Sample records for primary mirror technology

  1. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  2. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  3. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  4. Advanced Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  5. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  6. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  7. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  8. Analysis and design of segment control system in segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao

    2017-10-01

    Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.

  9. Ultralightweight optics for space applications

    NASA Astrophysics Data System (ADS)

    Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.

    2000-07-01

    Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.

  10. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  11. Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    NASA Technical Reports Server (NTRS)

    Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2015-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.

  12. Large aperture telescope technology: a design for an active lightweight multi-segmented fold-out space mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Whalley, M.; Edeson, R.; Edeson, R.; Tosh, I.; Poyntz-Wright, O.; Atad-Ettedgui, E.; Montgomery, D.; Nawasra, J.

    2017-11-01

    Large aperture telescope technology (LATT) is a design study for a differential lidar (DIAL) system; the main investigation being into suitable methods, technologies and materials for a 4-metre diameter active mirror that can be stowed to fit into a typical launch vehicle (e.g. ROKOT launcher with 2.1-metre diameter cargo) and can self-deploy - in terms of both leaving the space vehicle and that the mirrors unfold and self-align to the correct optical form within the tolerances specified. The primary mirror requirements are: main wavelength of 935.5 nm, RMS corrected wavefront error of λ/6, optical surface roughness better than 5 nm, areal density of less than 16 kg/m2 and 1-2 mirror shape corrections per orbit. The primary mirror consists of 7 segments - a central hexagonal mirror and 6 square mirror petals which unfold to form the 4-meter diameter aperture. The focus of the UK LATT consortium for this European Space Agency (ESA) funded project is on using lightweighted aluminium or carbon-fibre-composite materials for the mirror substrate in preference to more traditional materials such as glass and ceramics; these materials have a high strength and stiffness to weight ratio, significantly reducing risk of damage due to launch forces and subsequent deployment in orbit. We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.

  13. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas; Stahl, Phil; Arnold, Bill

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  14. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  15. Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2016-07-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  16. Directed Energy Technology Overview

    DTIC Science & Technology

    2011-06-01

    with an AR coating, The primary mirror is zerodur on a 9 point mount incorporating a tuned mass damper.. The secondary, tertiary, and coude optics are...beam conditioning back end section: • A beam expander enlarges the beam and shapes it to fill the active area of a deformable mirror • Because of the...enabling technologies that would make a 100-kW SS laser possible (high power optical coatings, high power gain modules, deformable mirror technology

  17. Advanced mirror technology development (AMTD): year five status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-orlarger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp 150 Hz 1.5-meter Ultra-Low Expansion (ULE) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur mirror using the STOP model prediction and verification of CTE homogeneity.

  18. A Space Imaging Concept Based on a 4-meter Spun-Cast Borosilicate Monolithic Primary Mirror

    DTIC Science & Technology

    2010-06-01

    borosilicate monolithic primary mirror 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steve West, S.H... Mirror Technology Days, Boulder, Colorado, USA, 7-9 June 2010. 14. ABSTRACT The goal of this effort is to produce the largest monolithic telescope...capable of being lifted by a Delta IV or Atlas V EELV to 500 km. A strategy using a 4 m borosilicate mirror is proposed. A preliminary architecture was

  19. Electromagnetic deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.

    2017-09-01

    To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].

  20. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  1. Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanger, G.M.

    1986-01-01

    The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less

  2. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.

  3. Engineering the Future: Cell 6

    NASA Technical Reports Server (NTRS)

    Stahl, P. H.

    2010-01-01

    This slide presentation reviews the development of the James Webb Space Telescope (JWST), explaining the development using a systems engineering methodology. Included are slides showing the organizational chart, the JWST Science Goals, the size of the primary mirror, and full scale mockups of the JSWT. Also included is a review of the JWST Optical Telescope Requirements, a review of the preliminary design and analysis, the technology development required to create the JWST, with particular interest in the specific mirror technology that was required, and views of the mirror manufacturing process. Several slides review the process of verification and validation by testing and analysis, including a diagram of the Cryogenic Test Facility at Marshall, and views of the primary mirror while being tested in the cryogenic facility.

  4. Kodak AMSD Mirror Development Program

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  5. Advanced Mirror Technology Development (AMTD): Year Five Status

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp approximately 150 Hz 1.5-meter Ultra-Low Expansion (ULE Registered trademark) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur (Registered trademark) mirror using the STOP model prediction and verification of CTE homogeneity.

  6. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year.

  7. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year.

  8. First results of the wind evaluation breadboard for ELT primary mirror design

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  9. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  10. Verification procedure for the wavefront quality of the primary mirrors for the MRO interferometer

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.; Olivares, Andres; Schmell, Reed A.; Schmell, Rodney A.; Gartner, Darren; Jaramillo, Anthony; Romero, Kelly; Rael, Andres; Lewis, Jeff

    2009-08-01

    We present the verification procedure for the 1.4 meter primary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Six mirrors are in mass production at Optical Surface Technologies (OST) in Albuquerque. The six identical parabolic mirrors will have a radius of curvature of 6300 mm and a final surface wavefront quality of 29 nm rms. The mirrors will be tested in a tower using a computer generated hologram, and the Intellium⢠H2000 interferometer from Engineering Synthesis Design, Inc. (ESDI). The mirror fabrication activities are currently in the early stage of polishing and have already delivered some promising results with the interferometer. A complex passive whiffle tree has been designed and fabricated by Advanced Mechanical and Optical Systems (AMOS, Belgium) that takes into account the gravity loading for an alt-alt mount. The final testing of the primary mirrors will be completed with the mirror cells that will be used in the telescopes. In addition we report on shear tests performed on the mirror cell pads on the back of the primary mirrors. These pads are glued to the mirror. The shear test has demonstrated that the glue can withstand at least 4.9 kilo Newton. This is within the requirements.

  11. Status of Mirror Technology for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight experimentand) and NGST. This talk will focus on a status of the mirror technology developed over the past 4 years on the NGST program.

  12. The Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV-quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Effinger, Michael R.

    2013-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  13. Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Kirk, Charlie; Maffett, Steve; Abplanalp, Cal; Stahl, H. Philip

    2013-01-01

    Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and ITT Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at ITT Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  14. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  15. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  16. Manufacture of a 1.7m prototype of the GMT primary mirror segments

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Miller, S. M.; Smith, B. K.; Zehnder, R.; Zhao, C.

    2006-06-01

    We have nearly completed the manufacture of a 1.7 m off-axis mirror as part of the technology development for the Giant Magellan Telescope. The mirror is an off-axis section of a 5.3 m f/0.73 parent paraboloid, making it roughly a 1:5 model of the outer 8.4 m GMT segment. The 1.7 m mirror will be the primary mirror of the New Solar Telescope at Big Bear Solar Observatory. It has a 2.7 mm peak-to-valley departure from the best-fit sphere, presenting a serious challenge in terms of both polishing and measurement. The mirror was polished with a stressed lap, which bends actively to match the local curvature at each point on the mirror surface, and works for asymmetric mirrors as well as symmetric aspheres. It was measured using a hybrid reflective-diffractive null corrector to compensate for the mirror's asphericity. Both techniques will be applied in scaled-up versions to the GMT segments.

  17. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  18. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  19. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2017-12-08

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year. Read more: www.nasa.gov/feature/goddard/2016/by-the-dozen-nasas-jame... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-07

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year. Read more: www.nasa.gov/feature/goddard/2016/by-the-dozen-nasas-jame... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Technologies for the fabrication of the E-ELT mirrors within the T-REX project

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Aliverti, M.; Bianco, A.; Basso, S.; Citterio, O.; Civitani, M.; Ghigo, M.; Pariani, G.; Sironi, G.; Riva, M.; Vecchi, G.; Zerbi, F.

    With its primary mirror with 39 m of diameter, the E-ELT will be the largest optical/near-infrared telescope in the world and will gather 13 times more light than the largest optical telescopes existing today. The different optical sub-systems of E-ELT, including the primary mirror based on hundreds of reflecting tiles assembled together, represent key components for the implementation of the telescopes. A huge amount of aspherical reflecting elements have to be produced with "state of the art" figuring and polishing technologies and measured with proper metrological equipments. In the past couple of years, in the context of the T-REX project, a specific development program was carried out at the Brera Astronomical Observatory-INAF in order to address a numbers of technology aspects related to the fabrication of the E-ELT mirrors. In this paper we give a short overview of the activities that have been carried out. Other papers in this volume report on specific activities that have pursed within such a development program. skip=8pt

  2. Large Space Optics: From Hubble to JWST and Beyond

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated resulting in matured and demonstrated mirror technology for JWST (2, 3). Today, the JWST 6.5 meter primary mirror has an areal density of 25 kg/m2 for a total mass of 625 kg or 9.6% of the total JWST observatory mass of 6,500 kg. Looking into the future, science requires increasing larger collecting apertures. Ground based telescopes are already moving towards 30+ meter mirrors. The only way to meet this challenge for space telescopes is via even lower areal density mirrors or on-orbit assembly or larger launch vehicles (4). The planned NASA Ares V with its 10 meter fairing and 55,000 kg payload to L2 eliminates this constraint (5).

  3. Fabrication, Testing, Coating and Alignment of Fast Segmented Optics

    DTIC Science & Technology

    2006-05-25

    mirror segment, a 100 mm thick Zerodur mirror blank was purchased from Schott. Figure 2 shows the segment and its support for polishing and testing in...Polishing large off-axis segments of fast primary mirrors 2. Testing large segments in an off-axis geometry 3. Alignment of multiple segments of a large... mirror 4. Coatings that reflect high-intensity light without distorting the substrate These technologies are critical because of several unique

  4. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  5. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Effinger, Mike; Stahl, H. Philip

    2015-01-01

    The Advanced Mirror Technology Development (AMTD) project is in phase 2 of a multiyear effort, initiated in FY 2012. This effort is to mature, by at least a half Technology Readiness Level step, the critical technologies required to enable 4-meter or larger ultraviolet, optical, and infrared (UVOIR) space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD continues to achieve all of its goals and has accomplished all of its milestones to date. This has been achieved by assembling an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes; by deriving engineering specifications for advanced normal-incidence mirror systems needed to make the required science measurements; and by defining and prioritizing the most important technical problems to be solved. Our results have been presented to the CoPAG and Mirror Tech Days 2013, and proceedings papers of the 2013 and 2014 SPIE Optics & Photonics Symposia have been published.

  6. Last results of technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    NASA Astrophysics Data System (ADS)

    Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao

    2017-11-01

    The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.

  7. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  8. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  9. Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Oh, Chang Jin; Lowman, Andrew E.; Smith, Greg A.; Su, Peng; Huang, Run; Su, Tianquan; Kim, Daewook; Zhao, Chunyu; Zhou, Ping; Burge, James H.

    2016-07-01

    Daniel K. Inouye Solar Telescope (formerly known as Advanced Technology Solar Telescope) will be the largest optical solar telescope ever built to provide greatly improved image, spatial and spectral resolution and to collect sufficient light flux of Sun. To meet the requirements of the telescope the design adopted a 4m aperture off-axis parabolic primary mirror with challenging specifications of the surface quality including the surface figure, irregularity and BRDF. The mirror has been completed at the College of Optical Sciences in the University of Arizona and it meets every aspect of requirement with margin. In fact this mirror may be the smoothest large mirror ever made. This paper presents the detail fabrication process and metrology applied to the mirror from the grinding to finish, that include extremely stable hydraulic support, IR and Visible deflectometry, Interferometry and Computer Controlled fabrication process developed at the University of Arizona.

  10. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  11. NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.

  12. CFRP mirror technology for cryogenic space interferometry: review and progress to date

    NASA Astrophysics Data System (ADS)

    Jones, Martyn L.; Walker, David; Naylor, David A.; Veenendaal, Ian T.; Gom, Brad G.

    2016-07-01

    The FP7 project, FISICA (Far Infrared Space Interferometer Critical Assessment), called for the investigation into the suitability of Carbon fiber Reinforced Plastic (CFRP) for a 2m primary mirror. In this paper, we focus on the major challenge for application, the development of a mirror design that would maintain its form at cryogenic temperatures. In order to limit self-emission the primary is to be cooled to 4K whilst not exceeding a form error of 275nm PV. We then describe the development of an FEA model that utilizes test data obtained from a cryogenic test undertaken at the University of Lethbridge on CFRP samples. To conclude, suggestions are made in order to advance this technology to be suitable for such an application in order to exploit the low density and superior specific properties of polymeric composites.

  13. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  14. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  15. SiC lightweight telescopes for advanced space applications. I - Mirror technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter

    1992-01-01

    A SiC based telescope is an extremely attractive emerging technology which offers the lightweight and stiffness features of beryllium, the optical performance of glass to diffraction limited visible resolution, superior optical/thermal stability to cryogenic temperatures, and the cost advantages of an aluminum telescope. SSG has developed various SiC mirrors with and without a silicon coating and tested these mirrors over temperature ranges from +50 C to -250 C. Our test results show less than 0.2 waves P-V in visible wavefront change and no hysteresis over this wide temperature range. Several SSG mirrors are representative of very lightweight SiC/Si mirrors including (1) a 9 cm diameter, high aspect ratio mirror weighing less than 30 grams and (2) a 23 cm diameter eggcrated mirror weighing less than 400 grams. SSG has also designed and analyzed a 0.6 meter SiC based, on axis, three mirror reimaging telescope in which the primary mirror weighs less than 6 kg and a 0.5 meter GOES-like scan mirror. SSG has also diamond turned several general aspheric SiC/Si mirrors with excellent cryo optical performance.

  16. The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Egerman, Robert; Maffett, Steven P.; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2014-01-01

    The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined.

  17. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  18. Lightweight structure design for supporting plate of primary mirror

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng

    2017-10-01

    A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.

  19. Engineers Work on the James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    Engineers at Ball Aerospace test the Wavefront Sensing and Control testbed to ensure that the 18 primary mirror segments and one secondary mirror on JWST work as one. The test is performed on a 1/6 scale model of the JWST mirrors. Credit: NASA/Northrop Grumman/Ball Aerospace To read more about the James Webb Space Telescope go to: www.nasa.gov/topics/technology/features/partnerships.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  20. Spherical primary optical telescope (SPOT) segments

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Hagopian, John; DeMarco, Michael

    2012-09-01

    The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.

  1. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  2. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R [Albuquerque, NM; Diels, Jean-Claude M [Albuquerque, NM

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  3. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  4. Study on the key alignment technology of the catadioptric optical system

    NASA Astrophysics Data System (ADS)

    Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai

    2017-02-01

    Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.

  5. Dynamic analysis of the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Calleson, Robert E.; Scott, A. Don

    1987-01-01

    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.

  6. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    NASA Astrophysics Data System (ADS)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  7. Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd

    2016-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  8. Multivariable parametric cost model for space and ground telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Henrichs, Todd

    2016-09-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost (X) D (1.75 +/- 0.05) λ (-0.5 +/- 0.25) T-0.25 e (-0.04) Y Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  9. NIRSpec optics development: final report

    NASA Astrophysics Data System (ADS)

    Geyl, R.; Ruch, E.; Vayssade, H.; Leplan, H.; Rodolfo, J.

    2017-11-01

    As shown and discussed on a Sagem poster presented at the ICSO 2010 conference [1], scientific or commercial earth observation space instruments are more and more taking advantage of the remarkable properties of Silicon Carbide in term of hardness, stiffness and thermal stability combined with a reasonable density which are indeed of primary importance for all space applications. Sagem-REOSC High Performance Optics Unit works on the polishing, coating and integration technologies of SiC mirrors since more than ten year through various successful space programs for various customers: INSAT 3D scan mirror, ROCSAT II and SPIRALE main telescopes, GAIA large primary mirrors and Auto-collimation flats, …). This paper aims to provide to the international space community an exhaustive vision of the work performed by Sagem-REOSC on the polishing, coating and integration of the three Three Mirror Anastigmats of the NIRSpec spectrographic instrument which is the main ESA contribution to the JWST.

  10. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  11. Space Optics for the 21st Century

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    2006-01-01

    Technological advances over the last decade in metrology, fabrication techniques and materials have made a significant impact on spacebased astronomy and together with advances in adaptive optics offer the opportunity for even more radical changes in the future. The Hubble Space Telescope primary mirror is 2.4 meters in diameter and weighs on the order of 150 kilograms per square meter. The technology demonstration mirrors developed for the James Webb Telescope had an order of magnitude less in area density and developments in membrane optics offer the opportunity to achieve another order of magnitude decrease. Similar advances in mirrors for x-ray astronomy means that across the spectrum future space based telescopes will have greater and greater collecting areas with ever increasing resolution.

  12. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  13. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles; hide

    2013-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is the start of a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: (1) Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented primary mirrors require larger, thicker, and stiffer substrates. (2) Support System: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. (4) Segment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. (5) Segment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. (6) Integrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  14. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  15. Yes, the James Webb Space Telescope Mirrors 'Can'

    NASA Image and Video Library

    2017-12-08

    The powerful primary mirrors of the James Webb Space Telescope will be able to detect the light from distant galaxies. The manufacturer of those mirrors, Ball Aerospace & Technologies Corp. of Boulder, Colo., recently celebrated their successful efforts as mirror segments were packed up in special shipping canisters (cans) for shipping to NASA. The Webb telescope has 21 mirrors, with 18 primary mirror segments working together as one large 21.3-foot (6.5-meter) primary mirror. The mirror segments are made of beryllium, which was selected for its stiffness, light weight and stability at cryogenic temperatures. Bare beryllium is not very reflective of near-infrared light, so each mirror is coated with about 0.12 ounce of gold. Northrop Grumman Corp. Aerospace Systems is the principal contractor on the telescope and commissioned Ball for the optics system's development, design, manufacturing, integration and testing. The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency. For more information about the James Webb Space Telescope, visit: www.jwst.nasa.gov Credit: Ball Aerospace NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Smith, W. Scott

    2013-01-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.

  17. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  18. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope

  19. Highly light-weighted ZERODUR mirror and fixation for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Lasic, Thierry; Viale, Roger; Ruch, Eric

    2017-11-01

    Space telescopes require large primary mirrors within a demanding thermal environment: observatories at L2 orbit provide a stable environment with a drawback of very low temperature. Besides, it is necessary to limit as far as possible the mirrors mass while withstanding launch loads and keeping image quality within a cryogenic environment. ZERODUR is a well-known material extensively used for large telescope. Alcatel Alenia Space and Sagem/REOSC have combined their respective skills to go further in the lightweighting ratio of large mirror (36 kg/m2 on 1.5 m2) through a detailed design, performance assessment and technology demonstration with breadboards. Beyond on a large mirror detailed design supported by analysis, a ZERODUR mock-up has been manufacturing by Sagem/REOSC to demonstrate the achievability of the demanding parameters offering this high lightweighting ratio. Through the ISO experience on mirror attachments, a detailed design of the mirror fixation has been done as well. A full size mock-up has been manufactured and successfully tested under thermal cycling and static loading. Eventually, the ZERODUR stability behavior within this large temperature range has been verified through thermal cycling and image quality cryotest on a flat mirror breadboard. These developments demonstrate that ZERODUR is a good candidate for large space cryogenic mirrors offering outstanding optical performances associated to matured and proven technology and manufacturing process.

  20. Performance of lightweight large C/SiC mirror

    NASA Astrophysics Data System (ADS)

    Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko

    2017-11-01

    Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.

  1. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  2. Development of large aperture telescope technology (LATT): test results on a demonstrator bread-board

    NASA Astrophysics Data System (ADS)

    Briguglio, R.; Xompero, M.; Riccardi, A.; Lisi, F.; Duò, F.; Vettore, C.; Gallieni, D.; Tintori, M.; Lazzarini, P.; Patauner, C.; Biasi, R.; D'Amato, F.; Pucci, M.; Pereira do Carmo, João.

    2017-11-01

    The concept of a low areal density primary mirror, actively controlled by actuators, has been investigated through a demonstration prototype. A spherical mirror (400 mm diameter, 2.7 Kg mass) has been manufactured and tested in laboratory and on the optical bench, to verify performance, controllability and optical quality. In the present paper we will describe the prototype and the test results.

  3. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery order, this report simply summarizes the material with the various UAH-written presentation packages attached as appendices.

  4. Dispersed Fringe Sensing Analysis - DFSA

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.

    2012-01-01

    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.

  5. New frontiers in ground-based optical astronomy

    NASA Astrophysics Data System (ADS)

    Strom, Steve

    1991-07-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs.

  6. Wavefront sensing, control, and pointing

    NASA Technical Reports Server (NTRS)

    Pitts, Thomas; Sevaston, George; Agronin, Michael; Bely, Pierre; Colavita, Mark; Clampin, Mark; Harvey, James; Idell, Paul; Sandler, Dave; Ulmer, Melville

    1992-01-01

    A majority of future NASA astrophysics missions from orbiting interferometers to 16-m telescopes on the Moon have, as a common requirement, the need to bring light from a large entrance aperture to the focal plane in a way that preserves the spatial coherence properties of the starlight. Only by preserving the phase of the incoming wavefront, can many scientific observations be made, observations that range from measuring the red shift of quasi-stellar objects (QSO's) to detecting the IR emission of a planet in orbit around another star. New technologies for wavefront sensing, control, and pointing hold the key to advancing our observatories of the future from those already launched or currently under development. As the size of the optical system increases, either to increase the sensitivity or angular resolution of the instrument, traditional technologies for maintaining optical wavefront accuracy become prohibitively expensive or completely impractical. For space-based instruments, the low mass requirement and the large temperature excursions further challenge existing technologies. The Hubble Space Telescope (HST) is probably the last large space telescope to rely on passive means to keep its primary optics stable and the optical system aligned. One needs only look to the significant developments in wavefront sensing, control, and pointing that have occurred over the past several years to appreciate the potential of this technology for transforming the capability of future space observatories. Future developments in space-borne telescopes will be based in part on developments in ground-based systems. Telescopes with rigid primary mirrors much larger than 5 m in diameter are impractical because of gravity loading. New technologies are now being introduced, such as active optics, that address the scale problem and that allow very large telescopes to be built. One approach is a segmented design such as that being pioneered by the W.M. Keck telescope now under construction at the Mauna Kea Observatory. It consists of 36 hexagonal mirror segments, supported on a framework structure, which are positioned by actuators located between the structure and the mirrors. The figure of the telescope is initialized by making observations of a bright star using a Shack Hartmann sensor integrated with a white light interferometer. Then, using sensed data from the mirror edges to control these actuators, the figure of the mosaic of 36 segments is maintained as if it were a rigid primary mirror. Another active optics approach is the use of a thin meniscus mirror with actuators. This technique was demonstrated on the European Southern Observatory's New Technology Telescope (NTT) and is planned for use in the Very Large Telescope (consists of four 8-m apertures), which is now entering the design phase.

  7. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness. This presentation will introduce the goals and objectives of the AMTD project and summarize its recent accomplishments.

  8. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  9. Thermal Testing of a Stacked Core Mirror for UV Applications

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Kirk, Charles S.; Maffett, Steven; Hanson, Craig; Eng, Ron; Stahl, H. Philip

    2013-01-01

    The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed.

  10. Next Generation Space Telescope Ultra-Lightweight Mirror Program

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    1998-01-01

    The Next Generation Space Telescope is currently envisioned as a eight meter diameter cryogenic deployable telescope that will operate at the earth sun libration point L2. A number of different designs are being examined within NASA and under industry studies by Ball Aerospace, Lockheed-Martin and TRW. Although these designs differ in many respects, they all require significant advancements in the state-of-the-art with respect to large diameter, ultra-lightweight, mirrors. The purpose of this paper is to provide insight into the current status of the mirror development program NGST is a tremendously ambitious undertaking that sets the mark for new NASA missions. In order to achieve the weight, cost and performance requirements of NGST, the primary mirror must be made lighter, cheaper and better than anything that has ever been done. In order to accomplish this an aggressive technology program has been put in place. The scope of the program was determined by examining historically what has been accomplished; assessing recent technological advances in fabrication and testing; and evaluating the effect of these advances relative to enabling the manufacture of lightweight mirrors that meet NGST requirements. As it is currently envisioned, the primary mirror for NGST is on the order of eight meters in diameter, it is to be diffraction limited at a wave length of 2 microns and has an overall weight requirement of 15 kilograms per square meter. Two large scale demonstration projects are under way along with a number of smaller scale demonstrations on a variety of mirror materials and concepts. The University of Arizona (UA) mirror concept is based around a 2mm thick Borosilicate glass face sheet mounted to a composite backplane structure via actuators for mirror figure correction. The Composite Optics Inc.(COI) concept consists of a 3.2mm thick Zerodur face sheet bonded to a composite support structure which in turn is mounted to a composite backplane structure via actuators for mirror phasing. These mirrors are due to be performance tested in ambient conditions in the fall of '98, and cryogenically tested in the spring of '99. The smaller scale efforts include the following: Beryllium is being investigated at Ball Aerospace, Electroform nickel is being investigated in-house at MSFC, Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) is being investigated at Morton International Silicon mirrors are being investigated at Schafer, Carbon Fiber Reinforced Silicon Carbide (CSIC) is being investigated at IABG. SiC at SSG, Composite mirrors at COI, pyrolyzed graphite mirrors at Ultramet, reaction bonded SiC mirrors at Xinetics, along with techniques for lightweighting using waterjets at Waterjet Technology Inc. are all being investigated under the Small Business innovative Research Program SBIR program. A procurement for a third large scale demonstration (nominally 1.5m in diameter) is being planned for release this fall.

  11. Being "Secondary" is Important for a Webb Telescope Mirror

    NASA Image and Video Library

    2017-12-08

    NASA release July 19, 2011 Click here to learn about the James Webb Space Telescope The secondary mirror (shown here) was polished at the L3 Integrated Optical Systems - Tinsley in Richmond, Calif. to accuracies of less than one millionth of an inch. That accuracy is important for forming the sharpest images when the mirrors cool to -400°F (-240°C) in the cold of space. The Webb's secondary mirror was recently completed, following polishing and gold-coating. "Secondary" may not sound as important as "primary" but when it comes to the next-generation James Webb Space Telescope a secondary mirror plays a critical role in ensuring the telescope gathers information from the cosmos. The Webb's secondary mirror was recently completed, following polishing and gold-coating. There are four different types of mirrors that will fly on the James Webb Space Telescope, and all are made of a light metal called beryllium. It is very strong for its weight and holds its shape across a range of temperatures. There are primary mirror segments (18 total that combined make the large primary mirror providing a collecting area of 25 meters squared/269.1 square feet), the secondary mirror, tertiary mirror and the fine steering mirror. Unlike the primary mirror, which is molded into the shape of a hexagon, the secondary mirror is perfectly rounded. The mirror is also convex, so the reflective surface bulges toward a light source. It looks much like a curved mirror that you'll see on the wall near the exit of a parking garage that lets motorists see around a corner. This mirror is coated with a microscopic layer of gold to enable it to efficiently reflect infrared light (which is what the Webb telescope's cameras see). The quality of the secondary mirror surface is so good that the final convex surface at cold temperatures does not deviate from the design by more than a few millionths of a millimeter - or about one ten thousandth the diameter of a human hair. "As the only convex mirror on the Webb telescope, the secondary mirror has always been recognized to be the hardest of all of the mirrors to polish and test, so we are delighted that its performance meets all specifications," said Lee Feinberg, Webb Optical Telescope manager at NASA's Goddard Space Flight Center in Greenbelt, Md. Convex mirrors are particularly hard to test because light that strikes them diverges away from the mirror. Feinberg noted, "The Webb telescope convex secondary mirror is approximately the size of the Spitzer Space Telescope's primary mirror and is by far the largest convex cryogenic mirror ever built for a NASA program." It was data from the Spitzer's mirrors that helped make the decision to use beryllium for the Webb telescope mirrors. Spitzer's mirrors were also made of beryllium. So why is this mirror so critical? Because the secondary mirror captures light from the 18 primary mirror segments and relays those distant images of the cosmos to the telescope's science cameras. The secondary mirror is mounted on folding "arms" that position it in front of the 18 primary mirror segments. The secondary mirror will soon come to NASA's Goddard Space Flight Center in Greenbelt, Md. where it will be installed on the telescope structure. Then, as a complete unit, the telescope structure and mirrors will undergo acoustic and vibration testing. The secondary mirror was developed at Ball Aerospace & Technology Corp. of Boulder, Colo. and the mirror recently completed polishing at the L3–IOS-Tinsley facility in Richmond, Calif. Northrop Grumman space Systems is the prime contractor on the Webb telescope program. The James Webb Space Telescope is the world’s next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and see unexplored planets around distant stars. The Webb Telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency. Credit:NASA/Ball Aerospace/Tinsley NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Toward first light for the 6.5-m MMT Telescope

    NASA Astrophysics Data System (ADS)

    West, Steve C.; Callahan, Shawn; Chaffee, Frederic H.; Davison, Warren B.; Derigne, S. T.; Fabricant, Daniel G.; Foltz, Craig B.; Hill, John M.; Nagel, Robert H.; Poyner, Anthony D.; Williams, Joseph T.

