I) promotes antiviral CD8(+)T cell responses, but the contribution of different IFN-I sources and signaling pathways are ill defined. While plasmacytoid dendritic cells (pDCs) produce IFN-I upon TLR stimulation, IFN-I is induced in most cells by helicases like MDA5. Using acute and chronic lymphocytic choriomeningitis virus (LCMV) infection models, we determined that pDCs transiently produce IFN-I that minimally impacts CD8(+)T cell responses and viral persistence. Rather, MDA5 is the key sensor that induces IFN-I required for CD8(+)T cell responses. In the absence of MDA5, CD8(+)T cell responses to acute infection rely on CD4(+)T cell help, and loss of both CD4(+)T cells and MDA5 results in CD8(+)T cell exhaustion and persistent infection. Chronic LCMV infection rapidly attenuates IFN-I responses, but early administration of exogenous IFN-I rescues CD8(+)T cells, promoting viral clearance. Thus, effective antiviral CD8(+)T cell responses depend on the timing and magnitude of IFN-I production. Copyright © 2012 Elsevier Inc. All rights reserved.
Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère
2016-01-01
Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs. PMID:26843122
Synthesis of SiCN@TiO2 core-shell ceramic microspheres via PDCs method
NASA Astrophysics Data System (ADS)
Liu, Hongli; Wei, Ning; Li, Jing; Zhang, Haiyuan; Chu, Peng
2018-02-01
A facile and effective polymer-derived ceramics (PDCs) emulsification-crosslinking-pyrolysis method was developed to fabricate SiCN@TiO2 core-shell ceramic microspheres with polyvinylsilazane (PVSZ) and tetrabutyl titanate (TBT) as precursors. The TBT: PVSZ mass ratios, emulsifier concentrations and the pyrolysis temperature were examined as control parameters to tune the size and morphology of microspheres. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the synthesized SiCN@TiO2 microspheres to be comprised of SiCN core coated with TiO2 crystals, with an average size of 0.88 μm when pyrolyzed at 1400 °C. The analysis of Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) ensured that SiCN@TiO2 core-shell ceramic microspheres composed of rutile TiO2, β-SiC and Si3N4 crystalline phases, The thermal properties were characterized by thermogravimetric analysis (TGA). The obtained SiCN@TiO2 core-shell ceramic microspheres were the promising candidate of the infrared opacifier in silica aerogels and this technique can be extended to other preceramic polymers.
Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants
Smith, Alyson J.; Li, Yufeng; Bazin, Hélène G.; St-Jean, Julien R.; Larocque, Daniel; Evans, Jay T.; Baldridge, Jory R.
2016-01-01
Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3+/CD8+ T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. PMID:27402566
NASA Astrophysics Data System (ADS)
Bendana, Sylvana; Brand, Brittany D.; Self, Stephen
2014-05-01
The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs.
NASA Astrophysics Data System (ADS)
Swarr, G. J.; Garman, K. A.; Harpp, K. S.; Dufek, J.; Geist, D.
2009-12-01
Late-stage conduit dynamics can strongly influence the explosivity and eruption mechanisms of volatile rich magmas. Magmatic viscosity can affect bubble coalescence, differential magma-gas flow, and fragmentation style. We have examined the products of recent eruptions of an intermediate style of volcanism that produces pyroclastic density currents (PDCs) fed from low eruption columns. These boiling-over style eruptions were observed during the 2006 eruption of Tungurahua and were inferred from the deposits of the 1877 eruption of Cotopaxi. In the 2006 eruption of Tungurahua at least 56 PDCs were recorded; on the basis of observations during the eruptions, all the PDCs were attributed to the boiling over process. In eruptions from both volcanoes, juvenile bombs appear throughout the deposit, often concentrated in levees and in flow lobes. These bombs can be large (5 to 15 decimeters in diameter) and have a fragile bread-crust exterior. The majority of the smaller bombs from the Tungurahua deposits (1 to 5 decimeters in diameter) are flattened and highly vesicular with large vesicles up to 15 mm in diameter. The centers of the largest bombs (up to 1.8 meters across), however, are denser, lacking vesicles larger than 2 mm. At Cotopaxi the juvenile bombs have a similar size and density to those at Tungurahua, but lack large vesicles, instead having a relatively high abundance of vesicles less than 1 mm in diameter. Larger vesicles (up to 3 mm in diameter) are concentrated in frothy, brown to green regions in Cotopaxi deposits. Viscosity calculated using major element contents of the juvenile bombs suggests that those from Tungurahua may be more viscous than those at Cotopaxi by as much as 20 percent. We will examine the differences in bomb color, density, and crystal content at the microscopic level using LA-ICP-MS to determine small scale chemical variations. We propose that these differences at Tungurahua and Cotopaxi reflect subtle differences in magma viscosity and conduit dynamics, and that they have the potential to provide insight into the boiling-over PDC generation mechanism.
Transport and sedimentation in unconfined experimental dilute pyroclastic density currents
NASA Astrophysics Data System (ADS)
Ramirez, G.; Andrews, B. J.; Dennen, R. L.
2013-12-01
We present results from experiments conducted in a new facility that permits the study of large, unconfined particle laden density currents that are dynamically similar to natural dilute pyroclastic density currents (PDCs). Experiments were run in a sealed, air-filled tank measuring 8.5 m long by 6.1 m wide by 2.6 m tall. Currents were generated by feeding mixture of heated particles (5 μm aluminum oxide, 25 μm talc, 27 μm walnut shell, 76 μm glass beads) down a chute at controlled rates to produce dilute, turbulent gravity currents. Comparison of experimental currents with natural PDCs shows good agreement between Froude, densimetric and thermal Richardson, and particle Stokes and settling numbers; experimental currents have lower Reynolds numbers than natural PDCs, but are fully turbulent. Currents were illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps). Deposits were mapped using a grid of sedimentation traps. We observe distinct differences between ambient temperature and warm currents: * warm currents have shorter run out distances, narrow map view distributions of currents and deposits, thicken with distance from the source, and lift off to form coignimbrite plumes; * ambient temperature currents typically travel farther, spread out radially, do not thicken greatly with transport distance, and do not form coignimbrite plumes. Long duration currents (600 s compared to 30-100 s) oscillate laterally with time (e.g. transport to the right, then the left, and back); this oscillation happens prior to any interaction with the tank walls. Isopach maps of the deposits show predictable trends in sedimentation versus distance in response to eruption parameters (eruption rate, duration, temperature, and initial current mass), but all sedimentation curves can be fit with 2nd order polynomials (R2>.9). Proximal sedimentation is similar in comparable warm and ambient temperature currents, but distal sedimentation (beyond the current runout) increases in warm currents reflecting deposition from coignimbrite plumes. We are currently developing analytical models to link the observed transport and sedimentation results.
Guns and High Gas Output Devices Panel: Introduction
NASA Technical Reports Server (NTRS)
Simmons, Ronald L.; Kaste, Pamela J.
2000-01-01
A new panel known as the Guns and High Gas Output Panel was organized in 1999 under the auspices of the JANNAF Propellant and Characterization SubCommittee (PDCS). This is an introduction to our first meeting, purpose of the panel, and the scope of activities to be covered. The primary purpose of the panel is very simple: to provide a single focal point for interfacing Government Laboratories (Department of Defense and Department of Energy) and commercial industry researchers to share R&D activities and findings (i.e. facilitate the exchange of information) specifically aimed at gun-launched propulsion and high-gas output devices (gas generators and air bag inflators). Specific areas of interest included in the Panel's scope (and the Technical Data Base) are the following: (1) new propellant formulations and chemistry, (2) new ingredients, (3) ballistic effects of the new formulations and ingredients, (4) new processing methods unique to gun propellants, (5) thermochemistry of new ingredients, (6) unique physical and mechanical properties, (7) burning rates of new propellants and small scale closed bomb testing, (8) plasma effects on the propellant, and (9) unique safety and insensitive munitions properties.
French, Martyn A; Abudulai, Laila N; Fernandez, Sonia
2013-08-09
The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.
NASA Astrophysics Data System (ADS)
Di Capua, Andrea; Groppelli, Gianluca
2016-12-01
The occurrence of PDC deposits in a foredeep basin sequence, named Val d'Aveto Formation (32-29 Ma, Northern Apennines, Italy), provides new information on the behavior of pyroclastic density currents entering the water. In this work, stratigraphic, petrographic and mineralogical features that characterize three pyroclastic deposits have been described and analyzed in the field (facies and lithological analysis on the blocky-size fraction) and in the laboratory (image analyses on the blocky-size detritus, optical analyses of the microtextures, mineralogical analyses through X-ray powder diffraction (XRPD) and scanning electron microscope with energy dispersive X-ray spectometry (SEM-EDS). The deposits are lapilli- to blocky-size, with a blocky-size fraction constituted of accidental detritus. In thin sections, their groundmass texture varies from porphyritic to eutaxitic where coarser particles become close each others. Growth rims have been also detected around plagioclase crystals. Pyrite habits and oxidation, and plagioclase albitization are consistent with hydrothermal temperature conditions of 200 °C. All these results have been compared with the information provided by modern examples of PDC deposits and laboratory experiments on the behavior of water/hot particles mixing. Grain-to-grain collision has been considered as the main flow mechanism that sustained and avoided the disaggregation of the PDCs entering the water.
Lim, Joung Eun; Jeong, Da Eun; Song, Hye Jin; Kim, Sudong; Nam, Do-Hyun; Sung, Hyun Hwan; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun
2016-01-01
Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion. PMID:27438149
Chang, Nakho; Lee, Hye Won; Lim, Joung Eun; Jeong, Da Eun; Song, Hye Jin; Kim, Sudong; Nam, Do-Hyun; Sung, Hyun Hwan; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun
2016-08-09
Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion.
Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants.
Smith, Alyson J; Li, Yufeng; Bazin, Hélène G; St-Jean, Julien R; Larocque, Daniel; Evans, Jay T; Baldridge, Jory R
2016-08-05
Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3(+)/CD8(+) T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Supplier's Status for Critical Solid Propellants, Explosive, and Pyrotechnic Ingredients
NASA Technical Reports Server (NTRS)
Sims, B. L.; Painter, C. R.; Nauflett, G. W.; Cramer, R. J.; Mulder, E. J.
2000-01-01
In the early 1970's a program was initiated at the Naval Surface Warfare Center/Indian Head Division (NSWC/IHDIV) to address the well-known problems associated with availability and suppliers of critical ingredients. These critical ingredients are necessary for preparation of solid propellants and explosives manufactured by the Navy. The objective of the program was to identify primary and secondary (or back-up) vendor information for these critical ingredients, and to develop suitable alternative materials if an ingredient is unavailable. In 1992 NSWC/IHDIV funded Chemical Propulsion Information Agency (CPIA) under a Technical Area Task (TAT) to expedite the task of creating a database listing critical ingredients used to manufacture Navy propellant and explosives based on known formulation quantities. Under this task CPIA provided employees that were 100 percent dedicated to the task of obtaining critical ingredient suppliers information, selecting the software and designing the interface between the computer program and the database users. TAT objectives included creating the Explosive Ingredients Source Database (EISD) for Propellant, Explosive and Pyrotechnic (PEP) critical elements. The goal was to create a readily accessible database, to provide users a quick-view summary of critical ingredient supplier's information and create a centralized archive that CPIA would update and distribute. EISD funding ended in 1996. At that time, the database entries included 53 formulations and 108 critical used to manufacture Navy propellant and explosives. CPIA turned the database tasking back over to NSWC/IHDIV to maintain and distribute at their discretion. Due to significant interest in propellant/explosives critical ingredients suppliers' status, the Propellant Development and Characterization Subcommittee (PDCS) approached the JANNAF Executive committee (EC) for authorization to continue the critical ingredient database work. In 1999, JANNAF EC approved the PDCS panel task. This paper is designed to emphasize the necessity of maintaining a JANNAF community supported database, which monitors PEP critical ingredient suppliers' status. The final product of this task is a user friendly, searchable database that provides a quick-view summary of critical ingredient supplier's information. This database must be designed to serve the needs of JANNAF and the propellant and energetic commercial manufacturing community as well. This paper provides a summary of the type of information to archive each critical ingredient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Joe; Krisch, M.; Farber, D.
Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxicmore » materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s and the softening of the calculated T[100] branch near the X point, which is not observed experimentally. These differences are significant and thus provide a framework for refined theoretical treatments. Systematic HRIXS experiments as a function of temperature and concentration in the fcc Pu-Ga alloys are underway.« less
2012-01-01
Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h-1) similar to that of the evolved Pdc- strain (0.23 h-1). Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1) than the evolved strain (0.20 h-1). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and characterised a mutation in MTH1 enabling Pdc- strains to grow on glucose as the sole carbon source. This successful example of reverse engineering not only increases the understanding of the glucose tolerance of evolved Pdc-S. cerevisiae, but also allows introduction of this portable genetic element into various industrial yeast strains, thereby simplifying metabolic engineering strategies. PMID:22978798
Assessing New and Old Methods in Paleomagnetic Paleothermometry: A Test Case at Mt. St. Helens, USA
NASA Astrophysics Data System (ADS)
Bowles, J. A.; Gerzich, D.; Jackson, M. J.
2017-12-01
Paleomagnetic data can be used to estimate deposit temperatures (Tdep) of pyroclastic density currents (PDCs). The typical method is to thermally demagnetize oriented lithic clasts incorporated into the PDC. If Tdep is less than the maximum Curie temperature (Tc), the clast is partially remagnetized in the PDC, and the unblocking temperature (Tub) at which this remagnetization is removed is an estimate of Tdep. In principle, juvenile clasts can also be used, and Tub-max is taken as the minimum Tdep. This all assumes blocking (Tb) and unblocking temperatures are equivalent and that the blocking spectrum remains constant through time. Recent evidence shows that Tc in many titanomagnetites is a strong function of thermal history due to a crystal-chemical reordering process. We therefore undertake a study designed to test some of these assumptions and to assess the extent to which the method may be biased by a Tb spectrum that shifts to higher T during cooling. We also explore a new magnetic technique that relies only on stratigraphic variations in Tc. Samples are from the May 18, 1980 PDCs at Mt. St. Helens, USA. Direct temperature measurements of the deposits were 297 - 367°C. At sites with oriented lithics, standard methods provide a Tdep range that overlaps with measured temperatures, but is systematically higher by a few 10s of °C. By contrast, pumice clasts all give Tdep_min estimates that greatly exceed lithic estimates and measured temperatures. We attribute this overestimate to two causes: 1) Tc and Tub systematically increase with depth as a result of the reordering process. This results in Tdep_min estimates that vary by 50°C and increase with depth. 2) MSH pumice is multi-domain, where Tub > Tb, resulting in a large overestimate in Tdep. At 5 sites, stratigraphic variations in Tc were conservatively interpreted in terms of Tdep as <300°C or >300°C. More sophisticated modeling of the time-temperature-depth evolution of Tc allows us to place tighter constraints on some deposits, and our preliminary interpretation suggests that PDC pulses became successively hotter throughout the day. This new method allows us to evaluate subtle temporal/spatial variabilities that may not be evident from direct measurements made at the surface. It also allows Tdep estimates to be made on PDCs where no lithic clasts are present.
Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S. A.; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi
2013-01-01
Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity. PMID:23826189
Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S A; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi
2013-01-01
Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity.
Three-dimensional structure of dilute pyroclastic density currents
NASA Astrophysics Data System (ADS)
Andrews, B. J.
2013-12-01
Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins, particularly after the current head has passed. In some currents, the head can persist as a large, vertically oriented vortex long after the bulk of the current has lifted off to form a coignimbrite plume. These unconfined experiments show that three-dimensional structures can affect PDC behavior and suggest that our typical cross-sectional or 'cartoon' understanding of PDCs misses what may be very important parts of PDC dynamics.
Ho, Jacqueline; Bailey, Michelle; Zaunders, John; Mrad, Nadine; Sacks, Raymond; Sewell, William; Harvey, Richard J
2015-01-01
Nasal polyposis is a common development in chronic rhinosinusitis (CRS), and sinus mucosa and polyp tissue have been used interchangeably in studies investigating CRS. However, potential differences may exist between these 2 tissue types, which have not been entirely characterized. A cross-sectional study of CRS with nasal polyposis (CRSwNP) patients undergoing endoscopic sinus surgery was conducted. Sinus mucosal biopsies and corresponding polyp tissue were obtained from the same sinus cavity via flow cytometry, single-cell suspensions identified type 2 innate lymphoid cells (ILC2s), CD4 and CD8 T cells, activated CD4 and CD8 T cells, plasma cells, plasmacytoid dendritic cells (pDCs), regulatory T cells, T follicular helper cells, B cells, and immunoglobulin A (IgA)(+) and IgG(+) B cells. Cells were measured as a percentage of CD45(+) cells. Paired nonparametric comparisons between sinus and polyp tissue were performed. Ten patients (50% female; age 48 ± 16 years) were recruited. Significantly elevated ILC2 levels were found in polyp tissue compared to sinus mucosa (0.12 [0.07 to 0.23] vs 0.07 [0.04 to 0.16], p = 0.02), as well as plasma cells (2.25 [0.84 to 3.68] vs 1.18 [0.74 to 2.41], p = 0.01); pDCs (0.15 [0.12 to 0.50[ vs 0.04 [0.02 to 0.17], p = 0.03); activated CD8 T cells (29.22 [17.60 to 41.43] vs 16.32 [10.07 to 36.16], p = 0.04) and IgG(+) B cells (6.96 [0.06 to 11.82] vs 1.51 [0.38 to 5.13], p = 0.04). Other cell populations showed no significant differences. Polyps have a similar cellular composition to that of mucosa. Higher levels of ILC2s, plasma cells, pDCs, activated CD8 T cells, and IgG(+) B cells in polyp tissue may be reflective of cell populations driving nasal polyp development. The cellular machinery of CRS is present in polyps and representative of the disease process. This pilot study strongly suggests that a larger study would provide significant insights into the relationship of sinus mucosa to pathogenesis of nasal polyps. © 2014 ARS-AAOA, LLC.
Garnache-Ottou, Francine; Chaperot, Laurence; Biichle, Sabeha; Ferrand, Christophe; Remy-Martin, Jean-Paul; Deconinck, Eric; de Tailly, Patrick Darodes; Bulabois, Bénédicte; Poulet, Jacqueline; Kuhlein, Emilienne; Jacob, Marie-Christine; Salaun, Véronique; Arock, Michel; Drenou, Bernard; Schillinger, Françoise; Seilles, Estelle; Tiberghien, Pierre; Bensa, Jean-Claude; Plumas, Joel; Saas, Philippe
2005-02-01
A new entity of acute leukemia coexpressing CD4(+)CD56(+) markers without any other lineage-specific markers has been identified recently as arising from lymphoid-related plasmacytoid dendritic cells (pDCs). In our laboratory, cells from a patient with such CD4(+)CD56(+) lineage-negative leukemia were unexpectedly found to also express the myeloid marker CD33. To confirm the diagnosis of pDC leukemia despite the CD33 expression, we demonstrated that the leukemic cells indeed exhibited pDC phenotypic and functional properties. In 7 of 8 other patients with CD4(+)CD56(+) pDC malignancies, we were able to confirm that the tumor cells expressed CD33 although with variable expression levels. CD33 expression was shown by flow cytometry, reverse transcriptase-polymerase chain reaction, and immunoblot analysis. Furthermore, CD33 monoclonal antibody stimulation of purified CD4(+)CD56(+) leukemic cells led to cytokine secretion, thus confirming the presence of a functional CD33 on these leukemic cells. Moreover, we found that circulating pDCs in healthy individuals also weakly express CD33. Overall, our results demonstrate that the expression of CD33 on CD4(+)CD56(+) lineage-negative cells should not exclude the diagnosis of pDC leukemia and underline that pDC-specific markers should be used at diagnosis for CD4(+)CD56(+) malignancies.
Huchim-Lara, Oswaldo; Salas, Silvia; Chin, Walter; Montero, Jorge; Fraga, Julia
2015-01-01
An average of 209 cases of decompression sickness (DCS) have been reported every year among artisanal fishermen. divers of the Yucatan Peninsula, Mexico. DCS is a major problem among fishermen divers worldwide. This paper explores how diving behavior and fishing techniques among fishermen relate to the probability of experiencing DCS (Pdcs). Fieldwork was conducted in two communities during the 2012-2013 fishing season. Fishermen were classified into three groups (two per group) according to their fishing performance and followed during their journeys. Dive profiles were recorded using Sensus Ultra dive recorders (Reefet Inc.). Surveys were used to record fishing yields from cooperative and individual fishermen along with fishing techniques and dive behavior. 120 dives were recorded. Fishermen averaged three dives/day, with an average depth of 47 ± 2 feet of sea water (fsw) and an average total bottom time (TBT) of 95 ± 11 minutes. 24% of dives exceeded the 2008 U.S. Navy no-decompression limit. The average ascent rate was 20 fsw/minute, and 5% of those exceeded 40 fsw/minute. Inadequate decompression was observed in all fishermen. Fishermen are diving outside the safety limits of both military and recreational standards. Fishing techniques and dive behavior were important factors in Pdcs. Fishermen were reluctant to seek treatment, and symptoms were relieved with analgesics.
Dendritic cell fate is determined by BCL11A
Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.
2014-01-01
The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644
French, Martyn A.; Abudulai, Laila N.; Fernandez, Sonia
2013-01-01
The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of “protective” immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8+ T-cell responses restricted by “protective” HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-α-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection. PMID:26344116
Maslennikov, Innokentiy; Krupa, Martin; Dickson, Christopher; Esquivies, Luis; Blain, Katherine; Kefala, Georgia; Choe, Senyon; Kwiatkowski, Witek
2009-01-01
Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) (Maslennikov et al., 2007), we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices. PMID:19214777
Novel tannin-based Si, P co-doped carbon for supercapacitor applications
NASA Astrophysics Data System (ADS)
Ramasahayam, Sunil Kumar; Nasini, Udaya B.; Shaikh, Ali U.; Viswanathan, Tito
2015-02-01
Increasing environmental pollution and population compounded by a decrease in the availability of non-renewable resources and fossil fuels has propelled the need for sustainable alternate energy storage technologies particularly in the last two decades. An attempt to meet this crisis was carried out by a unique, microwave-assisted method which has enabled the generation of a novel Si, P co-doped carbon (SiPDC) for supercapacitor applications. The microwave-assisted method is useful in developing SiPDC at a rapid and economical fashion that does not employ any inert or reducing gases, but is high yielding. Varying proportions of precursor materials were utilized to generate four SiPDCs (SiPDC-1, SiPDC-2, SiPDC-3 and SiPDC-4) with varying contents of dopants as evidenced by X-ray photoelectron spectroscopic (XPS) results. Surface area and pore size analysis revealed that SiPDC-2 has a surface area of 641.51 m2 g-1, abundant micropores, mesopores and macropores which are critical for electrical double layer capacitance (EDLC). Of all the SiPDCs, SiPDC-2 exhibited highest capacitance of 276 F g-1 in 1 M H2SO4 and 244 F g-1 in 6 M KOH at a scan rate of 5 mV s-1. Galvanostatic charge-discharge studies performed in 6 M KOH establish the high capacitance of SiPDC-2. SiPDC-2 also exhibited excellent electrochemical stability in 1 M H2SO4 and 6 M KOH.
Mao, Chaoming; Wang, Shu; Xiao, Yichuan; Xu, Jingwei; Jiang, Qian; Jin, Min; Jiang, Xiaohua; Guo, Hua; Ning, Guang; Zhang, Yanyun
2011-04-15
Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.
2014-01-01
The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.
Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies
NASA Astrophysics Data System (ADS)
Esposti Ongaro, T.; Clarke, A. B.; Neri, A.; Voight, B.; Widiwijayanti, C.
2008-03-01
Directed volcanic blasts are powerful explosions with a significant laterally directed component, which can generate devastating, high-energy pyroclastic density currents (PDCs). Such blasts are an important class of eruptive phenomena, but quantified understanding of their dynamics and effects is still incomplete. Here we use 2-D and 3-D multiparticle thermofluid dynamic flow codes to examine a powerful volcanic blast that occurred on Montserrat in December 1997. On the basis of the simulations, we divide the blast into three phases: an initial burst phase that lasts roughly 5 s and involves rapid expansion of the gas-pyroclast mixture, a gravitational collapse phase that occurs when the erupted material fails to mix with sufficient air to form a buoyant column and thus collapses asymmetrically, and a PDC phase that is dominated by motion parallel to the ground surface and is influenced by topography. We vary key input parameters such as total gas energy and total solid mass to understand their influence on simulations, and we compare the simulations with independent field observations of damage and deposits, demonstrating that the models generally capture important large-scale features of the natural phenomenon. We also examine the 2-D and 3-D model results to estimate the flow Mach number and conclude that the range of damage sustained at villages on Montserrat can be reasonably explained by the spatial and temporal distribution of the dynamic pressure associated with subsonic PDCs.
NASA Astrophysics Data System (ADS)
Giordano, G.; Zanella, E.; Trolese, M.; Baffioni, C.; Vona, A.; Caricchi, C.; De Benedetti, A. A.; Corrado, S.; Romano, C.; Sulpizio, R.; Geshi, N.