    1997-03-01

    Operated by the Multiple Mirror Telescope Observatory (MMTO), the multiple mirror telescope (MMT) is funded jointly by the Smithsonian Institution (SAO) and the University of Arizona (UA). The two organizations equally share observing time on the telescope. The MMT was dedicated in May 1979, and is located on the summit of Mt. Hopkins (at an altitude of 2.6 km), 64 km south of Tucson, Arizona, at the Smithsonian Institution's Fred Lawrence Whipple Observatory (FLWO). As a result of advances in the technology at the Steward Observatory Mirror Laboratory for the casting of large and fast borosilicate honeycomb astronomical primary mirrors, in 1987 it was decided to convert the MMT from its six 1.8 m mirror array (effective aperture of 4.5 m) to a single 6.5 m diameter primary mirror telescope. This conversion will more than double the light gathering capacity, and will by design, increase the angular field of view by a factor of 15. Because the site is already developed and the existing building and mount will be used with some modification, the conversion will be accomplished for only about $20 million. During 1995, several major technical milestones were reached: (1) the existing building was modified, (2) the major steel telescope structures were fabricated, and (3) the mirror blank was diamond wheel ground (generated). All major mechanical hardware required to affect the conversion is now nearly in hand. Once the primary mirror is polished and lab-tested on its support system, the six-mirror MMT will be taken out of service and the conversion process begun. We anticipate that a 6 - 12 month period will be required to rebuild the telescope, install its optics and achieve f/9 first light, now projected to occur in early 1998. The f/5.4 and f/15 implementation will then follow. We provide a qualitative and brief update of project progress.

  13. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.

  14. The GTC: a convenient test bench for ELT demonstrations

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, Jose M.; Hammersley, Peter L.; Martinez-Roger, Carlos

    2004-07-01

    The Gran Telescopio Canarias (GTC) is, being assembled at the Observatorio del Roque de los Muchachos (ORM) in the island of La Palma. First light is expected for early 2005 with the first science observations late in 2005. The GTC, being a segmented primary mirror telescope, could be employed for testing several technological aspects relevant to the future generation of Extremely Large Telescopes (ELT). In the short term, the mass production of aespheric mirror segments can be examined in detail and improvements made along the way, or planned for the future. Indeed the GTC segments are now entering into a chain production scheme. Later on, different strategies for the control aspects of the primary mirror can be explored to optimize the optical performance of segmented telescopes. Moreover, the entire GTC active optics can offer a learning tool for testing various strategies and their application to ELTs.

  15. Mirror Technology Development for The International X-Ray Observatory Mission

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.

  16. Rapid Maturation of Edge Sensor Technology and Potential Application in Large Space Telescopes with Segmented Primary Mirrors

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    This paper explores the history and results of the last two year's efforts to transition inductive edge sensor technology from Technology Readiness Level 2 to Technology Readiness Level 6. Both technical and programmatic challenges were overcome in the design, fabrication, test, and installation of over a thousand sensors making up the Segment Alignment Maintenance System (SAMs) for the 91 segment, 9.2-meter. Hobby Eberly Telescope (HET). The integration of these sensors with the control system will be discussed along with serendipitous leverage they provided for both initialization alignment and operational maintenance. The experience gained important insights into the fundamental motion mechanics of large segmented mirrors, the relative importance of the variance sources of misalignment errors, the efficient conduct of a program to mature the technology to the higher levels. Unanticipated factors required the team to develop new implementation strategies for the edge sensor information which enabled major segmented mirror controller design simplifications. The resulting increase in the science efficiency of HET will be shown. Finally, the on-going effort to complete the maturation of inductive edge sensor by delivering space qualified versions for future IR (infrared radiation) space telescopes.

  17. Structural and Aerodynamic Optimization of UltraLightweight Technology for Research in Astronomy (ULTRA)

    NASA Astrophysics Data System (ADS)

    Etzel, P. B.; Martin, R.; Romeo, R.; Fesen, R.; Hale, R.; Taghavi, R.; Anthony-Twarog, B. J.; Shawl, S. J.; Twarog, B. A.

    2004-12-01

    The focus of ULTRA (see poster by Twarog et al.) is a three-year plan to develop and test ultralightweight technology for research applications in astronomy. The goal is to demonstrate that a viable alternative exists to traditional glass-mirror technology by designing, fabricating, and testing a research telescope prototype comprising fiber reinforced plastic (CFRP) materials. To date, several mirror designs have been tested. The main goal in the first year has been to develop a 0.4m diameter mirror and OTA that serve as prototypes for the 1m telescope design. Mirrors of 0.4m diameter have been successfully fabricated which yield diffraction limited images. This poster will include a display of the complete OTA (including optics), optics test results, and astronomical images taken with prototype mirrors. Finite element analysis has been used to evaluate the OTA and mirror designs. Preliminary design details were incorporated in a knowledge-based system. Adaptive Modeling Language (AML), an object oriented programming language developed by Technosoft, Inc., was used to develop a parameterized geometric model of the preliminary design. The system can generate mirrors with radials/circumferentials, tube core substructures, as well as modeling the support structure. Computational fluid dynamics analyses were performed for sweep, inclination and ambient wind speed. Finite element analyses were performed for core density and arrangement, skin thickness, back-surface curvature, spider configuration and arrangement of the OTA, while the loading conditions considered thus far are thermal, inertial, and aerodynamic pressure loads. Experimental tests, including ultrasonic nondestructive evaluations, infrared imaging, modal testing, and wind tunnel tests, have been performed on the first prototype mirror, with the primary goal of validating analytical models and identifying potential manufacturing induced variations to be expected among "like" mirrors. Support of this work by NSF grants AST-0320784 and AST-0321247, NASA grant NCC5-600, Kansas University, and San Diego State University is gratefully acknowledged

  18. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2004-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.

  19. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  20. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  1. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  2. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F., E-mail: borra@phy.ulaval.ca

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror usesmore » a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.« less

  3. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  4. James Webb Space Telescope (JWST): The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The James Webb Space Telescope (JWST), expected to launch in 2011, will study the origin and evolution of luminous objects, galaxies, stars, planetary systems and the origins of life. It is optimized for near infrared wavelength operation of 0.6-28 micrometers and will have a 5 year mission life (with a 10 year goal). This presentation reviews JWST's science objectives, the JWST telescope and mirror requirements and how they support the JWST architecture. Additionally, an overview of the JWST primary mirror technology development effort is highlighted.

  5. Active optics for next generation space telescopes

    NASA Astrophysics Data System (ADS)

    Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.

    2017-09-01

    High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.

  6. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  7. Modular Orbital Demonstration of an Evolvable Space Telescope

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian

    2016-06-01

    The key driver for a telescope's sensitivityis directly related to the size of t he mirror area that collects light from the objects being observed.The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The HDST envisioned for this mission would have an aperture >10 m, which is a larger payload than can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. The Optical Telescope Assembly for HDST is a primary mission cost driver. Enabling affordable solutions for this next generation of large aperture space-based telescope are needed.This reports on the concept for the MODEST, which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student's exploration of space. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Ceramic Matrix Composite that have excellent mechanical and thermal properties, e.g. high stiffness, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  8. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  9. A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2008-01-01

    We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  10. The first aluminum coating of the 3700mm primary mirror of the Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Bheemireddy, Krishna Reddy; Gopinathan, Maheswar; Pant, Jayshreekar; Omar, Amitesh; Kumar, Brijesh; Uddin, Wahab; Kumar, Nirmal

    2016-07-01

    Initially the primary mirror of the 3.6m Devasthal Optical Telescope is uncoated polished zerodur glass supplied by Lytkarino Optical Glass Factory, Russia/Advanced Mechanical and Optical Systems, Belgium. In order to do the aluminium coating on the primary mirror the coating plant including washing unit is installed near the telescope (extension building of telescope) by Hind High Vacuum (HHV) Bangalore, India. Magnetron sputtering technique is used for the coating. Several coating trials are done before the primary mirror coating; samples are tested for reflectivity, uniformity, adhesivity and finally commissioned. The primary mirror is cleaned, coated by ARIES. We present here a brief description of the coating plant installation, Mirror cleaning and coating procedures and the testing results of the samples.

  11. Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    NASA Astrophysics Data System (ADS)

    Zuccaro Marchi, Alessandro; D'Amato, Francesco; Gallieni, Daniele; Biasi, Roberto; Molina, Marco; Duò, Fabrizio; Ruder, Nikolaus; Salinari, Piero; Lisi, Franco; Riccardi, Armando; Gambicorti, Lisa; Simonetti, Francesca; Pereira do Carmo, Joao Pedro N.

    2017-11-01

    The increasing interest on space telescopes for scientific applications leads to implement the manufacturing technology of the most critical element, i.e. the primary mirror: being more suitable a large aperture, it must be lightweight and deployable. The presented topic was originally addressed to a spaceborne DIAL (Differential Absorption LIDAR) mission operating at 935.5 nm for the measurement of water vapour profile in atmosphere, whose results were presented at ICSO 2006 and 2008. Aim of this paper is to present the latest developments on the main issues related to the fabrication of a breadboard, covering two project critical areas identified during the preliminary studies: the design and performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch via Electrostatic Locking (EL) between mirror and backplane. The described work is developed under the ESA/ESTEC contract No. 22321/09/NL/RA. The lightweight mirror is structured as a central sector surrounded by petals, all of them actively controlled to reach the specified shape after initial deployment and then maintained within specs for the entire mission duration. The presented study concerns: a) testing the Carbon Fiber Reinforced Plastic (CFRP) backplane manufacturing and EL techniques, with production of suitable specimens; b) actuator design optimisation; c) design of the deployment mechanism including a high precision latch; d) the fabrication of thin mirrors mock-ups to validate the fabrication procedure for the large shells. The current activity aims to the construction of an optical breadboard capable of demonstrating the achievement of all these coupled critical aspects: optical quality of the thin shell mirror surface, actuators performances and back-plane - EL subsystem functionality.

  12. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark Arthur (Inventor)

    1990-01-01

    The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.

  13. Study Of Pre-Shaped Membrane Mirrors And Electrostatic Mirrors With Nonlinear-Optical Correction

    DTIC Science & Technology

    2002-01-01

    mirrors have been manufactured of glass-like material Zerodur with very low coefficient of linear expansion. They have a more light cellular construction...primary and flat secondary mirrors are both segmented ones. In the case of the primary mirror made of traditional materials such as Zerodur or fused...FINAL REPORT ISTC Project #2103p “Study of Pre-Shaped Membrane Mirrors and Electrostatic Mirrors with Nonlinear-Optical Correction” Manager

  14. Progress on SOFIA primary mirror

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel

    2000-06-01

    REOSC, SAGEM Group, has a significant contribution to the SOFIA project with the design and fabrication of the 2.7-m primary mirror and its fixtures as well as the M3 mirror tower assembly. This paper will primarily report the progress made on the primary mirror design and the first important manufacturing step: its lightweighting by machining pockets from the rear side of the blank.

  15. Highly light-weighted ZERODUR mirrors

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stéphanie; Lasic, Thierry; Viale, Roger; Mathieu, Jean-Claude; Ruch, Eric; Tarreau, Michel; Etcheto, Pierre

    2017-11-01

    Due to more and more stringent requirements for observation missions, diameter of primary mirrors for space telescopes is increasing. Difficulty is then to have a design stiff enough to be able to withstand launch loads and keep a reasonable mass while providing high opto-mechanical performance. Among the possible solutions, Thales Alenia Space France has investigated optimization of ZERODUR mirrors. Indeed this material, although fragile, is very well mastered and its characteristics well known. Moreover, its thermo-elastic properties (almost null CTE) is unequalled yet, in particular at ambient temperature. Finally, this material can be polished down to very low roughness without any coating. Light-weighting can be achieved by two different means : either optimizing manufacturing parameters or optimizing design (or both). Manufacturing parameters such as walls and optical face thickness have been improved and tested on representative breadboards defined on the basis of SAGEM-REOSC and Thales Alenia Space France expertise and realized by SAGEM-REOSC. In the frame of CNES Research and Technology activities, specific mass has been decreased down to 36 kg/m2. Moreover SNAP study dealt with a 2 m diameter primary mirror. Design has been optimized by Thales Alenia Space France while using classical manufacturing parameters - thus ensuring feasibility and costs. Mass was decreased down to 60 kg/m2 for a gravity effect of 52 nm. It is thus demonstrated that high opto-mechanical performance can be guaranteed with large highly lightweighted ZERODUR mirrors.

  16. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  17. High-energy laser weapons: technology overview

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew

    2004-09-01

    High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.

  18. New Method for Characterizing the State of Optical and Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James

    2014-01-01

    James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.

  19. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2014-01-01

    A Fast Steering Mirror (FSM) is going to be provided as the secondary of the Giant Magellan Telescope (GMT) for the first light observations. FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m, and each mirror is activated by three tip-tilt actuators which compensate image degradations caused by winds and structure jitter. An FSM prototype (FSMP) has been developed to achieve the key technologies, fabrication of highly aspheric off-axis mirror and precise tip-tilt actuation. It consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The development has been conducted by Korea Astronomy and Space Science Institute together with four other institutions in Korea and USA. The mirror was light-weighted by digging about a hundred holes at the backside, and the front surface has been polished. The result of computer generated hologram measurements showed the surface error of 11.7 nm rms. The tip-tilt test-bed has been manufactured and assembled. Tip-tilt range and resolution tests complied the requirements, and the attenuation test results also satisfied the performance requirements. In this paper, we present the successful developments of the prototype.

  20. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.

  1. Research on large-aperture primary mirror supporting way of vehicle-mounted laser communication system

    NASA Astrophysics Data System (ADS)

    Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming

    2018-01-01

    In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.

  2. Manufacture of a combined primary and tertiary mirror for the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Kingsley, J. S.; Lutz, R. D.; Miller, S. M.; Tuell, M.

    2008-07-01

    The Large Synoptic Survey Telescope uses a unique optomechanical design that places the primary and tertiary mirrors on a single glass substrate. The honeycomb sandwich mirror blank was formed in March 2008 by spin-casting. The surface is currently a paraboloid with a 9.9 m focal length matching the primary. The deeper curve of the tertiary mirror will be produced when the surfaces are generated. Both mirrors will be lapped and polished using stressed laps and other tools on an 8.4 m polishing machine. The highly aspheric primary mirror will be measured through a refractive null lens, and a computer-generated hologram will be used to validate the null lens. The tertiary mirror will be measured through a diffractive null corrector, also validated with a separate hologram. The holograms for the two tests provide alignment references that will be used to make the axes of the two surfaces coincide.

  3. Alignment and assembly process for primary mirror subsystem of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2015-11-01

    In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.

  4. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  5. Labview Implementation of Image Processing and Phasing Control for the SIBOA Segmented Mirror Testbed

    NASA Technical Reports Server (NTRS)

    Partridge, James D.

    2002-01-01

    'NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges.' This effort addresses the challenge of implementing an algorithm for aligning the segments of the primary mirror during the initial deployment that was designed by Philip Olivier and members of SOMTC (Space Optics Manufacturing Technology Center). The implementation was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately, hardware/software aspect concerning SIBOA and an extended time period for algorithm development prevented testing before the end of the study period. Properties of the digital camera were studied and understood, resulting in the current ability of selecting optimal settings regarding saturation. The study was successful in manually capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. Currently the system is ready for testing.

  6. Design Study of an 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This paper will review a recent NASA MSFC preliminary study that demonstrated the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. The study started with the unique capabilities of the Ares V vehicle and examined the feasibility of launching a large aperture low cost low risk telescope based on a conventional ground based glass primary mirror. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN & C, avionics, power systems and reaction wheels; operations & servicing, mass budget and system cost. The study telescope was an on-axis three-mirror anastigmatic design with a fine steering mirror. The observatory has a 100 arc-minute (8.4 X 12 arc-minutes) of diffraction limited field of view at a wavelength les than 500 nm. The study assumed that the primary mirror would be fabricated from an existing Schott Zerodur residual VLT blank edged to 6.2 meters, 175 mm thick at the edge with a mass of 11,000 kg. The entire mass budget for the observatory including primary mirror, structure, light baffle tube, instruments, space craft, avionics, etc. is less than 40,000 kg - a 33% mass margin on the Ares V's 60,000 kg Sun-Earth L2 capability. An 8 meter class observatory would have a total mass of less than 60,000 kg of which the primary mirror is the largest contributor.

  7. PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs

    NASA Astrophysics Data System (ADS)

    Fisher, Kate; Yu, Zhengshan Jason; Striling, Rob; Holman, Zachary

    2017-06-01

    The primary challenge with concentrating solar power (CSP) is that the conversion efficiency is low—and the cost high—compared to that of photovoltaics (PV), and the primary challenge with PV is that the energy generated cannot be stored cost effectively. We introduce a technology that hybridizes CSP and PV, resulting in power plants with high energy conversion efficiency and affordable storage. This is accomplished by replacing silvered troughs (or heliostat facets) with "PVMirrors" that and direct photons of each wavelength to the converter (PV or thermal) that may best use them. A PVMirror looks like a curved PV module that includes a spectrum-splitting dichroic mirror film; this film, which is the heart of the technology, transmits near-infrared light to the underlying silicon PV cells while reflecting both longer and shorter wavelengths to a thermal absorber tube. This paper investigates the optical performance of dichroic mirror film, the specularity of PVMirrors, and the anticipated levelized cost of energy (LCOE) from a PVMirror power plant. PVMirrors are found to decrease LCOE by more than 15% relative to CSP while retaining full dispatchability.

  8. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  9. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  10. Lightweight Zerodur Mirror Technology

    DTIC Science & Technology

    1982-10-01

    17 September 1981 Contract Expiration Date: 15 May 1982 Short Title of Work: Lightweight Zerodur Mirror Technology Program Code Number: 1LIO Period of...iepRA LIGHTWEIGHT ZERODUR MIRROR TECHNOLOGY 21 Sep 81 - 21 May 82 1. PERFORMING 0,10. REPORT NUMWERn 15512 7: AUTHOR(*J S. CONTRACT OR GRANT NUMSER[JlII...1S. KIEV WORDS (Continue on reverse aide If necesery 1nd Identify b? block nwi nhm ) Zerodur Lightweight Mirrors Mirror Blank Fabrication Frit

  11. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  12. LDR segmented mirror technology assessment study

    NASA Technical Reports Server (NTRS)

    Krim, M.; Russo, J.

    1983-01-01

    In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.

  13. Multispectral glancing incidence X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1990-01-01

    A multispectral glancing incidence X-ray telescope is illustrated capable of broadband, high-resolution imaging of solar and stellar X-ray and extreme ultraviolet radiation sources which includes a primary optical system preferably of the Wolter I type having a primary mirror system (20, 22). The primary optical system further includes an optical axis (24) having a primary focus (F1) at which the incoming radiation is focused by the primary mirrors. A plurality of ellipsoidal mirrors (30a, 30b, 30cand 30d) are carried at an inclination to the optical axis behind the primary focus (F1). A rotating carrier (32) is provided on which the ellipsoidal mirrors are carried so that a desired one of the ellipsoidal mirrors may be selectively positioned in front of the incoming radiation beam (26). In the preferred embodiment, each of the ellipsoidal mirrors has an identical concave surface carrying a layered synthetic microstructure coating tailored to reflect a desired wavelength of 1.5 .ANG. or longer. Each of the identical ellipsoidal mirrors has a second focus (F2) at which a detector (16) is carried. Thus the different wavelength image is focused upon the detector irregardless of which mirror is positioned in front of the radiation beam. In this manner, a plurality of low wavelengths in a wavelength band generally less than 30 angstroms can be imaged with a high resolution.

  14. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  15. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for intergrated tools in the optimization process

    NASA Astrophysics Data System (ADS)

    Arnold, William R.

    2015-09-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.

  16. Evolving Design Criteria for Very Large Aperture Space-Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.

  17. Analysis of target wavefront error for secondary mirror of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Chang, Shenq-Tsong; Lin, Wei-Cheng; Kuo, Ching-Hsiang; Chan, Chia-Yen; Lin, Yu-Chuan; Huang, Ting-Ming

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  18. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    DTIC Science & Technology

    2008-09-01

    Silicon Carbide Technologies for Lightweighted Aerospace Mirrors Lawrence E. Matson (1) Ming Y. Chen (1) Brett deBlonk (2) Iwona A...glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs...for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive

  19. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  20. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  1. Precision Optical Coatings for Large Space Telescope Mirrors

    NASA Astrophysics Data System (ADS)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  2. Software framework for the upcoming MMT Observatory primary mirror re-aluminization

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Clark, Dusty; Porter, Dallan

    2014-07-01

    Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.

  3. NASA's James Webb Space Telescope Primary Mirror Fully Assembled

    NASA Image and Video Library

    2016-02-04

    The 18th and final primary mirror segment is installed on what will be the biggest and most powerful space telescope ever launched. The final mirror installation Wednesday at NASA’s Goddard Space Flight Center in Greenbelt, Maryland marks an important milestone in the assembly of the agency’s James Webb Space Telescope. “Scientists and engineers have been working tirelessly to install these incredible, nearly perfect mirrors that will focus light from previously hidden realms of planetary atmospheres, star forming regions and the very beginnings of the Universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “With the mirrors finally complete, we are one step closer to the audacious observations that will unravel the mysteries of the Universe.” Using a robotic arm reminiscent of a claw machine, the team meticulously installed all of Webb's primary mirror segments onto the telescope structure. Each of the hexagonal-shaped mirror segments measures just over 4.2 feet (1.3 meters) across -- about the size of a coffee table -- and weighs approximately 88 pounds (40 kilograms). Once in space and fully deployed, the 18 primary mirror segments will work together as one large 21.3-foot diameter (6.5-meter) mirror. Credit: NASA/Goddard/Chris Gunn Credits: NASA/Chris Gunn

  4. Software for Alignment of Segments of a Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Hall, Drew P.; Howard, Richard T.; Ly, William C.; Rakoczy, John M.; Weir, John M.

    2006-01-01

    The Segment Alignment Maintenance System (SAMS) software is designed to maintain the overall focus and figure of the large segmented primary mirror of the Hobby-Eberly Telescope. This software reads measurements made by sensors attached to the segments of the primary mirror and from these measurements computes optimal control values to send to actuators that move the mirror segments.

  5. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  6. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.

  7. Photonic Doppler velocimetry probe designed with stereo imaging

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Cata, Brian M.; Daykin, Edward P.; Esquibel, David L.; Frogget, Brent C.; Holtkamp, David B.; Kaufman, Morris I.; McGillivray, Kevin D.; Palagi, Martin J.; Pazuchanics, Peter; Romero, Vincent T.; Sorenson, Danny S.

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  8. ARGOS - the Laser Star Adaptive Optics for LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; Orban de Xivry, G.

    2011-09-01

    We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.

  9. Thermal optimum design for tracking primary mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei

    2011-08-01

    In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.

  10. Composite panels for optical mirrors for Cherenkov Telescopes: development of the cold glass slumping technology

    NASA Astrophysics Data System (ADS)

    Canestrari, R.; Motta, G.; Pareschi, G.; Basso, S.; Doro, M.; Giro, E.; Lessio, L.

    2010-07-01

    In the last decade a new window for ground-based high energy astrophysics has been opened. It explores the energy band from about 100 GeV to 10 TeV making use of Imaging Atmospheric Cherenkov Telescopes (IACTs). Research in Very High Energy (VHE) gamma-ray astronomy is improving rapidly and thanks to the newest facilities as MAGIC, HESS and VERITAS astronomers and particle physicists are obtaining surprising implications in the theoretical models. New projects have been started as the European Cherenkov Telescope Array (CTA) and the U.S. Advanced Gamma-ray Imaging System (AGIS). The aim is to enhance both the sensitivity and the energy band coverage to perform imaging, photometry and spectroscopy of sources. In this framework, tens of thousands of optical mirror panels have to be manufactured, tested and mounted into the telescopes. Because of this high number of mirrors it is mandatory to develop a technique easily transferable to industrial mass production, but keeping the technical and cost-effectiveness requirements of the next generation of TeV telescopes. In this context the Astronomical Observatory of Brera (INAF-OAB) is investigating a technique for the manufacturing of stiff and lightweight glass mirror panels with modest angular resolution. These panels have a composite sandwich-like structure with two thin glass skins on both sides of a core material; the reflecting skin is optically shaped using an ad-hoc slumping procedure. The technology here presented is particularly attractive for the mass production of cost-effective mirror segments with long radius of curvature like those required in the primary mirrors of the next generation of Cherenkov telescopes. In this paper we present and discuss some relevant results we have obtained from the latest panels realized.

  11. The effects of thermal gradients on the Mars Observer Camera primary mirror

    NASA Technical Reports Server (NTRS)

    Applewhite, Roger W.; Telkamp, Arthur R.

    1992-01-01

    The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.

  12. Lightweight ZERODUR: a cost-effective thermally stable approach to both large and small spaceborne telescopes

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas

    2014-06-01

    ZERODUR®, known as the "gold standard" material for systems which require dimensional stability in the presence of gradients and transients, is now available lightweighted to the 85% to 90% level for use in high performance spaceborne telescopes and sensor systems. This establishes a design option that may have cost, testability, performance and risk advantages for an entire sensor system payload. The technical approach to making these primary mirrors is the same, whether the aperture is <0.3m to <4.0m. Since each mirror blank is made from a single monolithic billet of near zero-expansion, isotropic and homogeneous ZERODUR® material, the resulting mirror is very stable over a wide range of scenes and orbits, with minimal to no need for ancillary thermal stability and wavefront sensing and control systems. Telescopes using ZERODUR® and low expansion metering structures can accommodate thermal design challenges of both non-thermal (UV, VIS, LLLTV, NIR, SWIR and mm) and thermal (MWIR, LWIR) imaging systems, and deliver optimal performance. This lightweight mirror technology is discussed, with actual examples by SCHOTT of 0.3m and 1.2m mirrors presented. Lightweight ZERODUR® mirrors offer superior optical performance, attractive cost and aggressive lead times, and are available to present and future spaceborne sensor trades.

  13. Structural design of a large deformable primary mirror for a space telescope

    NASA Astrophysics Data System (ADS)

    Hansen, J. G. R.

    A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.