2018-05-01
Pyroclastic density currents (PDCs) can have devastating impacts on urban settlements, due to their dynamic pressure and high temperatures. Our degree of understanding of the interplay between these hot currents and the affected infrastructures is thus fundamental not only to implement our strategies for risk reduction, but also to better understand PDC dynamics. We studied the temperature of emplacement of PDC deposits that destroyed and buried the Villa dei Papiri, an aristocratic Roman edifice located just outside the Herculaneum city, during the AD79 plinian eruption of Mt Vesuvius (Italy) by using the thermal remanent magnetization of embedded lithic clasts. The PDC deposits around and inside the Villa show substantial internal thermal disequilibrium. In areas affected by convective mixing with surface water or with collapsed walls, temperatures average at around 270 °C (min 190 °C, max 300 °C). Where the deposits show no evidence of mixing with external material, the temperature is much higher, averaging at 350 °C (min 300 °C; max 440 °C). Numerical simulations and comparison with temperatures retrieved at the very same sites from the reflectance of charcoal fragments indicate that such thermal disequilibrium can be maintained inside the PDC deposit for time-scales well over 24 hours, i.e. the acquisition time of deposit temperatures for common proxies. We reconstructed in detail the history of the progressive destruction and burial of Villa dei Papiri and infer that the rather homogeneous highest deposit temperatures (average 350 °C) were carried by the ash-sized fraction in thermal equilibrium with the fluid phase of the incoming PDCs. These temperatures can be lowered on short time- (less than hours) and length-scales (meters to tens of meters) only where convective mixing with external materials or fluids occurs. By contrast, where the Villa walls remained standing the thermal exchange was only conductive and very slow, i.e. negligible at 50 cm distance from contact after 24 hours. We then argue that the state of conservation of materials buried by PDC deposits largely depends on the style of the thermal interactions. Here we also suggest that PDC deposit temperatures are excellent proxies for the temperatures of basal parts of PDCs close to their depositional boundary layer. This general conclusion stresses the importance of mapping of deposit temperatures for the understanding of thermal processes associated with PDC flow dynamics and during their interaction with the affected environment.
NASA Technical Reports Server (NTRS)
Cocchiaro, James E. (Editor); Filliben, Jeff D. (Editor); Watson, Anne H. (Editor)
1997-01-01
In the Propellant Development and Characterization Subcommittee (PDCS) meeting, topics included: the analysis, characterization, and processing of propellants and propellant ingredients; chemical reactivity; liquid propellants; test methods; rheology; surveillance and aging; and process engineering. In the Safety and Environmental Protection Subcommittee (S&EPS) meeting, topics covered included: hydrazine propellant vapor detection methods; toxicity of propellants and propellants; explosives safety; atmospheric modeling and risk assessment of toxic releases; reclamation, disposal, and demilitarization methods; and remediation of explosives or propellant contaminated sites.
A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging
NASA Astrophysics Data System (ADS)
Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Kim, Byung-Tae
2011-08-01
Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.
Minimally invasive fluoroscopic percutaneous peritoneal dialysis catheter salvage.
Narayan, Rajeev; Fried, Terrance; Chica, Gerardo; Schaefer, Mathew; Mullins, Daniel
2014-06-01
Peritoneal dialysis catheter (PDC) dysfunction can often be treated fluoroscopically by manipulation with wire, balloon or stiff stylet, saving surgical intervention for refractory cases. We describe an enhanced percutaneous approach to PDC salvage that can lead to a more definitive intervention and salvage for cases refractory to fluoroscopic manipulation. In five cases of PD catheter malfunction, the deep cuff was dissected free after a 0.035 hydrophilic wire was passed into the peritoneum through the PDC. Only the intraperitoneal portion of the PDC was explanted. The PDC was cleared of obstruction and omentum. The intraperitoneal portion of the PDC was reimplanted over wire via a peel-away sheath and the deep cuff sutured. Omental entrapment was present in three of five patients and fibrin occlusion in four of the five cases. All catheters were repaired successfully by the described technique. Post procedure, 3-5 days of lower volume, recumbent PD exchanges were performed prior to full-dose PD. No perioperative complications or leaks were noted. All PDCs were patent at 6 months. One patient required laparoscopy for recurrent omental wrapping 3 months post intervention. PDC salvage in this manner is a cost-effective alternative to laparoscopic repair of PDCs failing catheter manipulation. The infection barrier afforded by the original superficial cuff and subcutaneous tunnel is maintained. PD can be resumed immediately. Only refractory cases need laparoscopy. This procedure allows for a more definitive correction of catheter migration and obstruction, avoids placement of a new PDC or temporary hemodialysis, is cost-effective and expands percutaneous options for dysfunctional PD catheters.
Yeung, Denise L; Alvarez, Kristin S; Quinones, Marissa E; Clark, Christopher A; Oliver, George H; Alvarez, Carlos A; Jaiyeola, Adeola O
To design and investigate a pharmacist-run intervention using low health literacy flashcards and a smartphone-activated quick response (QR) barcoded educational flashcard video to increase medication adherence and disease state understanding. Prospective, matched, quasi-experimental design. County health system in Dallas, Texas. Sixty-eight primary care patients prescribed targeted heart failure, hypertension, and diabetes medications INTERVENTION: Low health literacy medication and disease specific flashcards, which were also available as QR-coded online videos, were designed for the intervention patients. The following validated health literacy tools were conducted: Newest Vital Sign (NVS), Rapid Estimate of Adult Literacy Medicine-Short Form, and Short Assessment of Health Literacy-50. The primary outcome was the difference in medication adherence at 180 days after pharmacist intervention compared with the control group, who were matched on the basis of comorbid conditions, targeted medications, and medication class. Medication adherence was measured using a modified Pharmacy Quality Alliance proportion of days covered (PDC) calculation. Secondary outcomes included 90-day PDC, improvement of greater than 25% in baseline PDC, and final PDC greater than 80%. Linear regression was performed to evaluate the effect of potential confounders on the primary outcome. Of the 34 patients receiving the intervention, a majority of patients scored a high possibility of limited health literacy on the NVS tool (91.2%). The medication with the least adherence at baseline was metformin, followed by angiotensin-converting enzyme inhibitors and beta blockers. At 180 days after intervention, patients in the intervention group had higher PDCs compared with their matched controls (71% vs. 44%; P = 0.0069). The use of flashcards and QR-coded prescription bottles for medication and disease state education is an innovative way of improving adherence to diabetes, hypertension, and heart failure medications in a low-health literacy patient population. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Yeung, Denise L.; Alvarez, Kristin S.; Quinones, Marissa E.; Clark, Christopher A.; Oliver, George H.; Alvarez, Carlos A.; Jaiyeola, Adeola O.
2017-01-01
Objective To design and investigate a pharmacist-run intervention using low health literacy flashcards and a smartphone-activated quick response (QR) barcoded educational flashcard video to increase medication adherence and disease state understanding. Design Prospective, matched, quasi-experimental design. Setting County health system in Dallas, Texas. Participants Sixty-eight primary care patients prescribed targeted heart failure, hypertension, and diabetes medications Intervention Low health literacy medication and disease specific flashcards, which were also available as QR-coded online videos, were designed for the intervention patients. The following validated health literacy tools were conducted: Newest Vital Sign (NVS), Rapid Estimate of Adult Literacy Medicine–Short Form, and Short Assessment of Health Literacy–50. Main outcome measures The primary outcome was the difference in medication adherence at 180 days after pharmacist intervention compared with the control group, who were matched on the basis of comorbid conditions, targeted medications, and medication class. Medication adherence was measured using a modified Pharmacy Quality Alliance proportion of days covered (PDC) calculation. Secondary outcomes included 90-day PDC, improvement of greater than 25% in baseline PDC, and final PDC greater than 80%. Linear regression was performed to evaluate the effect of potential confounders on the primary outcome. Results Of the 34 patients receiving the intervention, a majority of patients scored a high possibility of limited health literacy on the NVS tool (91.2%). The medication with the least adherence at baseline was metformin, followed by angiotensin-converting enzyme inhibitors and beta blockers. At 180 days after intervention, patients in the intervention group had higher PDCs compared with their matched controls (71% vs. 44%; P = 0.0069). Conclusion The use of flashcards and QR-coded prescription bottles for medication and disease state education is an innovative way of improving adherence to diabetes, hypertension, and heart failure medications in a low-health literacy patient population. PMID:27816544
Update on Chemical Analysis of Recovered Hydrazine Family Fuels for Recycling
NASA Technical Reports Server (NTRS)
Davis, C. L.
1997-01-01
The National Aeronautics and Space Administration, Kennedy Space Center, has developed a program to re-use and/or recycle hypergolic propellants recovered from propellant systems. As part of this effort, new techniques were developed to analyze recovered propellants. At the 1996 PDCS, the paper 'Chemical Analysis of Recovered Hydrazine Family Fuels For Recycling' presented analytical techniques used in accordance with KSC specifications which define what recovered propellants are acceptable for recycling. This paper is a follow up to the 1996 paper. Lower detection limits and response linearity were examined for two gas chromatograph methods.
Erosive events in dilute pyroclastic density currents
NASA Astrophysics Data System (ADS)
Douillet, G.; Kueppers, U.; Rasmussen, K.; Merrison, J. P.; Dingwell, D. B.
2011-12-01
Our understanding of the dynamics of pyroclastic density currents (PDCs) is largely based on the study of their deposits. However, sedimentological structures reflect only the low energy, depositional phases of a flow. To enlarge the source of information on PDC behaviour, we provided wind-tunnel experiments to measure the minimal velocity necessary to erode dry, volcanic ash. Our results permit to link erosive surfaces that are often found in PDC deposits to the minimum velocity that must have acted to produce them. We apply the method to field examples and discuss the occurrence of hydraulic-jumps in dilute PDCs. We measured the threshold of surface friction-velocity for erosion of two types of volcanic ash: 1) a mixture of fragments of vesiculated scoria containing also lithics and crystals and 2) pumice clasts from the Plinian Laacher See eruption. Both were sampled in quarries from the East Eifel volcanic field (Germany). For each type, we measured the threshold for particles from 63 μm to 2 mm in 1 phi-size steps. Static threshold friction-velocities have been measured experimentally in an open, 6 m-long wind-tunnel at Aarhus University. In order to quickly guarantee the downwind equilibrium-dynamics of the saltating sand-surface, we produced roughness-carpets upstream of the study area. The roughness-carpets consist of particles of the measured sample fixed onto the bed in order to create an appropriate static roughness. The measuring section (1 m in length) is located at the downwind end of the wind-tunnel and covered with 10 mm of sample. The wind velocity in the wind-tunnel was progressively increased until a small but continuous number of grains left the surface. This wind velocity was taken as the threshold, and the associated surface friction-velocity was deduced by calibration from wind-profiles data taken over the fixed surface of material of the same characteristics. We apply our results to sedimentary features found in natural deposits and usually interpreted as "chute and pool" structures. These are characterized by erosional events producing a steep side facing the flow, and lensoidal layers deposited on the stoss face of the un-eroded, remaining strata. Our experimental results allow for quantifying the minimum current-velocity required for the observed erosion. Based on this, we discuss the interpretation of such erosional features as "chute and pool" structures, which are the sedimentary record of hydraulic-jumps. There is no clear evidence of the presence of internal hydraulic-jumps in the sedimentary record of PDCs. Moreover, such flows can decelerate drastically and eventually stop without leaving the supercritical flow regime due to their highly depositional nature. Accordingly, they would not experience a hydraulic-jump.
Modeling dilute pyroclastic density currents on Earth and Mars
NASA Astrophysics Data System (ADS)
Clarke, A. B.; Brand, B. D.; De'Michieli Vitturi, M.
2013-12-01
The surface of Mars has been shaped extensively by volcanic activity, including explosive eruptions that may have been heavily influenced by water- or ice-magma interaction. However, the dynamics of associated pyroclastic density currents (PDCs) under Martian atmospheric conditions and controls on deposition and runout from such currents are poorly understood. This work combines numerical modeling with terrestrial field measurements to explore the dynamics of dilute PDC dynamics on Earth and Mars, especially as they relate to deposit characteristics. We employ two numerical approaches. Model (1) consists of simulation of axi-symmetric flow and sedimentation from a steady-state, depth-averaged density current. Equations for conservation of mass, momentum, and energy are solved simultaneously, and the effects of atmospheric entrainment, particle sedimentation, basal friction, temperature changes, and variations in current thickness and density are explored. The Rouse number and Brunt-Väisälä frequency are used to estimate the wavelength of internal gravity waves in a density-stratified current, which allows us to predict deposit dune wavelengths. The model predicts realistic runout distances and bedform wavelengths for several well-documented field cases on Earth. The model results also suggest that dilute PDCs on Mars would have runout distances up to three times that of equivalent currents on Earth and would produce longer-wavelength bedforms. In both cases results are heavily dependent on source conditions, grain-size characteristics, and entrainment and friction parameters. Model (2) relaxes several key simplifications, resulting in a fully 3D, multiphase, unsteady model that captures more details of propagation, including density stratification, and depositional processes. Using this more complex approach, we focus on the role of unsteady or pulsatory vent conditions typically associated with phreatomagmatic eruptions. Runout distances from Model (2) agree reasonably well with Model (1) results, but details of deposit distribution vary between the two models. Model (2) shows that the Earth case initially outpaces the Mars case due to faster propagation velocities associated with higher gravitational acceleration. However, the Mars currents ultimately out-distance the Earth currents due to slower particle settling rates, which also largely explain the longer wavelength bedforms. Model (2) also predicts a peak in the streamwise distribution of deposits farther from the source compared to equivalent results from Model (1), and produces more complex patterns of vertical distribution of particles in the moving current, which varies significantly in time and space. This combination of modeling and deposit data results in a powerful tool for testing hypotheses related to PDCs on Mars, potentially improving our capacity to interpret Martian features on both the outcrop (e.g., Home Plate) and regional scale (e.g., Apollinaris Mons).
Vlasova, Anastasia N; Shao, Lulu; Kandasamy, Sukumar; Fischer, David D; Rauf, Abdul; Langel, Stephanie N; Chattha, Kuldeep S; Kumar, Anand; Huang, Huang-Chi; Rajashekara, Gireesh; Saif, Linda J
2016-10-01
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 + mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 + MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rajan, Bhargavi; Zerrouki, Kamelia; Karnell, Jodi L; Sagar, Divya; Vainshtein, Inna; Farmer, Erika; Rosenthal, Kimberly; Morehouse, Chris; de los Reyes, Melissa; Schifferli, Kevin; Liang, Meina; Sanjuan, Miguel A; Sims, Gary P; Kolbeck, Roland
2018-01-01
Objective We investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE. Methods IFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element–luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells. Results Anifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity. Conclusions Anifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling. PMID:29644082
NASA Astrophysics Data System (ADS)
Balbis, C.; Petrinovic, I. A.; Guzmán, S.
2016-11-01
We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.
NASA Astrophysics Data System (ADS)
Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina
2016-04-01
Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Petrone, P. P.; Geraci, G.; Guarino, F.; Incoronato, A.
An interdisciplinary approach to the archaeological sites affected by Avellino (3750 yr. B.P.) and Pompei (79 A.D.) plinian eruptions of Somma-Vesuvius provides new data relative to the depositional mechanisms. Large scale stratigraphy and local evi- dences provide new informations about the physical conditions at the emplacement of PDCs and their effects on structures, people and environment. Field evidences indicate that fine grained pyroclastic deposits related to the column collapses propagate up to a distance of about 15 km from the crater and emplaced with conspicuous thickness. In both Avellino and Pompei eruptions, direct evidences from archaeological sites in- dicate that the emplacement in intermediate and distal areas was relatively quite (low mechanical energy). The recognition of thin, continuous, fine grained surge deposits up to a distance of ca. 15 km from the crater suggests that turbulence was important and the PDCs advanced as a relatively thick dilute current, very poorly controlled by the topography. Furthermore, due to the very small sizes, the particles were always transported in suspension, even at very low current velocity, thus avoiding vertical grading to occur. However, due to the very high depositional mass rate, the emplace- ment was very rapid causing buildings and hut, objects, animals and people to be engulfed within the ash deposits thus preserving their original position, as seen at Herculaneum, Oplontis, Pompeii (79 AD) and Nola (3760 bp). The skeletons of hu- man as well animal victims show high temperature effects. In particular, microscopic bones texture of the victims in the sites affected by the 79 A.D are consistent with very high temperatures, which are anomalous in pyroclastic surge clouds.
Ueno, Hideki; Hase, Kazuo; Hashiguchi, Yojiro; Shimazaki, Hideyuki; Tanaka, Masafumi; Miyake, Ohki; Masaki, Tadahiko; Shimada, Yoshifumi; Kinugasa, Yusuke; Mori, Yoshiyuki; Kishimoto, Mitsuo; Kameoka, Shingo; Sato, Yu; Matsuda, Keiji; Nakadoi, Koichi; Shinto, Eiji; Nakamura, Takahiro; Sugihara, Kenichi
2014-02-01
The study aimed to determine the value of a novel site-specific grading system based on quantifying poorly differentiated clusters (PDC; Grade(PDC)) in colorectal cancer (CRC). A multicenter pathologic review involving 12 institutions was performed on 3243 CRC cases (stage I, 583; II, 1331; III, 1329). Cancer clusters of ≥5 cancer cells and lacking a gland-like structure (PDCs) were counted under a ×20 objective lens in a field containing the maximum clusters. Tumors with <5, 5 to 9, and ≥10 PDCs were classified as grades G1, G2, and G3, respectively. According to Grade(PDC), 1594, 1005, and 644 tumors were classified as G1, G2, and G3 and had 5-year recurrence-free survival rates of 91.6%, 75.4%, and 59.6%, respectively (P<0.0001). Multivariate analysis showed that Grade exerted an influence on prognostic outcome independently of TNM staging; approximately 20% and 46% of stage I and II patients, respectively, were selected by Grade(PDC) as a population whose survival estimate was comparable to or even worse than that of stage III patients. Grade(PDC) surpassed TNM staging in the ability to stratify patients by recurrence-free survival (Akaike information criterion, 2915.6 vs. 2994.0) and had a higher prognostic value than American Joint Committee on Cancer (AJCC) grading (Grade(AJCC)) at all stages. Regarding judgment reproducibility of grading tumors, weighted κ among the 12 institutions was 0.40 for Grade(AJCC) and 0.52 for Grade(PDC). Grade(PDC) has a robust prognostic power and promises to be of sufficient clinical value to merit implementation as a site-specific grading system in CRC.
Aoki-Yoshida, Ayako; Yamada, Kiyoshi; Hachimura, Satoshi; Sashihara, Toshihiro; Ikegami, Shuji; Shimizu, Makoto; Totsuka, Mamoru
2016-01-01
Food allergy is a serious problem for infants and young children. Induction of antigen-specific oral tolerance is one therapeutic strategy. Enhancement of oral tolerance induction by diet is a promising strategy to prevent food allergy in infants. Thus, in this study, we evaluate the effect of probiotic Lactobacillus gasseri OLL2809 (LG2809) on oral tolerance induction in a mouse model. The degree of oral tolerance induction was evaluated by measuring the proliferation and level of IL-2 production of splenic CD4+ T cells from DO11.10 mice fed ovalbumin (OVA) alone or OVA with LG2809. Oral administration of LG2809 significantly decreased the rate of proliferation and IL-2 production by CD4+ T cells from OVA-fed mice. LG2809 increased a ratio of CD4+ T-cell population, producing high levels of IL-10 and having strong suppressive activity. Moreover, LG2809 increased a ratio of plasmacytoid dendritic cells (pDCs) among the lamina propria (LP) in small intestine. When used as antigen presenting cells to naïve CD4+ T cells from DO11.10 mice, LP cells from BALB/c mice fed LG2809 induced higher IL-10 production and stronger suppressive activity than those from non-treated mice. These results suggest that oral administration of LG2809 increases the population of pDCs in the LP, resulting in the enhancement of oral tolerance induction by increasing the ratio of effector regulatory T cells. LG2809 could, therefore, act as a potent immunomodulator to prevent food allergies by promoting oral tolerance.
NF-κB activation primes cells to a pro-inflammatory polarized response to a TLR7 agonist
Lee, Jongdae; Hayashi, Masaaki; Lo, Jeng-Fan; Fearns, Colleen; Chu, Wen-Ming; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien
2009-01-01
Toll-like receptor 7 (TLR7) mediates anti-viral immunity by recognizing ssRNA viruses. Small molecular weight TLR7 agonists have been approved, or are being evaluated, for treatment of cancers or infectious diseases. Although TLR7 is predominantly expressed in a restricted set of immune cell types including plasmacytoid dendritic cells (pDCs), it is also expressed in non-native expressing cells (e.g., hepatocytes) under certain circumstances. To elucidate the molecular basis of TLR7 induction by pro-inflammatory stimulation and the subsequent cellular responses in these non-native TLR7-expressing cell types, we firstly cloned and characterized the 5′-promoter region of TLR7. The proximal region of this promoter drives the transcription of the TLR7 gene. Pro-inflammatory stimuli activated TLR7 transcription via a NF-κB binding motif in this region, and this activation could be blocked by mutation of the NF-κB binding site or addition of NF-κB inhibitors. Further studies showed that pretreatment of the Hep3B hepatocytes with TNF-α or IL-1 rendered them responsive to TLR7 activation by a TLR7 agonist. However, distinct from TLR7 activation in pDCs, which respond to stimulation with Th1 polarized cytokine production, TLR7 induction by pro-inflammatory signals in hepatocytes reconstitutes the NF-κB-dependent cascade but not the IRF7-dependent cascade, resulting in a pro-inflammatory polarized response rather than a Th1 polarized response. These results indicate that inflammatory stimulation is capable of priming cells to respond to TLR7 agonist with an immune response that differs from that in native TLR7-expressing cells. PMID:19426145
Yamauchi, Hiroshi; Kida, Mitsuhiro; Okuwaki, Kosuke; Miyazawa, Shiro; Matsumoto, Takaaki; Uehara, Kazuho; Miyata, Eiji; Hasegawa, Rikiya; Kaneko, Toru; Laopeamthong, Issaree; Lei, Yang; Iwai, Tomohisa; Imaizumi, Hiroshi; Koizumi, Wasaburo
2018-01-01
Peroral cholangioscopic lithotripsy is a useful procedure in patients with a normal gastrointestinal anatomy who have difficult-to-treat stones. We evaluated the usefulness of peroral direct cholangioscopy (PDCS) using single-balloon enteroscope (SBE) in patients with difficult-to-treat stones who had undergone Roux-en-Y reconstruction. Among 118 patients (169 sessions) who underwent SBE-assisted endoscopic retrograde cholangiopancreatography to treat biliary stones after Roux-en-Y reconstruction, patients in whom it was difficult to remove biliary stones via a transpapillary or transanastomotic approach and difficult to switch to ultra-slim endoscope, were retrospectively enrolled. The biliary insertion success rate, procedure success rate, procedure time, and procedural complications were assessed. The SBE was inserted into the bile-duct, first using a free-hand technique, second using a guide wire, and third using the large balloon anchoring and deflation (LBAD) technique. A total of 11 patients (14 sessions) were enrolled in this study. The biliary insertion success rate was 100%. Bile-duct insertion was performed using a free-hand technique in 4 sessions, a guide wire in 3 sessions (rendezvous technique, 2 sessions), and the LBAD technique in 7 sessions. The procedure success rate was 86% in first session, and 100% in second session. The median procedure time was 81 min (range 49-137). The median procedure time in the bile-duct was 21.5 min (range 6-60). Mild pancreatitis occurred as a complication in one patient. The median follow-up was 528 days (range 282-764). No patient had stone recurrence. PDCS using SBE is a useful procedure in patients with Roux-en-Y reconstruction. The LBAD technique is an useful technique of inserting SBE into the bile-duct.
NASA Astrophysics Data System (ADS)
Tadini, Alessandro; Neri, Augusto; Cioni, Raffaello; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Gurioli, Lucia
2017-04-01
The purpose of this work is to present a validation procedure for a physical and numerical model of Pyroclastic Density Currents (PDC) using feedbacks from well-known deposits emplaced by specific single eruptive units. The study is specifically focused on the PDCs generated during the overall famous AD 79 eruption of the Somma-Vesuvio volcano. To this purpose, values of the maximum runout, volumes and Total Grain Size Distributions have been estimated for two eruptive units (i.e. EU3pf and EU4; Cioni et al. 2000) of the AD 79 eruption. These units have been used to define the input volcanological parameters for testing the Box-Model of Dade and Huppert (1995), when reproducing one specific end-member of the complex spectrum of PDCs, that is the more dilute, turbulent part of the PDCs reconstructed in the Somma-Vesuvio record (stratified flows with concentration of solid particles in volume up to about 5%). The Box-Model is a kinematic approach, which calculates the flow density and velocity along time and the kinetic energy of the flow front. This can be compared with the potential energy needed to overcome topographic obstacles to estimate flow invasion across complex topographies. Validation of the model has been performed with respect to: i) the degree of overlapping between inundation areas given by the model and by field data; ii) the thickness of the deposit versus the thickness of the model output with distance; iii) the mass fractions of the different grain size classes with distance in the real deposit versus the model output. Several simulations have been performed considering i) polydisperse (with 10 grain size classes) and monodisperse (with the Mdφ values) systems; ii) a direct version (where the initial volume is released and the invasion area is computed) and an inverse version (where the initial collapsing volume is a function of an inundation area defined by the user); iii) axisymmetrical and asymmetrical collapses. Results allow to obtain first order estimates of the main variables characterizing the flow source and emplacement; among the two eruptive units chosen for model validation, the EU4 provided better results with only a minor empirical calibration of few parameters (i.e. settling velocity and initial volume fraction of solid particles), indicating that the Box Model can be suited to represent the kinematics of large (volume > 108 m^3, runout > 15 km) PDC at Somma-Vesuvio. Dade W. B., Huppert H. E. (1995) A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42 (3):453-470 Cioni R., Marianelli P., Santacroce R., Sbrana A. (2000). Plinian and subplinian eruptions. Encyclopedia of volcanoes. Academic, San Diego, 2000, 477-494.
NASA Astrophysics Data System (ADS)
Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.
2016-12-01
Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.
Kim, Ju Sun; Kim, Jung Eun; Kim, Kyung; Lee, Jeeyun; Park, Joon Oh; Lim, Ho Yeong; Park, Young Suk; Kang, Won Ki; Kim, Seung Tae
2017-01-01
Background: Anti-EGFR therapies have been recommended for advanced colorectal cancer (CRC) with wild-type RAS and PIK3CA mutation. However, PIK3CA mutations are a poor prognostic marker and a negative predictor of response to anti-EGFR therapies in RAS wild-type CRC. Therefore, new and advanced treatment strategies are needed for personalized medical treatment of patients with wild-type RAS and PIK3CA mutation. Methods: Patient-derived tumor cells were collected from the ascites of a refractory colon cancer patient with wild-type RAS and PIK3CA mutation. We performed a cell viability assay for cetuximab, AZD5363 (AKT inhibitor), and everolimus (mTOR inhibitor) using PDCs. We also evaluated combinations of cetuximab plus AZD5363 or everolimus in a cell viability assay. Results: Based on cellular proliferation by MTT assay, tumor cells were significantly inhibited by 1uM cetuximab (control vs. cetuximab, mean growth = 100.0% vs 58.07%, p = 0.0103), 1uM AZD5363 (control vs. AZD5363, mean growth = 100.0% vs 58.22%, p = 0.0123), and 1uM everolimus (control vs. everolimus, mean growth = 100.0% vs 52.17%, p = 0.0011). Tumor cell growth was more profoundly reduced by combinations of cetuximab plus AZD5363 (control vs. cetuximab plus AZD5363, mean growth = 100.0% vs 25.00%, p < 0.0001) or everolimus (control vs. cetuximab+everolimus, mean growth = 100.0% vs 28.24%, p < 0.0001). Conclusions: Taken together, these results indicate that RAS wild-type and PIK3CA mutant PDCs originating from CRC are considerably inhibited by treatment with cetuximab plus AZD5363 or everolimus, with downregulation of the AKT and ERK pathways. These combinations may be considered as new options for advanced CRC patients with wild-type RAS and PIK3CA mutation in the context of clinical trials.
Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis.
Parlato, Stefania; Chiacchio, Teresa; Salerno, Debora; Petrone, Linda; Castiello, Luciano; Romagnoli, Giulia; Canini, Irene; Goletti, Delia; Gabriele, Lucia
2018-01-01
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis
Parlato, Stefania; Chiacchio, Teresa; Salerno, Debora; Petrone, Linda; Castiello, Luciano; Romagnoli, Giulia; Canini, Irene; Goletti, Delia; Gabriele, Lucia
2018-01-01
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity. PMID:29320502
Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.
2017-01-01
Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754
Boor, Patrick P C; de Ruiter, Petra E; Asmawidjaja, Patrick S; Lubberts, Erik; van der Laan, Luc J W; Kwekkeboom, Jaap
2017-10-01
Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Human spleen contains different subsets of dendritic cells and regulatory T lymphocytes
Velásquez-Lopera, M M; Correa, L A; García, L F
2008-01-01
Most knowledge about dendritic cells (DCs) and regulatory T cells in humans has been gathered from circulating cells but little is known about their frequency and distribution in lymphoid organs. This report shows the frequency, phenotype and location of DCs and regulatory T cells in deceased organ donors' spleens. As determined by flow cytometry, conventional/myeloid DCs (cDCs) CD11chighHLA-DR+CD123−/low were 2·3 ± 0·9% and LIN- HLA-DR+CD11chigh 2·1 ± 0·3% of total spleen cells. Mature CD11chighHLA-DR+CD83+ were 1·5 ± 0·8% and 1·0 ± 1·6% immature CD11chighHLA-DR+CD83- cDC. There were 0·3 ± 0·3% plasmacytoid DCs (pDC) CD11c−/lowHLA-DR+CD123high and 0·3 ± 0·1% LIN-HLA-DR+CD123high. Cells expressing cDCs markers, BDCA-1 and BDCA-3, and pDCs markers BDCA-2 and BDCA-4 were observed in higher frequencies than DCs with other phenotypes evaluated. CD11c+, CD123+ and CD83+ cells were located in subcapsular zone, T cells areas and B-cell follicles. CD4+CD25high Tregs were 0·2 ± 0·2% and CD8+CD28- comprised 11·5 ± 8·1% of spleen lymphocytes. FOXP3+ cells were found in T- and B-cell areas. The improvement in cell separation, manipulation and expansion techniques, will facilitate the manipulation of donor spleen cells as a part of protocols for induction and maintenance of allograft tolerance or treatment of autoimmune diseases. PMID:18727627
Global Patterns in Human Consumption of Net Primary Production
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.
2004-01-01
The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.
Yu, Alice L; Birke, Kerstin; Lorenz, Reinhard L; Welge-Lussen, Ulrich
2014-05-01
HCA2, a receptor of β-hydroxybutyrate and niacin, has recently been described in mouse retina and immortalized human retinal pigment epithelial (RPE) cell lines. As HCA2 might be a pharmacologic target, e.g. in diabetic retinopathy, we studied its expression in human retina and primary human RPE cells. Paraffin sections of human retina and primary human RPE cells were obtained from human donor eyes. Expression of HCA2 in human retina was investigated by immunohistochemistry of paraffin sections and by RT-PCR. HCA2 expression in primary human RPE cells was examined by immunocytochemistry and by Western-blot analysis. Positive immunohistochemical staining for HCA2 was found in paraffin sections of human retina, and positive immunocytochemical staining for HCA2 in primary human RPE cells. RT-PCR analysis detected mRNA expression of HCA2 in human retina. The expression of HCA2 protein was found in primary human RPE cells. Based on these results, HCA2 appears to be constitutively expressed in human retina and in primary human RPE cells. Although its functional role is still unknown, HCA2 may be potentially involved in the pathogenesis of various retinopathies and may offer a new therapeutic target.
The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.
Longatti, Andrea
2015-12-17
Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.
Ceribelli, Michele; Hou, Zhiying Esther; Kelly, Priscilla N.; Huang, Da Wei; Wright, George; Ganapathi, Karthik; Evbuomwan, Moses O.; Pittaluga, Stefania; Shaffer, Arthur L.; Marcucci, Guido; Forman, Stephen J.; Xiao, Wenming; Guha, Rajarshi; Zhang, Xiaohu; Ferrer, Marc; Chaperot, Laurence; Plumas, Joel; Jaffe, Elaine S.; Thomas, Craig J.; Reizis, Boris; Staudt, Louis M.
2016-01-01
SUMMARY Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive and largely incurable hematologic malignancy originating from plasmacytoid dendritic cells (pDCs). Using RNA interference screening, we identified the E-box transcription factor TCF4 as a master regulator of the BPDCN oncogenic program. TCF4 served as a faithful diagnostic marker of BPDCN, and its downregulation caused the loss of the BPDCN-specific gene expression program and apoptosis. High-throughput drug screening revealed that bromodomain and extra-terminal domain inhibitors (BETi’s) induced BPDCN apoptosis, which was attributable to disruption of a BPDCN-specific transcriptional network controlled by TCF4-dependent super-enhancers. BETi’s retarded the growth of BPDCN xenografts, supporting their clinical evaluation in this recalcitrant malignancy. PMID:27846392
Ryan, Éanna; Khaw, Yi Ling; Creavin, Ben; Geraghty, Robert; Ryan, Elizabeth J; Gibbons, David; Hanly, Ann; Martin, Sean T; O'Connell, P Ronan; Winter, Desmond C; Sheahan, Kieran
2018-01-01
Mismatch repair deficient (dMMR) colorectal cancer (CRC) despite its association with poor histologic grade often has improved prognosis compared with MMR proficient CRC. Tumor budding and poorly differentiated clusters (PDCs) may predict metastatic potential of colorectal adenocarcinoma (CRC). In addition, their assessment may be more reproducible than the evaluation of other histopathologic parameters. Therefore, we wished to determine their potential as prognostic indicators in a cohort of dMMR CRC patients relative to histologic grade. We investigated the predictive value of conventional WHO grade, budding, PDC grade and other histopathologic parameters on the presence of lymph node metastasis (LNM) and clinical outcome in 238 dMMR CRCs. MMR status was determined by immunohistochemistry for the mismatch repair proteins hMLH1, hMSH2, hMSH6, and hPMS2. Tumor budding and PDCs were highly correlated (r=0.701; P<0.000). Both budding and PDC grade were associated with WHO grade, perineural invasion, lympho-vascular invasion, and extramural vascular invasion, and the presence of LNM in dMMR CRC (P<0.009). Independent predictors of LNM were PDC grade (odds ratio, 4.12; 95% confidence interval [CI], 1.69-10.04; P=0.011) and EMVI (odds ratio, 3.81; 95% CI, 1.56-9.19; P<0.000). Only pTstage (hazard ratio [HR], 4.11; 95% CI, 1.48-11.36; P=0.007) and tumor budding (HR, 2.99; 95% CI, 1.72-5.19; P<0.000) were independently associated with worse disease-free survival (DFS). If tumor budding was excluded from the model, PDC grade became significant for DFS (HR, 2.34; 95% CI, 1.34-4.09; P=0.003). WHO Grade does not independently correlate with clinical outcome in dMMR CRC. PDC grade and extramural vascular invasion are independent predictors of LNM. Tumor budding and pTstage are the best predictors of DFS. If tumor budding cannot be assessed, PDC grade may be used as a prognostic surrogate.
Structure of Dilute Pyroclastic Density Currents During Transport, Buoyancy Reversal and Liftoff
NASA Astrophysics Data System (ADS)
Andrews, B. J.
2014-12-01
Scaled laboratory experiments provide insight into structure, entrainment and liftoff in pyroclastic density currents (PDCs). Experiments are conducted in a 8.5×6.1×2.6 m air-filled tank and comprise turbulently suspended mixtures of heated 20-μm talc particles introduced to the tank at steady and sustained rates; the tank is large enough that the currents are effectively unconfined. Experiments are scaled with bulk (densimetric and thermal Richardson numbers, Froude number) and turbulent (Stokes and settling numbers) parameters dynamically similar to natural currents. The Reynolds numbers of experiments are smaller than those of natural PDCs, but analysis of the experiments demonstrates that they are fully turbulent. Red, green, and blue laser sheets illuminate orthogonal planes within the currents for imaging and recording with HD video cameras; those data are reprojected into cross-sectional and map-view planes for analysis of turbulent velocity fields and fluctuations in particle concentration. A green laser sheet can be swept through the tank at 60 Hz and imaged with a high-speed CCD camera at up to 3000 fps; sequences of 60-300 images are used to make 3D volumetric reconstructions of the currents at up to 10 Hz. Currents typically comprise a lower "bypass" region and an upper entraining region that turbulently mixes with the ambient air. The bypass region is generally about half of the total current thickness and moves faster than the overlying, entraining region. The bypass region controls runout distance and steadiness of currents. If turbulent structures in the entraining region penetrate through the bypass region, the trailing portion of the current can stall before resuming forward progress; thus a single, "steady" current can generate multiple currents. When a current lifts off, it focuses along a narrow axis beneath the rising (coignimbrite) plume. At that time, ambient air entrainment occurs primarily through the lateral margins of the narrow bypass region. Eddies that entrain air through the lateral margins grow in size with transport distance such that at the maximum runout distance, eddies have lengthscales comparable to the current width. The largest structures within the rising plumes have lengthscales comparable to the cross-stream plume width.
NASA Astrophysics Data System (ADS)
Mitchell, S. J.; Eychenne, J.; Rust, A.
2015-12-01
Pyroclastic density currents (PDCs) often loft upwards into convective, buoyant co-PDC plumes. Recent analogue experiments using a unimodal grain size of 22 ± 6 μm (Andrews & Manga, 2012) have established that plume generation is aided by PDC interaction with a topographic barrier. Here, we have simulated the onset of co-PDC plumes from the collapse of concentrated particle-gas mixtures comprised of unimodal or bimodal grain size distributions (GSD) of glass beads, using combinations of lognormal populations with modes of 35, 195 and 590 μm. The collapse of a mixture, with constant mass 2950 ± 150 g, induced the propagation of a gravity current channelized down a 13° sloping tank; a barrier in the tank caused the gravity current to produce a plume of particles. Experiments were recorded with high speed visible and thermal-infrared cameras. Initial GSD and temperature of the mixture were varied to assess the effects of the addition of a coarser component on plume generation. Analogue co-PDC plumes were only produced when a proportion of fine grains (35 μm) was present in the initial granular mixture. Sampling of the particles entrained in the co-PDC plumes revealed that fine grains (35 μm) are preferentially lofted, although a few coarser particles (195 or 590 μm) are also entrained in the co-PDC plumes and settle closer to the area of uplift. Increasing the initial temperature of the mixture increases plume height measured at 1 and 2s after onset; this is supported by repeat experiments at specific conditions. Bimodal mixtures containing both fine (35 μm) and coarser (195 or 590 μm) grains result in plume heights and initial flow velocities higher than observed in unimodal fine-grained experiments of the same total mass of particles. Repeat experiments identify the natural variability in plume generation under the same nominal conditions, which is likely due to the combined variations of momentum during flow propagation and heat-driven buoyancy, as well as the homogeneity of the initial particle mixture.
Precise chronology of differentiation of developing human primary dentition.
Hu, Xuefeng; Xu, Shan; Lin, Chensheng; Zhang, Lishan; Chen, YiPing; Zhang, Yanding
2014-02-01
While correlation of developmental stage with embryonic age of the human primary dentition has been well documented, the available information regarding the differentiation timing of the primary teeth was largely based on the observation of initial mineralization and varies significantly. In this study, we aimed to document precise differentiation timing of the developing human primary dentition. We systematically examined the expression of odontogenic differentiation markers along with the formation of mineralized tissue in each developing maxillary and mandibular teeth from human embryos with well-defined embryonic age. We show that, despite that all primary teeth initiate development at the same time, odontogenic differentiation begins in the maxillary incisors at the 15th week and in the mandibular incisors at the 16th week of gestation, followed by the canine, the first primary premolar, and the second primary premolar at a week interval sequentially. Despite that the mandibular primary incisors erupt earlier than the maxillary incisors, this distal to proximal sequential differentiation of the human primary dentition coincides in general with the sequence of tooth eruption. Our results provide an accurate chronology of odontogenic differentiation of the developing human primary dentition, which could be used as reference for future studies of human tooth development.
Expression and function of Allergin-1 on human primary mast cells.
Nagai, Kei; Tahara-Hanaoka, Satoko; Morishima, Yuko; Tokunaga, Takahiro; Imoto, Yoshimasa; Noguchi, Emiko; Kanemaru, Kazumasa; Imai, Masamichi; Shibayama, Shiro; Hizawa, Nobuyuki; Fujieda, Shigeharu; Yamagata, Kunihiro; Shibuya, Akira
2013-01-01
Mast cells (MC) play an important role in allergic and non-allergic immune responses. Activation of human MC is modulated by several cell surface inhibitory receptors, including recently identified Allergin-1 expressed on both human and mouse MC. Although Allergin-1 suppresses IgE-mediated, mast cell-dependent anaphylaxis in mice, the expression profile and function of Allergin-1 on human primary MC remains undetermined. Here, we established a seven-color flow cytometry method for assessing expression and function of a very small number of human primary MC. We show that Allergin-1S1, a splicing isoform of Allergin-1, is predominantly expressed on human primary MC in both bronchoalveolar lavage (BAL) fluid and nasal scratching specimens. Moreover, Allergin-1S1 inhibits IgE-mediated activation from human primary MC in BAL fluid. These results indicate that Allergin-1 on human primary MC exhibits similar characteristics as mouse Allergin-1 in the expression profile and function.
Hänsel, Anja; Günther, Claudia; Baran, Wojciech; Bidier, Mona; Lorenz, Hanns-Martin; Schmitz, Marc; Bachmann, Michael; Döbel, Thomas; Enk, Alexander H; Schäkel, Knut
2013-02-01
Lupus erythematosus (LE) is an autoimmune disease with evidence for an IL-23- and IL-17-induced immunopathology. Little is known about the type of dendritic cells supporting this immune response. We recently demonstrated the strong Th1- and Th17-T-cell inducing capacity of human 6-sulfo LacNAc-dendritic cells (slanDCs), and identified slanDCs as inflammatory dermal dendritic cells in psoriasis locally expressing IL-23, TNF-α and inducible nitric oxide synthase (iNOS). In this study, we investigated the role of slanDCs in LE. Using immunohistochemistry, we identified slanDCs at increased frequency in affected skin lesions of cutaneous and systemic LE. slanDCs were found scattered in the dermal compartment and also clustered in lymph follicle-like structures. Here, they colocalized with T cells in the periphery but not with B cells in the center. The positive staining of dermal slanDCs for TNF-α indicated their pro-inflammatory status. In vitro the production of TNF-α was induced when slanDCs were cultured in the presence of serum from patients with LE. Stimulatory components of LE serum were previously identified as autoimmune complexes with ssRNA binding to TLR7 and TLR8. We found that slanDCs express mRNA for TLR7 and TLR8. slanDCs stimulated with ssRNA, selective TLR7 or TLR8 ligands responded with high-level TNF-α and IL-12 production. In contrast to slanDCs, the population of CD1c(+) DCs and plasmacytoid DCs (pDCs) expressed either TLR7 or TLR8, and their production of TNF-α and IL-12 to respective ligands was far less pronounced. We conclude that slanDCs have molecular and functional features of a pro-inflammatory myeloid DC type relevant for the immunopathogenesis of LE. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Zhang, Zheng; Xu, Xiangsheng; Lu, Jiyun; Zhang, Shuye; Gu, Lanlan; Fu, Junliang; Jin, Lei; Li, Haiying; Zhao, Min; Zhang, Jiyuan; Wu, Hao; Su, Lishan; Fu, Yang-Xin
2011-01-01
Background. Nonspecific T-cell hyperactivation is the main driving force for human immunodeficiency virus (HIV)–1 disease progression, but the reasons why the excess immune response is not properly shut off are poorly defined. Methods. Eighty-five HIV-1–infected individuals were enrolled to characterize B and T lymphocyte attenuator (BTLA) expression and function. Infection and blockade assays were used to dissect the factors that influenced BTLA signaling in vitro. Results. BTLA expression on overall CD4+ and CD8+ T cells was progressively decreased in HIV-1 infection, which was directly correlated with disease progression and CD4+ T-cell differentiation and activation. BTLA+CD4+ T cells from HIV-1–infected patients also displayed an altered immune status, which was indicated by reduced expression of naive markers but increased activation and exhaustion markers. Cross-linking of BTLA can substantially decrease CD4+ T-cell activation in vitro. This responsiveness of CD4+ T cells to BTLA-mediated inhibitory signaling was further found to be impaired in HIV-1–infected patients. Furthermore, HIV-1 NL4-3 down-regulated BTLA expression on CD4+ T cells dependent on plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α. Blockade of IFN-α or depletion of pDCs prevents HIV-1-induced BTLA down-regulation. Conclusions. HIV-1 infection potentially impairs BTLA-mediated signaling dependent on pDC-derived IFN-α, which may contribute to broad T-cell hyperactivation induced by chronic HIV-1 infection. PMID:21592997
The type I interferon response during viral infections: a "SWOT" analysis.
Gaajetaan, Giel R; Bruggeman, Cathrien A; Stassen, Frank R
2012-03-01
The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system. Copyright © 2011 John Wiley & Sons, Ltd.
Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel
2018-01-02
Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.
Spatiotemporal genomic architecture informs precision oncology in glioblastoma
Lee, Jin-Ku; Wang, Jiguang; Sa, Jason K.; Ladewig, Erik; Lee, Hae-Ock; Lee, In-Hee; Kang, Hyun Ju; Rosenbloom, Daniel S.; Camara, Pablo G.; Liu, Zhaoqi; van Nieuwenhuizen, Patrick; Jung, Sang Won; Choi, Seung Won; Kim, Junhyung; Chen, Andrew; Kim, Kyu-Tae; Shin, Sang; Seo, Yun Jee; Oh, Jin-Mi; Shin, Yong Jae; Park, Chul-Kee; Kong, Doo-Sik; Seol, Ho Jun; Blumberg, Andrew; Lee, Jung-Il; Iavarone, Antonio; Park, Woong-Yang; Rabadan, Raul; Nam, Do-Hyun
2017-01-01
Precision medicine in cancer proposes that genomic characterization of tumors can inform personalized targeted therapies1–5. This proposition, however, is complicated by spatial and temporal heterogeneity6–14. Here we study genomic and expression profiles across 127 multi-sector or longitudinal specimens from 52 glioblastoma (GBM) patients. Using bulk and single-cell data, we find that samples from the same tumor mass share genomic and expression signatures, while geographically separated multifocal tumors and/or long-term recurrent tumors are seeded from different clones. Chemical screening of patient-derived glioma cells (PDCs) shows that therapeutic response is associated to genetic similarity, and multifocal tumors enriched with PIK3CA mutations have a heterogeneous drug response pattern. Importantly, we show that targeting truncal events is more efficacious in reducing tumor burden. In summary, this work demonstrates that evolutionary inference from integrated genomic analysis in multi-sector biopsies can inform targeted therapeutic interventions for GBM patients. PMID:28263318
Tamura, Takahiko; Kimura, Kazumi; Yui, Katsuyuki; Yoshida, Shigeto
2015-12-01
Dendritic cells (DCs) play critical roles in innate and adaptive immunity and in pathogenesis during the blood stage of malaria infection. The mechanisms underlying DC homeostasis during malaria infection are not well understood. In this study, the numbers of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the spleens after lethal rodent malaria infection were examined, and were found to be significantly reduced. Concomitant with up-regulation of maturation-associated molecules, activation of caspase-3 was significantly increased, suggesting induction of cell death. Studies using neutralizing antibody and gene-deficient mice showed that type I and II interferons were critically involved in activation induced cell death of cDCs during malaria infection. These results demonstrate that DCs rapidly disappeared following IFN-mediated DC activation, and that homeostasis of DCs was significantly impaired during malaria infection. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Dufek, Josef; Lube, Gert
2018-01-01
Pyroclastic density currents (PDCs) are a significant volcanic hazard. However, their dominant transport mechanisms remain poorly understood, in part because of the large variability of PDC types and deposits. Here we combine field data with experimental and numerical simulations to illuminate the twofold fate of particles settling from an ash cloud to form the dense PDC basal flow. At solid fractions >1 vol %, heterogeneous drag leads to formation of mesoscale particle clusters that favor rapid particle settling and result in a mobile dense layer with significant bed weight support. Conversely, at lower concentrations the absence of particle clusters typically leads to formation of poorly mobile dense beds that deposit massive layers. Based on this transport dichotomy, we present a numerical dense-dilute parameter that allows a PDC's dominant transport mechanism to be determined directly from the deposit geometry and grainsize characteristics.
Human Appropriation of Net Primary Production - Can Earth Keep Up?
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.
2006-01-01
The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.
NASA Astrophysics Data System (ADS)
Michaud-Dubuy, A.; Carazzo, G.; Kaminski, E. C.
2017-12-01
High-velocity atmospheric turbulent jets produced by explosive volcanic eruptions can form a high buoyant Plinian plume or produce pyroclastic density currents (PDCs) when the column collapses. A major goal of physical volcanology is to determine the limit between the two flow regimes, as a function of source conditions. But their highly non-linear dynamics makes this prediction particularly difficult. Classically, in the so-called "dusty gas" hypothesis, the regime boundary is calculated as a function of the eruptive mass flux and the amount of gas dissolved in the magma. Here, we relax this hypothesis and account for the differential behavior between gas and particle, i.e. sedimentation. The sedimentation rate is calculated as a function of the particle size, which introduces the total grain-size distribution (TGSD) as a new model parameter. Here we further consider power-law TGSDs characterized by an exponent D. For low eruption rates (Vulcanian and sub-Plinian eruptions), the loss of particles by sedimentation is so large that it drains out the thermal reservoir available to heat the engulfed cold atmospheric air, which favors PDCs production. In powerful Plinian eruptions with a mass flux greater than 107 kg/s, the loss of particles by sedimentation is less important and its dominant effect is to decrease the column mass flux during its rise, which favors the formation of stable columns. In this case, we further obtain that coarse distributions promote the formation of stable plumes, a result at odds with previous studies. To interpret this conclusion, we reconsider the effect of gas entrapment by pumice at fragmentation and show that in general it has a dominant role on column collapse compared to particle sedimentation. However, for D values < 2.8, sedimentation and gas entrapment are of equal importance and act together to prevent the production of stable plumes. This latter conclusion is consistent with field data. We compare the predictions of the model including gas entrapment and sedimentation to two well constrained historical events, the Taupo 186 AD and Vesuvius 79 AD eruptions. In both cases, we obtain that the model should take into account not solely gas entrapment but also the open porosity to accurately reproduce field data.
Inquiry-Based Learning in Teacher Education: A Primary Humanities Example
ERIC Educational Resources Information Center
Preston, Lou; Harvie, Kate; Wallace, Heather
2015-01-01
Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…
Escobar-Hoyos, Luisa F; Hoyos-Giraldo, Luz Stella; Londoño-Velasco, Elizabeth; Reyes-Carvajal, Ingrid; Saavedra-Trujillo, Diana; Carvajal-Varona, Silvio; Sánchez-Gómez, Adalberto; Wagner, Elizabeth D; Plewa, Michael J
2013-06-15
The haloacetic acids (HAAs) are the second-most prevalent class of drinking water disinfection by-products formed by chemical disinfectants. Previous studies have determined DNA damage and repair of HAA-induced lesions in mammalian and human cell lines; however, little is known of the genomic DNA and chromosome damage induced by these compounds in primary human cells. The aim of this study was to evaluate the genotoxic and clastogenic effects of the monoHAA disinfection by-products in primary human lymphocytes. All monoHAAs were genotoxic in primary human lymphocytes, the rank order of genotoxicity and cytotoxicity was IAA > BAA > CAA. After 6 h of repair time, only 50% of the DNA damage (maximum decrease in DNA damage) was repaired compared to the control. This demonstrates that primary human lymphocytes are less efficient in repairing the induced damage by monoHAAs than previous studies with mammalian cell lines. In addition, the monoHAAs induced an increase in the chromosome aberration frequency as a measurement of the clastogenic effect of these compounds. These results coupled with genomic technologies in primary human cells and other mammalian non-cancerous cell lines may lead to the identification of biomarkers that may be employed in feedback loops to aid water chemists and engineers in the overall goal of producing safer drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.