  14. NIAC Phase I Study Final Report on Large Ultra-Lightweight Photonic Muscle Space Structures

    NASA Technical Reports Server (NTRS)

    Ritter, Joe

    2016-01-01

    The research goal is to develop new tools support NASA's mission of understanding of the Cosmos by developing cost effective solutions that yield a leap in performance and science data. 'Maikalani' in Hawaiian translates to, "knowledge we gain from the cosmos." Missions like Hubble have fundamentally changed humanity's view of the cosmos. Last year's Nobel prize in physics was a result of astronomical discoveries. $9B class JWST size (6.5 meter diameter) space telescopes, when launched are anticipated to rewrite our knowledge of physics. Here we report on a neoteric meta-material telescope mirror technology designed to enable a factor of 100 or more reduction in areal density, a factor of 100 reduction in telescope production and launch costs as well as other advantages; a leap to enable missions to image the cosmos in unprecedented detail, with the associated gain in knowledge. Whether terahertz, visible or X-ray, reflectors used for high quality electromagnetic imaging require shape accuracy (surface figure) to far better than 1 wavelength (lambda) of the incident photons, more typically lambda/10 or better. Imaging visible light therefore requires mirror surfaces that approximate a desired curve (e.g. a sphere or paraboloid) with smooth shape deviation of th less than approximately 1/1000 the diameter of a human hair. This requires either thick high modulus material like glass or metal, or actuators to control mirror shape. During Phase I our team studied a novel solution to this systems level design mass/shape tradespace requirement both to advance the innovative space technology concept and also to help NASA and other agencies meet current operational and future mission requirements. Extreme and revolutionary NASA imaging missions such as Terrestrial Planet Imager (TPI) require lightweight mirrors with minimum diameters of 20 to 40 meters. For reference, NASA's great achievement; the Hubble space telescope, is only 2.4 meters in diameter. What is required is a way to make large inexpensive deployable mirrors where the cost is measured in millions, not billions like current efforts. For example we seek an interim goal within 10 years of a Hubble size (2.4m) primary mirror weighing 1 pound at a cost of 10K in materials. Described here is a technology using thin ultra lightweight materials where shape can be controlled simply with a beam of light, allowing imaging with incredibly low mass yet precisely shaped mirrors. These " Photonic Muscle" substrates will eventually make precision control of giant s p a c e apertures (mirrors) possible. OCCAM substrates make precision control of giant ultra light-weight mirror apertures possible. This technology is posed to create a revolution in remote sensing by making large ultra lightweight space telescopes a fiscal and material reality over the next decade.

  15. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration

    PubMed Central

    Lukes, Sarah J.; Downey, Ryan D.; Kreitinger, Seth T.; Dickensheets, David L.

    2017-01-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15 μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  16. Variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.

  17. The Hubble Space Telescope optical systems failure report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The findings of the Hubble Space Telescope Optical Systems Board of Investigation are reported. The Board was formed to determine the cause of the flaw in the telescope, how it occurred, and why it was not detected before launch. The Board conducted its investigation to include interviews with personnel involved in the fabrication and test of the telescope, review of documentation, and analysis and test of the equipment used in the fabrication of the telescope's mirrors. The investigation proved that the primary mirror was made in the wrong shape (a 0.4-wave rms wavefront error at 632.8 nm). The primary mirror was manufactured by the Perkin-Elmer Corporation (Hughes Danbury Optical Systems, Inc.). The critical optics used as a template in shaping the mirror, the reflective null corrector (RNC), consisted of two small mirrors and a lens. This unit had been preserved by the manufacturer exactly as it was during the manufacture of the mirror. When the Board measured the RNC, the lens was incorrectly spaced from the mirrors. Calculations of the effect of such displacement on the primary mirror show that the measured amount, 1.3 mm, accounts in detail for the amount and character of the observed image blurring. No verification of the reflective null corrector's dimensions was carried out by Perkin-Elmer after the original assembly. There were, however, clear indications of the problem from auxiliary optical tests made at the time. A special optical unit called an inverse null corrector, designed to mimic the reflection from a perfect primary mirror, was built and used to align the apparatus; when so used, it clearly showed the error in the reflective null corrector. A second null corrector was used to measure the vertex radius of the finished primary mirror. It, too, clearly showed the error in the primary mirror. Both indicators of error were discounted at the time as being themselves flawed. The Perkin-Elmer plan for fabricating the primary mirror placed complete reliance on the reflective null corrector as the only test to be used in both manufacturing and verifying the mirror's surface with the required precision. This methodology should have alerted NASA management to the fragility of the process and the possibility of gross error. Such errors had been seen in other telescope programs, yet no independent tests were planned, although some simple tests to protect against major error were considered and rejected. During the critical time period, there was great concern about cost and schedule, which further inhibited consideration of independent tests.

  18. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars. The paper uses numerous trade studies created during the software development phase of the Arnold Mirror Modeler to illustrate the influences of system specifications on the design space. The future telescopes will require better performance, stability and documented feasibility to meet the hurdles of today's budget and schedules realities. AMTD is developing the tools, but the basic system planning mentality also has to adopt to the requirements of these very large and complex physical structures.

  19. On facial asymmetry and self-perception.

    PubMed

    Lu, Stephen M; Bartlett, Scott P

    2014-06-01

    Self-perception has been an enduring human concern since ancient times and remains a significant component of the preoperative and postoperative consultation. Despite modern technological attempts to reproduce the first-hand experience, there is no perfect substitute for human, stereoscopic, three-dimensional vision in evaluating appearance. Nowadays, however, the primary tools available to a patient for examining his or her own appearance, particularly the face, are photographs and mirrors. Patients are often unaware of how cameras and photographs can distort and degrade image quality, leading to an inaccurate representation of true appearance. Everyone knows that mirrors reverse an image, left and right, and most people recognize their own natural facial asymmetry at some level. However, few realize that emotions are not only expressed unequally by the left and right sides of the face but also perceived unequally by others. The impact and effect of this "facedness" is completely reversed by mirrors, potentially creating a significant discrepancy between what a patient perceives of himself or herself and what the surgeon or other third party sees. This article ties together the diverse threads leading to this problem and suggests several ways of mitigating the issue through technology and patient counseling.

  20. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).

  1. Electromagnetic DM technology meets future AO demands

    NASA Astrophysics Data System (ADS)

    Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek

    New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.

  2. Multilayer active shell mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (< 1.0 mm), lightweight (2.7 kg/m2), and have large actuation capabilities. These capabilities, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  3. The pressure control technology of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-10-01

    The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.

  4. Segment Alignment Maintenance System for the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo -elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the subarray SAMS.

  5. SOFIA primary mirror fabrication and testing

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel; Plainchamp, Patrick

    2001-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint American-German project dedicated to performing IR astronomy on board a Boeing Aircraft, in near space condition. First flight of the Observatory is planned for 2003. The REOSC Products Unit of SAGEM SA (France) has been contracted by Kayser Threde (Germany) for the design and fabrication of the 2.7-meter diameter, F/1.19 parabolic lightweight SOFIA primary mirror as well as the M3 dichroic and folding mirror assembly. This paper will report the design, fabrication and test of the lightweight primary mirror. The mirror structure has been obtained by machining it out from a solid Zerodur blank. It is the world's largest of this type today. Axial and lateral mirror support system has been conceptually designed and engineered by SAGEM-REOSC engineers in relation with Kayser Threde team. The optical surface is an F/1.19 parabola polished to a high level of quality.

  6. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  7. Deformable mirrors development program at ESO

    NASA Astrophysics Data System (ADS)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  8. SOFIA lightweight primary mirror

    NASA Astrophysics Data System (ADS)

    Espiard, Jean; Tarreau, Michel; Bernier, Joel; Billet, Jacques; Paseri, Jacques

    1998-08-01

    Thanks to its experience in lightweighting ceramic glass mirrors by machining, R.E.O.S.C. won the contract for designing and manufacturing the primary mirror and its lateral fixations of the 2.7 m. SOFIA telescope which will be installed aboard a 747 SP Boeing aircraft to constitute the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  9. The design, construction and testing of the optics for a 147-cm-aperture telescope

    NASA Technical Reports Server (NTRS)

    Buchroeder, R. A.; Elmore, L. H.; Shack, R. V.; Slater, P. N.

    1972-01-01

    Geodetic optics research for the Air Force Cambridge Research Laboratories (AFCRL) is described. The work consisted mainly of the fabrication of the optical components for a telescope with a 152-cm-diam (60-in.) primary mirror masked down to 147-cm-diam for use by the AFCRL for a lunar ranging experiment. Among the achievements of this contract were the following: completion of the primary and secondary mirrors for a high-quality 147-cm-diam telescope system in eight months from the start of edging the primary; manufacture and testing of a unique center mount for the primary according to an AFCRL design that allowed for a thin-edged and therefore less-massive mirror; and development of a quantitative analysis of the wire test for calculating the departure of the mirror figure from the design figure quickly and accurately after each polishing step. This analysis method in conjunction with a knowledge of polishing rates for given weights and diameters of tools, mirror, and polishing materials should considerably reduce the polishing time required for future large mirrors.

  10. Minimally invasive therapy of primary breast cancer

    NASA Astrophysics Data System (ADS)

    Robinson, David S.

    2000-01-01

    Treating disease with little alteration has long been a goal of medical science. During the past quarter century, technological advances have brought forth minimally invasive approaches to the surgical diagnosis and treatment of cancer. In the domain of breast cancer, a less invasive sentinel lymph node biopsy may replace axillary lymphadenectomy for many patients, and image guided core biopsies have minimalized the degree of surgical intervention needed for tissue diagnosis. This mirrors the primary treatment of breast cancer that over the past century has progressed from mastectomy to breast preservation with a progressively diminishing operative field.

  11. JWST testbed telescope: a functionally accurate scaled version of the flight optical telescope element used to develop the flight wavefront sensing and control algorithm

    NASA Astrophysics Data System (ADS)

    Kingsbury, Lana K.; Atcheson, Paul D.

    2004-10-01

    The Northrop-Grumman/Ball/Kodak team is building the JWST observatory that will be launched in 2011. To develop the flight wavefront sensing and control (WFS&C) algorithms and software, Ball is designing and building a 1 meter diameter, functionally accurate version of the JWST optical telescope element (OTE). This testbed telescope (TBT) will incorporate the same optical element control capability as the flight OTE. The secondary mirror will be controlled by a 6 degree of freedom (dof) hexapod and each of the 18 segmented primary mirror assemblies will have 6 dof hexapod control as well as radius of curvature adjustment capability. In addition to the highly adjustable primary and secondary mirrors, the TBT will include a rigid tertiary mirror, 2 fold mirrors (to direct light into the TBT) and a very stable supporting structure. The total telescope system configured residual wavefront error will be better than 175 nm RMS double pass. The primary and secondary mirror hexapod assemblies enable 5 nm piston resolution, 0.0014 arcsec tilt resolution, 100 nm translation resolution, and 0.04497 arcsec clocking resolution. The supporting structure (specifically the secondary mirror support structure) is designed to ensure that the primary mirror segments will not change their despace position relative to the secondary mirror (spaced > 1 meter apart) by greater than 500 nm within a one hour period of ambient clean room operation.

  12. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  13. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel

  14. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  15. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  16. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of

  17. The ARC (Astrophysical Research Consortium) telescope project.

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  18. Presentation Annotated

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas

    2017-01-01

    This Report is not the latest word on an old idea but the first word on a new one. The new idea reverses the old one, the axiom that the best primary objective for an astronomical telescope exhibits the least chromatic aberration. That axiomatic distinction goes back to a young Isaac Newton who knew from experiments with prisms and mirrors in the 1660's that magnification with a reflection primary was completely free of the dispersion he saw with refraction. The superiority of reflection primary objectives for eyeball or photographic viewing is now considered obvious. It was this piece of wisdom on achromatic primary objectives that led to the dominance of the parabolic mirror as the means to collect star light. Newton was aware of the problem when he introduced his telescope to the scientific world in 1670.This Report is not the latest word on an old idea but the first word on a new one. The new idea reverses the old one, the axiom that the best primary objective for an astronomical telescope exhibits the least chromatic aberration. That axiomatic distinction goes back to a young Isaac Newton who knew from experiments with prisms and mirrors in the 1660's that magnification with a reflection primary was completely free of the dispersion he saw with refraction. The superiority of reflection primary objectives for eyeball or photographic viewing is now considered obvious. Actually, Newton's design innovation was in a secondary mirror, a plane mirror far more easily fabricated than Gregory's embodiment of 1663 which required two curved mirrors.

  19. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction capabilities, and mechanical models for validation of the deployment concept. Accompanying these developments, a strong system activity will ensure that the ultimate goal of having an integrated system can be met, especially in terms of (a) scalability toward a larger structure, and (b) verification philosophy.

  20. Wide-angle flat field telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1986-01-01

    Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.

  1. Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Bartman, Randall K.

    2011-01-01

    The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm.

  2. Re-aluminising the primary mirror of the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Stoffels, John; Koorts, Willie; Christian, Brendt; de Water, Wilhelmina; Fransman, Timothy; Gibbons, Denville; Machete, Nelson; Sefako, Ramotholo R.; Taaibos, Sinethemba

    2016-07-01

    Telescope mirrors reside in harsh environments and thus require periodic re-aluminisation to maintain their reflectivity. The SAAO's Sutherland field station suffers from dust and frequent bouts of high humidity. Dust settling on the mirrors adheres to the upward-facing optical surfaces and is not removed by CO2 cleaning. The 74-inch primary mirror was unsuccessfully re-aluminised in April 2015. Parts of the mirror proved difficult to clean and the resulting coating included hazy, white patches in those problem areas. Cotton wool soaked with ferric chloride was used to strip small patches of coating, confirming that no optical surface damage had occurred. The 55 year-old aluminising equipment for the 74-inch required an extensive overhaul and the spruced up system was then used to re-coat the primary mirror in November 2015. We used the same de-ionised water, potassium hydroxide, sodium lauryl sulphate, cotton wool, safety gear and cleaning techniques employed by the mirror coating team at the neighbouring Southern African Large Telescope, as well as their Ocean Optics reflectometer to quantify the improvement in reflectivity. Measurements at 320 nm on different parts of the dirty primary ranged between 10 % and 70 %, while the new coating exceeded 95 % over the entire surface.

  3. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  4. Development and performance of Hobby-Eberly Telescope 11-m segmented mirror

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor L.; Sebring, Thomas A.; Ray, Frank B.; Fowler, James R.

    1998-08-01

    The Hobby Eberly Telescope features a unique eleven-meter spherical primary mirror consisting of a single steel truss populated with 91 Zerodur(superscript TM) mirror segments. The 1 meter hexagonal segments are fabricated to 0.033 micron RMS spherical surfaces with matched radii to 0.5 mm. Silver coatings are applied to meet reflectance criteria for wavelengths from 0.35 to 2.5 micron. To support the primary spectroscopic uses of the telescope the mirror must provide a 0.52 arc sec FWHM point spread function. Mirror segments are co-aligned to within 0.0625 ar sec and held to 25 microns of piston envelope using a segment positioning system that consists of 273 actuators (3 per mirror), a distributed population of controllers, and custom developed software. A common path polarization shearing interferometer was developed to provide alignment sensing of the entire array from the primary mirror's center of curvature. Performance of the array is being tested with an emphasis on alignment stability. Distributed temperature measurements throughout the truss are correlated to pointing variances of the individual mirror segments over extended periods of time. Results are very encouraging and indicate that this mirror system approach will prove to be a cost-effective solution for large optical collecting apertures.

  5. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    DTIC Science & Technology

    2015-09-01

    shows the elements of an AHM. The substrate is a rib-stiffened silicon carbide ( SiC ) structure cast to meet the required optical figure. The...right) 2. SMT Three Point Linearity Test The active mirror under study is a 1-meter hexagonal SiC AHM mirror with 156 face sheet actuators. The...CORRECTION OF A SPACE TELESCOPE ACTIVE PRIMARY MIRROR USING ADAPTIVE OPTICS IN A WOOFER-TWEETER CONFIGURATION by Matthew R. Allen September 2015

  6. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  7. Design and development status of the University of Tokyo Atacama Observatory 6.5m telescope

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kamizuka, Takafumi; Kato, Natsuko; Kawara, Kimiaki; Kohno, Kotaro; Konishi, Masahiro; Koshida, Shintaro; Minezaki, Takeo; Miyata, Takashi; Motohara, Kentaro; Sako, Shigeyuki; Soyano, Takao; Takahashi, Hidenori; Tamura, Yoichi; Tanabe, Toshihiko; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2014-07-01

    We here summarize the design and the current fabrication status for the University of Tokyo Atacama Observatory (TAO) 6.5-m telescope. The TAO telescope is operated at one of the best sites for infrared observations, at the summit of Co. Chajnantor in Chile, and is optimized for infrared observations. The telescope mount, mirrors, and mirror support systems are now at the final design phase. The mechanical and optical designs are done by following and referring to those of the Magellan telescopes, MMT, and Large Binocular Telescope. The final focal ratio is 12.2. The field-of-view is as wide as 25 arcmin in diameter and the plate scale is 2.75 arcsec mm-1. The F/1.25 light-weighted borosilicate (Ohara E6) honeycomb primary mirror is adopted and being fabricated by the Steward Observatory Mirror Laboratory. The primary mirror is supported by 104 loadspreaders bonded to the back surface of the mirror and 6 adjustable hardpoints. The mirror is actively controlled by adjusting the actuator forces based on the realtime wavefront measurement. The actuators are optimized for operation at high altitude of the site, 5640-m above the sea level, by considering the low temperature and low air pressure. The mirror is held in the primary mirror cell which is used as a part of the vacuum chamber when the mirror surface is aluminized without being detached from the cell. The pupil is set at the secondary mirror to minimize infrared radiation into instruments. The telescope has two Nasmyth foci for near-infrared and mid-infrared facility instruments (SWIMS and MIMIZUKU, respectively) and one folded-Caseggrain focus for carry-in instruments. At each focus, autoguider and wavefront measurement systems are attached to achieve seeing-limited image quality. The telescope mount is designed as a tripod-disk type alt-azimuth mount. Both the azimuthal and elevation axes are supported by and run on the hydrostatic bearings. Friction drives are selected for these axis drives. The telescope mount structure and primary mirror support as well as the mirrors are under thermal control and maintained at ambient air temperature to minimize the mirror seeing.

  8. Demonstration of a Segment Alignment Maintenance System on a Seven-Segment Sub-Array of the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo-elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors supplemented by inclinometers for global radius of curvature sensing. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the sub-array SAMS.

  9. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, and achieve stable pointing and maximum thermal time constant.

  10. Aluminization and mirror removal of the Magellan 6.5-meter telescope

    NASA Astrophysics Data System (ADS)

    Perez, Frank S.

    1994-06-01

    The Magellan Project 6.5-meter telescope is a collaboration of the Carnegie Institution of Washington and the University of Arizona. The telescope will be located on Cerro Manqui, at the Las Campanas Observatory, Chile. At the beginning of the Magellan Project several schemes were investigated for realuminizing the primary mirror. We have chosen to leave the primary mirror in its cell with the mirror support system intact. Two major advantages of leaving the mirror in its cell are that it does not have to be lifted or handled and the support system does not have to be removed or reinstalled for aluminization.

  11. Gemini 8.2-m primary mirror no. 1 polishing

    NASA Astrophysics Data System (ADS)

    Cayrel, Marc; Beraud, P.; Paseri, Jacques; Dromas, E.

    1998-08-01

    The 8-m class primary mirrors of the GEMINI Telescopes are thin ULE menisci actively supported. The two mirror blanks are produced by CORNING, the optical figuring, manufacturing and assembling of interfaces are done by REOSC. REOSC is as well in charge of the transportation of the mirror blanks from CORNING to REOSC, and of the shipment of the finished optics to Hawaii and to Chile. The mirror assembly requirements are summarized, the manufacturing and testing methods are addressed. REOSC had to design and manufacture a dedicated active supporting system, representative of the one used at the telescope level. Its design and performance are presented. The manufacturing steps undertaken at REOSC and the results achieved are then detailed: mirror blank surface generating and grinding, polishing, testing. The current status of the mirrors is finally presented.

  12. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Raymond Wilson, whose pioneering optics research at ESO made today's giant telescopes possible thanks to "active optics" technology, has been awarded the 2010 Kavli Prize in astrophysics. The founder and original leader of the Optics and Telescopes Group at ESO, Wilson shares the million-dollar prize with two American scientists, Jerry Nelson and Roger Angel. The biennial prize, presented by the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research, was instituted in 2008 and is given to researchers who significantly advance knowledge in the fields of nanoscience, neuroscience, and astrophysics, acting as a complement to the Nobel Prize. The award is named for and funded by Fred Kavli, the Norwegian entrepreneur and phi­lanthropist who later founded the Kavlico Corpora­tion in the US - today one of the world's largest suppliers of sensors for aeronautic, automotive and industrial applications. Wilson, who joined ESO in 1972, strived to achieve optical perfection, developing the concept of active optics as a way to enhance the size of telescopic primary mirrors. It is the size of these mirrors that determines the ability of a telescope to gather light and study faint and distant objects. Before active optics, mirrors over six metres in diameter were impossible, being too heavy, costly, and likely to bend from gravity and temperature changes. The use of active optics, which preserves optimal image quality by continually adjusting the mirror's shape during observations, made lighter, thinner so-called "meniscus mirrors" possible. Wilson first led the implementation of active optics in the revolutionary New Technology Telescope at ESO's La Silla Observatory, and continued to develop and improve the technology until his retirement in 1993. Since then, active optics have become a standard part of modern astronomy, applied in every big telescope including ESO's Very Large Telescope (VLT), a telescope array with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  14. The Lightcraft Technology Demonstration Program. Part 1

    DTIC Science & Technology

    2007-11-01

    inlet). The afterbody had a dual function as a primary receptive optic (parabolic mirror) for the laser beam and as an external expansion surface... Trailers ............74 Fig. 81. Flight Test with Condor Crane .......................................................................76 Fig. 82...the respective text. The PLVTS was a 10.6 μm CO2 laser with a pulse width of 30 μs located in a trailer (see Fig. 1). The PLVTS was built in 1989

  15. AMTD - Advanced Mirror Technology Development in Mechanical Stability

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2015-01-01

    Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.

  16. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  17. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  18. The ELT in 2017: The Year of the Primary Mirror

    NASA Astrophysics Data System (ADS)

    Cirasuolo, M.; Tamai, R.; Cayrel, M.; Koehler, B.; Biancat Marchet, F..; González, J. C.; Dimmler, M.; Tuti, M.; ELT Team

    2018-03-01

    The Extremely Large Telescope (ELT) is at the core of ESO's vision to deliver the largest optical and infrared telescope in the world. With its unrivalled sensitivity and angular resolution the ELT will transform our view of the Universe: from exoplanets to resolved stellar populations, from galaxy evolution to cosmology and fundamental physics. This article focuses on one of the most challenging aspects of the entire programme, the 39-metre primary mirror (M1). 2017 was a particularly intense year for M1, the main highlight being the approval by ESO's Council to proceed with construction of the entire mirror. In addition, several contracts have been placed to ensure that the giant primary mirror will be operational at first light.

  19. Realization and testing of a deployable space telescope based on tape springs

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Li, Chuang; Zhong, Peifeng; Chong, Yaqin; Jing, Nan

    2017-08-01

    For its compact size and light weight, space telescope with deployable support structure for its secondary mirror is very suitable as an optical payload for a nanosatellite or a cubesat. Firstly the realization of a prototype deployable space telescope based on tape springs is introduced in this paper. The deployable telescope is composed of primary mirror assembly, secondary mirror assembly, 6 foldable tape springs to support the secondary mirror assembly, deployable baffle, aft optic components, and a set of lock-released devices based on shape memory alloy, etc. Then the deployment errors of the secondary mirror are measured with three-coordinate measuring machine to examine the alignment accuracy between the primary mirror and the deployed secondary mirror. Finally modal identification is completed for the telescope in deployment state to investigate its dynamic behavior with impact hammer testing. The results of the experimental modal identification agree with those from finite element analysis well.

  20. Development of a very small telescope for space astrometry surveyor

    NASA Astrophysics Data System (ADS)

    Suganuma, M.; Kobayashi, Y.; Gouda, N.; Yano, T.; Yamada, Y.; Takato, N.; Yamauchi, M.

    2006-08-01

    We report an outline and a current status of developing a small, all-aluminum made telescope for Nano-JASMINE. Nano-JASMINE is a nano-size astrometry satellite that is to be launched in 2008 and will demonstrate some key technologies required for JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration) in a real space environment. It also measures absolute positions of bright stars (z≤8 mag) with accuracies about 1 milli-arcsecond in a few years mission. It has a Ritchey-Chretien type telescope with a 5-cm effective aperture, a 167-cm focal length and a field of view of 0.5x0.5 degree. The telescope only occupies a volume about 15x12x12 cm, and weighs two kilograms or less. Almost all of the structures and the optical elements of the telescope, including two aspherical mirrors three flat mirrors and a dual-angled flat mirror that combines the beam from a relative angle of 99.5 degrees into the primary mirror, are made out of aluminum alloy, being figured by diamond turning machines. The Bread Board Model (BBM) of the telescope was now measured to be achieving a diffraction-limited performance.

  1. Aluminum-made 5-cm reflecting telescope for Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Suganuma, Masahiro; Kobayashi, Yukiyasu; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki; Takato, Naruhisa; Yamauchi, Masahiro

    2006-06-01

    We report an outline and a current status of developing a small, all-aluminum made telescope for Nano-JASMINE. Nano-JASMINE is a nano-size astrometry satellite that will demonstrate some key technologies required for JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration) in a real space environment and will measure absolute positions of bright stars (z <= 8 mag) with accuracies about 1 milli-arcsecond in a few years mission. It has a Ritchey-Chretien type telescope with a 5-cm effective aperture, a 167-cm focal length and a field of view of 0.5x0.5 degree. The telescope only occupies a volume about 15x12x12 cm, and weighs two kilograms or less. Almost all of the structures and the optical elements of the telescope, including two aspherical mirrors three flat mirrors and a dual-angled flat mirror that combines the beam from a relative angle of 99.5 degrees into the primary mirror, are made out of aluminum alloy, being figured by diamond turning machines. The Bread Board Model (BBM) of the telescope was now measured to be achieving a diffraction-limited performance at room temperature.

  2. A comparison of performance of lightweight mirrors

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  3. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  4. A deployable telescope for sub-meter resolutions from microsatellite platforms

    NASA Astrophysics Data System (ADS)

    Dolkens, D.; Kuiper, J. M.

    2017-11-01

    Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable arms and a main housing with active thermal control, will guarantee a high thermal stability during operations. Since a robust mechanical design alone is insufficient to ensure a diffraction limited performance, an inorbit calibration system was developed. Post launch, a combination of interferometric measurements and capacitive sensors will be used to characterise the system. Actuators beneath the primary mirror segments will then correct the position of the mirror segments to meet the required operating accuracies. During operations, a passive system will be used. This system relies on a phase diversity algorithm to retrieve residual wavefront aberrations and deconvolve the image data. Using this approach, a good end-to-end imaging performance can be achieved.

  5. Alignment displacements of the solar optical telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Medenica, W. V.

    1978-01-01

    Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.

  6. Structure and mechanical design for a large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Tan, Yufeng; Wang, Jihong; Ren, Ge; Ren, Xiaoli; Xie, Zongliang; Li, Dong

    2018-02-01

    For a better understanding and forecasting of the universe, the high resolution observations are needed. The largeaperture telescope is an integrated success with a combination of material, mechanics, optics and electronics. The telescope is a classic Cassegrain configuration with open structure, alt-azimuth mount, and retractable dome. The instrumentation has a rotating mass of approximately 52 tons and stands over 9 m tall. The 3-m aperture primary mirror is a honeycomb lightweighted mirror with fused silica material and active cooling. The paper will address preliminary design and development of the telescope mount structure, axes drive system, encoder mount and primary mirror system. The structure must have the best performance of stiffness and stability to demand an acceptable image quality. As the largest optical element of the telescope, primary mirror must be well controlled and protected both during operational and non-operational periods. An active cooling system of primary mirror is provided by a flushing subsystem at the front side and sucking subsystem on the central hole to keep the temperature of the facesheet close to that of ambient air. A two-layer mirror cover mounted on the elevation ring is proposed to protect the optical elements and inner beam tube from dust, dirt and debris. Furthermore, the latest plans for future upgrades will be also described.