2017-01-01
Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring oncogenic KRAS and induced mutations in CDKN2A, SMAD4 and TP53 expand in vitro as epithelial spheres. After pancreatic transplantation, mutant clones form lesions histologically similar to native PanINs, including prominent stromal responses. Gene expression profiling reveals molecular similarities of mutant clones with native PanINs, and identifies potential PanIN biomarker candidates including Neuromedin U, a circulating peptide hormone. Prospective reconstitution of human PanIN development from primary cells provides experimental opportunities to investigate pancreas cancer development, progression and early-stage detection. PMID:28272465
Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui
2015-02-01
During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.
He, Huan; Xue, Jing; Wang, Weiming; Liu, Lihong; Ye, Chaobaihui; Cong, Zhe; Kimata, Jason T; Qin, Chuan; Zhou, Paul
2017-03-01
Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells.
He, Huan; Xue, Jing; Wang, Weiming; Liu, Lihong; Ye, Chaobaihui; Cong, Zhe; Kimata, Jason T.; Qin, Chuan; Zhou, Paul
2017-01-01
Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells. PMID:28042947
Integrated Modular Teaching of Human Biology for Primary Care Practitioners
ERIC Educational Resources Information Center
Glasgow, Michael S.
1977-01-01
Describes the use of integrated modular teaching of the human biology component of the Health Associate Program at Johns Hopkins University, where the goal is to develop an understanding of the sciences as applied to primary care. Discussion covers the module sequence, the human biology faculty, goals of the human biology faculty, laboratory…
Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin
Kortmann, Jens; Brubaker, Sky W.
2015-01-01
Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1β secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648
Kao, S S; Micklem, J; Ofo, E; Edwards, S; Dhatrak, D; Foreman, A; Krishnan, S; Hodge, J-C
2018-04-01
The incidence of oropharyngeal squamous cell carcinoma in the Western world is increasing, with the human papillomavirus epidemic implicated in this observed trend. The optimal treatment modality is yet undetermined regarding oncological outcomes. This study comprised 98 patients with oropharyngeal squamous cell carcinoma, treated with either primary transoral surgery with adjuvant therapy or primary chemoradiotherapy with curative intent, between 2008 and 2012. Clinicopathological characteristics including tumour-node-metastasis stage, human papillomavirus status, treatment modality, recurrence and overall survival were collated. Five per cent of primary surgical patients had locoregional recurrences compared with 25 per cent of primary chemoradiotherapy patients. A lower rate of locoregional recurrence was observed in the human papillomavirus positive group. This paper reports higher rates of overall survival and local control for oropharyngeal squamous cell carcinoma treated with primary surgery compared with primary chemoradiotherapy. This reflects overall lower tumour stage and higher human papillomavirus status in this group.
NASA Astrophysics Data System (ADS)
Yao, Rongqian; Zhao, Haoran; Feng, Zude; Chen, Lifu; Zhang, Ying
2013-10-01
Optical properties of metal atom-doped polycarbosilane (PCS) which originated from σ-conjugation effect were studied. Al, Dy, Er and Eu were introduced into PCS by one-pot method to yield polyaluminocarbosilane (PACS), polydysprosiumcarbosilane (PDCS), polyerbiumcarbosilane (PErCS) and polyeuropiumcarbosilane (PECS), respectively. Effects of oxidation curing and ultraviolet (UV) radiation on the photoluminescence (PL) properties of the samples were investigated. PL spectra show strong blue light-emissions and the intensity of PCS is enhanced by adding metal atoms. PACS with extended σ-conjugation exhibits an obvious PL red-shift, high intensity, high quantum yield and excellent oxidation resistance as compared with those of others. As treated under UV lamp for 3 h in air, PACS retains good UV resistance performance, owing to the AlOx (x = 4, 5, or 6) groups which effectively extend the σ-conjugation. The obtained results are expected to have important applications in active sources for electroluminescence (EL) devices, especially suitable for blue emission.
Thymic DCs derived IL-27 regulates the final maturation of CD4+ SP thymocytes
Tang, Hui; Zhang, Jie; Sun, Xiuyuan; Qian, Xiaoping; Zhang, Yu; Jin, Rong
2016-01-01
IL-27, as a pleiotropic cytokine, promotes the differentiation of naïve T cells to Th1, while suppressing Th2 and Th17 differentiation in the periphery. However, the role of IL-27 in the thymocyte development remains unknown. Here we showed that IL-27 was highly expressed in thymic plasmacytoid dendritic cells (pDCs) while its receptor expression was mainly detected in CD4+ single-positive (SP) thymocytes. Deletion of the p28 subunit in DCs resulted in a reduction of the most mature Qa-2+ subsets of CD4+ SP T cells. This defect was rescued by intrathymic administration of exogenous IL-27. In vitro differentiation assay further demonstrated that IL-27 alone was able to drive the maturation of the newly generated 6C10+CD69+CD4+ SP cells into Qa-2+ cells. Collectively, this study has revealed an important role of thymic DCs-derived IL-27 in the regulation of the phenotypic maturation of CD4+ SP thymocytes. PMID:27469302
Ku-band electromagnetic wave absorbing properties of polysiloxane derived Si-O-C bulk ceramics
NASA Astrophysics Data System (ADS)
Ding, Donghai; Li, Zipei; Xiao, Guoqing; Yang, Shaoyu
2018-02-01
The bulk Si-O-C ceramics were prepared by polymer derived ceramics (PDCs) route using polysiloxane as precursor and their properties were investigated for electromagnetic wave absorbing in the frequency range of 12.4-18 GHz (Ku-band). It was found that the catalytic pyrolysis can enhance substantially the absorbing properties by in situ formation of turbostratic carbon network, ordered carbon, and multi-wall carbon nanotubes. The matching thickness of sample containing 1.5 wt% FeCl3 (FPSO-1.5) is 2.2 mm, and its reflection loss exceeds -10 dB in the whole Ku-band with an absorption peak of -35.48 dB at 14.16 GHz. For sample containing 1.5 wt% FeCl3, its absorption peak increases to -15.78 dB, but its matching thickness decreases significantly to 2.2 mm. The polymer derived Si-O-C ceramics could be used as excellent electromagnetic functional devices working in harsh environments.
Vergis, James M.; Purdy, Michael D.; Wiener, Michael C.
2015-01-01
Structural studies on integral membrane proteins are routinely performed on protein–detergent complexes (PDCs) consisting of purified protein solubilized in a particular detergent. Of all the membrane protein crystal structures solved to date, a subset of only four detergents has been used in more than half of these structures. Unfortunately, many membrane proteins are not well behaved in these four detergents and/or fail to yield well-diffracting crystals. Identification of detergents that maintain the solubility and stability of a membrane protein is a critical step and can be a lengthy and “protein-expensive” process. We have developed an assay that characterizes the stability and size of membrane proteins exchanged into a panel of 94 commercially available and chemically diverse detergents. This differential filtration assay (DFA), using a set of filtered microplates, requires sub-milligram quantities of purified protein and small quantities of detergents and other reagents and is performed in its entirety in several hours. PMID:20667442
Regulatory dendritic cells: there is more than just immune activation.
Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L
2012-01-01
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Regulatory dendritic cells: there is more than just immune activation
Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.
2012-01-01
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies. PMID:22969767
Zhou, Jiajun; Zhang, Qiang; Henriquez, Joseph E; Crawford, Robert B; Kaminski, Norbert E
2018-05-31
The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation and cell development. In humans, the activation of AHR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM secretion and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.
Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna
2016-11-11
Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.
Characterization of primary cilia in human airway smooth muscle cells.
Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi
2009-08-01
Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.
Magaldi, Thomas G.; Almstead, Laura L.; Bellone, Stefania; Prevatt, Edward G.; Santin, Alessandro D.; DiMaio, Daniel
2011-01-01
Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells. PMID:22056390
Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi
2011-03-25
Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.
The multisensory function of the human primary visual cortex.
Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J
2016-03-01
It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.
Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems
The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, ...
Clast comminution during pyroclastic density current transport: Mt St Helens
NASA Astrophysics Data System (ADS)
Dawson, B.; Brand, B. D.; Dufek, J.
2011-12-01
Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC pumice at MSH increases with distance from source, as does the quantity of fine-grained ash. In addition, we have made the first steps towards determining the proportion of fine ash produced by comminution with distance from source. These results are being tested by numerical methods to understand the effect of an increase in fine ash on overall flow dynamics of the PDCs in which they were produced.
Effect of Dendritic Polymer Architecture on Biological Behaviors of Self-Assembled Nanocarriers
NASA Astrophysics Data System (ADS)
Hsu, Hao-Jui
Polymeric self-assembled nanocarriers represent one of the most versatile platforms for drug delivery. Through tailoring the physiochemical properties of amphiphilic block copolymers, self-assembled nanocarriers with great thermodynamic stability and desired biological properties could be achieved. The PEGylated dendron-based copolymers (PDCs) are one of the novel amphiphilic copolymers that have attracted a great deal of scientific interest due to their unique dendritic structure and properties. While the dendritic polymer architecture of PDC has been shown to enhance the thermodynamic stability of the self-assembling PDCs, dendron micelles, the effect of this polymer architecture on the biological properties of dendron micelles has not yet been studied. Therefore, this dissertation research is focused on understanding the role of dendritic polymer structure on moderating the biological properties of various self-assembled nanocarriers. To systematically investigate this, three studies have been designed and performed. First, we studied whether the dendritic structure of PDC allows dendron micelles to behave non-specific cellular interactions in a similar way that dendrimers would do. Second, cell-specific interactions of dendron micelles mediated by conjugated ligands were investigated. Third, we investigated the influence of dendritic PEG outer shell on micelle-serum protein interactions and its subsequent implication. Our results revealed that both non-specific and specific cellular interactions of dendron micelles were controllable through modulation of the PEG corona length. While the non-specific charge-dependent cellular interactions of dendron micelles were tunable through controlling the length of PEG corona, the use of long PEG tether was found to enhance the ligand-mediated cellular interactions of dendron micelles. With the ligand tethers, a 27-fold enhancement in ligand-mediated cellular interactions can be achieved, compared to non-targeted dendron micelles. Furthermore, we demonstrate that the dense PEG outer shell introduced by its dendritic structure reduced non-specific micelle-serum protein interactions and suppressed the subsequent micelle disintegration or premature drug release, which was not the case for linear block copolymer (LBC)-based micelles. Molecular dynamic (MD) simulation results also supported that dendron micelles exhibited a weaker interaction with serum albumin compared to LBC-based micelles. In the presence of serum proteins, the half-life of dendron micelles was 2-fold longer than that of LBC-based micelles, which could be attributed to their low serum protein interactions. In conclusion, our results provide fundamental understanding on the role of PEG corona and the effect of polymeric architecture on biological properties of polymer micelles, all indicating that dendron micelles have great potential as a novel drug delivery platform.
ERIC Educational Resources Information Center
Goldman, Juliette D. G.; Torrisi-Steele, Geraldine
2009-01-01
Human Relationships Education is a very important part of primary school student-teacher education. All primary school children need sound guidance and enhanced knowledge about puberty, growing up successfully, and feeling competent and confident in themselves. An interactive multimedia CD-ROM was designed and developed for some Australian…
The Humanities in English Primary Schools: Struggling to Survive
ERIC Educational Resources Information Center
Barnes, Jonathan; Scoffham, Stephen
2017-01-01
This article surveys the state of the humanities in English primary schools drawing on evidence from serving head teachers, current literature and policy documents. The findings suggest that whilst the humanities are highly valued in schools, there are serious challenges which threaten the "broad and balanced" curriculum. It is suggested…
Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...
SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS
Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...
Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping
2017-01-01
Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522
An Investigation of Primary Student Teachers' Drawings of the Human Internal Organs
ERIC Educational Resources Information Center
Çakici, Yilmaz
2018-01-01
The aim of this study is to investigate primary student teachers' drawings of the human internal organs, e.g. location, size and presence of organs (heart, lungs, stomach, liver, kidneys, pancreas and intestines etc.) This research was conducted with 104 primary teacher candidates studying in the Faculty of Education at Trakya University during…
High Quality in Primary Humanities: Insights from the UK's School Inspectorates
ERIC Educational Resources Information Center
Catling, Simon
2017-01-01
The school inspectorates of the four jurisdictions of the UK are sources of evidence about the quality of humanities teaching, learning and curriculum in primary schools. The term "humanities" usually refers to the subjects of geography, history and Religious Education, but here they are considered holistically, not separately. Discrete…
Assessing the Humanities in the Primary School Using a Portfolio-Based Approach
ERIC Educational Resources Information Center
Eaude, Tony
2017-01-01
This article suggests that a portfolio-based approach to assessing the humanities in the primary school is appropriate and outlines what this might involve. It argues for a broad interpretation of "the humanities" and for adopting principles associated with formative assessment, where assessment is not equated with testing and a wide…
Saitsu, Hirotomo; Yamada, Shigehito; Uwabe, Chigako; Ishibashi, Makoto; Shiota, Kohei
2007-03-01
Development of the posterior neural tube (PNT) in human embryos is a complicated process that involves both primary and secondary neurulation. Recently, we histologically examined 20 human embryos around the stage of posterior neuropore closure and found that the axially condensed mesenchyme (AM) intervened between the neural plate/tube and the notochord in the junctional region of the primary and secondary neural tubes. The AM appeared to be incorporated into the most ventral part of the primary neural tube, and no cavity was observed in the AM. In this study, we report three cases of human embryos with myeloschisis in which the open primary neural tube and the closed secondary neural tube overlap dorsoventrally. In all three cases, part of the closed neural tube was located ventrally to the open neural tube in the lumbosacral region. The open and closed neural tubes appeared to be part of the primary and the AM-derived secondary neural tubes, respectively. Thus, these findings suggest that, in those embryos with myeloschisis, the AM may not be incorporated into the ventral part of the primary neural tube but aberrantly differentiate into the secondary neural tube containing cavities, leading to dorsoventral overlapping of the primary and secondary neural tubes. The aberrant differentiation of the AM in embryos with lumbosacral myeloschisis suggests that the AM plays some roles in normal as well as abnormal development of the human posterior neural tube.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N
2015-12-01
The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.
2018-01-01
Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444
2011-01-01
Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270
Genome editing for human gene therapy.
Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A
2014-01-01
The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.
Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models.
Smits, Jos P H; Niehues, Hanna; Rikken, Gijs; van Vlijmen-Willems, Ivonne M J J; van de Zande, Guillaume W H J F; Zeeuwen, Patrick L J M; Schalkwijk, Joost; van den Bogaard, Ellen H
2017-09-19
The strong societal urge to reduce the use of experimental animals, and the biological differences between rodent and human skin, have led to the development of alternative models for healthy and diseased human skin. However, the limited availability of primary keratinocytes to generate such models hampers large-scale implementation of skin models in biomedical, toxicological, and pharmaceutical research. Immortalized cell lines may overcome these issues, however, few immortalized human keratinocyte cell lines are available and most do not form a fully stratified epithelium. In this study we compared two immortalized keratinocyte cell lines (N/TERT1, N/TERT2G) to human primary keratinocytes based on epidermal differentiation, response to inflammatory mediators, and the development of normal and inflammatory human epidermal equivalents (HEEs). Stratum corneum permeability, epidermal morphology, and expression of epidermal differentiation and host defence genes and proteins in N/TERT-HEE cultures was similar to that of primary human keratinocytes. We successfully generated N/TERT-HEEs with psoriasis or atopic dermatitis features and validated these models for drug-screening purposes. We conclude that the N/TERT keratinocyte cell lines are useful substitutes for primary human keratinocytes thereby providing a biologically relevant, unlimited cell source for in vitro studies on epidermal biology, inflammatory skin disease pathogenesis and therapeutics.
The human secretome atlas initiative: Implications in health and disease conditions
Brown, Kristy J; Seol, Haeri; Pillai, Dinesh K; Sankoorikal, Binu-John; Formolo, Catherine A; Mac, Jenny; Edwards, Nathan J.; Rose, Mary C; Hathout, Yetrib
2013-01-01
Proteomic analysis of human body fluids is highly challenging, therefore many researchers are redirecting efforts towards secretome profiling. The goal is to define potential biomarkers and therapeutic targets in the secretome that can be traced back in accessible human body fluids. However, currently there is a lack of secretome profiles of normal human primary cells making it difficult to assess the biological meaning of current findings. In this study we sought to establish secretome profiles of human primary cells obtained from healthy donors with the goal of building a human secretome atlas. Such an atlas can be used as a reference for discovery of potential disease associated biomarkers and eventually novel therapeutic targets. As a preliminary study, secretome profiles were established for six different types of human primary cell cultures and checked for overlaps with the three major human body fluids including plasma, cerebrospinal fluid and urine. About 67% of the 1054 identified proteins in the secretome of these primary cells occurred in at least one body fluid. Furthermore, comparison of the secretome profiles of two human glioblastoma cell lines to this new human secretome atlas enabled unambiguous identification of potential brain tumor biomarkers. These biomarkers can be easily monitored in different body fluids using stable isotope labeled standard proteins. The long term goal of this study is to establish a comprehensive online human secretome atlas for future use as a reference for any disease related secretome study. PMID:23603790
A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.
Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing
2008-04-01
To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.
The Future of the Humanities in Primary Schools--Reflections in Troubled Times
ERIC Educational Resources Information Center
Eaude, Tony; Butt, Graham; Catling, Simon; Vass, Peter
2017-01-01
This article reflects on the implications for practitioners, researchers and policy-makers of the future of the humanities in primary schools in the light of the challenges facing future generations. There is wide divergence in the four jurisdictions of the UK. The humanities are perceived as important, in principle, though curriculum frameworks…
Analyzing pitch chroma and pitch height in the human brain.
Warren, Jason D; Uppenkamp, Stefan; Patterson, Roy D; Griffiths, Timothy D
2003-11-01
The perceptual pitch dimensions of chroma and height have distinct representations in the human brain: chroma is represented in cortical areas anterior to primary auditory cortex, whereas height is represented posterior to primary auditory cortex.
Alcalde-Rabanal, Jacqueline Elizabeth; Nigenda, Gustavo; Bärnighausen, Till; Velasco-Mondragón, Héctor Eduardo; Darney, Blair Grant
2017-08-03
The purpose of this study was to estimate the gap between the available and the ideal supply of human resources (physicians, nurses, and health promoters) to deliver the guaranteed package of prevention and health promotion services at urban and rural primary care facilities in Mexico. We conducted a cross-sectional observational study using a convenience sample. We selected 20 primary health facilities in urban and rural areas in 10 states of Mexico. We calculated the available and the ideal supply of human resources in these facilities using estimates of time available, used, and required to deliver health prevention and promotion services. We performed descriptive statistics and bivariate hypothesis testing using Wilcoxon and Friedman tests. Finally, we conducted a sensitivity analysis to test whether the non-normal distribution of our time variables biased estimation of available and ideal supply of human resources. The comparison between available and ideal supply for urban and rural primary health care facilities reveals a low supply of physicians. On average, primary health care facilities are lacking five physicians when they were estimated with time used and nine if they were estimated with time required (P < 0.05). No difference was observed between available and ideal supply of nurses in either urban or rural primary health care facilities. There is a shortage of health promoters in urban primary health facilities (P < 0.05). The available supply of physicians and health promoters is lower than the ideal supply to deliver the guaranteed package of prevention and health promotion services. Policies must address the level and distribution of human resources in primary health facilities.
Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan
2009-01-01
Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.
Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B
2014-01-01
Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously observed in cell cultures. This is the first study to demonstrate that defects in cilia expression and function are a true hallmark of GBM tumors and correlate with their unrestrained growth. A review of the current ultrastructural profiles in the literature provides suggestions as to the best possible candidate protein that underlies defects in the early stages of ciliogenesis within GBM tumors.
Köllisch, Gabriele; Kalali, Behnam Naderi; Voelcker, Verena; Wallich, Reinhard; Behrendt, Heidrun; Ring, Johannes; Bauer, Stefan; Jakob, Thilo; Mempel, Martin; Ollert, Markus
2005-01-01
Toll-like receptors (TLRs) are important pattern recognition molecules that activate the nuclear factor (NF)-κB pathway leading to the production of antimicrobial immune mediators. As keratinocytes represent the first barrier against exogenous pathogens in human skin, we investigated their complete functional TLR1–10 expression profile. First, reverse transcription–polymerase chain reaction (PCR) analysis revealed a very similar pattern of TLR mRNA expression when comparing freshly isolated human epidermis and cultured primary human keratinocytes. Thus, further experiments were carried out with primary keratinocytes in comparison with the spontaneously immortalized human keratinocyte cell line HaCaT. The quantitative expression of TLR1–10 mRNA in real-time PCR of primary human keratinocytes and HaCaT cells was analysed. Both cell types constitutively expressed TLR2, TLR3, TLR5, and to a lesser extent TLR10. TLR4 was only found in HaCaT cells, TLR1 to a higher degree in primary keratinocytes. In line with this, LPS induced mRNA expression of CD14 and TLR4 only in HaCaT cells. After stimulation with various TLR ligands, the NF-κB-activated chemokine interleukin-8 (IL-8) was measured. In primary keratinocytes and HaCaT cells the TLR3 ligand poly (I:C) was the most potent stimulator of IL-8 secretion. The TLR ligands peptidoglycan, Pam3Cys and flagellin which bind to TLR2, TLR1/TLR2 heterodimer, and TLR5, respectively, also induced IL-8 secretion, whereas no IL-8 was induced by LPS, R-848, loxoribine and cytosine guanine dinucleotide-containing oligodeoxynucleotide. A corresponding pattern was found in the RelA NF-κB translocation assay after ligand stimulation of primary keratinocytes. These studies provide substantial evidence for a functional TLR expression and signalling profile of normal human keratinocytes contributing to the antimicrobial defence barrier of human skin. PMID:15804290
[A method for the primary culture of fibroblasts isolated from human airway granulation tissues].
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua
2013-04-01
To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.
Sweeney, Sinbad; Berhanu, Deborah; Misra, Superb K.; Thorley, Andrew J.; Valsami-Jones, Eugenia; Tetley, Teresa D.
2015-01-01
Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT. PMID:25780270
Function of MYO7A in the Human RPE and the Validity of Shaker1 Mice as a Model for Usher Syndrome 1B
Gibbs, Daniel; Diemer, Tanja; Khanobdee, Kornnika; Hu, Jane; Bok, Dean
2010-01-01
Purpose. To investigate the function of MYO7A in human RPE cells and to test the validity of using shaker1 RPE in preclinical studies on therapies for Usher syndrome 1B by comparing human and mouse cells. Methods. MYO7A was localized by immunofluorescence. Primary cultures of human and mouse RPE cells were used to measure melanosome motility and rod outer segment (ROS) phagocytosis and digestion. MYO7A was knocked down in the human RPE cells by RNAi to test for a mutant phenotype in melanosome motility. Results. The distribution of MYO7A in the RPE of human and mouse was found to be comparable, both in vivo and in primary cultures. Primary cultures of human RPE cells phagocytosed and digested ROSs with kinetics comparable to that of primary cultures of mouse RPE cells. Melanosome motility was also comparable, and, after RNAi knockdown, consisted of longer-range fast movements characteristic of melanosomes in shaker1 RPE. Conclusions. The localization and function of MYO7A in human RPE cells is comparable to that in mouse RPE cells. Although shaker1 retinas do not undergo degeneration, correction of mutant phenotypes in the shaker1 RPE represents a valid preclinical test for potential therapeutic treatments. PMID:19643958
Optimization of methods for the genetic modification of human T cells.
Bilal, Mahmood Y; Vacaflores, Aldo; Houtman, Jon Cd
2015-11-01
CD4(+) T cells are not only critical in the fight against parasitic, bacterial and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNA interference (RNAi) owing to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low because of multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4(+) T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T-cell lines. Importantly, we demonstrate that activated primary human CD4(+) T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4(+) T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4(+) T cells.
Watarai, Hiroshi; Sekine, Etsuko; Inoue, Sayo; Nakagawa, Ryusuke; Kaisho, Tsuneyasu; Taniguchi, Masaru
2008-02-26
Type I interferons (IFNs) derived from plasmacytoid dendritic cells (PDCs) are critical for antiviral responses; however, the mechanisms underlying their production remain unclear. We have identified a receptor, PDC-TREM, which is associated with Plexin-A1 (PlxnA1) on the PDC cell surface and is preferentially expressed after TLR-stimulation. Limited TLR signals induced PDC-TREM expression but failed to induce IFN-alpha production. However, when coupled with Sema6D, a ligand for Plexin-A1, limited TLR-stimulation resulted in PDC-TREM-mediated DAP12-dependent phosphorylation of phosphoinositide 3-kinase (PI3K) and extracellular regulated kinase (Erk) 1/2 at 6-9 h, and IFN-alpha was produced. Inhibition of PDC-TREM expression by pdctrem-shRNA, blocking of PDC-TREM-binding with PlxnA1 by PDC-TREM mAb, and DAP12 deficiency all resulted in greatly reduced PDC-TREM-dependent activation of signaling molecules and IFN-alpha production. Thus, PDC-TREM is responsible for IFN-alpha production, whereas TLR signals are essential for PDC-TREM expression.
Huang, Chunyu; Zhang, Hongzhan; Chen, Xian; Diao, Lianghui; Lian, Ruochun; Zhang, Xu; Hu, Lina; Zeng, Yong
2016-10-01
Dendritic cells (DCs) have been reported to play an important role in pregnancy. However, the role of DCs in recurrent pregnancy loss (RPL) has not been investigated well. Forty-three women affected by RPL and 16 fertile controls were recruited from June 2013 to December 2014. The peripheral blood DCs subsets, including myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), the levels (%) of CD80(+) , CD86(+) , and CD200(+) DCs were analyzed using flow cytometry. The levels of total DCs, mDCs, and CD86(+) DCs were significantly higher (all P<.05); however, the level of CD200(+) DCs in the RPL group was significantly lower than that of the control group (P<.05). The logistical regression analyses showed that the elevated level of mDCs was significantly associated with RPL after adjustment for age (OR: 1.14, 95% CI, 1.01-1.29, P<.05). The elevated level of mDCs was significantly associated with RPL, which might lead to the intervention of targeted immunosuppression in women with RPL. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xun; An, Linan; Xu, Chengying
2013-06-30
The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300°C and pressure sensors up to 800°C. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in thismore » project can survive harsh environments characterized by high temperatures (>1000°C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.« less
Papillion, Amber M.; Tatum, Arthur H.; Princiotta, Michael F.; Hayes, Sandra M.