  7. Resolving the Southern African Large Telescope's image quality problems

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh E.; Crause, Lisa A.; O'Connor, James; Strümpfer, Francois; Strydom, Ockert J.; Sass, Craig; Brink, Janus D.; Plessis, Charl du; Wiid, Eben; Love, Jonathan

    2013-08-01

    Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase in 2006 showed degradation due to a large focus gradient, astigmatism, and higher order optical aberrations. An extensive forensic investigation exonerated the primary mirror and the science instruments before pointing to the mechanical interface between the telescope and the spherical aberration corrector, the complex optical subassembly which corrects the spherical aberration introduced by the 11-m primary mirror. Having diagnosed the problem, a detailed repair plan was formulated and implemented when the corrector was removed from the telescope in April 2009. The problematic interface was replaced, and the four aspheric mirrors were optically tested and re-aligned. Individual mirror surface figures were confirmed to meet specification, and a full system test after the re-alignment yielded a root mean square wavefront error of 0.15 waves. The corrector was reinstalled in August 2010 and aligned with respect to the payload and primary mirror. Subsequent on-sky tests revealed spurious signals being sent to the tracker by the auto-collimator, the instrument that maintains the alignment of the corrector with respect to the primary mirror. After rectifying this minor issue, the telescope yielded uniform 1.1 arcsec star images over the full 10-arcmin field of view.

  8. Czechoslovak Replica X-Ray Mirrors for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Valnicek, B.

    Imaging X-ray mirrors has been developed in Czechoslovakia since 1970 by a way of two different replica technologies based on galvanoplastics and reactoplastics as a natural part of Czechoslovak X-ray astronomy program. Until now about 30 mirros with diameters between 1.7 and 24 cm were manufactured. Seven mirrors were flown in space experiments. The new technology used since 1981 allows to produce light-weight X-ray mirrors at relatively very low cost. The technology offers interesting possibilities in construction of (1) large arrays of identical optical systems, (2) very small (microscopic) mirros and (3) lobster-eye type optics. Advantages and drawbacks of replica techology are discussed.

  9. TPF coronagraph instrument design

    NASA Technical Reports Server (NTRS)

    Shaklan, S B.; Balasubramanian, K.; Ceperly, D.; Green, J.; Hoppe, D.; Lay, O. P.; Lisman, P. D.; Mouroulis, P. Z.

    2005-01-01

    For the past 2 years, NASA has invested substantial resources to study the design and performance of the Terrestrial Planet Finder Coronagraph (TPF-C). The work, led by the Jet Propulsion Laboratory with collaboration from Goddard Space Flight Center and several university and commercial entities, encompasses observatory design, performance modeling, materials characterization, primary mirror studies, and a significant technology development effort including a high-contrast imaging testbed that has achieved 1e-9 contrast in a laboratory experiment.

  10. Thin Mirror Shaping Technology for High-Throughput X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    This proposal is submitted to the NASA Research Opportunities in Space and Earth Sciences program (ROSES-2012) in response to NASA Research Announcement NNH12ZDA001N- APRA. It is targeted to the Astronomy and Astrophysics Research and Analysis (APRA) program element under the Supporting Technology category. Powerful x-ray telescope mirrors are critical components of a raft of small-to-large mission concepts under consideration by NASA. The science questions addressed by these missions have certainly never been more compelling and the need to fulfill NASA s core missions of exploring the universe and strengthening our nation s technology base has never been greater. Unfortunately, budgetary constraints are driving NASA to consider the cost/benefit and risk factors of new missions more carefully than ever. New technology for producing x-ray telescopes with increased resolution and collecting area, while holding down cost, are key to meeting these goals and sustaining a thriving high-energy astrophysics enterprise in the US. We propose to develop advanced technology which will lead to thin-shell x-ray telescope mirrors rivaling the Chandra x-ray telescope in spatial resolution but with 10-100X larger area all at significantly reduced weight, risk and cost. The proposed effort builds on previous research at MIT and complements NASA-supported research at other institutions. We are currently pursuing two thin-mirror technology development tracks which we propose to extend and accelerate with NASA support. The first research track utilizes rapidly-maturing thermal glass slumping technology which uses porous ceramic air-bearing mandrels to shape glass mirrors without touching, thus avoiding surface-induced mid-range spatial frequency ripples. A second research track seeks to remove any remaining mid- to long-range errors in mirrors by using scanning ion-beam implant to impart small, highly deterministic and very stable amounts of stress into thin glass, utilizing local bending moments to correct mirror shape. Preliminary results from our lab demonstrate the simplicity, specificity, and exquisite sensitivity of this technique on silicon and glass wafers. We believe that the combination of these new technologies has the potential to revolutionize thin mirror shaping technology and will enable a renaissance in high-energy astrophysics.

  11. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1991-01-01

    A cassegrain optical system provides improved collection of off-axis light yet is still characterized by a high concentration ratio. The optical system includes a primary mirror for collecting incoming light and reflecting the light to a secondary mirror which, in turn, reflects the light to a solar cell or other radiation collection device. The primary mirror reflects incoming on-axis light onto an annular section of the secondary mirror and results in the reflection of a substantial amount of incoming off-axis light onto the remainder of the secondary mirror. Thus light which would otherwise be lost to the system will be captured by the collector. Furthermore, the off-axis sections of the secondary mirror may be of a different geometrical shape than the on-axis annular section so as to optimize the amount of off-axis light collected.

  12. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  13. University of Texas 7.6 meter telescope project

    NASA Astrophysics Data System (ADS)

    Barnes, T. G., III

    1982-10-01

    The University of Texas very large optical telescope design is fundamentally constrained by the requirements of completion by the late 1980s and costs within the range of private philanthropy. In light of these requirements, design studies indicate that the largest possible telescope must incorporate as its essential features a monolithic, 7.6-m diameter primary mirror constructed as either an ultrathin fused silica meniscus (of 10-15 cm thickness) or a borosilicate glass honeycomb (of classical thickness). This primary mirror would be of f/2 Ritchley-Chretien geometry. Light would be relayed from the primary to two f/13.5 Nasmyth foci. The mount would be of alt-azimuth type, housed in a building similar to that employed by the Multiple Mirror Telescope with an adjacent annex containing the mirror aluminizing chamber.

  14. Cleaning procedure for mirror coating at Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Yutani, Masami; Hayashi, Saeko S.; Kurakami, Tomio; Kanzawa, Tomio; Ohshima, Norio; Nakagiri, Masao

    2003-02-01

    We would like to present the procedure of how to prepare the primary mirror of Subaru Telescope for the realuminization. The equipment for the coating and its preparation are located at the ground floor of the telescope enclosure. There are two trolleys for carrying the mirror cell and the mirror itself, a mirror lifting jig, a washing facility for the primary mirror (PMWF), the water purification system, the coating chamber and the waste water pit. The PMWF can provide the tap water for initial rinsing, the chemical for stripping the old coating, and the deionized water for final cleaning. It has two pairs of arms that deploy horizontally above the mirror and have nozzles to spray. The arms spin around its center where the rotary joints are connected to the plumbing from storage tanks. Deck above the water arms serve as platform for personnel for the inspection or for scrubbing work. We use hydrochloric acid mixture to remove the old aluminum coating. For rinsing and final cleaning, we use the water through the purification system. The water supply from the nozzles and the rotation of the arms can be controlled from a panel separated from the washing machine itself. After several experiments and improvements in the washing, we have carried out the coating of the 8.3 m primary mirror in September last year. This was the third time, and the reflectivity of the new coating show satisfactory result.

  15. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  16. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    DTIC Science & Technology

    2015-12-01

    carbon fiber reinforced polymer (CFRP) mirrors been proposed for use in future imaging satellites. Compared to traditional glass -based mirrors, CFRP...SUBJECT TERMS carbon fiber reinforced polymer mirror, adaptive optics, deformable mirror, surface figure error 15. NUMBER OF PAGES 79 16. PRICE CODE...Department of Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT In recent years, carbon fiber reinforced

  17. Mirror Technology Development for the International X-ray Observatory Mission

    DTIC Science & Technology

    2010-06-06

    Solar Panels E xt en si bl e O pt ic al B en ch Focal plane assembly Mirror Assembly ESA JAXA NASA Will Zhang Mirror Tech Days...0.1 m2 0.5 arcsecs 0.4 m2 15 arcsecs 0.2 m2 120 arcsecs St at e of th e A rt IXO Requirement 3 m2 5 arcsecs Will Zhang Mirror...QED Technologies, Rochester, NY Rodriguez Precision Optics, Gonzales, LA Dallas Optical Systems, Inc., Rockwall, TX RAPT Industries, Inc., Freemont

  18. Segmented X-Ray Optics for Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2013-01-01

    Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.

  19. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  20. Metrology requirements for the serial production of ELT primary mirror segments

    NASA Astrophysics Data System (ADS)

    Rees, Paul C. T.; Gray, Caroline

    2015-08-01

    The manufacture of the next generation of large astronomical telescopes, the extremely large telescopes (ELT), requires the rapid manufacture of greater than 500 1.44m hexagonal segments for the primary mirror of each telescope. Both leading projects, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), have set highly demanding technical requirements for each fabricated segment. These technical requirements, when combined with the anticipated construction schedule for each telescope, suggest that more than one optical fabricator will be involved in the delivery of the primary mirror segments in order to meet the project schedule. For one supplier, the technical specification is challenging and requires highly consistent control of metrology in close coordination with the polishing technologies used in order to optimize production rates. For production using multiple suppliers, however the supply chain is structured, consistent control of metrology along the supply chain will be required. This requires a broader pattern of independent verification than is the case of a single supplier. This paper outlines the metrology requirements for a single supplier throughout all stages of the fabrication process. We identify and outline those areas where metrology accuracy and duration have a significant impact on production efficiency. We use the challenging ESO E-ELT technical specification as an example of our treatment, including actual process data. We further develop this model for the case of a supply chain consisting of multiple suppliers. Here, we emphasize the need to control metrology throughout the supply chain in order to optimize net production efficiency.

  1. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Angel, J. R. P.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Johns, M.; Kingsley, J. S.; Kot, L. B.; Lutz, R. D.; Miller, S. M.; Shectman, S. A.; Strittmatter, P. A.; Zhao, C.

    2006-06-01

    The design, manufacture and support of the primary mirror segments for the GMT build on the successful primary mirror systems of the MMT, Magellan and Large Binocular telescopes. The mirror segment and its support system are based on a proven design, and the experience gained in the existing telescopes has led to significant refinements that will provide even better performance in the GMT. The first 8.4 m segment has been cast at the Steward Observatory Mirror Lab, and optical processing is underway. Measurement of the off-axis surface is the greatest challenge in the manufacture of the segments. A set of tests that meets the requirements has been defined and the concepts have been developed in some detail. The most critical parts of the tests have been demonstrated in the measurement of a 1.7 m off-axis prototype. The principal optical test is a full-aperture, high-resolution null test in which a hybrid reflective-diffractive null corrector compensates for the 14 mm aspheric departure of the off-axis segment. The mirror support uses the same synthetic floatation principle as the MMT, Magellan, and LBT mirrors. Refinements for GMT include 3-axis actuators to accommodate the varying orientations of segments in the telescope.

  2. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  3. Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  4. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  5. Characteristic investigation of Golay9 multiple mirror telescope with a spherical primary mirror

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Wu, Quanying; Zhu, Xifang; Xiang, Ruxi; Qian, Lin

    2017-10-01

    The sparse aperture provides a novel solution to the manufacturing difficulties of modern super large telescopes. Golay configurations are optimal in the sparse aperture family. Characteristics of the Golay9 multiple mirror telescope having a spherical primary mirror are investigated. The arrangement of the nine sub-mirrors is discussed after the planar Golay9 configuration is analyzed. The characteristics of the entrance pupil are derived by analyzing the sub-aperture shapes with different relative apertures and sub-mirror sizes. Formulas about the fill factor and the overlay factor are deduced. Their maximal values are presented based on the derived tangency condition. Formulas for the point spread function (PSF) and the modulation transfer function (MTF) of the Golay9 MMT are also deduced. Two Golay9 MMT have been developed by Zemax simulation. Their PSF, MTF, fill factors, and overlay factors prove that our theoretical results are consistent with the practical simulation ones.

  6. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    NASA Technical Reports Server (NTRS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  7. Development of surface metrology for the Giant Magellan Telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Burge, J. H.; Davison, W.; Martin, H. M.; Zhao, C.

    2008-07-01

    The Giant Magellan Telescope achieves 25 meter aperture and modest length using an f/0.7 primary mirror made from 8.4 meter diameter segments. The systems that will be used for measuring the aspheric optical surfaces of these mirrors are in the final phase of development. This paper discusses the overall metrology plan and shows details for the development of the principal test system - a system that uses mirrors and holograms to provide a null interferometric test of the surface. This system provides a full aperture interferometric measurement of the off-axis segments by compensating the 14.5 mm aspheric departure with a tilted 3.8-m diameter powered mirror, a 77 cm tilted mirror, and a computer generated hologram. The interferometric measurements are corroborated with a scanning slope measurement from a scanning pentaprism system and a direct measurement system based on a laser tracker.

  8. System Architecture of Explorer Class Spaceborne Telescopes: A look at Optimization of Cost, Testability, Risk and Operational Duty Cycle from the Perspective of Primary Mirror Material Selection

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Westerhoff, Thomas

    2015-01-01

    Management of cost and risk have become the key enabling elements for compelling science to be done within Explorer or M-Class Missions. We trace how optimal primary mirror selection may be co-optimized with orbit selection. And then trace the cost and risk implications of selecting a low diffusivity low thermal expansion material for low and medium earth orbits, vs. high diffusivity high thermal expansion materials for the same orbits. We will discuss that ZERODUR®, a material that has been in space for over 30 years, is now available as highly lightweighted open-back mirrors, and the attributes of these mirrors in spaceborne optical telescope assemblies. Lightweight ZERODUR® solutions are practical from mirrors < 0.3m in diameter to >4m in diameter. An example of a 1.2m lightweight ZERODUR® mirror will be discussed.

  9. James Webb Space Telescope: The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    NASA James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. Its architecture, e.g. aperture, wavelength range and operating temperature, is driven by JWST's science objectives. Introduction: Scheduled to start its 5 year mission after 2018, JWST will study the origin and evolution of galaxies, stars and planetary systems. Its science mission is to: Identify the first bright objects that formed in the early Universe, and follow the ionization history. Determine how galaxies form. Determine how galaxies and dark matter, including gas, stars, metals, overall morphology and active nuclei evolved to the present day. Observe the birth and early development of stars and the formation of planets. And, study the physical and chemical properties of solar systems for the building blocks of Life. Principle: To accomplish the JWST science objectives requires a larger aperture infrared cryogenic space telescope. A large aperture is required because the objects are very faint. The infrared spectral range is required because the objects are so far away that their ultraviolet and visible wavelength spectral lines are red-shifted into the infrared. Because the telescope is infrared, it needs to be cryogenic. And, because of the telescope is infrared, it must operate above the Earth's atmosphere, i.e. in space. JWST is probably the single most complicated mission that humanity has attempted. It is certainly the most difficult optical fabrication and testing challenge of our generation. The JWST 6.5 m diameter primary mirror is nearly a parabola with a conic constant of -0.9967 and radius of curvature at 30K of 15.880 m. The primary mirror is divided into 18 segments with 3 different prescriptions; each with its own off-axis distance and aspheric departure. The radius of curvature for all 18 segments must match to +/- 0.150 mm at 30K. JWST is diffraction limited at 2 micrometers which translates into a transmitted wavefront specification of 156 nm rms. Of that amount, 50 nm rms is allocated to the primary mirror. Each segment is allocated 22 nm rms surface error. At the start of the JWST program, the capability to make such a mirror did not exist. In 1996, NASA began a systematic and comprehensive mirror technology development effort which resulted in JWST. This program resulted in a qualified mirror fabrication process being approved in 2006. Today, all JWST primary mirror segments meet their requirements and are on schedule for a 2018 launch. The next step is system level assembly, integration and test. Ambient tests will be conducted at Goddard Space Flight Center and cryogenic system level testing will be performed in Chamber A at the Johnson Space Center.

  10. Support optimization of the ring primary mirror of a 2m solar telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jin, Zhenyu; Liu, Zhong

    2016-08-01

    A special 2-m Ring Solar Telescope (2-m RST) is to be built by YNAO-Yunnan Astronomical Observatory, Kunming, China. Its distinct primary mirror is distinctively shaped in a ring with an outer diameter of 2.02 m and a ring width of 0.35 m. Careful calculation and optimization of the mirror support pattern have been carried out first of all to define optimum blank parameters in view of performance balance of support design, fabrication and cost. This paper is to review the special consideration and optimization of the support design for the unique ring mirror. Schott zerodur is the prevailing candidate for the primary mirror blank. Diverse support patterns with various blank thicknesses have been discussed by extensive calculation of axial support pattern of the mirror. We reached an optimum design of 36 axial supports for a blank thickness of 0.15 m with surface error of 5 nm RMS. Afterwards, lateral support scheme was figured out for the mirror with settled parameters. A classical push-and-pull scheme was used. Seeing the relative flexibility of the ring mirror, special consideration was taken to unusually set the acting direction of the support forces not in the mirror gravity plane, but along the gravity of the local virtual slices of the mirror blank. Nine couples of the lateral push-pull force are considered. When pointing to horizon, the mirror surface exhibits RMS error of 5 nm with three additional small force couples used to compensate for the predominant astigmatism introduced by lateral supports. Finally, error estimation has been performed to evaluate the surface degradation with introduced errors in support force and support position, respectively, for both axial and lateral supports. Monte Carlo approach was applied using unit seeds for amplitude and position of support forces. The comprehensive optimization and calculation suggests the support systems design meet the technic requirements of the ring mirror of the 2-m RST.

  11. Innovative research in the design and operation of large telescopes for space: Aspects of giant telescopes in space

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1985-01-01

    The capability and understanding of how to finish the reflector surfaces needed for large space telescopes is discussed. The technology for making very light glass substrates for mirrors is described. Other areas of development are in wide field imaging design for very fast primaries, in data analysis and retrieval methods for astronomical images, and in methods for making large area closely packed mosaics of solid state array detectors.

  12. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  13. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  14. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  15. Deformation-free rim for the primary mirror of telescope having sub-second resolution

    NASA Astrophysics Data System (ADS)

    Malyshev, I. V.; Chkhalo, N. I.; Toropov, M. N.; Salashchenko, N. N.; Pestov, A. E.; Kuzin, S. V.; Polkovnikov, V. N.

    2017-05-01

    The work is devoted to the method of mounting and surface shape measurement of the primary mirror of ARCA telescope, intended for the Sun observation in EUV wavelength range. Calculation of mirror's deformation due to weight is carried out and a method of its experimental determination in interferometer is proposed. The method of deformation-free installation of mirror into the telescope is proposed. Impact shocks and vibrations, arising during missile launch, is analyzed, and an optimal size of bridges in the rim is determined. Calculations of the mirror deformation due to temperature difference in the telescope on the Earth's orbit and its influence on the resolution of the telescope are conducted. The stresses arising in epoxy adhesive due to temperature changes and due to starting shocks are simulated.

  16. Contamination analyses of technology mirror assembly optical surfaces

    NASA Technical Reports Server (NTRS)

    Germani, Mark S.

    1991-01-01

    Automated electron microprobe analyses were performed on tape lift samples from the Technology Mirror Assembly (TMA) optical surfaces. Details of the analyses are given, and the contamination of the mirror surfaces is discussed. Based on the automated analyses of the tape lifts from the TMA surfaces and the control blank, we can conclude that the particles identified on the actual samples were not a result of contamination due to the handling or sampling process itself and that the particles reflect the actual contamination on the surface of the mirror.

  17. Research on stretched membrane with electrostatic curvature (SMEC) mirrors

    NASA Astrophysics Data System (ADS)

    Sun, X. W.; Jin, G.

    Stretched Membrane with Electrostatic Curvature SMEC Mirrors is a new spatial optical technology recently developed in foreign countries which performed modification of figuration of SMEC Mirror in control of Electrostatic With the folding property of membrane when it was loaded this technology have taken on important prospect in system of spatial remote sensing in the future In this paper the fundamental of SMEC Mirror was introduced the more deeply analyzing of cybernetic model completed and at present research method based on synthesis of foreign development in the field was put forward

  18. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  19. SiC Design Guide: Manufacture of Silicon Carbide Products (Briefing charts)

    DTIC Science & Technology

    2010-06-08

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder...coatings. 15. SUBJECT TERMS Mirrors , structures, silicon carbide, design, inserts, coatings, pockets, ribs, bonding, threads 16. SECURITY...Prescribed by ANSI Std. 239.18 purify protect transport SiC Design Guide Manufacture of Silicon Carbide Products Mirror Technology Days June 7 to 9, 2010

  20. Screening of a virtual mirror-image library of natural products.

    PubMed

    Noguchi, Taro; Oishi, Shinya; Honda, Kaori; Kondoh, Yasumitsu; Saito, Tamio; Ohno, Hiroaki; Osada, Hiroyuki; Fujii, Nobutaka

    2016-06-08

    We established a facile access to an unexplored mirror-image library of chiral natural product derivatives using d-protein technology. In this process, two chemical syntheses of mirror-image substances including a target protein and hit compound(s) allow the lead discovery from a virtual mirror-image library without the synthesis of numerous mirror-image compounds.

  1. An Assessment of the Effectiveness of the AGATE Program Management Model

    NASA Technical Reports Server (NTRS)

    Warner, Timothy P. (Technical Monitor); Masson, Paul

    2005-01-01

    This report describes the collaborative program model chosen to implement an aeronautics research and technology program from 1994 through 2001: the Advanced General Aviation Transport Experiments (AGATE) Program. The Program had one primary objective: to improve the ability of the General Aviation industry to adopt technology as a solution to fulfill public benefit objectives. The primary objective of this report is to assess the program s ability to meet a combination of "effectiveness measures" from multiple stakeholders. The "effectiveness" of any model forms the foundation of legitimate questions for policy makers and professional federal managers. The participants rated AGATE as achieving its primary objectives and rating well on effectiveness in most areas, with high measures for relevance, cost, speed and public benefit, but lower measures for institutional fit and flexibility at dealing with the larger NASA organizational structure. This pattern mirrors private sector surveys and represents a tradeoff between the benefits of tailoring a program using partnering, versus the changes necessary within the institutional structure to support such tailoring.

  2. Nonlinear-Optical Correction of Aberrations in Imaging Telescopes Based on a Diffraction Structure on the Primary Mirror

    DTIC Science & Technology

    1998-01-01

    48 f) Metal and semiconductor thin- film systems ................ 48 3.3.2. Methods of formation of interference field for recording the hologram...in others - dynamic holograms [27,29,30,33] based either on photorefractive crystals [27,33], or on liquid -crystal spatial light modulators (SLM...variations of the primary mirror’s curvature, which can be caused, e.g., by thermal effects or by inaccuracy in adjustment of the elastic thin- film mirror

  3. APF-The Lick Observatory Automated Planet Finder

    DTIC Science & Technology

    2014-04-01

    resolutions up to 150,000. Overall system efficiency (fraction of photons incident on the primary mirror that are detected by the science CCD) on blaze at...A second (currently unused) Nasmyth focus can be quickly accessed via a rotatable tertiary mirror . The telescope uses a 2.41 m diameter f=1:5 primary...within 0.5″, and 90% encircled energy within 1″. The mount for the secondary mirror M2 incorporates an active tip/tilt and focus system that corrects for

  4. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  5. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  6. Fabrication and testing of the first 8.4-m off-axis segment for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Kim, D. W.; Kingsley, J. S.; Tuell, M. T.; West, S. C.; Zhao, C.; Zobrist, T.

    2010-07-01

    The primary mirror of the Giant Magellan Telescope consists of seven 8.4 m segments which are borosilicate honeycomb sandwich mirrors. Fabrication and testing of the off-axis segments is challenging and has led to a number of innovations in manufacturing technology. The polishing system includes an actively stressed lap that follows the shape of the aspheric surface, used for large-scale figuring and smoothing, and a passive "rigid conformal lap" for small-scale figuring and smoothing. Four independent measurement systems support all stages of fabrication and provide redundant measurements of all critical parameters including mirror figure, radius of curvature, off-axis distance and clocking. The first measurement uses a laser tracker to scan the surface, with external references to compensate for rigid body displacements and refractive index variations. The main optical test is a full-aperture interferometric measurement, but it requires an asymmetric null corrector with three elements, including a 3.75 m mirror and a computer-generated hologram, to compensate for the surface's 14 mm departure from the best-fit sphere. Two additional optical tests measure large-scale and small-scale structure, with some overlap. Together these measurements provide high confidence that the segments meet all requirements.

  7. Lightweight high-performance 1-4 meter class spaceborne mirrors: emerging technology for demanding spaceborne requirements

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Hartmann, Peter; Clarkson, Andrew R.; Barentine, John M.; Jedamzik, Ralf; Westerhoff, Thomas

    2010-07-01

    Pending critical spaceborne requirements, including coronagraphic detection of exoplanets, require exceptionally smooth mirror surfaces, aggressive lightweighting, and low-risk cost-effective optical manufacturing methods. Simultaneous development at Schott for production of aggressively lightweighted (>90%) Zerodur® mirror blanks, and at L-3 Brashear for producing ultra-smooth surfaces on Zerodur®, will be described. New L-3 techniques for large-mirror optical fabrication include Computer Controlled Optical Surfacing (CCOS) pioneered at L-3 Tinsley, and the world's largest MRF machine in place at L-3 Brashear. We propose that exceptional mirrors for the most critical spaceborne applications can now be produced with the technologies described.

  8. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  9. Enhancing the mirror illusion with transcranial direct current stimulation.

    PubMed

    Jax, Steven A; Rosa-Leyra, Diana L; Coslett, H Branch

    2015-05-01

    Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  11. Overview and Recent Accomplishments of Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  12. Using multifield measurements to eliminate alignment degeneracies in the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Sabatke, Erin; Acton, Scott; Schwenker, John; Towell, Tim; Carey, Larkin; Shields, Duncan; Contos, Adam; Leviton, Doug

    2007-09-01

    The primary mirror of the James Webb Space Telescope (JWST) consists of 18 segments and is 6.6 meters in diameter. A sequence of commissioning steps is carried out at a single field point to align the segments. At that single field point, though, the segmented primary mirror can compensate for aberrations caused by misalignments of the remaining mirrors. The misalignments can be detected in the wavefronts of off-axis field points. The Multifield (MF) step in the commissioning process surveys five field points and uses a simple matrix multiplication to calculate corrected positions for the secondary and primary mirrors. A demonstration of the Multifield process was carried out on the JWST Testbed Telescope (TBT). The results show that the Multifield algorithm is capable of reducing the field dependency of the TBT to about 20 nm RMS, relative to the TBT design nominal field dependency.

  13. System concept for a moderate cost Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.

    1986-01-01

    A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.