2014-01-01
BLK, which encodes B lymphoid kinase, was recently identified in genome wide association studies as a susceptibility gene for systemic lupus erythematosus (SLE), and risk alleles mapping to the BLK locus result in reduced gene expression. To determine whether BLK is indeed a bona fide susceptibility gene, we developed an experimental mouse model, namely the Blk+/−.lpr/lpr (Blk+/−.lpr) mouse, in which Blk expression levels are reduced to levels comparable to those in individuals carrying a risk allele. Here, we report that Blk is expressed not only in B cells, but also in IL-17-producing γδ and DN αβ T cells and in plasmacytoid dendritic cells (pDCs). Moreover, we found that solely reducing Blk expression in C57BL/6-lpr/lpr mice enhanced proinflammatory cytokine production and accelerated the onset of lymphoproliferation, proteinuria, and kidney disease. Together, these findings suggest that BLK risk alleles confer susceptibility to SLE through the dysregulation of a proinflammatory cytokine network. PMID:24637841
Generation and maturation of bone marrow-derived DCs under serum-free conditions.
Kim, Sung Jung; Diamond, Betty
2007-06-30
Standard protocols for the generation of murine dendritic cells (DCs) employ medium supplemented with heat-inactivated fetal calf serum (FCS). Recently, several attempts have been made to avoid serum exposure during DC culture. The impetus for these efforts has been a desire to generate DCs for clinical use, as preclinical data have demonstrated their efficacy in immune activation and in immune suppression both in vitro and in vivo. However, these protocols have resulted in contradictory outcomes with respect to DC survival in culture and activation status. In this report, we compared several serum-free culture conditions with respect to survival, differentiation, activation, and cytokine profile of murine DC progenitors. DC progenitors can survive only in some serum-free conditions. Surprisingly, DCs grown in serum-free medium display a higher expression of activation markers upon stimulation. They produce increased IL-12 and decreased IL-6 following stimulation. Furthermore, DCs derived under serum-free conditions may express unusual surface markers, B220 and Ly6C/G, implying an increased differentiation to plasmacytoid DCs (pDCs).
Frischmeyer-Guerrerio, Pamela A.; Keet, Corinne A.; Guerrerio, Anthony L.; Chichester, Kristin L.; Bieneman, Anja P.; Hamilton, Robert G.; Wood, Robert A.; Schroeder, John T.
2014-01-01
Sublingual (SLIT) and oral immunotherapy (OIT) are promising treatments for food allergy, but underlying mechanisms are poorly understood. Dendritic cells (DC) induce and maintain Th2-type allergen-specific T cells, and also regulate innate immunity through their expression of Toll-like receptors (TLRs). We examined how SLIT and OIT influenced DC innate and adaptive immune responses in children with IgE-mediated cow's milk (CM) allergy. SLIT, but not OIT, decreased TLR-induced IL-6 secretion by myeloid DCs (mDCs). SLIT and OIT altered mDC IL-10 secretion, a potent inhibitor of FcεRI-dependent pro-inflammatory responses. OIT uniquely augmented IFN-α and decreased IL-6 secretion by plasmacytoid DCs (pDCs), which was associated with reduced TLR-induced IL-13 release in pDC-T cell co-cultures. Both SLIT and OIT decreased Th2 cytokine secretion to CM in pDC-T, but not mDC-T, co-cultures. Therefore, SLIT and OIT exert unique effects on DC-driven innate and adaptive immune responses, which may inhibit allergic inflammation and promote tolerance. PMID:25173802
Speiseder, Thomas; Hofmann-Sieber, Helga; Rodríguez, Estefanía; Schellenberg, Anna; Akyüz, Nuray; Dierlamm, Judith; Spruss, Thilo; Lange, Claudia; Dobner, Thomas
2017-01-01
Previous observations that human amniotic fluid cells (AFC) can be transformed by human adenovirus type 5 (HAdV-5) E1A/E1B oncogenes prompted us to identify the target cells in the AFC population that are susceptible to transformation. Our results demonstrate that one cell type corresponding to mesenchymal stem/stroma cells (hMSCs) can be reproducibly transformed by HAdV-5 E1A/E1B oncogenes as efficiently as primary rodent cultures. HAdV-5 E1-transformed hMSCs exhibit all properties commonly associated with a high grade of oncogenic transformation, including enhanced cell proliferation, anchorage-independent growth, increased growth rate, and high telomerase activity as well as numerical and structural chromosomal aberrations. These data confirm previous work showing that HAdV preferentially transforms cells of mesenchymal origin in rodents. More importantly, they demonstrate for the first time that human cells with stem cell characteristics can be completely transformed by HAdV oncogenes in tissue culture with high efficiency. Our findings strongly support the hypothesis that undifferentiated progenitor cells or cells with stem cell-like properties are highly susceptible targets for HAdV-mediated cell transformation and suggest that virus-associated tumors in humans may originate, at least in part, from infections of these cell types. We expect that primary hMSCs will replace the primary rodent cultures in HAdV viral transformation studies and are confident that these investigations will continue to uncover general principles of viral oncogenesis that can be extended to human DNA tumor viruses as well. It is generally believed that transformation of primary human cells with HAdV-5 E1 oncogenes is very inefficient. However, a few cell lines have been successfully transformed with HAdV-5 E1A and E1B, indicating that there is a certain cell type which is susceptible to HAdV-mediated transformation. Interestingly, all those cell lines have been derived from human embryonic tissue, albeit the exact cell type is not known yet. We show for the first time the successful transformation of primary human mesenchymal stromal cells (hMSCs) by HAdV-5 E1A and E1B. Further, we show upon HAdV-5 E1A and E1B expression that these primary progenitor cells exhibit features of tumor cells and can no longer be differentiated into the adipogenic, chondrogenic, or osteogenic lineage. Hence, primary hMSCs represent a robust and novel model system to elucidate the underlying molecular mechanisms of adenovirus-mediated transformation of multipotent human progenitor cells. Copyright © 2016 American Society for Microbiology.
The role of arginine vasopressin in electroacupuncture treatment of primary sciatica in human.
Zhao, Xue-Yan; Zhang, Qi-Shun; Yang, Jun; Sun, Fang-Jie; Wang, Da-Xin; Wang, Chang-Hong; He, Wei-Ya
2015-08-01
It has been implicated that electroacupuncture can relieve the symptoms of sciatica with the increase of pain threshold in human, and arginine vasopressin (AVP) in the brain rather than the spinal cord and blood circulation participates in antinociception. Our previous study has proven that AVP in the brain played a role in the process of electroacupuncture analgesia in rat. The goal of the present study was to investigate the role of AVP in electroacupuncture in treating primary sciatica in human. The results showed that (1) AVP concentration of cerebrospinal fluid (CSF) (7.5 ± 2.5 pg/ml), not plasma (13.2 ± 4.2 pg/ml) in primary sciatica patients was lower than that in health volunteers (16.1 ± 3.8 pg/ml and 12.3 ± 3.4 pg/ml), although the osmotic pressure in CSF and plasma did not change; (2) electroacupuncture of the bilateral "Zusanli" points (St. 36) for 60 min relieved the pain sensation in primary sciatica patients; (3) electroacupuncture increased the AVP level of CSF, not plasma in primary sciatica patients; and (4) there was the positive correlation between the effect of electroacupuncture relieving the pain and the AVP level of CSF in the primary sciatica patients. The data suggested that central AVP, not peripheral AVP might improve the effect of electroacupuncture treatment of primary sciatica in human, i.e., central AVP might take part in the electroacupuncture relieving the pain sensation in primary sciatica patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Moosa, Shabir; Downing, Raymond; Essuman, Akye; Pentz, Stephen; Reid, Stephen; Mash, Robert
2014-01-17
The World Health Organisation has advocated for comprehensive primary care teams, which include family physicians. However, despite (or because of) severe doctor shortages in Africa, there is insufficient clarity on the role of the family physician in the primary health care team. Instead there is a trend towards task shifting without thought for teamwork, which runs the risk of dangerous oversimplification. It is not clear how African leaders understand the challenges of implementing family medicine, especially in human resource terms. This study, therefore, sought to explore the views of academic and government leaders on critical human resource issues for implementation of family medicine in Africa. In this qualitative study, key academic and government leaders were purposively selected from sixteen African countries. In-depth interviews were conducted using an interview guide. All interviews were audio-recorded, transcribed and thematically analysed. There were 27 interviews conducted with 16 government and 11 academic leaders in nine Sub-Saharan African countries: Botswana, Democratic Republic of Congo, Ghana, Kenya, Malawi, Nigeria, Rwanda, South Africa and Uganda. Respondents spoke about: educating doctors in family medicine suited to Africa, including procedural skills and holistic care, to address the difficulty of recruiting and retaining doctors in rural and underserved areas; planning for primary health care teams, including family physicians; new supervisory models in primary health care; and general human resource management issues. Important milestones in African health care fail to specifically address the human resource issues of integrated primary health care teamwork that includes family physicians. Leaders interviewed in this study, however, proposed organising the district health system with a strong embrace of family medicine in Africa, especially with regard to providing clinical leadership in team-based primary health care. Whilst these leaders focussed positively on entry and workforce issues, in terms of the 2006 World Health Report on human resources for health, they did not substantially address retention of family physicians. Family physicians need to respond to the challenge by respondents to articulate human resource policies appropriate to Africa, including the organisational development of the primary health care team with more sophisticated skills and teamwork.
2013-01-01
Background Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. Results Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml-1) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. Conclusions We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response suggesting this response may be moderated by the presence of the organism. PMID:24238294
ERIC Educational Resources Information Center
Harlen, Wynne, Comp.
A conference on science and technology and future human needs was attended by over 300 science educators from 64 countries. Educators with particular interest in primary science and technology education extended their stay for an additional seminar. This report highlights the events of that seminar. Contents include: (1) recent and on-going work…
Comparative study of the primary cilia in thyrocytes of adult mammals
Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I
2015-01-01
Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270
Lawson, Jeffrey H; Glickman, Marc H; Ilzecki, Marek; Jakimowicz, Tomasz; Jaroszynski, Andrzej; Peden, Eric K; Pilgrim, Alison J; Prichard, Heather L; Guziewicz, Malgorzata; Przywara, Stanisław; Szmidt, Jacek; Turek, Jakub; Witkiewicz, Wojciech; Zapotoczny, Norbert; Zubilewicz, Tomasz; Niklason, Laura E
2016-01-01
Summary Background For patients with end-stage renal disease who are not candidates for fistula, dialysis access grafts are the best option for chronic haemodialysis. However, polytetrafluoroethylene arteriovenous grafts are prone to thrombosis, infection, and intimal hyperplasia at the venous anastomosis. We developed and tested a bioengineered human acellular vessel as a potential solution to these limitations in dialysis access. Methods We did two single-arm phase 2 trials at six centres in the USA and Poland. We enrolled adults with end-stage renal disease. A novel bioengineered human acellular vessel was implanted into the arms of patients for haemodialysis access. Primary endpoints were safety (freedom from immune response or infection, aneurysm, or mechanical failure, and incidence of adverse events), and efficacy as assessed by primary, primary assisted, and secondary patencies at 6 months. All patients were followed up for at least 1 year, or had a censoring event. These trials are registered with ClinicalTrials.gov, NCT01744418 and NCT01840956. Findings Human acellular vessels were implanted into 60 patients. Mean follow-up was 16 months (SD 7·6). One vessel became infected during 82 patient-years of follow-up. The vessels had no dilatation and rarely had post-cannulation bleeding. At 6 months, 63% (95% CI 47–72) of patients had primary patency, 73% (57–81) had primary assisted patency, and 97% (85–98) had secondary patency, with most loss of primary patency because of thrombosis. At 12 months, 28% (17–40) had primary patency, 38% (26–51) had primary assisted patency, and 89% (74–93) had secondary patency. Interpretation Bioengineered human acellular vessels seem to provide safe and functional haemodialysis access, and warrant further study in randomised controlled trials. Funding Humacyte and US National Institutes of Health. PMID:27203778
Primary cilia are increased in number and demonstrate structural abnormalities in human cancer.
Yasar, Binnaz; Linton, Kim; Slater, Christian; Byers, Richard
2017-07-01
Primary cilia play an important role in the regulation of cell signalling pathways and are thought to have a role in cancer but have seldom been studied in human cancer samples. Primary cilia were visualised by dual immunofluorescence for anti-CROCC (ciliary rootlet coiled-coil) and anti-tubulin in a range of human cancers (including carcinomas of stomach, pancreas, prostate, lung and colon, lobular and ductal breast cancers and follicular lymphoma) and in matched normal tissue (stomach, pancreas, lung, large and small intestines, breast and reactive lymph nodes) samples using a tissue microarray; their frequency, association with proliferation, was measured by Ki-67 staining and their structure was analysed. Compared with normal tissues, primary cilia frequency was significantly elevated in adenocarcinoma of the lung (2.75% vs 1.85%, p=0.016), adenocarcinoma of the colon (3.80% vs 2.43%, respectively, p=0.017), follicular lymphoma (1.18% vs 0.83%, p=0.003) and pancreatic adenocarcinoma (7.00% vs 5.26%, p=0.002); there was no statistically significant difference compared with normal control tissue for gastric and prostatic adenocarcinomas or for lobular and ductal breast cancers. Additionally, structural abnormalities of primary cilia were identified in cancer tissues, including elongation of the axoneme, multiple basal bodies and branching of the axoneme. Ki-67 scores ranged from 0.7% to 78.4% and showed no statistically significant correlation with primary cilia frequency across all tissues (p=0.1501). The results show upregulation of primary cilia and the presence of structural defects in a wide range of human cancer tissue samples demonstrating association of dysregulation of primary cilia with human cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.
Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmentedmore » inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key source of inflammatory mediators in OSA.« less
Hayashi-Sakai, Sachiko; Sakai, Jun; Sakamoto, Makoto; Endo, Hideaki
2012-09-01
The purpose of the present study was to examine the fracture toughness and Vickers microhardness number of permanent and primary human enamel using the indentation microfracture method. Crack resistance and a parameter indirectly related to fracture toughness were measured in 48 enamel specimens from 16 permanent teeth and 12 enamel specimens obtained from six primary teeth. The Vickers microhardness number of the middle portion was greater than the upper portion in primary enamel. The fracture toughness was highest in the middle portion of permanent enamel, because fracture toughness greatly depends upon microstructure. These findings suggest that primary teeth are not miniature permanent teeth but have specific and characteristic mechanical properties.
Sauerhering, Lucie; Zickler, Martin; Elvert, Mareike; Behner, Laura; Matrosovich, Tatyana; Erbar, Stephanie; Matrosovich, Mikhail; Maisner, Andrea
2016-07-01
Highly pathogenic Nipah virus (NiV) causes symptomatic infections in pigs and humans. The severity of respiratory symptoms is much more pronounced in pigs than in humans, suggesting species-specific differences of NiV replication in porcine and human airways. Here, we present a comparative study on productive NiV replication in primary airway epithelial cell cultures of the two species. We reveal that NiV growth substantially differs in primary cells between pigs and humans, with a more rapid spread of infection in human airway epithelia. Increased replication, correlated with higher endogenous expression levels of the main NiV entry receptor ephrin-B2, not only significantly differed between airway cells of the two species but also varied between cells from different human donors. To our knowledge, our study provides the first experimental evidence of species-specific and individual differences in NiV receptor expression and replication kinetics in primary airway epithelial cells. It remains to be determined whether and how these differences contribute to the viral host range and pathogenicity.
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry
2017-04-01
Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars and, finally, assess the probability of occurrence of lahars of different volumes. The information utilized to parametrize the BBNs includes: (1) datasets of lahar observations; (2) numerical modelling of tephra fallout and PDCs; and (3) literature data. The BBN framework provides an opportunity to quantitatively combine these different types of evidence and use them to derive a rational approach to lahar forecasting. Lastly, we couple the BBN assessments with a shallow-water physical model for lahar propagation in order to attach probabilities to the simulated hazard footprints. We develop our methodology at Somma-Vesuvius (Italy), an explosive volcano prone to rain-triggered lahars or debris flows whether right after an eruption or during inter-eruptive periods. Accounting for the variability in tephra-fallout and dense-PDC propagation and the main geomorphological features of the catchments around Somma-Vesuvius, the areas most likely of forming medium-large lahars are the flanks of the volcano and the Sarno mountains towards the east.
A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis.
Miller, Chris P; Tsuchida, Connor; Zheng, Ying; Himmelfarb, Jonathan; Akilesh, Shreeram
2018-06-01
Tractable human tissue-engineered 3D models of cancer that enable fine control of tumor growth, metabolism, and reciprocal interactions between different cell types in the tumor microenvironment promise to accelerate cancer research and pharmacologic testing. Progress to date mostly reflects the use of immortalized cancer cell lines, and progression to primary patient-derived tumor cells is needed to realize the full potential of these platforms. For the first time, we report endothelial sprouting induced by primary patient tumor cells in a 3D microfluidic system. Specifically, we have combined primary human clear cell renal cell carcinoma (ccRCC) cells from six independent donors with human endothelial cells in a vascularized, flow-directed, 3D culture system ("ccRCC-on-a-chip"). The upregulation of key angiogenic factors in primary human ccRCC cells, which exhibited unique patterns of donor variation, was further enhanced when they were cultured in 3D clusters. When embedded in the matrix surrounding engineered human vessels, these ccRCC tumor clusters drove potent endothelial cell sprouting under continuous flow, thus recapitulating the critical angiogenic signaling axis between human ccRCC cells and endothelial cells. Importantly, this phenotype was driven by a primary tumor cell-derived biochemical gradient of angiogenic growth factor accumulation that was subject to pharmacological blockade. Our novel 3D system represents a vascularized tumor model that is easy to image and quantify and is fully tunable in terms of input cells, perfusate, and matrices. We envision that this ccRCC-on-a-chip will be valuable for mechanistic studies, for studying tumor-vascular cell interactions, and for developing novel and personalized antitumor therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Alternative functional in vitro models of human intestinal epithelia
Kauffman, Amanda L.; Gyurdieva, Alexandra V.; Mabus, John R.; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J.
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport. PMID:23847534
Alternative functional in vitro models of human intestinal epithelia.
Kauffman, Amanda L; Gyurdieva, Alexandra V; Mabus, John R; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.
Elderly dendritic cells respond to LPS/IFN-γ and CD40L stimulation despite incomplete maturation
Musk, Arthur W.; Alvarez, John; Mamotte, Cyril D. S.; Jackaman, Connie; Nowak, Anna K.; Nelson, Delia J.
2018-01-01
There is evidence that dendritic cells (DCs) undergo age-related changes that modulate their function with their key role being priming antigen-specific effector T cells. This occurs once DCs develop into antigen-presenting cells in response to stimuli/danger signals. However, the effects of aging on DC responses to bacterial lipopolysaccharide (LPS), the pro-inflammatory cytokine interferon (IFN)-γ and CD40 ligand (CD40L) have not yet been systematically evaluated. We examined responses of blood myeloid (m)DC1s, mDC2s, plasmacytoid (p)DCs, and monocyte-derived DCs (MoDCs) from young (21–40 years) and elderly (60–84 years) healthy human volunteers to LPS/IFN-γ or CD40L stimulation. All elderly DC subsets demonstrated comparable up-regulation of co-stimulatory molecules (CD40, CD80 and/or CD86), intracellular pro-inflammatory cytokine levels (IFN-γ, tumour necrosis factor (TNF)-α, IL-6 and/or IL-12), and/or secreted cytokine levels (IFN-α, IFN-γ, TNF-α, and IL-12) to their younger counterparts. Furthermore, elderly-derived LPS/IFN-γ or CD40L-activated MoDCs induced similar or increased levels of CD8+ and CD4+ T cell proliferation, and similar T cell functional phenotypes, to their younger counterparts. However, elderly LPS/IFN-γ-activated MoDCs were unreliable in their ability to up-regulate chemokine (IL-8 and monocyte chemoattractant protein (MCP)-1) and IL-6 secretion, implying an inability to dependably induce an inflammatory response. A key age-related difference was that, unlike young-derived MoDCs that completely lost their ability to process antigen, elderly-derived MoDCs maintained their antigen processing ability after LPS/IFN-γ maturation, measured using the DQ-ovalbumin assay; this response implies incomplete maturation that may enable elderly DCs to continuously present antigen. These differences may impact on the efficacy of anti-pathogen and anti-tumour immune responses in the elderly. PMID:29652910
Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2015-06-01
Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. Copyright © 2015 Elsevier B.V. All rights reserved.
Primary Humanities: A Perspective from Wales
ERIC Educational Resources Information Center
Jones, Mark; Whitehouse, Sarah
2017-01-01
How the humanities subjects are represented in primary schools in Wales has been influenced by curriculum developments including Curriculum Cymraeg, the Skills Framework and the Foundation Phase. A central tenet of Welsh Government policy has been to actively encourage schools to promote a sense of "Welshness" through curriculum content,…
Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...
Humanities-Oriented Accents in Teaching Mathematics to Prospective Primary School Teachers
ERIC Educational Resources Information Center
Tabov, Jordan; Gortcheva, Iordanka
2016-01-01
Our research includes undergraduate students who major in primary school education. Their academic background is prevailingly in the humanities. This poses specific demands on their mathematics instruction at university. To attract them to their mathematics course and raise its effectiveness, we use a series of activities. Writing assignments…
Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.
Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz
2017-06-01
Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury compared to rodents. • Primary human hepatocytes largely undergo necrosis in response to BA toxicity. • Cholestatic liver injury in vivo is predominantly necrotic with minor apoptosis. • Rodent models of bile acid toxicity may not recapitulate the injury in man.« less
Nylund, Reetta; Kuster, Niels; Leszczynski, Dariusz
2010-10-18
Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.
MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes
Polioudakis, Damon; Abell, Nathan S.; Iyer, Vishwanath R.
2015-01-01
miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191’s regulation of primary human fibroblast proliferation. PMID:25992613
Effect of Arsenicals on the Expression of Cell Cycle Proteins and Early Signaling Events in Primary Human Keratinocytes.
Mudipalli, A, Owen R. D. and R. J. Preston, Environmental Carcinogenesis Division, USEPA, RTP, NC 27711.
Environmental exposure to arsenic is a m...
Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J
2016-01-01
A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222
Vascular status in human primary and permanent teeth in health and disease.
Rodd, Helen D; Boissonade, Fiona M
2005-04-01
The present study sought to compare the vascular status of human primary teeth with that of human permanent teeth, and to determine whether caries or painful pulpitis was associated with changes in vascularity. Coronal pulps were removed from 62 primary and 62 permanent mandibular molars with a known pain history. Teeth were categorized as intact, moderately carious or grossly carious. Pulp sections were labelled with Ulex europaeus I lectin (UEIL), which is a marker of human vascular endothelium. Image analysis was then used to quantify the percentage area of UEIL-labelled tissue (vascularity) and the number of blood vessels present within three regions: the pulp horn, the subodontoblastic region, and the mid-coronal pulp. Only the mid-coronal region of the primary tooth pulp was found to be significantly more vascular than the corresponding area of the permanent tooth pulp. Both dentitions showed a significant increase in vascularity within the pulp horn region with caries progression, but this was not accompanied by an increase in vessel number. There was no correlation between vascularity and pain symptoms. These findings suggest that the primary tooth pulp is more vascular than its successor within the mid-coronal region. However, the functional and clinical significance of this finding remains speculative.
C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis.
Conroy, Pauline C; Saladino, Chiara; Dantas, Tiago J; Lalor, Pierce; Dockery, Peter; Morrison, Ciaran G
2012-10-15
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Huus, K; Dada, S; Bornman, J; Lygnegård, F
2016-11-01
Besides the right to freedom, human rights can be seen as a basic requirement also for the maintenance of human dignity and the opportunity to thrive - particularly in the case of children with disabilities. It is imperative to explore primary caregivers' awareness of the human rights of their children with intellectual disabilities in view of the role they may play in either facilitating or restricting these rights. This paper explores the awareness of 219 primary caregivers of the human rights of their children with intellectual disabilities. A descriptive survey design was used with a custom-designed questionnaire that employed a deductive content analysis based on the articles of the United Nations Convention on the Rights of a Child. Comparisons were drawn between the awareness of primary caregivers from urban and those from rural areas. The majority (85.5%) of participants agreed that their child with intellectual disability had rights. Three broad kinds of right were mentioned (in descending order): provision rights, protection rights and participation rights. Participants from both urban and rural areas mentioned education (a provision right) most frequently. However, participants from urban areas were more aware of the different rights that existed than were their counterparts from rural areas. Primary caregivers in both rural and urban areas are aware of the rights of their children with disabilities, although there are significant differences between them. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko
2008-05-09
Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 daysmore » after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.« less
Profiling post-translational modifications of histones in human monocyte-derived macrophages.
Olszowy, Pawel; Donnelly, Maire Rose; Lee, Chanho; Ciborowski, Pawel
2015-01-01
Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.
[Primary culture of human normal epithelial cells].
Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun
2017-11-28
The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.
Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture.
Usui, Tatsuya; Sakurai, Masashi; Umata, Koji; Yamawaki, Hideyuki; Ohama, Takashi; Sato, Koichi
2018-02-21
In vitro analysis of intestinal epithelium has been hindered by a lack of suitable culture systems useful for gastrointestinal research. To overcome the problem, an air liquid interface (ALI) method using a collagen gel was established to culture three-dimensional primary cells containing both primary epithelial and mesenchymal components from mouse gastrointestinal tissues. ALI organoids accurately recapitulate organ structures, multilineage differentiation, and physiology. Since ALI organoids from human tissues have not been produced, we modified the previous protocol for mouse ALI organoid culture to establish the culture system of ALI organoids from normal and tumor colorectal tissues of human patients. The current unit presents a protocol for preparation of the ALI organoid culture from normal and tumor colorectal tissues of human patients. ALI organoid culture from human tissues might be useful for examining not only resistance to chemotherapy in a tumor microenvironment but also toxic effects on organoids. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Zuo, Rongjun; Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L; Hong, Yulong; Liu, Jin; Faris, Ronald A; Li, Daochuan; Wang, Hongbing
2017-02-01
Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. Copyright © 2017 by The Author(s).
Censor, Nitzan; Dimyan, Michael A; Cohen, Leonardo G
2010-09-14
One of the most challenging tasks of the brain is to constantly update the internal neural representations of existing memories. Animal studies have used invasive methods such as direct microfusion of protein inhibitors to designated brain areas, in order to study the neural mechanisms underlying modification of already existing memories after their reactivation during recall [1-4]. Because such interventions are not possible in humans, it is not known how these neural processes operate in the human brain. In a series of experiments we show here that when an existing human motor memory is reactivated during recall, modification of the memory is blocked by virtual lesion [5] of the related primary cortical human brain area. The virtual lesion was induced by noninvasive repetitive transcranial magnetic stimulation guided by a frameless stereotactic brain navigation system and each subject's brain image. The results demonstrate that primary cortical processing in the human brain interacting with pre-existing reactivated memory traces is critical for successful modification of the existing related memory. Modulation of reactivated memories by noninvasive cortical stimulation may have important implications for human memory research and have far-reaching clinical applications. Copyright © 2010 Elsevier Ltd. All rights reserved.
Primary cilium - antenna-like structure on the surface of most mammalian cell types
NASA Astrophysics Data System (ADS)
Dvorak, J.; Sitorova, V.; Hadzi Nikolov, D.; Mokry, J.; Richter, I.; Kasaova, L.; Filip, S.; Ryska, A.; Petera, J.
2011-12-01
The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G1(G0) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.
BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance
Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.
2015-01-01
BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620
BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.
Shahi, Mehdi Hayat; York, Daniel; Gandour-Edwards, Regina; Withers, Sita S; Holt, Roseline; Rebhun, Robert B
2015-01-01
BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.
Haberl, Helmut; Erb, K Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina
2007-07-31
Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.
Young Scientists Explore the Human Body. Book 11 Primary Level.
ERIC Educational Resources Information Center
Penn, Linda
Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities specifically focus on the human body and encourage a positive self-concept. The theme of the first section is air--the breath of…
Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...
Designer Babies? Teacher Views on Gene Technology and Human Medicine.
ERIC Educational Resources Information Center
Schibeci, Renato
1999-01-01
Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…
Isolation of Primary Human Skeletal Muscle Cells
Spinazzola, Janelle M.; Gussoni, Emanuela
2017-01-01
Primary myoblast culture is a valuable tool in research of muscle disease, pathophysiology, and pharmacology. This protocol describes techniques for dissociation of cells from human skeletal muscle biopsies and enrichment for a highly myogenic population by fluorescence-activated cell sorting (FACS). We also describe methods for assessing myogenicity and population expansion for subsequent in vitro study. PMID:29152538
Arrhenius parameters for primary thermal injury in human tonsillar tissue
NASA Astrophysics Data System (ADS)
McMillan, Kathleen; Radabaugh, Rebecca; Coad, James E.
2011-03-01
Clinical implementation of a thermal therapy requires the ability to predict tissue injury following exposures to specific thermal histories. As part of an effort to develop a nonexcisional alternative to tonsillectomy, the degree of primary hyperthermic tissue injury in human tonsil was characterized. Fifteen fresh pediatric hypertrophic tonsillectomy specimens were sectioned and treated in a NIST-calibrated saline bath at temperatures of 40 to 70°C with hold times of one to seven minutes. The treated tissues were subsequently nitroblue tetrazolium (NBT) stained to assess for thermal respiratory enzyme inactivation as a marker of cellular injury/death. The NBT stains were quantitatively image analyzed and used to calculate Arrhenius parameters for primary thermal injury in human tonsils.
Growth of human breast tissues from patient cells in 3D hydrogel scaffolds.
Sokol, Ethan S; Miller, Daniel H; Breggia, Anne; Spencer, Kevin C; Arendt, Lisa M; Gupta, Piyush B
2016-03-01
Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell markers, which subsequently localized to the leading edges of the tissue outgrowths. Ductal elongation was preceded by leader cells that protruded from the tips of ducts and engaged with the extracellular matrix. These 3D hydrogel scaffolds support the growth of complex mammary tissues from primary patient-derived cells. We anticipate that this culture system will empower future studies of human mammary gland development and biology.
Yang, Bo; Tuo, Shuai; Tuo, Chao-wei; Zhang, Ning; Liu, Qiu-zhen
2010-06-01
To construct a mouse model of highly metastatic gastric lymphoma with orthotopic transplantation of human primary gastric lymphoma specimen. A fresh surgical specimen of primary gastric lymphoma was obtained intraoperatively and implanted into the submucosa of stomach in nude mice. Tumor formation, invasion, metastasis, morphological characteristics under light microscopy and electron microscopy, immunohistochemistry,and the karyotype of orthotopically transplanted tumor cells were studied. An orthotopic highly metastatic model of human primary gastric lymphoma in nude mice(HGBL-0305) was successfully established. Histopathology of transplanted tumors showed primary gastric diffuse large B cell lymphoma. CD19, CD20, CD22 and CD79alpha were positive, while CD3 and CD7 were negative. The number of chromosome ranged from 56 to 69. DNA index(DI) was 1.47+/-0.12(i.e. heteroploid). Until now, HGBL-0305 model has been maintained for 45 generations by orthotopic passage for almost 4 years in nude mice. A total of 156 nude mice were used for transplantation. The growth rate and resuscitation rate of liquid nitrogen cryopreservation of transplanted tumor cells were both 100%. The autonomic growth of the transplanted tumor cells invaded and destructed all the layers of the nude mice stomach. The metastasis rates of liver, spleen, lymph node, and peritoneal seeding were 69.5%, 55.6%, 45.7%, and 30.5%, respectively. An orthotopic highly metastatic model of human primary gastric lymphoma in nude mice is successfully established. HGBL-0305 model may simulate the natural course of primary gastric lymphoma in human and provides an ideal animal model for studies on pathogenesis, metastasis biology and anti-metastatic therapies of primary gastric lymphoma.
Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang
2016-07-01
Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.
Meneses, Tatiana Mota Xavier de; Oliveira, Maria Inês Couto de; Boccolini, Cristiano Siqueira
To estimate the prevalence and to analyze factors associated with breast milk donation at primary health care units in order to increase the human milk bank reserves. Cross-sectional study carried out in 2013 in Rio de Janeiro, Brazil. A representative sample of 695 mothers of children younger than 1 year attended to at the nine primary health care units with human milk donation services were interviewed. A hierarchical approach was used to obtain adjusted prevalence ratios (APR) by Poisson regression with robust variance. The final model included the variables associated with breast milk donation (p≤0.05). 7.3% of the mothers had donated breast milk. Having been encouraged to donate breast milk by healthcare professionals, relatives, or friends (APR=7.06), receiving information on breast milk expression by the primary health care unit (APR=3.65), and receiving help from the unit professionals to breastfeed (APR=2.24) were associated with a higher prevalence of donation. Admission of the newborn to the neonatal unit was associated with a lower prevalence of donation (APR=0.09). Encouragement to breast milk donation, and information and help provided by primary health care unit professionals to breastfeeding were shown to be important for the practice of human milk donation. Copyright © 2017. Published by Elsevier Editora Ltda.
Pathogenicity of Shigella in chickens.
Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing
2014-01-01
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.
Pathogenicity of Shigella in Chickens
Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing
2014-01-01
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance. PMID:24949637
Alexander, C J
1994-01-01
OBJECTIVE--To determine whether an arboreal lifestyle required full use of movement ranges underutilised in nine joint groups in humans, because under-utilisation of available movement range may be associated with susceptibility to primary osteoarthritis. METHODS--Utilisation of the nine joint groups was studied in two species of primate exercising in a simulated arboreal environment, using 'focal animal' observation techniques supplemented by telephoto photography and by review of archival material from other sources. Fifteen apes were observed over a total observation period of 20.2 man-hours and 152 films were analysed for utilisation of movement range. RESULTS--With one exception, all the movement ranges reported to be under-utilised in humans were fully utilised by the apes in climbing activities. The exception, metacarpophalangeal extension, was an essential component of the chimpanzee ground progression mode of knuckle walking. CONCLUSIONS--The underused movement range in several human joints is explicable as residual capacity from a semiarboreal lifestyle. If the correlation with primary osteoarthritis is confirmed, it suggests that the disease may reflect a disparity between inherited capacity and current need. The significance of the result lies in its implication that primary osteoarthritis may be preventable. Images PMID:7826133
Alexander, C J
1994-11-01
To determine whether an arboreal lifestyle required full use of movement ranges underutilised in nine joint groups in humans, because under-utilisation of available movement range may be associated with susceptibility to primary osteoarthritis. Utilisation of the nine joint groups was studied in two species of primate exercising in a simulated arboreal environment, using 'focal animal' observation techniques supplemented by telephoto photography and by review of archival material from other sources. Fifteen apes were observed over a total observation period of 20.2 man-hours and 152 films were analysed for utilisation of movement range. With one exception, all the movement ranges reported to be under-utilised in humans were fully utilised by the apes in climbing activities. The exception, metacarpophalangeal extension, was an essential component of the chimpanzee ground progression mode of knuckle walking. The underused movement range in several human joints is explicable as residual capacity from a semiarboreal lifestyle. If the correlation with primary osteoarthritis is confirmed, it suggests that the disease may reflect a disparity between inherited capacity and current need. The significance of the result lies in its implication that primary osteoarthritis may be preventable.
Spatial organization of neurons in the frontal pole sets humans apart from great apes.
Semendeferi, Katerina; Teffer, Kate; Buxhoeveden, Dan P; Park, Min S; Bludau, Sebastian; Amunts, Katrin; Travis, Katie; Buckwalter, Joseph
2011-07-01
Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance and gray-level ratio in layer III of 4 regions of human and ape cortex in all 6 living hominoid species: frontal pole (Brodmann area [BA] 10), and primary motor (BA 4), primary somatosensory (BA 3), and primary visual cortex (BA 17). Our results identified significant differences between humans and apes in the frontal pole (BA 10). Within the human brain, there were also significant differences between the frontal pole and 2 of the 3 regions studied (BA 3 and BA 17). Differences between BA 10 and BA 4 were present but did not reach significance. These findings in combination with earlier findings on BA 44 and BA 45 suggest that human brain evolution was likely characterized by an increase in the number and width of minicolumns and the space available for interconnectivity between neurons in the frontal lobe, especially the prefrontal cortex.
CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells
Wilen, Craig; Gopal, Ramya; Huq, Rumana; Wu, Vernon; Sunseri, Nicole; Bhardwaj, Nina
2016-01-01
Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. PMID:27082754
Bernard, Samuel; Miele, Philippe
2014-01-01
Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest. PMID:28788257
Long, Xiangyu; He, Bin; Wang, Chuang; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong
2015-02-01
In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Posttransplant Lymphoproliferative Disorders
Ibrahim, Hazem A. H.; Naresh, Kikkeri N.
2012-01-01
Posttransplant lymphoproliferative disorders (PTLDs) are a group of diseases that range from benign polyclonal to malignant monoclonal lymphoid proliferations. They arise secondary to treatment with immunosuppressive drugs given to prevent transplant rejection. Three main pathologic subsets/stages of evolution are recognised: early, polymorphic, and monomorphic lesions. The pathogenesis of PTLDs seems to be multifactorial. Among possible infective aetiologies, the role of EBV has been studied in depth, and the virus is thought to play a central role in driving the proliferation of EBV-infected B cells that leads to subsequent development of the lymphoproliferative disorder. It is apparent, however, that EBV is not solely responsible for the “neoplastic” state. Accumulated genetic alterations of oncogenes and tumour suppressor genes (deletions, mutations, rearrangements, and amplifications) and epigenetic changes (aberrant hypermethylation) that involve tumour suppressor genes are integral to the pathogenesis. Antigenic stimulation also plays an evident role in the pathogenesis of PTLDs. Plasmacytoid dendritic cells (PDCs) that are critical to fight viral infections have been thought to play a pathogenetically relevant role in PTLDs. Furthermore, regulatory T cells (Treg cells), which are modulators of immune reactions once incited, seem to have an important role in PTLDs where antigenic stimulation is key for the pathogenesis. PMID:22570658
Bernard, Samuel; Miele, Philippe
2014-11-21
Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.
Hirotani, Makoto; Niino, Masaaki; Fukazawa, Toshiyuki; Yaguchi, Hiroaki; Nakamura, Masakazu; Kikuchi, Seiji; Sasaki, Hidenao
2012-05-01
Type I interferons (IFNs), represented by IFN-α and β, activate immune effector cells belonging to the innate and adaptive immune systems. Plasmacytoid dendritic cells (pDCs) produce IFN-α in response to CpG DNA. We aimed to examine the impact of pDC-produced IFN-α on the adaptive immune system in Multiple Sclerosis (MS). Our results demonstrated that CpG DNA-induced IFN-α production was significantly decreased in PBMCs from MS patients. Decreased levels of IL-12 p70, IFN-γ, and IL-17 and increased level of IL-10 were found in CpG DNA-treated PBMCs of healthy subjects unlike in those from MS patients. In samples pre-treated with IFN-α and IFN-β, decreased levels of IL-12 p70, IFN-γ, and IL-17 and increased level of IL-10 were detected in PBMCs from MS patients. These results suggest that CpG DNA-induced decreased IFN-α production causes pro-inflammatory cytokine secretion, and either IFN-α or IFN-β induces anti-inflammatory cytokine secretion in the adaptive immune system in MS. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magaldi, Thomas G.; Almstead, Laura L.; Bellone, Stefania
Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, amore » cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells.« less
Horta-Barbosa, L.; Warren, Joel
1969-01-01
A series of 19 different primary and serial tissue cultures were investigated for their sensitivity to virulent or attenuated rubella virus (RV). Primary guinea pig tissues, a serial passage of baby hamster kidney, and primary human amnion were comparable to African green monkey kidney tissue cultures in their sensitivity. In general, primary human tissues were relatively insusceptible to the Gilchrist strain of RV. RV interfered with the growth of vesicular stomatitis virus. Based on this finding, it was possible to develop an assay method in guinea pig tissue cultures by using VSV as the challenge virus. This system appeared to be comparable in sensitivity to the use of primary monkey kidney tissue cultures for the detection of small amounts of RV and offers the advantages of economy, rapidity, and safety. PMID:4979943
Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V
2013-06-01
Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.
[Characterization of epithelial primary culture from human conjunctiva].
Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A
2014-01-01
To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Ray, Balmiki; Chopra, Nipun; Long, Justin M; Lahiri, Debomoy K
2014-09-16
Culturing primary cortical neurons is an essential neuroscience technique. However, most cultures are derived from rodent brains and standard protocols for human brain cultures are sparse. Herein, we describe preparation, maintenance and major characteristics of a primary human mixed brain culture, including neurons, obtained from legally aborted fetal brain tissue. This approach employs standard materials and techniques used in the preparation of rodent neuron cultures, with critical modifications. This culture has distinct differences from rodent cultures. Specifically, a significant numbers of cells in the human culture are derived from progenitor cells, and the yield and survival of the cells grossly depend on the presence of bFGF. In the presence of bFGF, this culture can be maintained for an extended period. Abundant productions of amyloid-β, tau and proteins make this a powerful model for Alzheimer's research. The culture also produces glia and different sub-types of neurons. We provide a well-characterized methodology for human mixed brain cultures useful to test therapeutic agents under various conditions, and to carry forward mechanistic and translational studies for several brain disorders.
Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma.
Andersen, Nicholas J; Nickoloff, Brian J; Dykema, Karl J; Boguslawski, Elissa A; Krivochenitser, Roman I; Froman, Roe E; Dawes, Michelle J; Baker, Laurence H; Thomas, Dafydd G; Kamstock, Debra A; Kitchell, Barbara E; Furge, Kyle A; Duesbery, Nicholas S
2013-09-01
Angiosarcoma is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. As a model for human angiosarcoma, we studied primary cells and tumorgrafts derived from canine hemangiosarcoma (HSA), which is also an endothelial malignancy with similar presentation and histology. Primary cells isolated from HSA showed constitutive extracellular signal-regulated kinase (ERK) activation. The mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor CI-1040 reduced ERK activation and the viability of primary cells derived from visceral, cutaneous, and cardiac HSA in vitro. HSA-derived primary cells were also sensitive to sorafenib, an inhibitor of B-Raf and multireceptor tyrosine kinases. In vivo, CI-1040 or PD0325901 decreased the growth of cutaneous cell-derived xenografts and cardiac-derived tumorgrafts. Sorafenib decreased tumor size in both in vivo models, although cardiac tumorgrafts were more sensitive. In human angiosarcoma, we noted that 50% of tumors stained positively for phosphorylated ERK1/2 and that the expression of several MEK-responsive transcription factors was upregulated. Our data showed that MEK signaling is essential for the growth of HSA in vitro and in vivo and provided evidence that the same pathways are activated in human angiosarcoma. This indicates that MEK inhibitors may form part of an effective therapeutic strategy for the treatment of canine HSA or human angiosarcoma, and it highlights the use of spontaneous canine cancers as a model of human disease.
NASA Astrophysics Data System (ADS)
1992-06-01
Phonology is traditionally seen as the discipline that concerns itself with the building blocks of linguistic messages. It is the study of the structure of sound inventories of languages and of the participation of sounds in rules or processes. Phonetics, in contrast, concerns speech sounds as produced and perceived. Two extreme positions on the relationship between phonological messages and phonetic realizations are represented in the literature. One holds that the primary home for linguistic symbols, including phonological ones, is the human mind, itself housed in the human brain. The second holds that their primary home is the human vocal tract.
Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery
Holmfeldt, Linda
2015-01-01
The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157
Social & Cooperative Learning in the Solving of Case Histories
ERIC Educational Resources Information Center
Gooran, Deena; Braude, Stan
2007-01-01
Human Biology courses are typically offered for non-biology majors who, like students in high school biology courses, have varying degrees of motivation and background. The primary focus is on explaining the biology behind human health and disease, but human ecology, human evolution, and human genetics may also be covered. Hence, Human Biology…
NASA Technical Reports Server (NTRS)
Jiang, Jian-Ping; Murphy, Elizabeth D.; Bailin, Sidney C.; Truszkowski, Walter F.
1993-01-01
Capturing human factors knowledge about the design of graphical user interfaces (GUI's) and applying this knowledge on-line are the primary objectives of the Computer-Human Interaction Models (CHIMES) project. The current CHIMES prototype is designed to check a GUI's compliance with industry-standard guidelines, general human factors guidelines, and human factors recommendations on color usage. Following the evaluation, CHIMES presents human factors feedback and advice to the GUI designer. The paper describes the approach to modeling human factors guidelines, the system architecture, a new method developed to convert quantitative RGB primaries into qualitative color representations, and the potential for integrating CHIMES with user interface management systems (UIMS). Both the conceptual approach and its implementation are discussed. This paper updates the presentation on CHIMES at the first International Symposium on Ground Data Systems for Spacecraft Control.
Human Rights Texts: Converting Human Rights Primary Source Documents into Data.
Fariss, Christopher J; Linder, Fridolin J; Jones, Zachary M; Crabtree, Charles D; Biek, Megan A; Ross, Ana-Sophia M; Kaur, Taranamol; Tsai, Michael
2015-01-01
We introduce and make publicly available a large corpus of digitized primary source human rights documents which are published annually by monitoring agencies that include Amnesty International, Human Rights Watch, the Lawyers Committee for Human Rights, and the United States Department of State. In addition to the digitized text, we also make available and describe document-term matrices, which are datasets that systematically organize the word counts from each unique document by each unique term within the corpus of human rights documents. To contextualize the importance of this corpus, we describe the development of coding procedures in the human rights community and several existing categorical indicators that have been created by human coding of the human rights documents contained in the corpus. We then discuss how the new human rights corpus and the existing human rights datasets can be used with a variety of statistical analyses and machine learning algorithms to help scholars understand how human rights practices and reporting have evolved over time. We close with a discussion of our plans for dataset maintenance, updating, and availability.
Human Rights Texts: Converting Human Rights Primary Source Documents into Data
Fariss, Christopher J.; Linder, Fridolin J.; Jones, Zachary M.; Crabtree, Charles D.; Biek, Megan A.; Ross, Ana-Sophia M.; Kaur, Taranamol; Tsai, Michael
2015-01-01
We introduce and make publicly available a large corpus of digitized primary source human rights documents which are published annually by monitoring agencies that include Amnesty International, Human Rights Watch, the Lawyers Committee for Human Rights, and the United States Department of State. In addition to the digitized text, we also make available and describe document-term matrices, which are datasets that systematically organize the word counts from each unique document by each unique term within the corpus of human rights documents. To contextualize the importance of this corpus, we describe the development of coding procedures in the human rights community and several existing categorical indicators that have been created by human coding of the human rights documents contained in the corpus. We then discuss how the new human rights corpus and the existing human rights datasets can be used with a variety of statistical analyses and machine learning algorithms to help scholars understand how human rights practices and reporting have evolved over time. We close with a discussion of our plans for dataset maintenance, updating, and availability. PMID:26418817
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Hapten-specific lymphocyte transformation in humans sensitized with NDMA or DNCB.
SoebergB; Andersen, V
1976-01-01
The primary immune response to a contact sensitizing dose of para-N-dimethylnitrosaniline (NDMA) and dinitrochlorobenzene (DNCB) was obtained in humans and measured in vitro by increased thymidine incorporation into sensitized lymphocytes. No cross-reaction was found between these two haptens, and it is thus possible on two separate occasions to quantify and follow the primary cellular immune response in man. PMID:963911
Reijnders, Christianne M.A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.
2015-01-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future. PMID:26135533
Reijnders, Christianne M A; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J; Gibbs, Susan
2015-09-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin-eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G
2006-04-01
The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.
[Studies on the novel association of human herpesvirus-7 with skin diseases].
Vág, Tibor; Sonkoly, Enikó; Kemény, Béla; Kárpáti, Sarolta; Horváth, Attila; Ongrádi, József
2003-08-17
Human herpesvirus 7 in pityriasis rosea, this and other viruses in papular-purpuric gloves-and-socks syndrome have been implicated, but their primary or recurrent infections are still in question. In one available blood sample, therefore, IgM, IgG and its high avidity fraction characteristic for recurrent infections were quantitated by indirect immunofluorescence. Peripheral lymphocytes were subjected to nested polymerase chain reaction to detect viral DNA, or cocultivated with several cell cultures. One third of 33 pityriasis rosea patients had elevated IgM, another third had elevated IgG without high avidity molecules to human herpesvirus 7 suggesting primary infection. Thirty percent of controls, more than half of the patients had virtual DNA in their lymphocytes, but only one in 5 skin biopsy specimens were PCR positive. All three co-cultivation attempts yielded viruses extremely rapidly, verified by electron microscopy, polymerase chain reaction and monoclonal antibodies as human herpesvirus 7. These are the first isolates in the geographical regions of Hungary. These data suggest that pityriasis rosea is the consequence of a primary human herpesvirus 7 infection in seronegative adults, and only occasionally is due to virus reactivation. One patient with gloves-and-socks syndrome had an acute, another patient had a persistent coinfection with human herpesvirus 7 and parvovirus B19, two others had a primary herpesvirus 7 infection. Interestingly, this disease might be elicited by both viruses individually or in synergism. Neither human herpesvirus 7 nor parvovirus B19 infect skin cells, but both can be detected in the infiltrating lymphocytes of skin eruptions, in which they induce an altered mediator production, that might be responsible for the general and local symptoms.
NASA Astrophysics Data System (ADS)
Imhoff, M.; Bounoua, L.
2004-12-01
A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.
Dwivedi, Prem P; Anderson, Peter J; Powell, Barry C
2012-08-03
Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP) signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model system of cranial bone growth.
An integrated expression atlas of miRNAs and their promoters in human and mouse
de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.
2018-01-01
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439
Generation and Characterization of an Immortalized Human Esophageal Myofibroblast Line.
Niu, Chao; Chauhan, Uday; Gargus, Matthew; Shaker, Anisa
2016-01-01
Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD). We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.
ERIC Educational Resources Information Center
Broderick, Francis
A working definition of the humanities and characteristics of a liberally educated person are specified. The humanities embrace areas of human knowledge that possess these elements: central concern for human beings rather than for the processes of nature or the structures of society; primary focus on the individual rather than on the group;…
16 CFR 1702.8 - Human experience data.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Human experience data. 1702.8 Section 1702.8... REQUIREMENTS § 1702.8 Human experience data. Human experience data constitutes the primary criterion used by... of all reasonably available reports pertaining to human use of the particular substance, including...
16 CFR § 1702.8 - Human experience data.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Human experience data. § 1702.8 Section Â... AND REQUIREMENTS § 1702.8 Human experience data. Human experience data constitutes the primary... compilation of all reasonably available reports pertaining to human use of the particular substance, including...
16 CFR 1702.8 - Human experience data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Human experience data. 1702.8 Section 1702.8... REQUIREMENTS § 1702.8 Human experience data. Human experience data constitutes the primary criterion used by... of all reasonably available reports pertaining to human use of the particular substance, including...