  14. The micro-mirror technology applied to astronomy: ANIS adaptive-slit near Infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Burgarella, Denis; Buat, Veronique; Bely, Pierre; Grange, Robert

    2018-04-01

    This paper, "The micro-mirror technology applied to astronomy: ANIS adaptive-slit near Infrared spectrograph," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  15. Thermal testing results of an electroformed nickel secondary (M2) mirror

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Gale, David M.; Cabrera Cuevas, Lizeth; Lucero Álvarez, Maribel; Castro Santos, David; Olmos Tapia, Arak

    2016-07-01

    To support higher-frequency operation, the Large Millimeter Telescope/Gran Telescopio Milimetrico (or LMT/GTM) is replacing its existing monolithic aluminum secondary mirror (M2). The new mirror is a segmented design based on the same electroformed nickel reflector panel technology that is already in use for the primary reflector segments. While the new M2 is lighter and has better surface accuracy than the original mirror, the electroformed panels are more sensitive to high temperatures. During the design phase, concerns were raised over the level of temperature increase that could occur at M2 during daytime observations. Although the panel surface is designed to scatter visible light, the LMT primary mirror is large enough to cause substantial solar heating, even at significant angular separation from the Sun. To address these concerns, the project conducted a series of field tests, within the constraint of having minimum impact on night time observations. The supplier sent two coupon samples of a reflector panel prepared identically to their proposed M2 surface. Temperature sensors were mounted on the samples and they were temporarily secured to the existing M2 mirror at different distances from the center. The goal was to obtain direct monitoring of the surface temperature under site thermal conditions and the concentration effects from the primary reflector. With the sensors installed, the telescope was then commanded to track the Sun with an elevation offset. Initially, elevation offsets from as far as 40 degrees to as close as 6 degrees were tested. The 6 degree separation test quickly passed the target maximum temperature and the telescope was returned to a safer separation. Based on these initial results, a second set of tests was performed using elevation separations from 30 degrees to 8 degrees. To account for the variability of site conditions, the temperature data were analyzed using multiple metrics. These metrics included maximum temperature, final time average temperature, and an curve fit for heating/ cooling. The results indicate that a solar separation angle of 20 degrees should be suitable for full performance operation of the LMT/GTM. This separation not only is sufficient to avoid high temperatures at the mirror, but also provides time to respond to any emergency conditions that could occur (e.g., switching to a generator after a power failure) for observations that are ahead of the motion of the Sun. Additionally, even approaches of 10 to 15 degrees of angular separation on the sky may be achievable for longer wavelength observations, though these would likely be limited to positions that are behind the position of the Sun along its motion.

  16. Development of Critical Technologies for the COSMO/SkyMed Hyperspectral Camera

    DTIC Science & Technology

    2000-10-01

    Carbide (SiC) material (SiC or lightweighted Zerodur mirrors , carbon fiber technology. structures). - development of electronics blocks at high - High...investigation was Kcarried out to get the highest lightening factors on the Zerodur mirror substrates. Several samples of the TMA Fig. 5 - Prototypes of...implementation of state-of-the-art - manufacturing of very light mirrors with special manufacturing techniques for light components emphasis on Silicon

  17. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  18. Design Study of 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing shroud and 55,000 kg capacity to the Sun Earth L2 point enables entirely new classes of space telescopes. NASA MSFC has conducted a preliminary study that demonstrates the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations and servicing; mass and power budgets; and system cost.

  19. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    NASA Astrophysics Data System (ADS)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  20. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  1. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  2. Three-meter telescope study

    NASA Technical Reports Server (NTRS)

    Wissinger, A.; Scott, R. M.; Peters, W.; Augustyn, W., Jr.; Arnold, R.; Offner, A.; Damast, M.; Boyce, B.; Kinnaird, R.; Mangus, J. D.

    1971-01-01

    A means is presented whereby the effect of various changes in the most important parameters of a three meter aperature space astronomy telescope can be evaluated to determine design trends and to optimize the optical design configuration. Methods are defined for evaluating the theoretical optical performance of axisymmetric, centrally obscured telescopes based upon the intended astronomy research usage. A series of design parameter variations is presented to determine the optimum telescope configuration. The design optimum requires very fast primary mirrors, so the study also examines the current state of the art in fabricating large, fast primary mirrors. The conclusion is that a 3-meter primary mirror having a focal ratio as low as f/2 is feasible using currently established techniques.

  3. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2003-02-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The first of two 8.4-meter borosilicate honeycomb primary mirrors for LBT is being polished at the Steward Observatory Mirror Lab this year. The second of the two 8.4-meter mirror blanks waits its turn in the polishing queue. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4-arcminute diameter field-of-view. These adaptive secondary mirrors with 672 voice-coil actuators are now in the early stages of fabrication. The interferometric focus combining the light from the two 8.4-meter primaries will reimage the two folded Gregorian focal planes to three central locations for phased array imaging. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure was fabricated and pre-assembled in Italy by Ansaldo-Camozzi in Milan. The structure was disassembled, packed and shipped to Arizona. The enclosure was built on Mt. Graham and is ready for telescope installation.

  5. Optimization of lightweight structure and supporting bipod flexure for a space mirror.

    PubMed

    Chen, Yi-Cheng; Huang, Bo-Kai; You, Zhen-Ting; Chan, Chia-Yen; Huang, Ting-Ming

    2016-12-20

    This article presents an optimization process for integrated optomechanical design. The proposed optimization process for integrated optomechanical design comprises computer-aided drafting, finite element analysis (FEA), optomechanical transfer codes, and an optimization solver. The FEA was conducted to determine mirror surface deformation; then, deformed surface nodal data were transferred into Zernike polynomials through MATLAB optomechanical transfer codes to calculate the resulting optical path difference (OPD) and optical aberrations. To achieve an optimum design, the optimization iterations of the FEA, optomechanical transfer codes, and optimization solver were automatically connected through a self-developed Tcl script. Two examples of optimization design were illustrated in this research, namely, an optimum lightweight design of a Zerodur primary mirror with an outer diameter of 566 mm that is used in a spaceborne telescope and an optimum bipod flexure design that supports the optimum lightweight primary mirror. Finally, optimum designs were successfully accomplished in both examples, achieving a minimum peak-to-valley (PV) value for the OPD of the deformed optical surface. The simulated optimization results showed that (1) the lightweight ratio of the primary mirror increased from 56% to 66%; and (2) the PV value of the mirror supported by optimum bipod flexures in the horizontal position effectively decreased from 228 to 61 nm.

  6. James Webb Space Telescope's Golden Mirror Unveiled

    NASA Image and Video Library

    2017-12-08

    NASA engineers unveil the giant golden mirror of NASA's James Webb Space Telescope, and it's goldenly delicious! The 18 mirrors that make up the primary mirror were individually protected with a black covers when they were assembled on the telescope structure. Now, for the first time since the primary mirror was completed, the covers have been lifted. Standing tall and glimmering gold inside NASA's Goddard Space Flight Center's clean room in Greenbelt, Maryland, this mirror will be the largest yet sent into space. Currently, engineers are busy assembling and testing the other pieces of the telescope. Read more: go.nasa.gov/1TejHg4 Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. The Webb Telescope's Actuators: Curving Mirrors in Space

    NASA Image and Video Library

    2017-12-08

    NASA image release December 9, 2010 Caption: The James Webb Space Telescope's Engineering Design Unit (EDU) primary mirror segment, coated with gold by Quantum Coating Incorporated. The actuator is located behind the mirror. Credit: Photo by Drew Noel NASA's James Webb Space Telescope is a wonder of modern engineering. As the planned successor to the Hubble Space telescope, even the smallest of parts on this giant observatory will play a critical role in its performance. A new video takes viewers behind the Webb's mirrors to investigate "actuators," one component that will help Webb focus on some of the earliest objects in the universe. The video called "Got Your Back" is part of an on-going video series about the Webb telescope called "Behind the Webb." It was produced at the Space Telescope Science Institute (STScI) in Baltimore, Md. and takes viewers behind the scenes with scientists and engineers who are creating the Webb telescope's components. During the 3 minute and 12 second video, STScI host Mary Estacion interviewed people involved in the project at Ball Aerospace in Boulder, Colo. and showed the actuators in action. The Webb telescope will study every phase in the history of our universe, ranging from the first luminous glows after the big bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system. Measuring the light this distant light requires a primary mirror 6.5 meters (21 feet 4 inches) across – six times larger than the Hubble Space telescope’s mirror! Launching a mirror this large into space isn’t feasible. Instead, Webb engineers and scientists innovated a unique solution – building 18 mirrors that will act in unison as one large mirror. These mirrors are packaged together into three sections that fold up - much easier to fit inside a rocket. Each mirror is made from beryllium and weighs approximately 20 kilograms (46 pounds). Once in space, getting these mirrors to focus correctly on faraway galaxies is another challenge entirely. Actuators, or tiny mechanical motors, provide the answer to achieving a single perfect focus. The primary and secondary mirror segments are both moved by six actuators that are attached to the back of the mirrors. The primary segment has an additional actuator at the center of the mirror that adjusts its curvature. The third mirror segment remains stationary. Lee Feinberg, Webb Optical Telescope Element Manager at NASA's Goddard Space Flight Center in Greenbelt, Md. explained "Aligning the primary mirror segments as though they are a single large mirror means each mirror is aligned to 1/10,000th the thickness of a human hair. This alignment has to be done at 50 degrees above absolute zero! What's even more amazing is that the engineers and scientists working on the Webb telescope literally had to invent how to do this." With the actuators in place, Brad Shogrin, Webb Telescope Manager at Ball Aerospace, Boulder, Colo, details the next step: attaching the hexapod (meaning six-footed) assembly and radius of curvature subsystem (ROC). "Radius of curvature" refers to the distance to the center point of the curvature of the mirror. Feinberg added "To understand the concept in a more basic sense, if you change that radius of curvature, you change the mirror's focus." The "Behind the Webb" video series is available in HQ, large and small Quicktime formats, HD, Large and Small WMV formats, and HD, Large and Small Xvid formats. To see the actuators being attached to the back of a telescope mirror in this new "Behind the Webb" video, visit: webbtelescope.org/webb_telescope/behind_the_webb/7 For more information about Webb's mirrors, visit: www.jwst.nasa.gov/mirrors.html For more information on the James Webb Space Telescope, visit: jwst.nasa.gov Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements

  9. Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will

    2007-01-01

    We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.

  10. Recent Progress in Adjustable X-ray Optics for Astronomy

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Allured, Ryan; Cotroneo, Vincenzo; McMuldroch, Stuart; Marquez, Vanessa; Schwartz, Daniel A.; Vikhlinin, Alexey; ODell, Stephen L.; Ramsey, Brian; Trolier-McKinstry, Susan; hide

    2014-01-01

    Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of insitu strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.

  11. Deformable mirror technologies at AOA Xinetics

    NASA Astrophysics Data System (ADS)

    Wirth, Allan; Cavaco, Jeffrey; Bruno, Theresa; Ezzo, Kevin M.

    2013-05-01

    AOA Xinetics (AOX) has been at the forefront of Deformable Mirror (DM) technology development for over two decades. In this paper the current state of that technology is reviewed and the particular strengths and weaknesses of the various DM architectures are presented. Emphasis is placed on the requirements for DMs applied to the correction of high-energy and high average power lasers. Mirror designs optimized for the correction of typical thermal lensing effects in diode pumped solid-state lasers will be detailed and their capabilities summarized. Passive thermal management techniques that allow long laser run times to be supported will also be discussed.

  12. Support of Mark III Optical Interferometer

    DTIC Science & Technology

    1988-11-01

    error, and low visibility* pedestal, and the surface of a zerodur sphere attached to the mirror errors are not entirely consistent. as shown in Fig. 7...of’ stellar usually associated with the primary mirror of a large astronomical interferometers at Mt. Wilson Observatory. The first instrument...the two siderostats is directed toward the central building by fixed mirrors . These fixed mirrors are necessary to keep the polarization - vectors

  13. Study on optical polishing experiment of zerodur mirror

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Li, Hang; Wang, Peng; Guo, Wen; Wang, Yonggang; Du, Yan; Dong, Huiwen

    2014-08-01

    A zerodur mirror whose aperture is 900mm is chosen to be the primary mirror of an optical system. The mirror is polished by rapid polishing and precision polishing methods relatively. The final surface figures of the mirror are as follows: the peak-to-valley value (P-V value) is 0.204λ (λ=632.8nm), and the root-mean-square value (RMS value) is 0.016λ, which meet the requirement of the optical system. The results show that the polishing process is feasible.

  14. Concepts for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Margulis, M.; Tenerelli, D.

    1996-12-01

    In collaboration with NASA GSFC, we have examined a wide range of potential concepts for a large, passively cooled space telescope. Our design goals were to achieve a theoretical imaging sensitivity in the near-IR of 1 nJy and an angular resolution at 1 micron of 0.06 arcsec. Concepts examined included a telescope/spacecraft system with a 6-m diameter monolithic primary mirror, a variety of telescope/spacecraft systems with deployable primary mirror segments to achieve an 8-m diameter aperture, and a 12-element sparse aperture phased array telescope. Trade studies indicate that all three concept categories can achieve the required sensitivity and resolution, but that considerable technology development is required to bring any of the concepts to fruition. One attractive option is the system with the 6-m diameter monolithic primary. This option achieves high sensitivity without telescope deployments and includes a stiff structure for robust attitude and figure control. This system capitalizes on coming advances in launch vehicle and shroud technology, which should enable launch of large, monolithic payloads into orbit positions where background noise due to zodiacal dust is low. Our large space telescope study was performed by a consortium of organizations and individuals including: Domenick Tenerelli et al. (Lockheed Martin Corp.), Roger Angel et al. (U. Ariz.), Tom Casey et al. (Eastman Kodak Co.), Jim Gunn (Princeton), Shel Kulick (Composite Optics, Inc.), Jim Westphal (CIT), Johnny Batache et al. (Harris Corp.), Costas Cassapakis et al. (L'Garde, Inc.), Dave Sandler et al. (ThermoTrex Corp.), David Miller et al. (MIT), Ephrahim Garcia et al. (Garman Systems Inc.), Mark Enright (New Focus Inc.), Chris Burrows (STScI), Roc Cutri (IPAC), and Art Bradley (Allied Signal Aerospace).

  15. A high fusion power gain tandem mirror

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-10-01

    Utilizing advances in high field superconducting magnet technology and microwave gyrotrons we illustrate the possibility of a high power gain (Q = 10-20) tandem mirror fusion reactor. Inspired by recent Gas Dynamic Trap (GDT) achievements we employ a simple axisymmetric mirror magnet configuration. We consider both DT and cat. DD fuel options that utilize existing as well as future technology development. We identify subjects requiring further study such as hot electron physics, trapped particle modes and plasma startup.

  16. A technology demonstrator for development of ultra-lightweight, large aperture, deployable telescope for space applications

    NASA Astrophysics Data System (ADS)

    Zuccaro Marchi, Alessandro; Gambicorti, Lisa; Simonetti, Francesca; Salinari, Piero; Lisi, Franco; Bursi, Alessandro; Olivier, Massimiliano; Gallieni, Daniele

    2017-11-01

    This work presents the latest results of new technological concepts for large aperture, lightweight telescopes using thin deployable active mirrors. The study is originally addressed to a spaceborne DIAL (Differential Absorption Lidar) at 935.5 nm for the measurement of water vapour profile in atmosphere, as an output of an ESA contract (whose preliminary results were presented at ICSO 2006). The high versatility of these concepts allows to exploit the presented technology for any project willing to consider large aperture, segmented lightweight telescopes. A possible scientific application is for Ultra High Energy Cosmic Rays detection through the fluorescence traces in atmosphere and diffused Cerenkov signals observation via a Schmidt-like spaceborne LEO telescope with large aperture, wide Field of View (FOV) and low f/#. A technology demonstrator has been manufactured and tested in order to investigate two project critical areas identified during the preliminary design: the performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch. In particular, this breadboard demonstrates at first that the mirror actuators are able to control with the adequate accuracy the surface shape and to recover a deployment error with their long stroke; secondly, the mirror survivability has been demonstrated using an electrostatic locking between mirror and backplane able to withstand without failure a vibration test representative of the launch environment.

  17. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  18. Science requirements and optimization of the silicon pore optics design for the Athena mirror

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Pareschi, G.; Christensen, F.; den Herder, J.-W.; Ferreira, D.; Jakobsen, A.; Ackermann, M.; Collon, M.; Bavdaz, M.

    2014-07-01

    The science requirements for the Athena X-ray mirror are to provide a collecting area of 2 m2 at 1 keV, an angular resolution of ~5 arc seconds half energy eidth (HEW) and a field of view of diameter 40-50 arc minutes. This combination of area and angular resolution over a wide field are possible because of unique features of the Silicon pore optics (SPO) technology used. Here we describe the optimization and modifications of the SPO technology required to achieve the Athena mirror specification and demonstrate how the optical design of the mirror system impacts on the scientific performance of Athena.

  19. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    NASA Technical Reports Server (NTRS)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  20. A conceptual scheme for cophasing across gaps in segmented pupils with a laser guide star Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter

    2016-08-01

    Finding and maintaining an accurate cophasing solution for the large primary mirrors which comprise the coming generation of Extremely Large Telescopes has required a significant technological development effort that is still ongoing. Mirrors based on an assembly of a few large segments, such as the Giant Magellan Telescope (GMT - under construction) and the Large Binocular Telescope (LBT - operational) face a particular challenge: elements must be cophased across a gaps ranging from tens of centimeters to meters. Although it is widely believed that laser guide stars are not useful for this specific application, this paper advances a new concept that challenges this orthodoxy. By projecting a Fizeau interference pattern into the sky, and analyzing the form of the backscattered image, it is shown that at least in principle it is possible to cophase across arbitrary gaps.

  1. Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors

    DTIC Science & Technology

    2010-09-01

    actuator geometry, and rib-to-facesheet intersection geometry are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A...are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A parametric finite element model is used to explore the trade space...MOST) finite element model. The move to lightweight actively-controlled silicon carbide ( SiC ) mirrors is traced back to previous generations of space

  2. Fast force actuators for LSST primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  3. Formation Flying of Components of a Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Quadrelli, Marco; Breckenridge, William

    2009-01-01

    A conceptual space telescope having an aperture tens of meters wide and a focal length of hundreds of meters would be implemented as a group of six separate optical modules flying in formation: a primary-membrane-mirror module, a relay-mirror module, a focal-plane-assembly module containing a fast steering mirror and secondary and tertiary optics, a primary-mirror-figure-sensing module, a scanning-electron-beam module for controlling the shape of the primary mirror, and a sunshade module. Formation flying would make it unnecessary to maintain the required precise alignments among the modules by means of an impractically massive rigid structure. Instead, a control system operating in conjunction with a metrology system comprising optical and radio subsystems would control the firing of small thrusters on the separate modules to maintain the formation, thereby acting as a virtual rigid structure. The control system would utilize a combination of centralized- and decentralized-control methods according to a leader-follower approach. The feasibility of the concept was demonstrated in computational simulations that showed that relative positions could be maintained to within a fraction of a millimeter and orientations to within several microradians.

  4. High-resolution deployable telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto

    2004-02-01

    CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.

  5. Federal Motor Carrier Safety Administration’s advanced system testing utilizing a data acquisition system on the highways (FAST DASH) safety technology evaluation project #3 : novel convex mirrors.

    DOT National Transportation Integrated Search

    2016-11-01

    An independent evaluation of a set of novel prototype mirrors was conducted to determine whether the mirrors perform as well as traditional production mirrors across the basic functions of field of view (FOV), image distortion, and distance estimatio...

  6. Electro-Formed Mirrors for Both X-Ray and Visible Astronomy

    NASA Technical Reports Server (NTRS)

    Ritter, J.; Smith, W. Scott; Rose, M. Frank (Technical Monitor)

    2000-01-01

    The Space Optics Manufacturing Technology Center of NASA's Marshall Space Flight Center is involved in the development of nickel and nickel alloy electroformed mirrors for rapid production of space-based optical systems. The current state of the process is discussed- for both cylindrical x-ray mirrors and normal incidence mirrors for visible and infrared applications.

  7. Low-weight, low-cost, low-cycle time, replicated glass mirrors

    NASA Astrophysics Data System (ADS)

    Egerman, Robert; De Smitt, Steven; Strafford, David

    2010-07-01

    ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper will provide an historical overview of the development in this area with an emphasis on recent technology developments to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.

  8. Design and verification for front mirror-body structure of on-axis three mirror anastigmatic space camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan

    2017-11-01

    The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.

  9. Monocrystalline silicon and the meta-shell approach to building x-ray astronomical optics

    NASA Astrophysics Data System (ADS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2017-08-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the metashell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, WolterSchwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.

  10. Monocrystalline Silicon and the Meta-Shell Approach to Building X-Ray Astronomical Optics

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; hide

    2017-01-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the meta-shell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, Wolter-Schwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.

  11. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-09

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  12. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  13. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  14. Reflectometer design using nonimaging optics

    NASA Astrophysics Data System (ADS)

    Snail, Keith A.

    1987-12-01

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  15. Reflectometer design using nonimaging optics.

    PubMed

    Snail, K A

    1987-12-15

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  16. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  17. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  18. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  19. The LUVOIR Large Mission Concept

    NASA Astrophysics Data System (ADS)

    O'Meara, John; LUVOIR Science and Technology Definition Team

    2018-01-01

    LUVOIR is one of four large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. We are currently developing two architectures: Architecture A with a 15.1 meter segmented primary mirror, and Architecture B with a 9.2 meter segmented primary mirror. Our focus in this presentation is the Architecture A LUVOIR. LUVOIR will operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The initial instruments developed for LUVOIR Architecture A include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a high resolution UV/optical spectropolarimeter. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable, upgradable, and primarily driven by guest observer science programs. In this presentation, we will describe the observatory, its instruments, and survey the transformative science LUVOIR can accomplish.

  20. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  1. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  2. SOFIA's primary mirror assembly is cradled on its dolly as technicians prepare to move it into a "clean room" at NASA Dryden's Aircraft Operations Facility

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  3. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  4. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  5. Technicians with ropes carefully guide the primary mirror assembly as a crane slowly moves it toward its transport cradle after removal from the SOFIA aircraft

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  6. Dynamical simulation of E-ELT segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Sedghi, B.; Muller, M.; Bauvir, B.

    2011-09-01

    The dynamical behavior of the primary mirror (M1) has an important impact on the control of the segments and the performance of the telescope. Control of large segmented mirrors with a large number of actuators and sensors and multiple control loops in real life is a challenging problem. In virtual life, modeling, simulation and analysis of the M1 bears similar difficulties and challenges. In order to capture the dynamics of the segment subunits (high frequency modes) and the telescope back structure (low frequency modes), high order dynamical models with a very large number of inputs and outputs need to be simulated. In this paper, different approaches for dynamical modeling and simulation of the M1 segmented mirror subject to various perturbations, e.g. sensor noise, wind load, vibrations, earthquake are presented.

  7. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  8. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

    2017-09-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

  9. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror

    NASA Astrophysics Data System (ADS)

    Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong

    2018-06-01

    Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  12. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  13. Space Science

    NASA Image and Video Library

    1999-04-21

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Dr. Joe Ritter examines a replicated electro-formed nickel-alloy mirror which exemplifies the improvements in mirror fabrication techniques, with benefits such as dramtic weight reduction that have been achieved at the Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC).

  14. Secrets of the Chinese magic mirror replica

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Yip, Din-yan

    2001-03-01

    We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.

  15. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  16. Silicon pore optics for the international x-ray observatory

    NASA Astrophysics Data System (ADS)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  17. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    NASA Astrophysics Data System (ADS)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  18. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. Copyright © 2015 the American Physiological Society.

  19. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions

    PubMed Central

    Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-01-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp2 = 0.005; ECR: P = 0.712, ηp2 = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp2 = 0.049; ECR: P = 0.343, ηp2 = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. PMID:25632077

  20. Optical fabrication of lightweighted 3D printed mirrors

    NASA Astrophysics Data System (ADS)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  1. Design, Construction, and Testing of Lightweight X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.

    2013-01-01

    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

  2. Cortical mechanisms of mirror therapy after stroke.

    PubMed

    Rossiter, Holly E; Borrelli, Mimi R; Borchert, Robin J; Bradbury, David; Ward, Nick S

    2015-06-01

    Mirror therapy is a new form of stroke rehabilitation that uses the mirror reflection of the unaffected hand in place of the affected hand to augment movement training. The mechanism of mirror therapy is not known but is thought to involve changes in cerebral organization. We used magnetoencephalography (MEG) to measure changes in cortical activity during mirror training after stroke. In particular, we examined movement-related changes in the power of cortical oscillations in the beta (15-30 Hz) frequency range, known to be involved in movement. Ten stroke patients with upper limb paresis and 13 healthy controls were recorded using MEG while performing bimanual hand movements in 2 different conditions. In one, subjects looked directly at their affected hand (or dominant hand in controls), and in the other, they looked at a mirror reflection of their unaffected hand in place of their affected hand. The movement-related beta desynchronization was calculated in both primary motor cortices. Movement-related beta desynchronization was symmetrical during bilateral movement and unaltered by the mirror condition in controls. In the patients, movement-related beta desynchronization was generally smaller than in controls, but greater in contralesional compared to ipsilesional motor cortex. This initial asymmetry in movement-related beta desynchronization between hemispheres was made more symmetrical by the presence of the mirror. Mirror therapy could potentially aid stroke rehabilitation by normalizing an asymmetrical pattern of movement-related beta desynchronization in primary motor cortices during bilateral movement. © The Author(s) 2014.

  3. James Webb Space Telescope: The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Scheduled to begin its 10 year mission no sooner than 2013, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  4. Optical System Design for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Solomon, Leonard H. (Principal Investigator); Kahan, Mark A.

    1996-01-01

    This report provides considerations and suggested approaches for design of the Optical Telescope Assembly and the segmented primary mirror of a Next Generation Space Telescope (NGST). Based on prior studies and hardware development, we provide data and design information on low-risk materials and hardware configurations most likely to meet low weight, low temperature and long-life requirements of the nominal 8-meter aperture NGST. We also provide preliminary data for cost and performance trades, and recommendations for technology development and demonstration required to support the system design effort.

  5. Gregory [Gregorie], James (1638-75)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Scottish mathematician and optician, born in Aberdeen. Gregory described in Optica Promota a design (which he never realized) for the first practical reflecting telescope in which a perforated primary concave parabolic mirror converges the light to the focus of a concave ellipsoidal secondary mirror. The light is reflected back to the ellipsoid's second focus behind the main mirror. A real image ...

  6. Method of Analysis for Determining and Correcting Mirror Deformation due to Gravity

    DTIC Science & Technology

    2014-01-01

    obtainable. 1.3 Description of As-Built Beam Compressor Assembly The as-built beam compressor assembly consists of primary and secondary Zerodur ® mirrors held...Method of analysis for determining and correcting mirror deformation due to gravity James H. Clark, III F. Ernesto, Penado Downloaded From: http...00-00-2014 4. TITLE AND SUBTITLE Method of analysis for determining and correcting mirror deformation due to gravity 5a. CONTRACT NUMBER 5b. GRANT

  7. Using the ISS as a testbed to prepare for the next generation of space-based telescopes

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Sparks, William B.; Liu, Fengchuan; Ess, Kim; Green, Joseph; Carpenter, Kenneth G.; Thronson, Harley; Goullioud, Renaud

    2012-09-01

    The infrastructure available on the ISS provides a unique opportunity to develop the technologies necessary to assemble large space telescopes. Assembling telescopes in space is a game-changing approach to space astronomy. Using the ISS as a testbed enables a concentration of resources on reducing the technical risks associated with integrating the technologies, such as laser metrology and wavefront sensing and control (WFS&C), with the robotic assembly of major components including very light-weight primary and secondary mirrors and the alignment of the optical elements to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems such as the Special Purpose Dexterous Manipulator (SPDM), or by the ISS Flight Crew, allows for future experimentation as well as repair if necessary. In 2015, first light will be obtained by the Optical Testbed and Integration on ISS eXperiment (OpTIIX), a small 1.5-meter optical telescope assembled on the ISS. The primary objectives of OpTIIX include demonstrating telescope assembly technologies and end-to-end optical system technologies that will advance future large optical telescopes.

  8. Alignment and focus of mirrored facets of a heliosat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoreticalmore » image.« less

  9. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2000-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.

  10. Secondary concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A variety of different concepts are currently being studied with the objective to lower the cost of parabolic mirrors and to provide alternatives. One of the considered approaches involves the use of compound concentrators. A compound solar concentrator is a concentrator in which the sunlight is reflected or refracted more than once. It consists of a primary mirror or lens, whose aperture determines the amount of sunlight gathered, and a smaller secondary mirror or lens. Additional small optical elements may also be incorporated. The possibilities and problems regarding a use of compound concentrators in parabolic dish systems are discussed. Attention is given to concentrating secondary lenses, secondary imaging and concentrating mirrors, conical secondary mirrors, compound elliptic secondary concentrating mirrors, and hyperbolic trumpet secondary concentrating mirrors.

  11. Development of 1-m primary mirror for a spaceborne camera

    NASA Astrophysics Data System (ADS)

    Kihm, Hagyong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

    2015-09-01

    We present the development of a 1-m lightweight mirror system for a spaceborne electro-optical camera. The mirror design was optimized to satisfy the performance requirements under launch loads and space environment. The mirror made of Zerodur® has pockets at the back surface and three square bosses at the rim. Metallic bipod flexures support the mirror at the bosses and adjust the mirror's surface distortion due to gravity. We also show an analytical formulation of the bipod flexure, where compliance and stiffness matrices of the bipod flexure are derived to estimate theoretical performance and to make initial design guidelines. Optomechanical performances such as surface distortions due to gravity is explained. Environmental verification of the mirror is achieved by vibration tests.

  12. Selecting mirror materials for high-performance optical systems

    NASA Astrophysics Data System (ADS)

    Parsonage, Thomas B.

    1990-11-01

    The properties of four candidate mirror materials--beryllium, silicon carbide, a silicon carbide/aluminum iretal-matrix carposite and aluminum--are corrpared. Because of its high specific stiffness and dirrensional stability under changing mschanical and thermal loads , beryllium is the best choice . Berjllium mirrors have been made irore cost-conpetitive by new processing technologies in which mirror blanks are isostatically pressed to near-net shape directly fran beiyllium pc1ers. Isostatic pressing also improves material properties and mskes it possible to develop mirror rraterials with superior properties.

  13. Development of ATHENA mirror modules

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Landgraf, Boris; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Dekker, Danielle; Chatbi, Abdel; Girou, David; Sforzini, Jessica; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; Haneveld, Jeroen; Koelewijn, Arenda; Booysen, Karin; Wijnperle, Maurice; van Baren, Coen; Eigenraam, Alexander; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Massahi, Sonny; Christensen, Finn E.; Della Monica Ferreira, Desirée.; Valsecchi, Giuseppe; Oliver, Paul; Checquer, Ian; Ball, Kevin; Zuknik, Karl-Heinz

    2017-08-01

    Silicon Pore Optics (SPO), developed at cosine with the European Space Agency (ESA) and several academic and industrial partners, provides lightweight, yet stiff, high-resolution x-ray optics. This technology enables ATHENA to reach an unprecedentedly large effective area in the 0.2 - 12 keV band with an angular resolution better than 5''. After developing the technology for 50 m and 20 m focal length, this year has witnessed the first 12 m focal length mirror modules being produced. The technology development is also gaining momentum with three different radii under study: mirror modules for the inner radii (Rmin = 250 mm), outer radii (Rmax = 1500 mm) and middle radii (Rmid = 737 mm) are being developed in parallel.

  14. A comparison of LIDT behavior of metal-dielectric mirrors in ns and ps pulse regime at 1030 nm with regard to the coating technology

    NASA Astrophysics Data System (ADS)

    Škoda, Václav; Vanda, Jan; Uxa, Štěpán

    2017-11-01

    Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.

  15. The Large Deployable Reflector (LDR) - Plans and progress

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1987-01-01

    The program history, scientific aims, design, and projected performance of the LDR, a 20-m-primary two-stage four-mirror orbiting sub-mm/FIR astronomical observatory under NASA development, are reviewed. It is shown that the LDR would provide capabilities complementary to those of IRAS, the Kuiper Airborne Observatory, the IRTF, the Hubble Space Telescope, and the planned Space IR Telescope Facility for observations of small-scale background anisotropies, high-redshift galaxies, and objects at temperatures of a few times 10 K or lower. The current design concept is illustrated with extensive drawings, diagrams, and tables of instrument parameters. Particular attention is given to the graphite-epoxy facing and Al-honeycomb core of the primary structure, the focal-plane instruments, and outstanding technological problems.

  16. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  17. Design trade study for a 4-meter off-axis primary mirror substrate and mount for the Habitable-zone Exoplanet Direct Imaging Mission

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Stahl, H. Philip

    2017-09-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study's purpose is not to produce a final design, but rather to established a design methodology for matching the mirror's properties (mass and stiffness) with the mission's optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs open-back vs partial-back; meniscus vs flat back vs shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  18. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  19. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  20. Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing

    NASA Technical Reports Server (NTRS)

    Fiske, Peter S.

    2006-01-01

    Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.

  1. Research Technology

    NASA Image and Video Library

    1998-09-16

    A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.

  2. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  3. A design study of mirror modules and an assembly based on the slumped glass for an Athena-like optics

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Buratti, Enrico; Eder, Josef; Friedrich, Peter; Fürmetz, Maria

    2015-09-01

    The Athena mission was selected for the second large-class mission, due for launch in 2028, in ESA's Cosmic Vision program. The current solution for the optics is based on the Silicon Pore Optics (SPO) technology with the goal of 2m2 effective area at 1keV (aperture about 3m diameter) with a focal length of 12m. The SPO advantages are the compactness along the axial direction and the high conductivity of the Silicon. Recent development in the fabrication of mirror shells based on the Slumped Glass Optics (SGO) makes this technology an attractive solution for the mirror modules for Athena or similar telescopes. The SGO advantages are a potential high collecting area with a limited vignetting due to the lower shadowing and the aptitude to curve the glass plates up to small radius of curvature. This study shows an alternative mirror design based on SGO technology, tailored for Athena needs. The main challenges are the optimization of the manufacturing technology with respect to the required accuracy and the thermal control of the large surface in conjunction with the low conductivity of the glass. A concept has been elaborated which considers the specific benefits of the SGO technology and provides an efficient thermal control. The output of the study is a preliminary design substantiated by analyses and technological studies. The study proposes interfaces and predicts performances and budgets. It describes also how such a mirror system could be implemented as a modular assembly for X-ray telescope with a large collecting area.

  4. Computerised mirror therapy with Augmented Reflection Technology for early stroke rehabilitation: clinical feasibility and integration as an adjunct therapy.

    PubMed

    Hoermann, Simon; Ferreira Dos Santos, Luara; Morkisch, Nadine; Jettkowski, Katrin; Sillis, Moran; Devan, Hemakumar; Kanagasabai, Parimala S; Schmidt, Henning; Krüger, Jörg; Dohle, Christian; Regenbrecht, Holger; Hale, Leigh; Cutfield, Nicholas J

    2017-07-01

    New rehabilitation strategies for post-stroke upper limb rehabilitation employing visual stimulation show promising results, however, cost-efficient and clinically feasible ways to provide these interventions are still lacking. An integral step is to translate recent technological advances, such as in virtual and augmented reality, into therapeutic practice to improve outcomes for patients. This requires research on the adaptation of the technology for clinical use as well as on the appropriate guidelines and protocols for sustainable integration into therapeutic routines. Here, we present and evaluate a novel and affordable augmented reality system (Augmented Reflection Technology, ART) in combination with a validated mirror therapy protocol for upper limb rehabilitation after stroke. We evaluated components of the therapeutic intervention, from the patients' and the therapists' points of view in a clinical feasibility study at a rehabilitation centre. We also assessed the integration of ART as an adjunct therapy for the clinical rehabilitation of subacute patients at two different hospitals. The results showed that the combination and application of the Berlin Protocol for Mirror Therapy together with ART was feasible for clinical use. This combination was integrated into the therapeutic plan of subacute stroke patients at the two clinical locations where the second part of this research was conducted. Our findings pave the way for using technology to provide mirror therapy in clinical settings and show potential for the more effective use of inpatient time and enhanced recoveries for patients. Implications for Rehabilitation Computerised Mirror Therapy is feasible for clinical use Augmented Reflection Technology can be integrated as an adjunctive therapeutic intervention for subacute stroke patients in an inpatient setting Virtual Rehabilitation devices such as Augmented Reflection Technology have considerable potential to enhance stroke rehabilitation.

  5. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  6. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  7. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  8. Space Science

    NASA Image and Video Library

    1999-04-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Image shows Dr. Alan Shapiro cleaning mirror mandrel to be applied with highly reflective and high-density coating in the Large Aperture Coating Chamber, MFSC Space Optics Manufacturing Technology Center (SOMTC).

  9. Deployable telescope having a thin-film mirror and metering structure

    DOEpatents

    Krumel, Leslie J [Cedar Crest, NM; Martin, Jeffrey W [Albuquerque, NM

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  10. Design and simulation of the surface shape control system for membrane mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  11. The Filled Arm Fizeau Telescope (FFT)

    NASA Technical Reports Server (NTRS)

    Synnott, S. P.

    1991-01-01

    Attention is given to the design of a Mills Cross imaging interferometer in which the arms are fully filled with mirror segments of a Ritchey-Chretien primary and which has sensitivity to 27th magnitude per pixel and resolution a factor of 10 greater than Hubble. The optical design, structural configuration, thermal disturbances, and vibration, material, control, and metrology issues, as well as scientific capabilities are discussed, and technology needs are identified. The technologies under consideration are similar to those required for the development of the other imaging interferometers that have been proposed over the past decade. A comparison of the imaging capabilities of a 30-m diameter FFT, an 8-m telescope with a collecting area equal to that of the FFT, and the HST is presented.

  12. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frédéric

    2017-11-01

    The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.

  13. Cryogenic Test Results of Hextek Mirror

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Stahl, H. Philip; Eng, Ron; Hogue, William

    2004-01-01

    A 250 mm diameter lightweight borosilicate mirror has been interferometrically tested from room-temperature down to 30 K at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The minor blank was manufactured by Hextek Corporation using a high-temperature gas fusion process and was then polished at MSFC. It is a sandwich-type mirror consisting of a thin face-sheet (approx.1.5 mm thick), a core structure (20 mm thick, approx.43 mm diameter cells, & 0.5-1.2 mm thick walls), and a thin back-sheet (3 mm thick). The mirror has a 2500 mm spherical radius-of- curvature @/lo). The areal density is 14 kg/sq m. The mirror was tested in the 1 m x 2 m chamber using an Instantaneous Phase Interferometer (PI) from ADE Phase Shift Technologies. The mirror was tested twice. The first test measured the change in surface figure from ambient to 30 K and the repeatability of the change. An attempt was then made by QED Technologies to cryo-figure the mirror using magnetorheological finishing. The second test measured the effectiveness of the cryo- figuring. This paper will describe the test goals, the test instrumentation, and the test results for these cryogenic tests.

  14. James Webb Space telescope optical simulation testbed: experimental results with linear control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Michau, Vincent; Bonnefois, Aurélie; Escolle, Clément; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Ygouf, Marie; Fusco, Thierry; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2017-09-01

    The current generation of terrestrial telescopes has large enough primary mirror diameters that active optical control based on wavefront sensing is necessary. Similarly, in space, while the Hubble Space Telescope (HST) has a mostly passive optical design, apart from focus control, its successor the James Webb Space Telescope (JWST) has active control of many degrees of freedom in its primary and secondary mirrors.

  15. Primary Mirror Figure Maintenance of the Hobby-Eberly Telescope using the Segment Alignment Maintenance System

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)

    2002-01-01

    The Segment Alignment Maintenance System (SAMs) was installed on McDonald Observatory's Hobby-Eberly Telescope (HET) in August 2001. The SAMs became fully operational in October 2001. The SAMs uses a system of 480 inductive edge sensors to correct misalignments of the HET's 91 primary mirror segments when the segments are perturbed from their aligned reference positions. A special observer estimated and corrects for the global radius of curvature (GroC) mode, a mode unobservable by the edge sensors. The SAMs edge sensor system and (GroC) estimator are able to maintain HET's primary figure for much longer durations than previously had been observed. Telescope image quality has improved, and the amount of overhead time required from primary mirror alignment has been reduced. This paper gives a functional description of the SAMs control system and presents performance verification data. This paper also describes how the SAMs has improved the operational efficiency of the HET.

  16. Estimating the mirror seeing for a large optical telescope with a numerical method

    NASA Astrophysics Data System (ADS)

    Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng

    2018-05-01

    It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.

  17. James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Soummer, Rémi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Levecq, Olivier; Mazoyer, Johan; N'Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2017-09-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, such as JWST. With the JWST Science and Operations Center co-located at STScI, JOST was developed to provide both a platform for staff training and to test alternate wavefront sensing and control strategies for independent validation or future improvements beyond the baseline operations. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the most recent experimental results for the segmented mirror alignment. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is tested on simulation and experimentally. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by misalignment of the secondary lens and the segmented mirror, are tested and validated both on simulations and experimentally. In this proceeding, we present the performance of the full active optic control loop in presence of perturbations on the segmented mirror, and we detail the quality of the alignment correction.

  18. Orbital Reconstruction: Patient-Specific Orbital Floor Reconstruction Using a Mirroring Technique and a Customized Titanium Mesh.

    PubMed

    Tarsitano, Achille; Badiali, Giovanni; Pizzigallo, Angelo; Marchetti, Claudio

    2016-10-01

    Enophthalmos is a severe complication of primary reconstruction of orbital floor fractures. The goal of secondary reconstruction procedures is to restore symmetrical globe positions to recover function and aesthetics. The authors propose a new method of orbital floor reconstruction using a mirroring technique and a customized titanium mesh, printed using a direct metal laser-sintering method. This reconstructive protocol involves 4 steps: mirroring of the healthy orbit at the affected site, virtual design of a patient-specific orbital floor mesh, CAM procedures for direct laser-sintering of the customized titanium mesh, and surgical insertion of the device. Using a computed tomography data set, the normal, uninjured side of the craniofacial skeleton was reflected onto the contralateral injured side, and a reconstructive orbital floor mesh was designed virtually on the mirrored orbital bone surface. The solid-to-layer files of the mesh were then manufactured using direct metal laser sintering, which resolves the shaping and bending biases inherent in the indirect method. An intraoperative navigation system ensured accuracy of the entire procedure. Clinical outcomes were assessed using 3dMD photogrammetry and computed tomography data in 7 treated patients. The technique described here appears to be a viable method to correct complex orbital floor defects needing delayed reconstruction. This study represents the first step in the development of a wider experimental protocol for orbital floor reconstruction using computer-assisted design-computer-assisted manufacturing technology.

  19. Absolute measurements of large mirrors

    NASA Astrophysics Data System (ADS)

    Su, Peng

    The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several times the mirror under test in relation to the test system. The result was a separation of errors in the optical test system to those errors from the mirror under test. This method proved to be accurate to 12nm rms. Another absolute measurement technique discussed in this dissertation utilizes the property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal point. We have developed a scanning pentaprism technique that exploits this geometry to measure off-axis paraboloidal mirrors such as the GMT segments. This technique was demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 nm rms.

  20. Discrete control of linear distributed systems with application to the deformable primary mirror of a large orbiting telescope. Ph.D. Thesis - Rhode Island Univ.

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.

    1970-01-01

    The results are presented of a detailed study of the discrete control of linear distributed systems with specific application to the design of a practical controller for a plant representative of a telescope primary mirror for an orbiting astronomical observatory. The problem of controlling the distributed plant is treated by employing modal techniques to represent variations in the optical figure. Distortion of the mirror surface, which arises primarily from thermal gradients, is countered by actuators working against a backing structure to apply a corrective force distribution to the controlled surface. Each displacement actuator is in series with a spring attached to the mirror by means of a pad intentionally introduced to restrict the excitation of high-order modes. Control is exerted over a finite number of the most significant modes.

  1. Analysis and correction for measurement error of edge sensors caused by deformation of guide flexure applied in the Thirty Meter Telescope SSA.

    PubMed

    Cao, Haifeng; Zhang, Jingxu; Yang, Fei; An, Qichang; Zhao, Hongchao; Guo, Peng

    2018-05-01

    The Thirty Meter Telescope (TMT) project will design and build a 30-m-diameter telescope for research in astronomy in visible and infrared wavelengths. The primary mirror of TMT is made up of 492 hexagonal mirror segments under active control. The highly segmented primary mirror will utilize edge sensors to align and stabilize the relative piston, tip, and tilt degrees of segments. The support system assembly (SSA) of the segmented mirror utilizes a guide flexure to decouple the axial support and lateral support, while its deformation will cause measurement error of the edge sensor. We have analyzed the theoretical relationship between the segment movement and the measurement value of the edge sensor. Further, we have proposed an error correction method with a matrix. The correction process and the simulation results of the edge sensor will be described in this paper.

  2. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  3. Comparing optical test methods for a lightweight primary mirror of a space-borne Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan

    2014-09-01

    A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.

  4. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    NASA Astrophysics Data System (ADS)

    Matson, L.; Chen, M.; Deblonk, B.; Palusinski, I.

    The use of monolithic glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs, environmental effects and launch load/weight requirements. New material solutions and manufacturing processes are required to meet DoD's directed energy weapons, reconnaissance/surveillance, and secured communications needs. Over the past several years the Air Force, MDA, and NASA has focused their efforts on the fabrication, lightweighting, and scale-up of numerous silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive evaluation methods being investigated to help eliminate risk. Mirror structural substrates made out of advanced engineered materials (far term solutions) such as composites, foams, and microsphere arrays for ultra lightweighting will also be briefly discussed.

  5. Testing of a Stacked Core Mirror for UV Applications

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Eng, Ron; Arnold, William R. Sr.

    2013-01-01

    Advanced Ultraviolet, Optical, Near-Infrared (UVOIR) Mirror Technology Development (AMTD) Testing Summary: (1) Processing of the stacked core mirror converged very quickly using ion figuring. (2) Results show no significant PSD change due to ion figuring in spatial periods smaller than 20mm. (3) Global surface figure limited by mount repeatability

  6. Finite Element Modeling of a Semi-Rigid Hybrid Mirror and a Highly Actuated Membrane Mirror as Candidates for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Craig, Larry; Jacobson, Dave; Mosier, Gary; Nein, Max; Page, Timothy; Redding, Dave; Sutherlin, Steve; Wilkerson, Gary

    2000-01-01

    Advanced space telescopes, which will eventually replace the Hubble Space Telescope (HTS), will have apertures of 8 - 20 n. Primary mirrors of these dimensions will have to be foldable to fit into the space launcher. By necessity these mirrors will be extremely light weight and flexible and the historical approaches to mirror designs, where the mirror is made as rigid as possible to maintain figure and to serve as the anchor for the entire telescope, cannot be applied any longer. New design concepts and verifications will depend entirely on analytical methods to predict optical performance. Finite element modeling of the structural and thermal behavior of such mirrors is becoming the tool for advanced space mirror designs. This paper discusses some of the preliminary tasks and study results, which are currently the basis for the design studies of the Next Generation Space Telescope.

  7. Inverting Image Data For Optical Testing And Alignment

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.

    1993-01-01

    Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.

  8. Low-Cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, 0.5-1 meter ground apertures are required for near-Earth laser communications. Low-cost ground apertures with equivalent diameters greater than 10 meters are desired for deep-space communications. This presentation focuses on identifying schemes to lower the cost of constructing networks of large apertures while continuing to meet the requirements for laser communications. The primary emphasis here is on the primary mirror. A slumped glass spherical mirror, along with passive secondary mirror corrector and active adaptive optic corrector show promise as a low-cost alternative to large diameter monolithic apertures. To verify the technical performance and cost estimate, development of a 1.5-meter telescope equipped with gimbal and dome is underway.

  9. The AXAF technology mirror assembly program - An overview

    NASA Technical Reports Server (NTRS)

    Wyman, Charles L.; Dailey, Carroll C.; Reily, Cary; Weisskopf, Martin; Mckinnon, Phil

    1986-01-01

    The manufacture and testing of the Technology Mirror Assembly (TMA), a prototype Wolter I telescope scaled to the dimensions of the innermost element of the High-Resolution Mirror Assembly for the NASA Advanced X-ray Astrophysics Facility (AXAF), are reviewed. Consideration is given to the grinding, polishing, coating, and assembly of the zerodur TMA blanks, the TMA mount design, and the test procedures used at the MSFC X-ray Calibration Facility. Test results indicate FWHM resolution less than 0.5 arcsec, but with significant near-field scattering attributed to ripple; further long-lap polishing is suggested.

  10. A 3D Polymer Based Printed Two-Dimensional Laser Scanner

    NASA Astrophysics Data System (ADS)

    Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.

    2016-10-01

    A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.

  11. Engineering Specifications derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc

    2013-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  12. The design method of CGH for testing the Φ404, F2 primary mirror

    NASA Astrophysics Data System (ADS)

    Xie, Nian; Duan, Xueting; Li, Hua

    2014-09-01

    In order to accurately test shape quality of the large diameter aspherical mirror, a kind of binary optical element called Computer generated holograms (CGHs) are widely used .The primary role of the CGHs is to generate any desired wavefronts to realize phase compensation. In this paper, the CGH design principle and design process are reviewed at first. Then an optical testing system for testing the aspheric mirror includes a computer generated hologram (CGH) and an imaging element (IE) is disposed. And an optical testing system only concludes a CGH is proposed too. The CGH is designed for measurement of an aspheric mirror (diameter=404mm, F-number=2). Interferometric simulation test results of the aspheric mirror show that the whole test system obtains the demanded high accuracy. When combined the CGH with an imaging element in the Aspheric Compensator, the smallest feature in the CGH should be decreased. The CGH can also be used to test freeform surface with high precision, it is of great significance to the development of the freeform surface.

  13. Status of mirror segment production for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Davis, J. M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Loeff, A.; Lutz, R. D.; Merrill, C.; Strittmatter, P. A.; Tuell, M. T.; Weinberger, S. N.; West, S. C.

    2016-07-01

    The Richard F. Caris Mirror Lab at the University of Arizona is responsible for production of the eight 8.4 m segments for the primary mirror of the Giant Magellan Telescope, including one spare off-axis segment. We report on the successful casting of Segment 4, the center segment. Prior to generating the optical surface of Segment 2, we carried out a major upgrade of our 8.4 m Large Optical Generator. The upgrade includes new hardware and software to improve accuracy, safety, reliability and ease of use. We are currently carrying out an upgrade of our 8.4 m polishing machine that includes improved orbital polishing capabilities. We added and modified several components of the optical tests during the manufacture of Segment 1, and we have continued to improve the systems in preparation for Segments 2-8. We completed two projects that were prior commitments before GMT Segment 2: casting and polishing the combined primary and tertiary mirrors for the LSST, and casting and generating a 6.5 m mirror for the Tokyo Atacama Observatory.

  14. NASA James Webb Space Telescope Engineering of the Primary Mirror Segment Assemblies (PMSA) and the Primary Mirror Backplane Support Structure (PMBSS)

    NASA Technical Reports Server (NTRS)

    Cohen, Lester M.

    2015-01-01

    The design, engineering tests of the PMSAs PMBSS show that we have a robust system that not only meets but exceeds (better than) the design requirements for these components. In the next 2 years the Telescope Observatory will be subjected to a simulated launch environment (sine vibeacoustics) and operations tests at cryogenic temperatures. Launch is schedule for the last quarter of 2018.

  15. Overview and status of the Giant Magellan Telescope Project

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick J.; Fanson, James; Bernstein, Rebecca; Ashby, David; Bigelow, Bruce; Boyadjian, Nune; Bouchez, Antonin; Chauvin, Eric; Donoso, Eduardo; Filgueira, Jose; Goodrich, Robert; Groark, Frank; Jacoby, George; Pearce, Eric

    2016-08-01

    The Giant Magellan Telescope Project is in the construction phase. Production of the primary mirror segments is underway with four of the seven required 8.4m mirrors at various stages of completion and materials purchased for segments five and six. Development of the infrastructure at the GMT site at Las Campanas is nearing completion. Power, water, and data connections sufficient to support the construction of the telescope and enclosure are in place and roads to the summit have been widened and graded to support transportation of large and heavy loads. Construction pads for the support buildings have been graded and the construction residence is being installed. A small number of issues need to be resolved before the final design of the telescope structure and enclosure can proceed and the GMT team is collecting the required inputs to the decision making process. Prototyping activities targeted at the active and adaptive optics systems are allowing us to finalize designs before large scale production of components begins. Our technically driven schedule calls for the telescope to be assembled on site in 2022 and to be ready to receive a subset of the primary and secondary mirror optics late in the year. The end date for the project is coupled to the delivery of the final primary mirror segments and the adaptive secondary mirrors that support adaptive optics operations.

  16. Conceptual design and structural analysis for an 8.4-m telescope

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  17. The primary culture of mirror carp snout and caudal fin tissues and the isolation of Koi herpesvirus.

    PubMed

    Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2013-10-01

    The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types.

  18. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    NASA Astrophysics Data System (ADS)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  19. Schwarzschild camera

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The fabrication procedures for the primary and secondary mirrors for a Schwarzschild camera are summarized. The achieved wave front for the telescope was 1/2 wave at .63 microns. Interferograms of the two mirrors as a system are given and the mounting procedures are outlined.

  20. Replicated x-ray optics for space applications

    NASA Astrophysics Data System (ADS)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  1. Status Report and Lessons Learned from the Univ. of Arizona NMSD

    NASA Technical Reports Server (NTRS)

    Baiocchi, Dave; Burge, Jim

    2003-01-01

    We will present the latest generation of space mirror technology being developed at the Univ. of Arizona (UA). Unlike conventional monolithic mirrors, the UA mirrors are completely active in their operation. This allows greater flexibility in the mass, volume and performance specifications. The UA mirror design uses a thin flexible substrate for the optical surface and an actuated lightweight structure for surface accuracy and support. We provide an update on the UA NGST Mirror System Demonstrator (NMSD). The 2-m, f/5 NMSD mirror uses a 2 mm thick glass substrate and weighs 86 pounds. We review the mirror's design, discuss the mythology schemes used to actuate the figure, and present a list of the lessons learned.

  2. Lightweight deformable mirrors for future space telescopes

    NASA Astrophysics Data System (ADS)

    Patterson, Keith

    This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.

  3. Novel unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Verpoort, Sven; Rausch, Peter; Wittrock, Ulrich

    2017-11-01

    We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several astronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror.

  4. Statistical analysis of the surface figure of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John

    2012-09-01

    The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.

  5. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    PubMed

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  6. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  7. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  8. Annual Industrial Capabilities Report to Congress

    DTIC Science & Technology

    1999-02-01

    suspension systems is not a concern. Deformable Mirrors (September 1998) The atmosphere, temperature variations, and vibration distort optical system...images. Deformable mirrors can compensate for these effects in real time. They are used in surveillance optics, laser weapons, and astronomical telescopes...This assessment investigated the availability of current and potential deformable mirror producers, and possible alternative technologies. The

  9. Biomimetics and astronomical X-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Remisova, K.

    2017-07-01

    Some sea and water animals have strange mirror eyes which have (or might have) potential application in science and technology in general and in X—ray astrophysics in particular. While the principles of mirror eyes of decapods (lobsters, crayfishes) are already applied in space and ground—based imaging experiments, the mirror eyes of specific fishes are still very little investigated.