16 CFR 1702.8 - Human experience data.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Human experience data. 1702.8 Section 1702.8... REQUIREMENTS § 1702.8 Human experience data. Human experience data constitutes the primary criterion used by... of all reasonably available reports pertaining to human use of the particular substance, including...
Stenner, Markus; Yosef, Basima; Huebbers, Christian U; Preuss, Simon F; Dienes, Hans-Peter; Speel, Ernst-Jan M; Odenthal, Margarete; Klussmann, Jens P
2011-06-01
High-risk human papillomaviruses (HPVs) constitute an important risk factor for tonsillar cancer. This study describes changes in cell adhesion molecules during metastasis of HPV-related and HPV-unrelated tonsillar carcinomas. We examined 48 primary tonsillar carcinoma samples (25 HPV-16 DNA-positive, 23 HPV-16 DNA-negative) and their respective lymph node metastases for their HPV status and for the expression of p16, epithelial cadherin (E-cadherin), β-catenin, and vimentin. A positive HPV-specific polymerase chain reaction finding correlated significantly with p16 overexpression in both primary tumours and their metastases (P<0.0001 for both). In HPV-unrelated carcinomas, the expression of E-cadherin was significantly lower in metastases than in primary tumours (P<0.001). In contrast, the expression of nuclear β-catenin was significantly higher in metastases than in primary tumours (P=0.016). In HPV-related carcinomas, nuclear localization of β-catenin expression was already apparent in primary tumours (P=0.030). The expression of vimentin significantly correlated with the grading of the primary tumour (P=0.021). Our data indicate that the down-regulation of E-cadherin and the up-regulation of nuclear β-catenin expression might be crucial steps during tumour progression of tonsillar carcinomas, being already present in primary tumours in HPV-driven carcinomas, but becoming apparent in HPV-unrelated tumours later in the process of metastasis. © 2011 Blackwell Publishing Limited.
Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA
Chakrabortty, Sudipto K.; Prakash, Ashwin; Nechooshtan, Gal; Hearn, Stephen; Gingeras, Thomas R.
2015-01-01
Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion. PMID:26392588
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Henri, Pierre; Lebreton, Jean Pierre; Vallières, Xavier; Grard, Réjean; Hamelin, Michel; Le Gall, Alice; Lethuillier, Anthony; Ciarletti, Valerie; Caujolle-Bert, Sylvain; Seidensticker, Klaus; Fischer, Hans-Herbert
2016-04-01
On November 12, 2014, the Rosetta landing module Philae approached the nucleus of 67P/Churyumov-Gerasimenko and eventually settled on the surface in a location named Abydos, though its exact coordinates are still unknown. The Permittivity Probe (PP) as part of the SESAME (Surface Electric Sounding and Acoustic Monitoring Experiment) instrument package [1] was designed to not only measure the electrical properties of the comet's surface material by actively injecting an alternating current at different frequencies into the material underneath the Lander but also to monitor potential variations between its two receivers and the electrical conductivity of the plasma environment while still in space. By sampling the potential difference at 40 kHz between the soles of two of the feet attached to Philae's landing gear, plasma waves between 20 and 20 000 Hz should be detectable if their amplitudes are large enough. The injection of low frequency currents into the plasma environment during Philae's descent gives indications for changes of the plasma density when approaching the comet. In this paper we present observations from the cross-calibration campaign with the Rosetta plasma package instrument MIP (Mutual Impedance Probe) [2] during the Pre-Delivery Calibration and Science (PDCS) operations on October 17, 2014, during the descent towards the comet surface on November 12, 2014, and from the First Science Sequence at Abydos on November 13. During the PDCS campaign most PP observation slots coincided with plasma waves dominantly in the 100 to 150 kHz range according to MIP measurements. Accordingly PP did not register any signals. Only in the afternoon of the 17th low frequency waves were recorded by MIP. At the same time the measured PP wave power signal was above the background for frequencies below 500 Hz in several subsequent measurements. During the descent [3] the injected current at 758 Hz dropped suddenly by about 5 % possibly indicating a decrease in the plasma density at an altitude of about 18.5 km above the comet surface. During the First Science Sequence PP was monitoring low frequency wave-like activities starting two hours after local sunset. References: [1] K. J. Seidensticker, H-H. Fischer, D. Medlener, S. Schieke, K. Thiel, A. Peter, W. Schmidt and R. Trautner, 2004: The Rosetta lander experiment sesame and the new target comet 67P/Churyumov-Gerasimenko. The New ROSETTA Targets - Observations, Simulations and Instrument Performances, Astrophys. Space Sci. 311, 297-307 [2] J. G. Trotignon et al., RPC-MIP: the Mutual Impedance Probe of the Rosetta Plasma Consortium, Space Science Reviews, February 2007, Volume 128, Issue 1, pp 713-728 [3] H.Krüger et al., Dust Impact Monitor (SESAME-DIM) Measurements at Comet 67P/Churyumov-Gerasimenko, Astronomy&Astrophysics, Volume 583, November 2015, DOI http://dx.doi.org/10.1051/0004-6361/201526400
Realizing life-scalable experimental pyroclastic density currents
NASA Astrophysics Data System (ADS)
Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.
2013-12-01
Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting conditions (velocity, mass flux, particle solids concentration and temperature) can be precisely varied to obtain a wide range of PDC gas-particle transport and sedimentation conditions that match dynamic and kinematic scaling of natural flows. For instance, bulk flow scaling shows full turbulence (Re>106); while at the same time, the variation in Stokes and Stability numbers (describing Lagrangian acceleration of particles due to gravity and viscous drag) cover a wide range of natural conditions. The resulting PDC flow regimes include convection dominated dilute suspension that produce lateral ash-cloud surges, inertial dry granular to partially fluidised flows with high dynamic pressures, and, intermittent flow regimes of intermediate particle solids concentration. Depending on the PDC starting conditions, stratified, dune-bedded or inversely graded bedforms are created, whose formation can be tracked using high-speed cinematography and particle-image-velocimetry. We present here the first overview results from these experiments and invite further multi-organisational collaboration in ongoing simulations.
NASA Astrophysics Data System (ADS)
Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly
2014-04-01
The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much less damage is expected up to the final runout distance of 4 km. For larger eruptions (base surge runout distance 4-6 km), Pdyn of > 35 kPa can be expected up to 2.5 km from source, ensuring complete destruction within this area. Moderate damage to reinforced structures and damage to weaker structures can be expected up to 6 km from source. In both cases hot ash may still cause damage due to igniting flammable materials in the distal-most regions of a base surge. This work illustrates our ability to combine field observations and numerical models to explore the depositional mechanisms, macroscale current dynamics, and potential impact of dilute PDCs. Thus, this approach may serve as a tool to understand the damage potential and extent of previous and potential future eruptions in the AVF.
Heckhausen, J; Schulz, R
1999-07-01
This reply to S. J. Gould's (1999) critique of J. Heckhausen and R. Schulz's (1995) life-span theory of control addresses four issues: (1) the universal claim that primary control holds functional primacy over secondary control, (2) the status of secondary control as a confederate to primary control, (3) empirical evidence and paradigms for investigating universality and cultural variations, and (4) the capacity of the human control system to manage both gains and losses in control throughout the life span and aging-related decline in particular. Theoretical perspectives and empirical evidence from evolutionary, comparative, developmental, and cultural psychology are presented to support the authors' view that primary control striving holds functional primacy throughout the life span and across cultural and historical settings. Recommendations for empirically investigating the variations in the way primary control striving is expressed in different cultures are outlined.
Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma
Bhatt, Aadra P.; Jacobs, Sarah R.; Freemerman, Alex J.; Makowski, Liza; Rathmell, Jeffrey C.; Dittmer, Dirk P.; Damania, Blossom
2012-01-01
The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL. PMID:22752304
Yang, Bo; Tuo, Shuai; Tuo, Chao-Wei; Zhang, Ning; Liu, Qiu-Zhen
2010-06-01
In recent years, incidence and mortality of lymphoma are markedly increasing worldwide. However, the pathogenesis and mechanism of invasion and metastasis for lymphoma are not yet fully clarified. It is mainly due to the lack of ideal animal models, which can precisely simulate the invasion and metastasis of lymphoma in the human body. So, it is very necessary to establish a highly metastatic nude mouse model of human lymphoma. This study developed a liver-metastatic model of primary gastric lymphoma in nude mice by using orthotopic surgical implantation of histologically intact patient specimens into the corresponding organs of the recipient small animals. A histologically intact fragment of liver metastasis derived from a surgical specimen of a patient with primary gastric lymphoma was implanted into the submucosa of the stomach in nude mice. Tumorigenicity, invasion, metastasis, morphologic characteristics (via light microscopy, electron microscopy, and immunohistochemistry), karyotype analysis, and DNA content of the orthotopically transplanted tumors were studied. An orthotopic liver metastatic model of human primary gastric lymphoma in nude mice (termed HGBL-0304) was successfully established. The histopathology of the transplanted tumors showed primary gastric diffuse large B-cell lymphoma. CD19, CD20, CD22, and CD79alpha were positive, but CD3 and CD7 were negative. The serum level of lactate dehydrogenase (LDH) was elevated [(1010.56+/-200.85) U/L]. The number of chromosomes ranged from 75 to 89. The DNA index (DI) was 1.45+/-0.25 (that is, heteroploid). So far, the HGBL-0304 model has been passed on for 45 generations of nude mice. A total of 263 nude mice were used for the transplantation. Both the growth and resuscitation rates of liquid nitrogen cryopreservation of the transplanted tumors were 100%. The transplanted tumors autonomically invasively grew and damaged a whole layer in the stomach of nude mice. The metastasis rates of liver, spleen, lymph node, and peritoneal seeding were 100%, 94.3%, 62.6%, and 43.5%, respectively. The study successfully establishes an orthotopic liver metastatic model of human primary gastric lymphoma in nude mice. The HGBL-0304 model can completely simulate the natural clinical process of primary gastric lymphoma and provides an ideal animal model for the research on the biology of metastasis and antimetastatic experimental therapies of primary gastric lymphoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva
2013-12-01
Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less
CHOLESTEROL REQUIREMENT OF PRIMARY DIPLOID HUMAN FIBROBLASTS
Holmes, Richard; Helms, Judy; Mercer, Gretchen
1969-01-01
Primary cultures of fibroblast-like cells were obtained from skin and articular cartilage of human donors in the age bracket of 1 to 15 years. For growth these cultures required 1 mg/liter of cholesterol added to Medium A2 plus acetyl choline, Na pyruvate, and D-galactosamine HCl (APG) containing 10% lipoprotein-free human serum. Established cell lines did not require cholesterol for growth. Eagle's medium could be used in place of Medium A2 plus APG with the same results. Desmosterol could replace cholesterol but lansterol or 7 dehydrocholesterol could not. Other cholesterol precursors were tested and found to be inactive. With the proviso that cholesterol precursors entered the cell and had to be converted to cholesterol to function, it was concluded that the particular primaries studied lacked a functional enzyme system to reduce the double bond at carbon 7. PMID:5786984
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong
2014-03-01
To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p < 0.05). All of the tested denture adhesives showed mild to moderate cytotoxicity to primary HOKs (p < 0.001), whereas none of three was toxic to L929 cells (p > 0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p < 0.01). Denture adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Gov, Lanny; Schneider, Christine A; Lima, Tatiane S; Pandori, William; Lodoen, Melissa B
2017-10-15
IL-1β is produced by myeloid cells and acts as a critical mediator of host defense during infection and injury. We found that the intracellular protozoan parasite Toxoplasma gondii induced an early IL-1β response (within 4 h) in primary human peripheral blood monocytes isolated from healthy donors. This process involved upregulation of IL-1β , IL-1RN (IL-1R antagonist), and NLRP3 transcripts, de novo protein synthesis, and the release of pro- and mature IL-1β from infected primary monocytes. The released pro-IL-1β was cleavable to mature bioactive IL-1β in the extracellular space by the protease caspase-1. Treatment of primary monocytes with the NLRP3 inhibitor MCC950 or with extracellular potassium significantly reduced IL-1β cleavage and release in response to T. gondii infection, without affecting the release of TNF-α, and indicated a role for the inflammasome sensor NLRP3 and for potassium efflux in T. gondii -induced IL-1β production. Interestingly, T. gondii infection did not induce an IL-1β response in primary human macrophages derived from the same blood donors as the monocytes. Consistent with this finding, NLRP3 was downregulated during the differentiation of monocytes to macrophages and was not induced in macrophages during T. gondii infection. To our knowledge, these findings are the first to identify NLRP3 as an inflammasome sensor for T. gondii in primary human peripheral blood cells and to define an upstream regulator of its activation through the release of intracellular potassium. Copyright © 2017 by The American Association of Immunologists, Inc.
Sargis, Robert M.; Neel, Brian A.; Brock, Clifton O.; Lin, Yuxi; Hickey, Allison T.; Carlton, Daniel A.; Brady, Matthew J.
2012-01-01
Emerging data suggest that environmental endocrine disrupting chemicals (EDCs) may contribute to the pathophysiology of obesity and diabetes. In prior work, the phenylsulfamide fungicide tolylfluanid (TF) was shown to augment adipocyte differentiation, yet its effects on mature adipocyte metabolism remain unknown. Because of the central role of adipose tissue in global energy regulation, the present study tested the hypothesis that TF modulates insulin action in primary rodent and human adipocytes. Alterations in insulin signaling in primary mammalian adipocytes were determined by the phosphorylation of Akt, a critical insulin signaling intermediate. Treatment of primary murine adipose tissue in vitro with 100 nM TF for 48 h markedly attenuated acute insulin-stimulated Akt phosphorylation in a strain- and species-independent fashion. Perigonadal, perirenal, and mesenteric fat were all sensitive to TF-induced insulin resistance. A similar TF-induced reduction in insulin-stimulated Akt phosphorylation was observed in primary human subcutaneous adipose tissue. TF-treatment led to a potent and specific reduction in insulin receptor substrate-1 (IRS-1) mRNA and protein levels, a key upstream mediator of insulin’s diverse metabolic effects. In contrast, insulin receptor-β, phosphatidylinositol 3-kinase, and Akt expression were unchanged, indicating a specific abrogation of insulin signaling. Additionally, TF-treated adipocytes exhibited altered endocrine function with a reduction in both basal and insulin-stimulated leptin secretion. These studies demonstrate that TF induces cellular insulin resistance in primary murine and human adipocytes through a reduction of IRS-1 expression and protein stability, raising concern about the potential for this fungicide to disrupt metabolism and thereby contribute to the pathogenesis of diabetes. PMID:22387882
Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M.; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S.; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian
2014-01-01
SUMMARY Primary infection with the human oncogenic Epstein Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion, which predisposes for the development of distinct EBV-associated lymphomas. It remains unclear why some individuals experience this symptomatic primary EBV infection, while the majority acquires the virus asymptomatically. Using a mouse model with reconstituted human immune system components, we show here that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis, mainly due to loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. PMID:24360958
NASA Technical Reports Server (NTRS)
Jeevarajan, Antony
2014-01-01
The Mars probe, launched by India a few months ago, is on its way to Mars. At this juncture, it is appropriate to talk about the opportunities presented to us for the Human Exploration of Mars. I am planning to highlight some of the challenges to take humans to Mars, descend, land, stay, ascend and return home safely. The logistics of carrying the necessary accessories to stay at Mars will be delivered in multiple stages using robotic missions. The primary ingredients for human survival is air, water, food and shelter and the necessity to recycle the primary ingredients will be articulated. Humans have to travel beyond the van Allen radiation belt under microgravity condition during this inter-planetary travel for about 6 months minimum one way. The deconditioning of human system under microgravity conditions and protection of humans from Galactic cosmic radiation during the travel should be taken into consideration. The multi-disciplinary effort to keep the humans safe and functional during this journey will be addressed.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Yongpeng; Li Hongzhen; Miki, Jun
2006-04-01
In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferativemore » capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.« less
Lammel, Justus; Tohidnezhad, Mersedeh; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Cremer, Jochen; Jahr, Holger; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen
2017-01-01
Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF®)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR). In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds. PMID:28811680
BCL6 antagonizes NOTCH2 to maintain survival of human follicular lymphoma cells
Valls, Ester; Lobry, Camille; Geng, Huimin; Wang, Ling; Cardenas, Mariano; Rivas, Martín; Cerchietti, Leandro; Oh, Philmo; Yang, Shao Ning; Oswald, Erin; Graham, Camille W.; Jiang, Yanwen; Hatzi, Katerina; Agirre, Xabier; Perkey, Eric; Li, Zhuoning; Tam, Wayne; Bhatt, Kamala; Leonard, John P.; Zweidler-McKay, Patrick A.; Maillard, Ivan; Elemento, Olivier; Ci, Weimin; Aifantis, Iannis; Melnick, Ari
2017-01-01
Summary Although the BCL6 transcriptional repressor is frequently expressed in human follicular lymphomas (FL), its biological role in this disease remains unknown. Herein we comprehensively identify the set of gene promoters directly targeted by BCL6 in primary human FLs. We noted that BCL6 binds and represses NOTCH2 and Notch pathway genes. Moreover, BCL6 and NOTCH2 pathway gene expression is inversely correlated in FL. Notably BCL6 up-regulation is associated with repression of Notch2 and its target genes in primary human and murine germinal center cells. Repression of Notch2 is an essential function of BCL6 in FL and GC B-cells since inducible expression of Notch2 abrogated GC formation in mice and kills FL cells. Indeed BCL6-targeting compounds or gene silencing leads to the induction of NOTCH2 activity and compromises survival of FL cells whereas NOTCH2 depletion or pathway antagonists rescue FL cells from such effects. Moreover, BCL6 inhibitors induced NOTCH2 expression and suppressed growth of human FL xenografts in vivo and primary human FL specimens ex vivo. These studies suggest that established FLs are thus dependent on BCL6 through its suppression of NOTCH2. PMID:28232365
Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection.
Fonville, Judith M; Fraaij, Pieter L A; de Mutsert, Gerrie; Wilks, Samuel H; van Beek, Ruud; Fouchier, Ron A M; Rimmelzwaan, Guus F
2016-01-01
Antigenic characterization of influenza viruses is typically based on hemagglutination inhibition (HI) assay data for viral isolates tested against strain-specific postinfection ferret antisera. Here, similar virus characterizations were performed using serological data from humans with primary influenza A(H3N2) infection. We screened sera collected between 1995 and 2011 from children between 9 and 24 months of age for influenza virus antibodies, performed HI tests for the positive sera against 23 influenza viruses isolated between 1989 and 2011, and measured HI titers of antisera against influenza A(H3N2) from 24 ferrets against the same panel of viruses. Of the 17 positive human sera, 6 had a high response, showing HI patterns that would be expected from primary infection antisera, while 11 sera had lower, more dispersed patterns of reactivity that are not easily explained. The antigenic map based on the high-response human HI data was similar to the map created using ferret data. Although the overall structure of the ferret and human antigenic maps is similar, local differences in virus positions indicate that the human and ferret immune system might see antigenic properties of viruses differently. Further studies are needed to establish the degree of similarity between serological patterns in ferret and human data. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
A Review of Preventative Methods against Human Leishmaniasis Infection
Stockdale, Lisa; Newton, Robert
2013-01-01
Background Leishmaniasis is an intracellular parasitic infection transmitted to humans via the sandfly. Approximately 350 million people are at risk of contracting the disease and an estimated 1.6 million new cases occur annually. Of the two main forms, visceral and cutaneous, the visceral form is fatal in 85–90% of untreated cases. Aims This literature review aims to identify and evaluate the current evidence base for the use of various preventative methods against human leishmaniasis. Methods A literature search was performed of the relevant database repositories for primary research conforming to a priori inclusion and exclusion criteria. Results A total of 84 controlled studies investigating 12 outcome measures were identified, implementing four broad categories of preventative interventions: animal reservoir control, vector population control, human reservoir control and a category for multiple concurrently implemented interventions. The primary studies investigated a heterogeneous mix of outcome measures using a range of different methods. Conclusions This review highlights an absence of research measuring human-specific outcomes (35% of the total) across all intervention categories. The apparent inability of study findings to be generalizable across different geographic locations, points towards gaps in knowledge regarding the biology of transmission of Leishmania in different settings. More research is needed which investigates human infection as the primary outcome measure as opposed to intermediate surrogate markers, with a focus on developing a human vaccine. PMID:23818997
Wetzel, Florian T; Kissling, W Daniel; Beissmann, Helmut; Penn, Dustin J
2012-09-01
Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3-32% of the coastal zone of these islands could be lost from primary effects, and consequently 8-52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10-18% of the sample mammals in a moderate range loss scenario and for 22-46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7-48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning. © 2012 Blackwell Publishing Ltd.
Wu, Zuqun; Sha, Jianping; Yu, Zhao; Zhao, Na; Cheng, Wei; Chan, Ta-Chien; Amer, Said; Zhang, Zhiruo; Liu, Shelan
2016-08-01
Previous research has suggested that avian influenza A H7N9 has a greater potential pandemic risk than influenza A H5N1. This research investigated the difference in human clustered and sporadic cases of H7N9 virus and estimated the relative risk of clustered infections. Comparative epidemiology and virology studies were performed among 72 sporadic confirmed cases, 17 family clusters (FCs) caused by human-to-human transmission, and eight live bird market clusters (LCs) caused by co-exposure to the poultry environment. The case fatality of FCs, LCs and sporadic cases (36%, 26%, and 29%, respectively) did not differ among the three groups (p>0.05). The average age (36 years, 60 years, and 58 years), co-morbidities (31%, 60%, and 54%), exposure to birds (72%, 100%, and 83%), and H7N9-positive rate (20%, 64%, and 35%) in FCs, LCs, and sporadic cases, respectively, differed significantly (p<0.05). These higher risks were associated with increased mortality. There was no difference between primary and secondary cases in LCs (p>0.05). However, exposure to a person with confirmed avian influenza A H7N9 (primary 12% vs. secondary 95%), history of visiting a live bird market (100% vs. 59%), multiple exposures (live bird exposure and human-to-human transmission history) (12% vs. 55%), and median days from onset to antiviral treatment (6 days vs. 3 days) differed significantly between primary and secondary cases in FCs (p<0.05). Mild cases were found in 6% of primary cases vs. 32% of secondary cases in FCs (p<0.05). Twenty-five isolates from the three groups showed 99.1-99.9% homology and increased human adaptation. There was no statistical difference in the case fatality rate and limited transmission between FCs and LCs. However, the severity of the primary cases in FCs was much higher than that of the secondary cases due to the older age and greater underlying disease of the latter patients. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M
2014-12-01
Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.
Humanization policy in primary health care: a systematic review
Nora, Carlise Rigon Dalla; Junges, José Roque
2013-01-01
OBJECTIVE To analyze humanization practices in primary health care in the Brazilian Unified Health System according to the principles of the National Humanization Policy. METHODS A systematic review of the literature was carried out, followed by a meta-synthesis, using the following databases: BDENF (nursing database), BDTD (Brazilian digital library of theses and dissertations), CINAHL (Cumulative Index to nursing and allied health literature), LILACS (Latin American and Caribbean health care sciences literature), MedLine (International health care sciences literature), PAHO (Pan-American Health Care Organization Library) and SciELO (Scientific Electronic Library Online). The following descriptors were used: Humanization; Humanizing Health Care; Reception: Humanized care: Humanization in health care; Bonding; Family Health Care Program; Primary Care; Public Health and Sistema Único de Saúde (the Brazilian public health care system). Research articles, case studies, reports of experiences, dissertations, theses and chapters of books written in Portuguese, English or Spanish, published between 2003 and 2011, were included in the analysis. RESULTS Among the 4,127 publications found on the topic, 40 studies were evaluated and included in the analysis, producing three main categories: the first referring to the infrastructure and organization of the primary care service, made clear the dissatisfaction with the physical structure and equipment of the services and with the flow of attendance, which can facilitate or make difficult the access. The second, referring to the health work process, showed issues about the insufficient number of professionals, fragmentation of the work processes, the professional profile and responsibility. The third category, referring to the relational technologies, indicated the reception, bonding, listening, respect and dialog with the service users. CONCLUSIONS Although many practices were cited as humanizing they do not produce changes in the health services because of the lack of more profound analysis of the work processes and ongoing education in the health care services. PMID:24626556
75 FR 69686 - Advisory Committee on Training in Primary Care Medicine and Dentistry
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Advisory Committee on Training in Primary Care Medicine and Dentistry AGENCY: Health Resources and Services... of the Advisory Committee on Training in Primary Care Medicine and Dentistry, November 15, 2010, 8:30...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Service Administration Advisory Committee on Training in Primary Care Medicine and Dentistry; Notice of Meeting In accordance with section... following meeting: Name: Advisory Committee on Training in Primary Care Medicine and Dentistry (ACTPCMD...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Service Administration Advisory Committee on Training in Primary Care Medicine and Dentistry; Notice of Meeting In accordance with section... following meeting: Name: Advisory Committee on Training in Primary Care Medicine and Dentistry (ACTPCMD...
9 CFR 3.6 - Primary enclosures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.6 Primary enclosures. Primary enclosures for dogs and... they: (i) Have no sharp points or edges that could injure the dogs and cats; (ii) Protect the dogs and...
9 CFR 3.6 - Primary enclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.6 Primary enclosures. Primary enclosures for dogs and... they: (i) Have no sharp points or edges that could injure the dogs and cats; (ii) Protect the dogs and...
Napoli, Alessandro; Obeid, Iyad
2016-03-01
Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.
Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex
Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie
2013-01-01
Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225
Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication.