  10. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Vassiliev, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Romani, R.; Wagner, R.; Woods, M.

    2009-05-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV to 200 TeV is based on an array of 50-100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission, we focus on the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic optical system originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the optical system. We explore capabilities of these mirror fabrication methods for the AGIS project and alignment methods for optical systems. We also study a mechanical structure which will provide support points for mirrors and camera design driven by the requirement of minimizing the deflections of the mirror support structures.

  11. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  12. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  13. Large Deployable Reflector (LDR) feasibility study update

    NASA Technical Reports Server (NTRS)

    Alff, W. H.; Banderman, L. W.

    1983-01-01

    In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.

  14. The James Webb Space Telescope (JWST), The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  15. A primary mirror metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.

    2016-07-01

    The Giant Magellan Telescope (GMT)1 is a 25 m "doubly segmented" telescope composed of seven 8.4 m "unit Gregorian telescopes", on a common mount. Each primary and secondary mirror segment will ideally lie on the geometrical surface of the corresponding rotationally symmetrical full aperture optical element. Therefore, each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and cophased. First light with a subset of four unit telescopes is currently scheduled for 2022. The project is currently considering an important aspect of the assembly, integration and verification (AIV) phase of the project. This paper will discuss a dedicated system to directly characterize the on-sky performance of the M1 segments, independently of the M2 subsystem. A Primary Mirror Metrology System (PMS) is proposed. The main purpose of this system will be to he4lp determine the rotation axis of an instrument rotator (the Gregorian Instrument Rotator or GIR in this case) and then to characterize the deflections and deformations of the M1 segments with respect to this axis as a function of gravity and temperature. The metrology system will incorporate a small (180 mm diameter largest element) prime focus corrector (PFC) that simultaneously feeds a <60" square acquisition and guiding camera field, and a Shack Hartmann wavefront sensor. The PMS is seen as a significant factor in risk reduction during AIV; it allows an on-sky characterization of the primary mirror segments and cells, without the complications of other optical elements. The PMS enables a very useful alignment strategy that constrains each primary mirror segments' optical axes to follow the GIR axis to within a few arc seconds. An additional attractive feature of the incorporation of the PMS into the AIV plan, is that it allows first on-sky telescope operations to occur with a system of considerably less optical and control complexity than the final doubly segmented Gregorian telescope configuration. This paper first discusses the strategic rationale for a PMS. Next the system itself is described in some detail. Finally, some description of the various uses the PMS will be put to during AIV of the M1 segments and subsequent characterization will be described.

  16. The Advanced Technology Solar Telescope mount assembly

    NASA Astrophysics Data System (ADS)

    Warner, Mark; Cho, Myung; Goodrich, Bret; Hansen, Eric; Hubbard, Rob; Lee, Joon Pyo; Wagner, Jeremy

    2006-06-01

    When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab. The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.

  17. Implementation of a Wavefront-Sensing Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  18. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  19. Final acceptance testing of the LSST monolithic primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.

  20. JWST Primary Mirror Tilt and Rollover Timelapse

    NASA Image and Video Library

    2017-12-08

    On May 4th 2016 engineers at the Goddard Space Flight Center tilted the uncovered primary mirror of the James Webb Space Telescope upright and to a rollover position. In this rare timelapse video see inside the world's largest clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland as the James Webb Space Telescope team lifts and turns the telescope for the first time. With glimmering gold surfaces, the large primary and rounded secondary mirror on this telescope are specially designed to reflect infrared light from some of the first stars ever born. The team will now begin to prepare to install the telescope's science instruments to the back of the mirrors. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. For more information, visit: www.jwst.nasa.gov or www.nasa.gov/webb Credit: NASA/Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Design, Fabrication, and Validation of an Ultra-Lightweight Membrane Mirror (Conference Proceedings)

    DTIC Science & Technology

    2005-08-01

    Membrane Mirror Active boundary control is very promising and studies predict good control over astigmatism and coma aberrations. However, the primary...design analysis. The mount has a split lenticular setup, allowing one canopy and many membrane mirrors that can be interchanged. The mount has a...spherical aberration, which is as expected. Results from finite element modeling showed that astigmatism can be corrected with the normal actuators

  2. Correcting Surface Figure Error in Imaging Satellites Using a Deformable Mirror

    DTIC Science & Technology

    2013-12-01

    background understanding about the Naval Postgraduate School’s SMT test- bed and the required performance for mirror surface figures. The...Postgraduate School. Larger than the Hubble Space Telescope, but smaller than the JWST (see Figure 2), the SMT is an advanced test- bed to research the...orientation (from [3]). The six segments of the primary mirror have a lightweight, deformable, nano- laminate face with actuators across the rear

  3. Active optics as enabling technology for future large missions: current developments for astronomy and Earth observation at ESA

    NASA Astrophysics Data System (ADS)

    Hallibert, Pascal

    2017-09-01

    In recent years, a trend for higher resolution has increased the entrance apertures of future optical payloads for both Astronomy and Earth Observation most demanding applications, resulting in new opto-mechanical challenges for future systems based on either monolithic or segmented large primary mirrors. Whether easing feasibility and schedule impact of tight manufacturing and integration constraints or correcting mission-critical in-orbit and commissioning effects, Active Optics constitutes an enabling technology for future large optical space instruments at ESA and needs to reach the necessary maturity in time for future mission selection and implementation. We present here a complete updated overview of our current R and D activities in this field, ranging from deformable space-compatible components to full correction chains including wavefront sensing as well as control and correction algorithms. We share as well our perspectives on the way-forward to technological maturity and implementation within future missions.

  4. Manufacturing of super-polished large aspheric/freeform optics

    NASA Astrophysics Data System (ADS)

    Kim, Dae Wook; Oh, Chang-jin; Lowman, Andrew; Smith, Greg A.; Aftab, Maham; Burge, James H.

    2016-07-01

    Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.

  5. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  6. Fabrication of experimental three-meter space telescope primary and secondary mirror support structure

    NASA Technical Reports Server (NTRS)

    Mishler, H. W.

    1974-01-01

    The fabrication of prototype titanium alloy primary and secondary mirror support structures for a proposed experimental three-meter space telescope is discussed. The structure was fabricated entirely of Ti-6Al-4V tubing and plate. Fabrication included the development of procedures including welding, forming, and machining. Most of the structures was fabricated by gas-shielding tungsten-arc (GTA) welding with several major components fabricated by high frequency resistance (HFR) welding.

  7. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  8. Wind Evaluation Breadboard electronics and software

    NASA Astrophysics Data System (ADS)

    Núñez, Miguel; Reyes, Marcos; Viera, Teodora; Zuluaga, Pablo

    2008-07-01

    WEB, the Wind Evaluation Breadboard, is an Extremely Large Telescope Primary Mirror simulator, developed with the aim of quantifying the ability of a segmented primary mirror to cope with wind disturbances. This instrument supported by the European Community (Framework Programme 6, ELT Design Study), is developed by ESO, IAC, MEDIA-ALTRAN, JUPASA and FOGALE. The WEB is a bench of about 20 tons and 7 meter diameter emulating a segmented primary mirror and its cell, with 7 hexagonal segments simulators, including electromechanical support systems. In this paper we present the WEB central control electronics and the software development which has to interface with: position actuators, auxiliary slave actuators, edge sensors, azimuth ring, elevation actuator, meteorological station and air balloons enclosure. The set of subsystems to control is a reduced version of a real telescope segmented primary mirror control system with high real time performance but emphasizing on development time efficiency and flexibility, because WEB is a test bench. The paper includes a detailed description of hardware and software, paying special attention to real time performance. The Hardware is composed of three computers and the Software architecture has been divided in three intercommunicated applications and they have been implemented using Labview over Windows XP and Pharlap ETS real time operating system. The edge sensors and position actuators close loop has a sampling and commanding frequency of 1KHz.

  9. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    PubMed

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  10. COI NMSD Hybrid Mirror

    NASA Technical Reports Server (NTRS)

    Mehle, Greg; Stahl, Phil (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.

  11. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  12. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  13. Research in the Optical Sciences.

    DTIC Science & Technology

    1981-01-30

    technology, as mirrors for laser weapons, and as protec- tive coatings in laser warfare. Three phases of the study were considered: 91. Laboratory...performance of simple metal coatings used on concentrating and flat-plate mirrors subject to high solar flux and heat, and on military mirrors used for...atI i :-a;t ;oil Cutiponlit -1of th >na"Cl I I C ’k lig ht cani be indi(ependent iv measured. 12 The scattering levels of most of the studied mirrors

  14. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  15. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  16. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, Simon J.; Seppala, Lynn G.

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  17. High-performance coatings for micromechanical mirrors.

    PubMed

    Gatto, Alexandre; Yang, Minghong; Kaiser, Norbert; Heber, Jörg; Schmidt, Jan Uwe; Sandner, Thilo; Schenk, Harald; Lakner, Hubert

    2006-03-01

    High-performance coatings for micromechanical mirrors were developed. The high-reflective metal systems can be integrated into the technology of MOEMS, such as spatial light modulators and microscanning mirrors from the near-infrared down to the vacuum-ultraviolet spectral regions. The reported metal designs permit high optical performances to be merged with suitable mechanical properties and fitting complementary metal-oxide semiconductor compatibility.

  18. Technology Applications Report 1993

    DTIC Science & Technology

    1994-01-01

    Companies Find Riches in Acousto-Optics 39 BMD Research Spurs Growth of Optics Start-Up 40 Improved Mirror Shaping Techniques to Correct Hubble...without destroying spectral bands along the horizon- tal axis. By developing toroidal mirrors that correct the vertical image, Chromex, Inc. was...which provide better image resolution and wider field-of-view than standard spherical-shaped mirrors , but are more difficult to make. PACE can

  19. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles; hide

    2013-01-01

    AMTD partner Exelis developed & demonstrated a technique to manufacture a 400 mm thick substrate via stacking and fusing core structural elements to front and back faceplates; making a 40 cm cut-out of a 4 meter diameter 60 kilograms per square meter mirror. This new process offers a lower cost approach for manufacturing large-diameter high-stiffness mirrors.

  20. Polishers around the globe: an overview on the market of large astronomical mirrors

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten

    2014-07-01

    Astronomical mirrors are key elements in modern optical telescopes, their dimensions are usually large and their specifications are demanding. Only a limited number of skilled companies respectively institutions around the world are able to master the challenge to polish an individual astronomical mirror, especially in dimensions above one meter. This paper presents an overview on the corresponding market including a listing of polishers around the globe. Therefore valuable information is provided to the astronomical community: Polishers may use the information as a global competitor database, astronomers and project managers may get more transparency on potential suppliers, and suppliers of polishing equipment may learn about unknown potential customers in other parts of the world. An evaluation of the historical market demand on large monolithic astronomical mirrors is presented. It concluded that this is still a niche market with a typical mean rate of 1-2 mirrors per year. Polishing of such mirrors is an enabling technology with impact on the development of technical know-how, public relation, visibility and reputation of the supplier. Within a corresponding technical discussion different polishing technologies are described. In addition it is demonstrated that strategic aspects and political considerations are influencing the selection of the optical finisher.

  1. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  2. Review of infrared scene projector technology-1993

    NASA Astrophysics Data System (ADS)

    Driggers, Ronald G.; Barnard, Kenneth J.; Burroughs, E. E.; Deep, Raymond G.; Williams, Owen M.

    1994-07-01

    The importance of testing IR imagers and missile seekers with realistic IR scenes warrants a review of the current technologies used in dynamic infrared scene projection. These technologies include resistive arrays, deformable mirror arrays, mirror membrane devices, liquid crystal light valves, laser writers, laser diode arrays, and CRTs. Other methods include frustrated total internal reflection, thermoelectric devices, galvanic cells, Bly cells, and vanadium dioxide. A description of each technology is presented along with a discussion of their relative benefits and disadvantages. The current state of each methodology is also summarized. Finally, the methods are compared and contrasted in terms of their performance parameters.

  3. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.

    PubMed

    Hu, Rui; Liu, Shutian; Li, Quhao

    2017-05-20

    For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.

  4. Current Technology Development Efforts on the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David

    2011-01-01

    The International X-ray Observatory (IXO) is a collaboration between NASA, ESA, and JAXA which is under study for launch in 2021. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. There is an extensive ongoing effort to raise the technology readiness level of the X-ray mirror from TRL 3 to TRL 6 in the next decade. Improvements have recently been made in the area of positioning and bonding mirrors on the nanometer scale and developing metals and composites with a matching coefficient of thermal expansion to the glass X-ray mirrors. On the mission systems side, the NASA reference design has been through a preliminary coupled loads analysis and a STOP analysis of the flight mirror assembly has been initiated. An impact study was performed comparing launching IXO on an Ariane 5 or a U.S. EELV. This paper will provide a snapshot of NASA's current observatory configuration and summarize the progress of these various technology and design efforts.

  5. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; hide

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  6. WIYN: A New Technology Telescope on Kitt Peak

    NASA Astrophysics Data System (ADS)

    Silva, David R.

    1995-05-01

    The WIYN Observatory, a joint venture between the University of Wisconsin (W), Indiana University (I), Yale University (Y), and the National Optical Astronomy Observatories (N), is a new technology alt-az 3.5m telescope located on Kitt Peak. Science operations are scheduled to begin during July 1995. WIYN has achieved site-limited delivered image quality (DIQ) through a combination of careful site selection, enclosure thermal control, and active optics techniques. The Observatory site was selected based on previous empirical observations of sub-arcsecond images. Heat from the enclosure is vented actively and passively: with 2 m/s winds, the observing chamber volume is exchanged roughly once per minute. The temperature and shape of the lightweight primary mirror, spun-cast by the Steward Observatory Mirror Lab, are maintained by control systems developed by NOAO. These systems maintain the mirror temperature within 0.2 deg C of ambient and the total delivered wavefront error within 150 nm RMS of the ideal. The measured WIYN median DIQ was 0.7'' FWHM for the period June 1994 through January 1995. The main facility instruments, the Multi-Object Spectrograph (MOS/Hydra) and the WIYN Imager, are currently being commissioned simultaneously at the two Nasymth foci. A f/6.3, 1 deg corrected beam is presented to MOS/Hydra while the beam presented to the Imager is corrected over 0.5 deg. The WIYN control system is based on a distributed network of real-time and time-sharing processors linked together by a low-bandwidth asynchronous message passing system. This architecture is robust, easily expandable, and amenable to remote operations. The baseline system was designed and implemented by the University of Wisconsin Controls Group. Current telescope performance and commissioning progress will be presented at the Meeting.

  7. Development of reaction-sintered SiC mirror for space-borne optics

    NASA Astrophysics Data System (ADS)

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  8. Controlling Laser Spot Size in Outer Space

    NASA Technical Reports Server (NTRS)

    Bennett, Harold E.

    2005-01-01

    Three documents discuss a method of controlling the diameter of a laser beam projected from Earth to any altitude ranging from low orbit around the Earth to geosynchronous orbit. Such laser beams are under consideration as means of supplying power to orbiting spacecraft at levels of the order of tens of kilowatts apiece. Each such beam would be projected by use of a special purpose telescope having an aperture diameter of 15 m or more. Expanding the laser beam to such a large diameter at low altitude would prevent air breakdown and render the laser beam eyesafe. Typically, the telescope would include an adaptive-optics concave primary mirror and a convex secondary mirror. The laser beam transmitted out to the satellite would remain in the near field on the telescope side of the beam waist, so that the telescope focal point would remain effective in controlling the beam width. By use of positioning stages having submicron resolution and repeatability, the relative positions of the primary and secondary mirrors would be adjusted to change the nominal telescope object and image distances to obtain the desired beam diameter (typically about 6 m) at the altitude of the satellite. The limiting distance D(sub L) at which a constant beam diameter can be maintained is determined by the focal range of the telescope 4 lambda f(sup 2) where lambda is the wavelength and f the f/number of the primary mirror. The shorter the wavelength and the faster the mirror, the longer D(sub L) becomes.

  9. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  10. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, David E.; Logan, B. Grant

    1981-01-01

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.

  11. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the large scale production is presented as well as the performance, in terms of geometric and optical properties, of the produced mirrors. The alignment procedure of the mirrors is also detailed. This technique is finally compared to other manufacturing techniques based on composite glass mirrors within the framework of GCT mirrors specificities.

  12. Space active optics: in flight aberrations correction for the next generation of large space telescopes

    NASA Astrophysics Data System (ADS)

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2017-11-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.

  13. Cophasing techniques for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Devaney, Nicholas; Schumacher, Achim

    2004-07-01

    The current designs of the majority of ELTs envisage that at least the primary mirror will be segmented. Phasing of the segments is therefore a major concern, and a lot of work is underway to determine the most suitable techniques. The techniques which have been developed are either wave optics generalizations of classical geometric optics tests (e.g. Shack-Hartmann and curvature sensing) or direct interferometric measurements. We present a review of the main techniques proposed for phasing and outline their relative merits. We consider problems which are specific to ELTs, e.g. vignetting of large parts of the primary mirror by the secondary mirror spiders, and the need to disentangle phase errors arising in different segmented mirrors. We present improvements in the Shack-Hartmann and curvature sensing techniques which allow greater precision and range. Finally, we describe a piston plate which simulates segment phasing errors and show the results of laboratory experiments carried out to verify the precision of the Shack-Hartmann technique.

  14. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    PubMed

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  15. Development of Individually Addressable Micro-Mirror-Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent

    2000-01-01

    We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.

  16. High-precision processing and detection of the high-caliber off-axis aspheric mirror

    NASA Astrophysics Data System (ADS)

    Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie

    2017-10-01

    To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.

  17. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  18. Contactless efficient two-stage solar concentrator for tubular absorber.

    PubMed

    Benítez, P; García, R; Miñano, J C

    1997-10-01

    The design of a new type of two-mirror solar concentrator for a tubular receiver, the XX concentrator, is presented. The main feature of the XX is that it has a sizable gap between the secondary mirror and the absorber and it still achieves concentrations close to the thermodynamic limit with high collection efficiencies. This characteristic makes the XX unique and, contrary to current two-stage designs, allows for the location of the secondary outside the evacuated tube. One of the XX concentrators presented achieves an average flux concentration within +/-0.73 deg of 91.1% of the thermodynamic limit with a collection efficiency of 96.8% (i.e., 3.2% of the rays incident on the primary mirror within +/-0.73 deg are rejected). Another XX design is 92.5% efficient and receives 95.1% of the maximum concentration. These values are the highest reported for practical concentrators, to our knowledge. The gap between the absorber and the secondary mirror is 6.8 and 10.5 times the absorber radius for each concentrator. Moreover the rim angle of the primary mirror is 98.8 and 104.4 deg in each case, which is of interest for the collector's good mechanical stability.

  19. Large ultra-lightweight photonic muscle membrane mirror telescope

    NASA Astrophysics Data System (ADS)

    Ritter, Joseph M.; Baer, Andrea E.; Ditto, Thomas D.

    2008-07-01

    Photons weigh nothing. Why must even small space telescopes weigh tons? Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Our team's vision is to demonstrate the technology for making giant space telescopes with 1/2000 the areal density of the Hubble. Progress on a novel actuation approach is presented. The goal is to lay groundwork to achieve a 10 to 100 fold improvement in spatial resolution and a factor of 10 reduction in production and deployment cost of active optics. This entailed the synthesis and incorporation of photoactive isomers into crystals and polyimides to develop nanomachine laser controlled molecular actuators. A large photomechanical effect is obtained in polymers 10-50 μm thick. Laser-induced figure variations include the following: 1) reversible bi-directional bending; 2) large deformation range; 3) high speed deformation; and 4) control with a single laser (~0.1 W/cm2). Photolyzation data presented showing reversible semi-permanence of the photoisomerization indicates that a scanned 1 watt laser rather than a megawatt will suffice for large gossamer structure actuation. Areal density can be reduced by increasing actuation. Making every molecule of a substrate an actuator approaches the limit of the design trade space. Presented is a photomechanical system where nearly every molecule of a mirror substrate is itself an optically powered actuator. Why must even small space telescopes weigh tons? Data suggests they need not.

  20. Measuring a Precise Ultra-Lightweight Spaceflight Mirror on Earth: The Analysis of the SHARPI PM Mirror Figure Data during Mirror Processing at GSFC

    NASA Technical Reports Server (NTRS)

    Antonille, Scott; Content, David; Rabin, Douglas; Wallace, Thomas; Wake, Shane

    2007-01-01

    The SHARPI (Solar High Angular Resolution Photometric Imager) primary mirror is a 5kg, 0.5m paraboloid, diffraction limited at FUV wavelengths when placed in a 0-G environment. The ULE sandwich honeycomb mirror and the attached mount pads were delivered by ITT (then Kodak) in 2003 to NASA s Goddard Space Flight Center (GSFC). At GSFC, we accepted, coated, mounted, and vibration tested this mirror in preparation for flight on the PICTURES (Planet Imaging Concept Testbed Using a Rocket Experiment) mission. At each step, the integrated analysis of interferometer data and FEA models was essential to quantify the 0-G mirror figure. This task required separating nanometer sized variations from hundreds of nanometers of gravity induced distortion. The ability to isolate such features allowed in-situ monitoring of mirror figure, diagnosis of perturbations, and remediation of process errors. In this paper, we describe the technical approach used to achieve these measurements and overcome the various difficulties maintaining UV diffraction-limited performance with this aggressively lightweighted mirror.

  1. Design and Analysis of Modules for Segmented X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; BIskach, Michael P.; Chan, Kai-Wing; Saha, Timo T; Zhang, William W.

    2012-01-01

    Future X-ray astronomy missions demand thin, light, and closely packed optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The modular approach to X-ray Flight Mirror Assembly (FMA) design allows excellent scalability of the mirror technology to support a variety of mission sizes and science objectives. This paper describes FMA designs using slumped glass mirror segments for several X-ray astrophysics missions studied by NASA and explores the driving requirements and subsequent verification tests necessary to qualify a slumped glass mirror module for space-flight. A rigorous testing program is outlined allowing Technical Development Modules to reach technical readiness for mission implementation while reducing mission cost and schedule risk.

  2. Shell Separation for Mirror Replication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  3. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  4. Space Optic Manufacturing - X-ray Mirror

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  5. MEMS deformable mirror for wavefront correction of large telescopes

    NASA Astrophysics Data System (ADS)

    Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner

    2017-11-01

    A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.

  6. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.

  7. Toward Large-Area Sub-Arcsecond X-Ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Allured, Ryan; Ames, Andrew O.; Biskach, Michael P.; Broadway David M.; Bruni, Ricardo J.; Burrows, David; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; hide

    2016-01-01

    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates.

  8. A path planning method used in fluid jet polishing eliminating lightweight mirror imprinting effect

    NASA Astrophysics Data System (ADS)

    Li, Wenzong; Fan, Bin; Shi, Chunyan; Wang, Jia; Zhuo, Bin

    2014-08-01

    With the development of space technology, the design of optical system tends to large aperture lightweight mirror with high dimension-thickness ratio. However, when the lightweight mirror PV value is less than λ/10 , the surface will show wavy imprinting effect obviously. Imprinting effect introduced by head-tool pressure has become a technological barrier in high-precision lightweight mirror manufacturing. Fluid jet polishing can exclude outside pressure. Presently, machining tracks often used are grating type path, screw type path and pseudo-random path. On the edge of imprinting error, the speed of adjacent path points changes too fast, which causes the machine hard to reflect quickly, brings about new path error, and increases the polishing time due to superfluous path. This paper presents a new planning path method to eliminate imprinting effect. Simulation results show that the path of the improved grating path can better eliminate imprinting effect compared to the general path.

  9. Space Science

    NASA Image and Video Library

    1999-04-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  10. JPRS Report, Science & Technology Europe

    DTIC Science & Technology

    1988-07-27

    materials research under microgravity conditions, such as ELLI, AMF of MHF ( Mirror Heating Facility) the Zone Melt- ing Furnace is a resistance-heated...pendently controlled zones. This is another advantage of a resistance-heated furnace over a mirror heating facil- ity. When the experiment requires a...zone, the subdivision into several heating zones will be preferable to the single light focus of a mirror heating facility. In 1987/88, following

  11. Interference testing methods of large astronomical mirrors base on lenses and CGH wavefront correctors

    NASA Astrophysics Data System (ADS)

    Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Patrikeev, Vladimir E.; Semenov, Alexandr P.

    2010-07-01

    Since last years and at present days LZOS, JSC has been producing a range of primary mirrors of astronomical telescopes with diameter more than 1m under contracts with foreign companies. Simultaneous testing of an aspherical surface figure by means of a lens corrector and CGH (computer generated hologram) corrector, testing of the corrector using the CGH allow challenging the task of definite testing of the mirrors surfaces figure. The results of successful figuring of the mirrors with diameter up to 4m like VISTA Project (Southern European Observatory), TNT (Thai National telescope, Australia - Thailand), LCO telescopes (Las Cumbres Observatory, USA; Russian national projects and meeting these mirrors specifications' requirements are all considered as the sufficient evidence.

  12. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  13. Focusing Light Rays Back to the Vertex of a Reflecting Parabolic Collector: The Equivalent of Dionysius Ear Effect in Optical Systems

    ERIC Educational Resources Information Center

    De Luca, R.; Fedullo, A.

    2009-01-01

    A vertical light ray coming from infinity is reflected by a primary parabolic mirror M[subscript 1] having focus at F[subscript 1]. At a small distance from F[subscript 1] a secondary mirror M[subscript 2], symmetric with respect to the vertical axis, is placed. One would like to find the analytic equation of the mirror M[subscript 2], so that all…

  14. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  15. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial.

    PubMed

    Michielsen, Marian E; Selles, Ruud W; van der Geest, Jos N; Eckhardt, Martine; Yavuzer, Gunes; Stam, Henk J; Smits, Marion; Ribbers, Gerard M; Bussmann, Johannes B J

    2011-01-01

    To evaluate for any clinical effects of home-based mirror therapy and subsequent cortical reorganization in patients with chronic stroke with moderate upper extremity paresis. A total of 40 chronic stroke patients (mean time post .onset, 3.9 years) were randomly assigned to the mirror group (n = 20) or the control group (n = 20) and then joined a 6-week training program. Both groups trained once a week under supervision of a physiotherapist at the rehabilitation center and practiced at home 1 hour daily, 5 times a week. The primary outcome measure was the Fugl-Meyer motor assessment (FMA). The grip force, spasticity, pain, dexterity, hand-use in daily life, and quality of life at baseline-posttreatment and at 6 months-were all measured by a blinded assessor. Changes in neural activation patterns were assessed with functional magnetic resonance imaging (fMRI) at baseline and posttreatment in an available subgroup (mirror, 12; control, 9). Posttreatment, the FMA improved more in the mirror than in the control group (3.6 ± 1.5, P < .05), but this improvement did not persist at follow-up. No changes were found on the other outcome measures (all Ps >.05). fMRI results showed a shift in activation balance within the primary motor cortex toward the affected hemisphere in the mirror group only (weighted laterality index difference 0.40 ± 0.39, P < .05). This phase II trial showed some effectiveness for mirror therapy in chronic stroke patients and is the first to associate mirror therapy with cortical reorganization. Future research has to determine the optimum practice intensity and duration for improvements to persist and generalize to other functional domains.

  16. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training.

    PubMed

    Selles, Ruud W; Michielsen, Marian E; Bussmann, Johannes B J; Stam, Henk J; Hurkmans, Henri L; Heijnen, Iris; de Groot, Danielle; Ribbers, Gerard M

    2014-09-01

    Although most mirror therapy studies have shown improved motor performance in stroke patients, the optimal mirror training protocol still remains unclear. To study the relative contribution of a mirror in training a reaching task and of unilateral and bimanual training with a mirror. A total of 93 stroke patients at least 6 months poststroke were instructed to perform a reaching task as fast and as fluently as possible. They performed 70 practice trials after being randomly allocated to 1 of 5 experimental groups: training with (1) the paretic arm with direct view (Paretic-No Mirror), (2) the nonparetic arm with direct view (Nonparetic-No Mirror), (3) the nonparetic arm with mirror reflection (Nonparetic Mirror), (4) both sides and with a nontransparent screen preventing visual control of paretic side (Bilateral-Screen), and (5) both sides with mirror reflection of the nonparetic arm (Bilateral-Mirror). As baseline and follow-up, patients performed 6 trials using only their paretic side. Primary outcome measure was the movement time. We found the largest intervention effect in the Paretic-No Mirror condition. However, the Nonparetic-Mirror condition was not significantly different from the Paretic-No Mirror condition, while the Unaffected-No Mirror condition had significantly less improvement than the Paretic-No Mirror condition. In addition, movement time improved significantly less in the bimanual conditions and there was no difference between both bimanual conditions or between both mirror conditions. The present study confirms that using a mirror reflection can facilitate motor learning. In this task, bimanual movement using mirror training was less effective than unilateral training. © The Author(s) 2014.

  17. Mass production of silicon pore optics for ATHENA

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Collon, Maximilien

    2016-07-01

    Silicon Pore Optics (SPO) provide high angular resolution with low effective area density as required for the Advanced Telescope for High Energy Astrophysics (Athena). The x-ray telescope consists of several hundreds of SPO mirror modules. During the development of the process steps of the SPO technology, specific requirements of a future mass production have been considered right from the beginning. The manufacturing methods heavily utilise off-the-shelf equipment from the semiconductor industry, robotic automation and parallel processing. This allows to upscale the present production flow in a cost effective way, to produce hundreds of mirror modules per year. Considering manufacturing predictions based on the current technology status, we present an analysis of the time and resources required for the Athena flight programme. This includes the full production process starting with Si wafers up to the integration of the mirror modules. We present the times required for the individual process steps and identify the equipment required to produce two mirror modules per day. A preliminary timeline for building and commissioning the required infrastructure, and for flight model production of about 1000 mirror modules, is presented.

  18. Hi-speed compact deformable mirror: status, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J.-F.

    2010-02-01

    Membrane deformable mirrors based on magnetic actuators have been known for years. State-of-the-art deformable mirrors usually have large strokes but low bandwidth. Furthermore, this bandwidth decreases with the diameter. In this paper, we present the results of a new actuator principle based on magnetic forces allowing high bandwidth (up to a few kHz), very large stroke (>30μm) with a record pitch of 1.5mm. The benefits of this technology will be presented for three applications: astronomy, vision science and microscopy. The parameters of the mirrors have been tuned such that the inter-actuator stroke of the deformable (more than 2.0μm) in order to fit the atmosphere turbulence characteristics. In vision science, efforts have been made to correct both simultaneously the low and high order aberrations (more than 45μm of wavefront correction on astigmatism and focus). Finally, we will demonstrate how we have developed a deformable mirror able to correct spherical aberrations (microscopy). The last part of the article is devoted to give some perspectives about this technology.

  19. Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors

    PubMed

    Kerssemakers; van der Molen SJ; Koeman; Gunther; Griessen

    2000-08-03

    Exposure of rare-earth films to hydrogen can induce a metal-insulator transition, accompanied by pronounced optical changes. This 'switchable mirror' effect has received considerable attention from theoretical, experimental and technological points of view. Most systems use polycrystalline films, but the synthesis of yttrium-based epitaxial switchable mirrors has also been reported. The latter form an extended self-organized ridge network during initial hydrogen loading, which results in the creation of micrometre-sized triangular domains. Here we observe homogeneous and essentially independent optical switching of individual domains in epitaxial switchable mirrors during hydrogen absorption. The optical switching is accompanied by topographical changes as the domains sequentially expand and contract; the ridges block lateral hydrogen diffusion and serve as a microscopic lubricant for the domain oscillations. We observe the correlated changes in topology and optical properties using in situ atomic force and optical microscopy. Single-domain phase switching is not observed in polycrystalline films, which are optically homogeneous. The ability to generate a tunable, dense pattern of switchable pixels is of technological relevance for solid-state displays based on switchable mirrors.

  20. Solar Collector With Image-Forming Mirror Cavity to Irradiate Small Central Volume

    NASA Technical Reports Server (NTRS)

    Buchele, Don; Castle, Charles; Bonoetti, Joseph A.

    2001-01-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and higher temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 K. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlying theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74 m (9 ft) focal length. A quartz lens focuses a small sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is "suspended in space," 7.1 cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  1. On-orbit figure sensing and figure correction control for 0.5 arc-second adjustable X-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul

    This investigation seeks to develop the technology to directly monitor on-orbit changes to imaging performance of adjustable X-ray optics so as to be able to efficiently correct adverse changes at a level consistent with 0.5 arc-second X-ray telescope imaging. Adjustable X-ray optics employ thin film piezoelectric material deposited on the back of a thin glass Wolter mirror segment to introduce localized stresses in the mirror. These stresses are used in a deterministic way to improve mirror figure from 10 arc-sec, half power diameter (HPD), to 0.5 arc-sec, HPD, without the need for a heavy reaction structure. This is a realizable technology for potential future X-ray telescope missions with 0.5 arc-second resolution and several square meters effective area, such as SMART-X. We are pursuing such mirror development under an existing APRA grant. Here we propose a new investigation to accomplish the monitoring and control of the mirrors by monitoring the health of the piezoelectric actuators of the adjustable optics to a level consistent with 0.5 arcsec imaging. Such measurements are beyond the capability of conventional, thin metal film strain gauges using DC measurements. Instead, we propose to develop the technology to deposit different types of strain gauges (metal film, semiconductor) directly on the piezoelectric cells; to investigate the use of additional thin layers of piezoelectric materials such as lead zirconate titanate or zinc oxide as strain and temperature gauges; and to use AC measurement of strain gauges for precise measurement of piezoelectric adjuster performance. The intent is to use this information to correct changes in mirror shape by adjusting the voltages on the piezoelectric adjustors. Adjustable X-ray optics are designed to meet the challenge of large collecting area and high angular resolution. The mirrors are called adjustable rather than active as mirror figure error is corrected (adjusted) once or infrequently, as opposed to being changed constantly at several cycles/sec (active). In our approach, the mirror figure is corrected based on ground measurements, accounting for figure errors due to mirror manufacturing, mounting induced deformations, modeled gravity release, and modeled on-orbit thermal effects. The piezoelectric strain monitoring we seek to develop in this program extends adjustable mirror technology development, as it enables efficient adjustment and correction of mirror figure on-orbit, as required. This unprecedented level of system robustness will make telescopes less expensive to build because requirements for the non-optical systems can be looser, and it will also make the system more resistant to degradation, promoting mission success. The largest drivers for changes from ground calibration to on-orbit performance are piezoelectric material aging and an unexpected thermal environment (i.e., larger gradients than modeled or other thermal control system problem). Developing the capability to accurately monitor the health of each piezoelectric cell and the local mirror surface temperature will enable the real time sensing of any of these potential issues, help determine the cause, and enable corrections via updating models of on-orbit conditions and re-optimizing the required piezoelectric cell voltages for mirror figure correction. Our 3 year research program includes the development of the strain monitoring technology, its deposition on the adjustable optics, modeling and performance simulation, accelerated lifetime testing, and optical and electrical metrology of sample adjustable optics that incorporate monitoring sensors. Development of the capability to remotely monitor piezo performance and temperature to necessary precision will vastly improve reliability of the SMART-X mission concept, or the sub-arc-second X-ray Surveyor mission described in the 2013 NASA Astrophysics Roadmap, Enduring Quests Daring Visions.

  2. A Research on the Primary Mirror Manipulator of Large Segmented-mirror Telescope

    NASA Astrophysics Data System (ADS)

    Zuo, H.

    2012-09-01

    Since Galileo firstly used the telescope to observe the sky 400 years ago, the aperture of the telescope has become larger and larger to observe the deeper universe, and the segmented-mirror telescope is becoming more and more popular with increasing aperture. In the early 21st century, a series of segmented-mirror telescopes have been constructed including the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) of China. LAMOST is a meridian reflecting Schmidt telescope, and the dimension of the primary mirror is about 6.7 m× 6 m, which is composed of 37 hexagonal sub-mirrors. However, a problem about the mirror installation appears with the increasing aperture. If there are hundreds of sub-mirrors in the telescope, it is a challenging job to mount and dismount them to the truss. This problem is discussed in this paper and a manipulator for the primary mirror of LAMOST is designed to perform the mount and dismount work. In chapter 1, all the segmented-mirror telescopes in the world are introduced and how the sub-mirrors of these telescopes are installed has been investigated. After comparing with the serial and the parallel robot, a serial robot manipulator proposal, which has several redundant degrees of freedom (DOFs), has been chosen from a series of design proposals. In chapter 2, the theoretical analysis has been carried out on the basis of the design proposal, which includes the forward kinematics and the inverse kinematics. Firstly the D-H coordinate is built according to the structure of the manipulator, so it is possible to obtain the end-effector position and orientation from the individual joint motion thanks to the forward kinematics. Because of the redundant DOFs of the manipulator, the inverse kinematics solution can be a very trick task, and the result may not be only, therefore a kind of simulation is carried out to get the numerical solution using ADAMS (Automatic Dynamic Analysis of Mechanical System). In the dynamics analysis the Lagrange formulation is introduced, and the dynamic equations of the manipulator have been obtained by using the Lagrange method. Since the manipulator is a serious coupling system, the dynamic curve of the key joints is plotted by using the ADAMS software. According to the theoretical analysis, the manipulator for the primary mirror of LAMOST is designed and fabricated. The whole manipulator consists of three parts. The first part is the mechanical arm which is used to realize the high speed and the long distance location, and it is rebuilt from a small truck crane; The second part is a serial mechanical hand which is used to realize the low speed and the short distance location. It has six DOFs including the pitch, the rotate about the vertical axis, the elevation along the vertical axis, and two horizontal translations. Subsequently the structure is analyzed in the ANSYS software to confirm that the strength is enough and the displacement is in the tolerance; The third part is a mechanical wrist, in which part a hydraulic rod is used to keep the bottom of the mechanical hand horizontal. In chapter 6, the control characteristics of the whole manipulator are analyzed. Furthermore, the control method and flowchart are proposed. Based on this method the control device was selected. In the end of this paper, the main work and the results of this project are summarized. Further research is prospected and it provides a reference for the future large telescope projects.

  3. Do Mirror Glasses Have the Same Effect on Brain Activity as a Mirror Box? Evidence from a Functional Magnetic Resonance Imaging Study with Healthy Subjects

    PubMed Central

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups. PMID:26018572

  4. Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis.

    PubMed

    Broderick, P; Horgan, F; Blake, C; Ehrensberger, M; Simpson, D; Monaghan, K

    2018-06-01

    Mirror therapy has been proposed as an effective intervention for lower limb rehabilitation post stroke. This systematic review with meta-analysis examined if lower limb mirror therapy improved the primary outcome measures of muscle tone and motor function and the secondary outcome measures balance characteristics, functional ambulation, walking velocity, passive range of motion (PROM) for ankle dorsiflexion and gait characteristics in patients with stroke compared to other interventions. Standardised mean differences (SMD) and mean differences (MD) were used to assess the effect of mirror therapy on lower limb functioning. Nine studies were included in the review. Among the primary outcome measures there was evidence of a significant effect of mirror therapy on motor function compared with sham and non-sham interventions (SMD 0.54; 95% CI 0.24-0.93). Furthermore, among the secondary outcome measures there was evidence of a significant effect of mirror therapy for balance capacity (SMD -0.55; 95% CI -1.01 to -0.10), walking velocity (SMD 0.71; 95% CI 0.35-1.07), PROM for ankle dorsiflexion (SMD 1.20; 95% CI 0.71-1.69) and step length (SMD 0.56; 95% CI -0.00 to 1.12). The results indicate that using mirror therapy for the treatment of certain lower limb deficits in patients with stroke may have a positive effect. Although results are somewhat positive, overly favourable interpretation is cautioned due to methodological issues concerning included studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mirror therapy for phantom limb pain: brain changes and the role of body representation.

    PubMed

    Foell, J; Bekrater-Bodmann, R; Diers, M; Flor, H

    2014-05-01

    Phantom limb pain (PLP) is a common consequence of amputation and is difficult to treat. Mirror therapy (MT), a procedure utilizing the visual recreation of movement of a lost limb by moving the intact limb in front of a mirror, has been shown to be effective in reducing PLP. However, the neural correlates of this effect are not known. We investigated the effects of daily mirror training over 4 weeks in 13 chronic PLP patients after unilateral arm amputation. Eleven participants performed hand and lip movements during a functional magnetic resonance imaging (fMRI) measurement before and after MT. The location of neural activity in primary somatosensory cortex during these tasks was used to assess brain changes related to treatment. The treatment caused a significant reduction of PLP (average decrease of 27%). Treatment effects were predicted by a telescopic distortion of the phantom, with those patients who experienced a telescope profiting less from treatment. fMRI data analyses revealed a relationship between change in pain after MT and a reversal of dysfunctional cortical reorganization in primary somatosensory cortex. Pain reduction after mirror training was also related to a decrease of activity in the inferior parietal cortex (IPC). Experienced body appearance seems to be an important predictor of mirror treatment effectiveness. Maladaptive changes in cortical organization are reversed during mirror treatment, which also alters activity in the IPC, a region involved in painful perceptions and in the perceived relatedness to an observed limb. © 2013 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

  6. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  7. In Situ Metrology for the Corrective Polishing of Replicating Mandrels

    DTIC Science & Technology

    2010-06-08

    distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder, Colorado, USA, 7-9 June 2010. 14...ABSTRACT The International X-ray Observatory (IXO) will require mandrel metrology with extremely tight tolerances on mirrors with up to 1.6 meter radii...ideal. Error budgets for the IXO mirror segments are presented. A potential solution is presented that uses a voice-coil controlled gauging head, air

  8. Opto-Mechanical Analyses for Performance Optimization of Lightweight Grazing-Incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline; Kolodziejczak, Jeff; Odell, Steve; Eisner, Ronald; Ramsey, Brian; Gubarev, Mikhail

    2013-01-01

    New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve sub-arcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Because the lightweight mirrors are typically flimsy, they are susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its thickness and dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Initial results will be reported.

  9. Opto-mechanical Analyses for Performance Optimization of Lightweight Grazing-incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Kolodziejczak, Jeffery J.; Odell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C.; Ramsey, Brian; Gubarev, Mikhail V.

    2013-01-01

    New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve subarcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Lightweight mirrors are typically flimsy and are, therefore, susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Here we report initial results of this study.

  10. Opto-mechanical Analyses for Performance Optimization of Lightweight Grazing-incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline; Kolodsiejczak, Jeffrey; Odell, Stephen; Elsner, Ronald; Weisskopf, Martin; Ramsey, Brian; Gubarev, Mikhail

    2013-01-01

    New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve sub-arcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Because the lightweight mirrors are typically flimsy, they are susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its thickness and dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Initial results will be reported.

  11. Figure and Dimension Metrology of Extremely Lightweight X-Ray Mirrors for Space Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    The International X-ray Observatory (IXO) is the next major space X-ray observatory, performing both imaging and spectroscopic studies of all kinds of objects in the Universe. It is a collaborative mission of the National Aeronautics and Space Administration of the United States, the European Space Agency, and Japan Aerospace Exploration Agency. It is to be launched into a Sun-Earth L2 orbit in 2021. One of the most challenging aspects of the mission is the construction of a flight mirror assembly capable focusing X-rays in the band of 0.1 to 40 keY with an angular resolution of better than 5 arc-seconds and with an effective collection area of more than 3 sq m. The mirror assembly will consist of approximately 15,000 parabolic and hyperbolic mirror segments, each of which is approximately 200mm by 300mm with a thickness of 0.4mm. The manufacture and qualification of these mirror segments and their integration into the giant mirror assembly have been the objectives of a vigorous technology development program at NASA's Goddard Space Flight Center. Each of these mirror segments needs to be measured and qualified for both optical figure and mechanical dimensions. In this talk, I will describe the technology program with a particular emphasis on a measurement system we are developing to meet those requirements, including the use of coordinate measuring machines, Fizeau interferometers, and custom-designed, and -built null lens. This system is capable of measuring highly off-axis aspherical or cylindrical mirrors with repeatability, accuracy, and speed.

  12. WFXT Technology Overview

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Campana, S.

    The Wide Field X-ray Telescope (WFXT) is a medium class mission for X-ray surveys of the sky with an unprecedented area and sensitivity. In order to meet the effective area requirement, the design of the optical system is based on very thin mirror shells, with thicknesses in the 1-2 mm range. In order to get the desired angular resolution (10 arcsec requirement, 5 arcsec goal) across the entire 1× 1 degree FOV (Field Of View), the design of the optical system is based on nested modified grazing incidence Wolter-I mirrors realized with polynomial profiles, focal plane curvature and plate scale corrections. This design guarantees an increased angular resolution at large off-axis angle with respect to the normally used Wolter I configuration, making WFXT ideal for survey purposes. The WFXT X-ray Telescope Assembly is composed by three identical mirror modules of 78 nested shells each, with diameter up to 1.1 m. The epoxy replication process with SiC shells has already been proved to be a valuable technology to meet the angular resolution requirement of 10 arcsec. To further mature the telescope manufacturing technology and to achieve the goal of 5 arcsec, we are considering different materials for the mirror shells with particular care to quartz glass (fused silica), a well-known material with good thermo-mechanical and polishability characteristics that could meet our goal in terms of mass and stiffness, with significant cost and time saving with respect to SiC. To bring the mirror shells to the needed accuracy a deterministic direct polishing method for the mirror shells is under investigation. A direct polishing method has already been used for past missions (as Einstein, Rosat, Chandra): the technological challenge now is to apply it for almost ten times thinner shells. Our approach is based on two main steps: first quartz glass tubes available on the market are grinded to conical profiles, and second the obtained shells are polished to the required polynomial profiles by Computer Numerical Control (CNC) polishing machine.

  13. Using the DP-190 glue for adhesive attachment of a large space mirror and its rim

    NASA Astrophysics Data System (ADS)

    Vlasenko, Oleg; Zverev, Alexey; Sachkov, Mikhail

    2014-07-01

    The glue DP-190 is widely used for adhesive attachment of astrositall (zerodur) lightweight large-size space astronomical mirrors (diameter of 1.7 m and more) with elements of their frames of invar. Peculiarities of physicalmechanical behavior of the glue DP-190 when exposed to the environment during the ground operation and in orbit cause instability of the reflective surface quality of mirrors. In this report we show that even a small (around 1%-5%) volumetric deformation of a cylindrical adhesive layer with a thickness of 0.8 mm between the mirror and the rim element causes significant mirrors deformation. We propose to use adhesive layer of special form that allows to reduce volumetric deformations of the glue DP-190 up to three times. Here we present results based on primary mirror tests of the WSO-UV project.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface Micromachined Adjustable Micro-Concave Mirror for Bio-Detection Applications

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh

    2009-08-01

    We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.

  15. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  16. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  17. Structural evaluation of candidate designs for the large space telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Soosaar, K.; Grin, R.; Furey, M.; Hamilton, J.

    1975-01-01

    Structural performance analyses were conducted on two candidate designs (Itek and Perkin-Elmer designs) for the large space telescope three-meter mirror. The mirror designs and the finite-element models used in the analyses evaluation are described. The results of the structural analyses for several different types of loading are presented in tabular and graphic forms. Several additional analyses are also reported: the evaluation of a mirror design concept proposed by the Boeing Co., a study of the global effects of local cell plate deflections, and an investigation of the fracture mechanics problems likely to occur with Cervit and ULE. Flexibility matrices were obtained for the Itek and Perkin-Elmer mirrors to be used in active figure control studies. Summary, conclusions, and recommendations are included.

  18. An 8 Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.

  19. Design Trade Study for a 4-Meter Off-Axis Primary Mirror Substrate and Mount for the Habitable-Zone Exoplanet Direct Imaging Mission

    NASA Technical Reports Server (NTRS)

    Arnold, William R.; Stahl, H. Philip

    2017-01-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study’s purpose is not to produce a final design, but rather to established a design methodology for matching the mirror’s properties (mass and stiffness) with the mission’s optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs. open-back vs. partial-back; meniscus vs. flat back vs. shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  20. Dynamic/Jitter Assessment of Multiple Potential HabEx Structural Designs

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike

    2017-01-01

    One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of = 5 mas. Dynamic analyses of two configurations of a proposed (HabEx) 4 meter off-axis telescope structure were performed to predict effects of jitter on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which will roll into efforts to define the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.

  1. Gemini primary mirror in situ wash

    NASA Astrophysics Data System (ADS)

    Vucina, Tomislav; Boccas, Maxime; Araya, Claudio; Ah Hee, Clayton; Cavedoni, Chas

    2008-07-01

    The Gemini twins were the first large modern telescopes to receive protected silver coatings on their mirrors in 2004. The low emissivity requirement is fundamental for the IR optimization. In the mid-IR a factor of two reduction in telescope emissivity is equivalent to increasing the collecting area by the same factor. Our emissivity maintenance requirement is very stringent: 0.5% maximum degradation during operations, at any single wavelength beyond 2.2 μm. We developed a very rigorous standard to wash the primary mirrors in the telescope without science down time. The in-situ washes are made regularly, and the reflectivity and emissivity gains are significant. The coating lifetime has been extended far more than our original expectations. In this report we describe the in-situ process and hardware, explain our maintenance plan, and show results of the coating performance over time.

  2. Dynamic/jitter assessment of multiple potential HabEx structural designs

    NASA Astrophysics Data System (ADS)

    Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike

    2017-09-01

    One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of <= 5 milli-arc seconds (mas). Dynamic analyses of two configurations of a proposed HabEx 4 meter off-axis telescope structure were performed to predict effects of a vibration input on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which contribute to efforts in defining the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.

  3. On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes.

    PubMed

    Surdej, Isabelle; Yaitskova, Natalia; Gonte, Frederic

    2010-07-20

    The Zernike phase contrast method is a novel technique to phase the primary mirrors of segmented telescopes. It has been tested on-sky on a unit telescope of the Very Large Telescope with a segmented mirror conjugated to the primary mirror to emulate a segmented telescope. The theoretical background of this sensor and the algorithm used to retrieve the piston, tip, and tilt information are described. The performance of the sensor as a function of parameters such as star magnitude, seeing, and integration time is discussed. The phasing accuracy has always been below 15 nm root mean square wavefront error under normal conditions of operation and the limiting star magnitude achieved on-sky with this sensor is 15.7 in the red, which would be sufficient to phase segmented telescopes in closed-loop during observations.

  4. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  5. Application of neuroscience to technology in stroke rehabilitation.

    PubMed

    Burns, Martha S

    2008-01-01

    The past decade has seen remarkable advances in our understanding of mechanisms that drive functional neuroplastic change after brain injury and the mirror neuron system that appears essential for language learning and communicative interaction. This article describes five neuroscience-based interventions available for clinical practice, with a discussion of the potential value of mirror neurons in stroke rehabilitation. Case-study data on three adults with aphasia who received various combinations of neuroscience-derived technological interventions are provided to inform the clinician of the potential advantages of technology as an adjunct to, not a substitution for, conventional therapeutic intervention.

  6. Active Optical Zoom for Tracking

    DTIC Science & Technology

    2008-09-01

    optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have

  7. Research Technology

    NASA Image and Video Library

    1999-05-12

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  8. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    NASA Technical Reports Server (NTRS)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  9. Optical levitation of a mirror for reaching the standard quantum limit.

    PubMed

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-12

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-Pérot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  10. Optical levitation of a mirror for reaching the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  11. Nasmyth Telescope

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    An altazimuth reflecting telescope with relatively stable platforms for mounting heavy, large, delicate or developmental equipment which cannot be, or has not been, engineered to cope with attitude changes during the tracking of a star. The optical configuration is the Cassegrain type, with a primary and secondary mirror, and an additional third flat mirror mounted at the intersection of the alti...

  12. Tendency to Mirror-Image on a Visual Memory Test.

    ERIC Educational Resources Information Center

    Aliotti, Nicholas C.

    1980-01-01

    Young children (153 normal preschool and primary graders, 19 cerebral palsied 5 to 15 year olds, and 16 learning disabled 7 to 12 year olds) were given a test of immediate visual memory which required selection of a geometric design from among six alternatives, including a mirror image and a rotation. (CL)

  13. EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Windt, D L; Robinson, J C

    2006-02-09

    Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamlinemore » X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.« less

  14. Evaluation of image quality in a Cassegrain-type telescope with an oscillating secondary mirror

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Matthews, S.

    1975-01-01

    A ray-trace analysis is described of aberrations and extreme rays of a Cassegrain-type telescope with a tilted secondary mirror. The work was motivated by the need to understand the factors limiting image quality and to assist in the design of secondary mirrors for three telescopes with oscillating secondary mirrors (OSM) used at Ames Research Center for high altitude infrared astronomy. The telescopes are a 31-cm-diameter Dall-Kirkham (elliptical primary, spherical secondary) flown aboard a Lear jet, a 71-cm balloon-borne Dall-Kirkham flown on the AIROscope gondola, and a 91-cm true Cassegrain (parabolic primary, hyperbolic secondary) flown aboard a C-141 jet transport. The optics for these telescopes were not designed specifically for OSM operation, but all have OSM's and all must be used with various detector configurations; therefore, a facility that evaluates the performance of a telescope for a given configuration is useful. The analytical expressions are summarized and results for the above systems are discussed. Details of the calculation and a discussion of the computer program are given in the appendices.

  15. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  16. A Parametric Finite-Element Model for Evaluating Segmented Mirrors with Discrete, Edgewise Connectivity

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope

  17. Argentinean outdoor test facility for mirrors

    NASA Astrophysics Data System (ADS)

    Medina, M. C.; Dipold, J.; García, B.; Mansilla, A.; Maya, J.; Rasztocky, E.; de Souza, V.; Larrarte, J. J.; Benitez, M.

    2015-08-01

    The Cherenkov Telescope Array (CTA) is planned to be an Observatory for very high energy -ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m. These mirrors will be formed by a set of reflective facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the former candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600 m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. Four prototype mirrors built with different technologies have been installed and have been monitored for 6 months. In this work we present the preliminary results of this characterization.

  18. Ultra-Light Precision Membrane Optics

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)

    2001-01-01

    SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.

  19. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  20. Determination of contamination character of materials in space technology testing

    NASA Technical Reports Server (NTRS)

    Haynes, D. L.; Coulson, D. M.

    1972-01-01

    The contamination character of selected materials used in space technology testing is presented. Many of these materials contain components that become volatile in a space environment. Most previous data were limited to weight loss or vapor pressure. However, these parameters are not necessarily a direct measure of the contamination character of these materials. Selected materials were exposed to a thermal-vacuum environment, and the degree of contamination was measured by collecting the outgases from these materials on a cold test mirror surface. The degradation of reflectivity of the mirror was measured over a spectral range from 1100 A to 2.5 microns. Half the mirror's surface was also exposed to UV irradiation to determine its effects on the contaminative character of the depositing outgases. The amount of deposit per unit area was measured by microbalances mounted near the mirror; the sensor of one microbalance was UV irradiated. A quadrupole mass spectrometer was used to determine the composition of the outgases.

Top