Aagaard, Kjersti M; Lahon, Anismrita; Suter, Melissa A; Arya, Ravi P; Seferovic, Maxim D; Vogt, Megan B; Hu, Min; Stossi, Fabio; Mancini, Michael A; Harris, R Alan; Kahr, Maike; Eppes, Catherine; Rac, Martha; Belfort, Michael A; Park, Chun Shik; Lacorazza, Daniel; Rico-Hesse, Rebecca
2017-01-27
Zika virus (ZIKV) is an emerging mosquito-borne (Aedes genus) arbovirus of the Flaviviridae family. Although ZIKV has been predominately associated with a mild or asymptomatic dengue-like disease, its appearance in the Americas has been accompanied by a multi-fold increase in reported incidence of fetal microcephaly and brain malformations. The source and mode of vertical transmission from mother to fetus is presumptively transplacental, although a causal link explaining the interval delay between maternal symptoms and observed fetal malformations following infection has been missing. In this study, we show that primary human placental trophoblasts from non-exposed donors (n = 20) can be infected by primary passage ZIKV-FLR isolate, and uniquely allowed for ZIKV viral RNA replication when compared to dengue virus (DENV). Consistent with their being permissive for ZIKV infection, primary trophoblasts expressed multiple putative ZIKV cell entry receptors, and cellular function and differentiation were preserved. These findings suggest that ZIKV-FLR strain can replicate in human placental trophoblasts without host cell destruction, thereby serving as a likely permissive reservoir and portal of fetal transmission with risk of latent microcephaly and malformations.
A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement.
Londono-Renteria, Berlin; Troupin, Andrea; Cardenas, Jenny C; Hall, Alex; Perez, Omar G; Cardenas, Lucio; Hartstone-Rose, Adam; Halstead, Scott B; Colpitts, Tonya M
2017-07-01
Zika virus (ZIKV) is a mosquito-borne flavivirus that has recently been responsible for a serious outbreak of disease in South and Central America. Infection with ZIKV has been associated with severe neurological symptoms and the development of microcephaly in unborn fetuses. Many of the regions involved in the current outbreak are known to be endemic for another flavivirus, dengue virus (DENV), which indicates that a large percentage of the population may have pre-existing DENV immunity. Thus, it is vital to investigate what impact pre-existing DENV immunity has on ZIKV infection. Here, we use primary human myeloid cells as a model for ZIKV enhancement in the presence of DENV antibodies. We show that sera containing DENV antibodies from individuals living in a DENV-endemic area are able to enhance ZIKV infection in a human macrophage-derived cell line and primary human macrophages. We also demonstrate altered pro-inflammatory cytokine production in macrophages with enhanced ZIKV infection. Our study indicates an important role for pre-existing DENV immunity on ZIKV infection in primary human immune cells and establishes a relevant in vitro model to study ZIKV antibody-dependent enhancement.
Lammintakanen, Johanna; Kivinen, Tuula; Kinnunen, Juha
2010-12-01
The aim of this study is to describe primary health care managers' attitudes and views on recruitment and human resource development in general and to ascertain whether there are any differences in the views of managers in the southern and northern regions of Finland. A postal questionnaire was sent to 315 primary health care managers, of whom 55% responded. The data were analysed using descriptive statistics and cross-tabulation according to the location of the health centre. There were few differences in managers' attitudes and views on recruitment and human resource development. In the southern region, managers estimated that their organization would be less attractive to employees in the future and they were more positive about recruiting employees abroad. Furthermore, managers in the northern region were more positive regarding human resource development and its various practices. Although the results are preliminary in nature, it seems that managers in different regions have adopted different strategies in order to cope with the shrinking pool of new recruits. In the southern region, managers were looking abroad to find new employees, while in the northern region, managers put effort into retaining the employees in the organization with different human resource development practices.
Primary Emotional Systems and Personality: An Evolutionary Perspective
Montag, Christian; Panksepp, Jaak
2017-01-01
The present article highlights important concepts of personality including stability issues from the perspective of situational demands and stability over the life-course. Following this more introductory section, we argue why individual differences in primary emotional systems may represent the phylogenetically oldest parts of human personality. Our argumentation leads to the need to increasingly consider individual differences in the raw affects/emotions of people to understand human personality in a bottom–up fashion, which can be coordinated with top–down perspectives. In support of this idea, we also review existing evidence linking individual differences in primal emotions as assessed with the Affective Neuroscience Personality Scales and the widely accepted Big Five Model of Personality. In this context, we provide additional evidence on the link between primal emotions and personality in German and Chinese sample populations. In short, this article addresses evolutionary perspectives in the evaluation of human personality, highlighting some of the ancestral emotional urges that probably still control variations in the construction of human personality structures. Moreover, we address how individual differences in primary emotional systems can illuminate linkages to major human psychopathologies and the potential advantages and disadvantages of carrying a certain personality trait within certain cultural/environmental niches. PMID:28443039
Giesecke, Claudia; Meyer, Tim; Durek, Pawel; Maul, Jochen; Preiß, Jan; Jacobs, Joannes F M; Thiel, Andreas; Radbruch, Andreas; Ullrich, Reiner; Dörner, Thomas
2018-06-15
There are currently limited insights into the progression of human primary humoral immunity despite numerous studies in experimental models. In this study, we analyzed a primary and related secondary parenteral keyhole limpet hemocyanin (KLH) immunization in five human adults. The primary challenge elicited discordant KLH-specific serum and blood effector B cell responses (i.e., dominant serum KLH-specific IgG and IgM levels versus dominant KLH-specific IgA plasmablast frequencies). Single-cell IgH sequencing revealed early appearance of highly (>15 mutations) mutated circulating KLH-specific plasmablasts 2 wk after primary KLH immunization, with simultaneous KLH-specific plasmablasts carrying non- and low-mutated IgH sequences. The data suggest that the highly mutated cells might originate from cross-reactive memory B cells (mBCs) rather than from the naive B cell repertoire, consistent with previous reported mutation rates and the presence of KLH-reactive mBCs in naive vaccinees prior to immunization. Whereas upon secondary immunization, serum Ab response kinetics and plasmablast mutation loads suggested the exclusive reactivation of KLH-specific mBCs, we, however, detected only little clonal overlap between the peripheral KLH-specific secondary plasmablast IgH repertoire and the primary plasmablast and mBC repertoire, respectively. Our data provide novel mechanistic insights into human humoral immune responses and suggest that primary KLH immunization recruits both naive B cells and cross-reactive mBCs, whereas secondary challenge exclusively recruits from a memory repertoire, with little clonal overlap with the primary response. Copyright © 2018 by The American Association of Immunologists, Inc.
RNA interference mediated in human primary cells via recombinant baculoviral vectors.
Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T
2005-04-01
The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.
The Human Resource Cycle as Basis of Human Resource Development System.
ERIC Educational Resources Information Center
Jereb, Janez
The primary aim of human-resource-development systems in companies is to improve organizational performance through satisfying the development needs of individual employees. This paper presents findings of a study that looked at how human-resource-development systems worked in practice, in particular, how performance management, selection,…
The Role of Social and Intergenerational Equity in Making Changes in Human Well-Being Sustainable
A sustainable world is one in which human needs are met equitably and without sacrificing the ability of future generations to meet their needs. Human well-being is described by four primary elements—basic human needs, economic needs, environmental needs, and subjective well-bein...
Echavarría-Consuegra, Liliana; Flipse, Jacky; Fernández, Geysson Javier; Kluiver, Joost; van den Berg, Anke; Urcuqui-Inchima, Silvio; Smit, Jolanda M.
2017-01-01
Background Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. Methods and principal findings We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. Conclusion/Significance Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication. PMID:29045406
Alam, Shahabuddin; Amemiya, Kei; Bernhards, Robert C; Ulrich, Robert G; Waag, David M; Saikh, Kamal U
2015-01-01
Burkholderia pseudomallei infection causes melioidosis and is often characterized by severe sepsis. Although rare in humans, Burkholderia mallei has caused infections in laboratory workers, and the early innate cellular response to B. mallei in human and nonhuman primates has not been characterized. In this study, we examined the primary cellular immune response to B. mallei in PBMC cultures of non-human primates (NHPs), Chlorocebus aethiops (African Green Monkeys), Macaca fascicularis (Cynomolgus macaque), and Macaca mulatta (Rhesus macaque) and humans. Our results demonstrated that B. mallei elicited strong primary pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, and IL-6) equivalent to the levels of B. pseudomallei in primary PBMC cultures of NHPs and humans. When we examined IL-1β and other cytokine responses by comparison to Escherichia coli LPS, African Green Monkeys appears to be most responsive to B. mallei than Cynomolgus or Rhesus. Characterization of the immune signaling mechanism for cellular response was conducted by using a ligand induced cell-based reporter assay, and our results demonstrated that MyD88 mediated signaling contributed to the B. mallei and B. pseudomallei induced pro-inflammatory responses. Notably, the induced reporter activity with B. mallei, B. pseudomallei, or purified LPS from these pathogens was inhibited and cytokine production was attenuated by a MyD88 inhibitor. Together, these results show that in the scenario of severe hyper-inflammatory responses to B. mallei infection, MyD88 targeted therapeutic intervention may be a successful strategy for therapy. Published by Elsevier Ltd.
Harisseh, Rania; Chatelier, Aurélien; Magaud, Christophe; Déliot, Nadine; Constantin, Bruno
2013-05-01
Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca(2+)/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.
Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.
2011-01-01
Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418
Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian
2013-12-26
Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Besmann, Anna; Rios, Kimberly
2012-08-01
Previous research has demonstrated the tendency for humans to anthropomorphize computers-that is, to react to computers as social actors, despite knowing that the computers are mere machines. In the present research, we examined the attribution of both primary (non-uniquely human) and secondary (human-like) emotions to ingroup (teammate) and outgroup (opponent) computer-controlled characters in a video game. We found that participants perceived the teammate character as experiencing more secondary emotions than the opponent character, but that they perceived the teammate and opponent character as experiencing equal levels of primary emotions. Thus, participants anthropomorphized the ingroup character to a greater extent than the outgroup character. These results imply that computers' "emotions" are treated with a similar ingroup/outgroup social regard as the emotions of actual humans.
Sprenger, Adrian; Weber, Sebastian; Zarai, Mostafa; Engelke, Rudolf; Nascimento, Juliana M.; Gretzmeier, Christine; Hilpert, Martin; Boerries, Melanie; Has, Cristina; Busch, Hauke; Bruckner-Tuderman, Leena; Dengjel, Jörn
2013-01-01
Keratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies. However, comparability of these cell systems is not known. Cell lines may undergo phenotypic shifts and may differ from the in vivo situation in important aspects. Primary cells, on the other hand, may vary in biological functions depending on gender and age of the donor and localization of the biopsy specimen. Here we employed metabolic labeling in combination with quantitative mass spectrometry-based proteomics to assess A431 and HaCaT cell lines for their suitability as model systems. Compared with cell lines, comprehensive profiling of the primary human keratinocyte proteome with respect to gender, age, and skin localization identified an unexpected high proteomic consistency. The data were analyzed by an improved ontology enrichment analysis workflow designed for the study of global proteomics experiments. It enables a quick, comprehensive and unbiased overview of altered biological phenomena and links experimental data to literature. We guide through our workflow, point out its advantages compared with other methods and apply it to visualize differences of cell lines compared with primary human keratinocytes. PMID:23722187
Body Topography Parcellates Human Sensory and Motor Cortex.
Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S
2017-07-01
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.
Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation
Blake, Sophia M; Stricker, Stefan H; Halavach, Hanna; Poetsch, Anna R; Cresswell, George; Kelly, Gavin; Kanu, Nnennaya; Marino, Silvia; Luscombe, Nicholas M; Pollard, Steven M; Behrens, Axel
2016-01-01
Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors. DOI: http://dx.doi.org/10.7554/eLife.08711.001 PMID:26984279
Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A
2015-10-01
Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli.
42 CFR 438.804 - Primary care provider payment increases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Primary care provider payment increases. 438.804 Section 438.804 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Participation § 438.804 Primary care provider payment increases. (a) For MCO, PIHP or PAHP contracts that cover...
42 CFR 81.25 - Guidelines for claims including two or more primary cancers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cancers. 81.25 Section 81.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Estimate Probability of Causation § 81.25 Guidelines for claims including two or more primary cancers. For claims including two or more primary cancers, DOL will use NIOSH-IREP to calculate the estimated...
42 CFR 81.25 - Guidelines for claims including two or more primary cancers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cancers. 81.25 Section 81.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Estimate Probability of Causation § 81.25 Guidelines for claims including two or more primary cancers. For claims including two or more primary cancers, DOL will use NIOSH-IREP to calculate the estimated...
42 CFR 81.25 - Guidelines for claims including two or more primary cancers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cancers. 81.25 Section 81.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Estimate Probability of Causation § 81.25 Guidelines for claims including two or more primary cancers. For claims including two or more primary cancers, DOL will use NIOSH-IREP to calculate the estimated...
42 CFR 81.25 - Guidelines for claims including two or more primary cancers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cancers. 81.25 Section 81.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Estimate Probability of Causation § 81.25 Guidelines for claims including two or more primary cancers. For claims including two or more primary cancers, DOL will use NIOSH-IREP to calculate the estimated...
42 CFR 81.25 - Guidelines for claims including two or more primary cancers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cancers. 81.25 Section 81.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Estimate Probability of Causation § 81.25 Guidelines for claims including two or more primary cancers. For claims including two or more primary cancers, DOL will use NIOSH-IREP to calculate the estimated...
Demystifying the Mysteries: Sexual Dimorphism in Primary Teeth.
Singh, Akshara; Bhatia, Hind Pal; Sood, Shveta; Sharma, Naresh
2017-04-01
One of the critical steps in the process of identification is the sex determination of an unknown individual. Many studies have shown that sex can be determined using the human skeleton, especially by examining the pelvis and skull. Odontometric analysis of the human sexual variation has been less investigated, especially of primary dentition. To verify the presence of sexual dimorphism in primary teeth of local population of Faridabad, Haryana, India. The research was performed on dental casts of 500 children (250 boys and 250 girls, age range 3-5 years). Mesiodistal and buccolingual crown dimensions of maxillary and mandibular primary teeth were measured with a digital Vernier's caliper and were analysed for sexual dimorphism. Mann-Whitney-U test was used to check the statistical significance of difference in tooth dimensions among boys and girls. Differences were found in the mean values of mesiodistal and buccolingual diameters of primary teeth, in which boys generally had larger crown diameters than girls. Primary teeth may be used as an additional tool for sex identification of juvenile skeletons where other dimorphic features are not much developed.
Oropharyngeal cancer and human papilloma virus: evolving diagnostic and management paradigms.
Buckley, Lisa; Gupta, Ruta; Ashford, Bruce; Jabbour, Joe; Clark, Jonathan R
2016-06-01
The significant increase in human papilloma virus (HPV)-associated oropharyngeal carcinoma (OPC) over recent years has lead to a surge in research and an improved understanding of the disease. Most patients with HPV-associated OPC present with cystic nodal metastases with a small primary tumour, and respond well to all treatment modalities including primary surgery and primary chemoradiotherapy. Current research is evaluating treatment de-escalation to reduce long-term treatment-associated morbidities. Transoral robotic surgery (TORS) is particularly relevant as the transoral approach allows small primary tumours to be removed with lower morbidity than traditional surgical approaches. The current American Joint Committee on Cancer staging system for oropharyngeal cancer does not appropriately stratify HPV-associated OPC; hence, alternative risk stratification and staging classifications are being proposed. © 2015 Royal Australasian College of Surgeons.
National Human Adipose Tissue Survey (Nhats)
Background:
The U.S. Environmental Protection Agency (EPA)'s National Human Monitoring Program (NHMP), established by the U.S. Public Health Service in 1967, used an exposure-based approach to assess human exposure to toxic substances. Its primary component was the Natio...
OVERVIEW OF THE U.S. EPA NERL'S HUMAN EXPOSURE MODELING
Computational modeling of human exposure to environmental pollutants is one of the primary activities of the US Environmental Protection Agency's National Exposure Research Laboratory (NERL). Assessment of human exposures is a critical part of the overall risk assessment para...
Gründling, Angelika; Gonzalez, Mark D; Higgins, Darren E
2003-11-01
In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.
Mosher, Andrea A; Rainey, Kelly J; Bolstad, Seunghwa S; Lye, Stephen J; Mitchell, Bryan F; Olson, David M; Wood, Stephen L; Slater, Donna M
2013-01-01
The development of the in vitro cell culture model has greatly facilitated the ability to study gene expression and regulation within human tissues. Within the human uterus, the upper (fundal) segment and the lower segment may provide distinct functions throughout pregnancy and during labour. We have established primary cultured human myometrial cells, isolated from both upper and lower segment regions of the pregnant human uterus, and validated them for the purpose of studying human pregnancy and labour. The specific objectives of this study were to monitor the viability and characterize the expression profile using selected cellular, contractile and pregnancy associated markers in the primary cultured human myometrial cells. Labour has been described as an inflammatory process; therefore, the ability of these cells to respond to an inflammatory stimulus was also investigated. Myometrial cells isolated from paired upper segment (US) and lower segment (LS) biopsies, obtained from women undergoing Caesarean section deliveries at term prior to the onset of labour, were used to identify expression of; α smooth muscle actin, calponin, caldesmon, connexin 43, cyclo-oxygenase-2 (COX-2), oxytocin receptor, tropomyosin and vimentin, by RT-PCR and/or immunocytochemistry. Interleukin (IL)-1β was used to treat cells, subsequently expression of COX-2 mRNA and release of interleukin-8 (CXCL8), were measured. ANOVA followed by Bonferroni's multiple comparisons test was performed. We demonstrate that US and LS human myometrial cells stably express all markers examined to at least passage ten (p10). Connexin 43, COX-2 and vimentin mRNA expression were significantly higher in LS cells compared to US cells. Both cell populations respond to IL-1β, demonstrated by a robust release of CXCL8 and increased expression of COX-2 mRNA from passage one (p1) through to p10. Isolated primary myometrial cells maintain expression of smooth muscle and pregnancy-associated markers and retain their ability to respond to an inflammatory stimulus. These distinct myometrial cell models will provide a useful tool to investigate mechanisms underlying the process of human labour and the concept of functional regionalization of the pregnant uterus.
Pan, XiaoPing; Wang, Yini; Yu, XiaoPeng; Li, JianZhou; Zhou, Ning; Du, WeiBo; Zhang, YanHong; Cao, HongCui; Zhu, DanHua; Chen, Yu; Li, LanJuan
2015-01-01
The liver-specific functions of hepatocytes are improved by co-culturing hepatocytes with primary hepatic stellate cells (HSC). However, primary HSC have a short lifespan in vitro, which is considered a major limitation for their use in various applications. This study aimed to establish immortalized human HSC using the simian virus 40 large T antigen (SV40LT) for applications in co-culturing with hepatocytes and HSC in vitro. Primary human HSC were transfected with a recombinant retrovirus containing SV40LT. The immortalized human HSC were characterized by analyzing their gene expression and functional characteristics. The liver-specific functions of hepatocytes were evaluated in a co-culture system incorporating immortalized human hepatocytes with HSC-Li cells. The immortalized HSC line, HSC-Li, was obtained after infection with a recombinant retrovirus containing SV40LT. The HSC-Li cells were longitudinally spindle-like and had numerous fat droplets in their cytoplasm as shown using electron microscopy. Hepatocyte growth factor (HGF), VEGF Receptor 1(Flt-1), collagen type Iα1 and Iα2 mRNA expression levels were observed in the HSC-Li cells by RT-PCR. Immunofluorescence staining showed that the HSC-Li cells were positive for α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFR-β), vimentin, and SV40LT protein expression. The HSC-Li cells produced both HGF and transforming growth factor-beta1 (TGF-β1) in a time-dependent manner. Real-time PCR showed that albumin, CYP3A5, CYP2E1, and UGT2B7 mRNA expression generally increased in the co-culture system. The enzymatic activity of CYP1A2 under the co-culture conditions also generally increased as compared to the monoculture of immortalized human hepatocytes. We successfully established the immortalized human HSC cell line HSC-Li. It has the specific phenotypic and functional characteristics of primary human HSC, which would be a useful tool to develop anti-fibrotic therapies. Co-culturing with the HSC-Li cells improved the liver-specific functions of hepatocytes, which may be valuable and applicable for bioartificial liver systems.
Fotopoulos, George; Pavlidis, Nicholas
2015-02-01
Cancer of unknown primary of the head and neck is a challenging entity for the oncologist. The role of human papilloma virus/p16 in carcinogenesis and in prognosis is well established in certain HNSCC especially in that of the oropharynx. In the case of occult primary of the head and neck the role of HPV/p16 positivity is not well defined regarding prognosis and localization of the primary. An independent review of PubMed and ScienceDirect database was performed up to May 2014 using combinations of terms such as "occult primary of the head and neck", "CUP of the head and neck" "metastatic cervical squamous cell carcinoma of unknown primary", "HPV" and "HPV and head and neck cancer". Literature review shows a strong association between HPV/p16 positivity and primary location in the oropharynx in patients with CUP of the head and neck as well as a better clinical outcome. HPV positivity and p16 overexpression could be used as surrogate markers in the search of the primary site of patients with CUP of the head and neck therefore maybe guiding treatment decisions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pharmaceutical approval update.
Gohil, Kunj
2014-11-01
Naltrexone/bupropion (Contrave) for weight management; pembrolizumab (Keytruda) for melanoma; dolutegravir/abacavir/lamivudine (Triumeq) for HIV-1; and immune globulin infusion 10% (human) with recombinant human hyaluronidase (Hyqvia) for primary immunodeficiency.
A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.
Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J
2015-07-01
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.
A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation
Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain
2015-01-01
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study. PMID:25794504
Lewis, Nicola S; Anderson, Tavis K; Kitikoon, Pravina; Skepner, Eugene; Burke, David F; Vincent, Amy L
2014-05-01
Swine influenza A virus is an endemic and economically important pathogen in pigs, with the potential to infect other host species. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major component in swine influenza A vaccines. However, as a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza virus strains in humans is also important in assessing the relative risk of interspecies transmission of viruses from one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among H3N2 viruses isolated from pigs in the United States from 1998 to 2013 and the relative cross-reactivity between these viruses and current human seasonal influenza A virus strains. Two primary antigenic clusters were found circulating in the pig population, but with enough diversity within and between the clusters to suggest updates in vaccine strains are needed. We identified single amino acid substitutions that are likely responsible for antigenic differences between the two primary antigenic clusters and between each antigenic cluster and outliers. The antigenic distance between current seasonal influenza virus H3 strains in humans and those endemic in swine suggests that population immunity may not prevent the introduction of human viruses into pigs, and possibly vice versa, reinforcing the need to monitor and prepare for potential incursions. Influenza A virus (IAV) is an important pathogen in pigs and humans. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major target of vaccines. However, vaccine strains must be updated to reflect current strains. Characterizing the differences between seasonal IAV in humans and swine IAV is important in assessing the relative risk of interspecies transmission of viruses. We found two primary antigenic clusters of H3N2 in the U.S. pig population, with enough diversity to suggest updates in swine vaccine strains are needed. We identified changes in the HA protein that are likely responsible for these differences and that may be useful in predicting when vaccines need to be updated. The difference between human H3N2 viruses and those in swine is enough that population immunity is unlikely to prevent new introductions of human IAV into pigs or vice versa, reinforcing the need to monitor and prepare for potential introductions.
Yang, Bo; Tuo, Shuai; Tuo, Chao-wei; Zhang, Ning; Liu, Qiu-zhen
2010-02-09
To develop a series of high metastatic models of human gastric malignant lymphoma in nude mice by orthotopic transplantation. Two histologically intact primary and hepatic metastatic fragments derived from surgical specimen of a patient with primary gastric lymphoma were implanted into the submucosa of stomach in nude mice. Highly metastatic and specific organ metastatic models were screened by selective orthotopic passage in nude mice. Transplantability, invasion, metastasis, morphological characteristics (light microscopy, electron microscopy and immunohistochemistry), karyotypic analysis and DNA content of orthotopically transplanted tumors were studied. Primary and hepatic metastatic fragments of primary gastric lymphoma were successfully transplanted in nude mice. Two nude mouse models of human primary gastric lymphoma, termed HGBL-0304 (hepatic metastasis model) and HGBL-0305 (high metastasis model), were developed, exhibiting different metastasis biology. Histopathology of transplanted tumors showed primary gastric diffuse large B cell lymphoma. Two models have been maintained for 45 generations by orthotopic passage in nude mice. A total of 419 nude mice were used for transplantation. The growth rate and resuscitation rate of liquid nitrogen cryopreservation of transplanted tumors were both 100%. Significant difference in metastasis biology was exhibited in four aspects of metastasis time, organ metastatic rate, the extent of hepatic metastasis and survival of cancer-bearing mice. The metastatic rates of liver, spleen, lymph nodes and peritoneal seeding in HGBL-0304 and HGBL-0305 models were 100% and 69.5%, 94.3% and 55.6%, 62.6% and 45.7%, and 43.5% and 30.5%. The onset time for metastases of liver, spleen, lymph nodes and peritoneal seeding was 2 w and 5 w, 3 w and 6 w, 2 w and 3 w, 3 w and 6 w respectively. The extent of hepatic metastasis in HGBL-0304 and HGBL-0305 models displayed diffuse involvement of the whole liver and mainly right lobe invasion of liver respectively. The mean survival time of HGBL-0304 and HGBL-0305 models was 54.3d and 106.9 d respectively. Surgical orthotopic implantation combined with in vivo selective passage screening is an effective method for establishing highly metastatic and specific organ metastatic models of human malignant lymphoma in nude mice. The study is the first time to establish hepatic metastasis and high metastasis nude mouse models of human primary gastric lymphoma with the same original patient and different potentials of invasion and metastasis.
Studies on Typhus and Spotted Fever.
1980-02-01
prowazekii-infected human somatic (fibroblast, endothelia)), but not chick, mouse or monkey , cells in culture: (a) intracellular antirickettsial action...that of the controls. No such effect on growth was apparent in CE cells, Nu E % o0 M Ŕ ZOO - .0 E 00 (1 CI - 4D W = .) C ~ o r- -!NBI Go !N 21501,,o o...human origin transformed or malignant cells, monkey primary or diploid and primary mouse embryo fibroblasts will permit expression of these effects to
Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang
2017-04-25
Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.