Sample records for primary optical element

  1. Comparison of primary optics in amonix CPV arrays

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya; Kinsey, Geoffrey S.; Liu, Mingguo; Bagienski, William; Garboushian, Vahan

    2012-10-01

    The Amonix CPV system utilizes an acrylic Fresnel lens Primary Optical Element (POE) and a reflective Secondary Optical Element (SOE). Improvements in the optical design have contributed to more than 10% increase in rated power last year. In order to further optimize the optical power path, Amonix is looking at various trade-offs in optics, including, concentration, optical materials, reliability, and cost. A comparison of optical materials used for manufacturing the primary optical element and optical design trade off's used to maximize power output will be presented. Optimization of the power path has led to the demonstration of a module lens-area efficiency of 35% in outdoor testing at Amonix.

  2. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  3. New Method for Characterizing the State of Optical and Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James

    2014-01-01

    James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.

  4. Design optimization of ultra-high concentrator photovoltaic system using two-stage non-imaging solar concentrator

    NASA Astrophysics Data System (ADS)

    Wong, C.-W.; Yew, T.-K.; Chong, K.-K.; Tan, W.-C.; Tan, M.-H.; Lim, B.-H.

    2017-11-01

    This paper presents a systematic approach for optimizing the design of ultra-high concentrator photovoltaic (UHCPV) system comprised of non-imaging dish concentrator (primary optical element) and crossed compound parabolic concentrator (secondary optical element). The optimization process includes the design of primary and secondary optics by considering the focal distance, spillage losses and rim angle of the dish concentrator. The imperfection factors, i.e. mirror reflectivity of 93%, lens’ optical efficiency of 85%, circumsolar ratio of 0.2 and mirror surface slope error of 2 mrad, were considered in the simulation to avoid the overestimation of output power. The proposed UHCPV system is capable of attaining effective ultra-high solar concentration ratio of 1475 suns and DC system efficiency of 31.8%.

  5. Adaptive beam shaping by controlled thermal lensing in optical elements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.

    2007-04-01

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  6. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  7. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  8. Automatic quadrature control and measuring system. [using optical coupling circuitry

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  9. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    DTIC Science & Technology

    2015-09-01

    shows the elements of an AHM. The substrate is a rib-stiffened silicon carbide ( SiC ) structure cast to meet the required optical figure. The...right) 2. SMT Three Point Linearity Test The active mirror under study is a 1-meter hexagonal SiC AHM mirror with 156 face sheet actuators. The...CORRECTION OF A SPACE TELESCOPE ACTIVE PRIMARY MIRROR USING ADAPTIVE OPTICS IN A WOOFER-TWEETER CONFIGURATION by Matthew R. Allen September 2015

  10. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    NASA Astrophysics Data System (ADS)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  11. U.S. Army Research Laboratory (ARL) Corporate Dari Document Transcription and Translation Guidelines

    DTIC Science & Technology

    2012-10-01

    text file format. 15. SUBJECT TERMS Transcription, Translation, guidelines, ground truth, Optical character recognition , OCR, Machine Translation, MT...foreign language into a target language in order to train, test, and evaluate optical character recognition (OCR) and machine translation (MT) embedded...graphic element and should not be transcribed. Elements that are not part of the primary text such as handwritten annotations or stamps should not be

  12. Two-stage optics - High-acuity performance from low-acuity optical systems

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1992-01-01

    The concept of two-stage optics, developed under a program to enhance the performance, lower the cost, and increase the reliability of the 20-m Large Deployable Telescope, is examined. The concept permits the large primary mirror to remain as deployed or as space-assembled, with phasing and subsequent control of the system done by a small fully assembled optical active element placed at an exit pupil. The technique is being applied to correction of the fabrication/testing error in the Hubble Space Telescope primary mirror. The advantages offered by this concept for very large space telescopes are discussed.

  13. Primary and Secondary Superresolution by Data Inversion (Postprint)

    DTIC Science & Technology

    2005-06-06

    4. H. Liu, Y. Yan, Q. Tan, and G. Jin, “Theories for the design of diffractive superresolution elements and limits of optical superresolution ,” J...optical system. This latter approach is often referred to as “ optical superresolution ” and is useful when a narrow pre-detection PSF is desired as is the

  14. Secondary and compound concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.

  15. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  16. Optomechanical stability design of space optical mapping camera

    NASA Astrophysics Data System (ADS)

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  17. Comparative analysis of different secondary optical elements for aspheric primary lenses.

    PubMed

    Victoria, M; Domínguez, C; Antón, I; Sala, G

    2009-04-13

    The performance of different reflexive and refractive secondaries optimized for the same primary lens is studied by using ray-tracing simulation. Different solutions are approached according to materials and manufacturing processes currently available in the market, which can be potentially cost-effective for concentrator photovoltaic (CPV) modules. They are compared in terms of system optical efficiency and acceptance angle. In addition, irradiance distribution over the cell is also studied.

  18. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  19. The design method of CGH for testing the Φ404, F2 primary mirror

    NASA Astrophysics Data System (ADS)

    Xie, Nian; Duan, Xueting; Li, Hua

    2014-09-01

    In order to accurately test shape quality of the large diameter aspherical mirror, a kind of binary optical element called Computer generated holograms (CGHs) are widely used .The primary role of the CGHs is to generate any desired wavefronts to realize phase compensation. In this paper, the CGH design principle and design process are reviewed at first. Then an optical testing system for testing the aspheric mirror includes a computer generated hologram (CGH) and an imaging element (IE) is disposed. And an optical testing system only concludes a CGH is proposed too. The CGH is designed for measurement of an aspheric mirror (diameter=404mm, F-number=2). Interferometric simulation test results of the aspheric mirror show that the whole test system obtains the demanded high accuracy. When combined the CGH with an imaging element in the Aspheric Compensator, the smallest feature in the CGH should be decreased. The CGH can also be used to test freeform surface with high precision, it is of great significance to the development of the freeform surface.

  20. JWST testbed telescope: a functionally accurate scaled version of the flight optical telescope element used to develop the flight wavefront sensing and control algorithm

    NASA Astrophysics Data System (ADS)

    Kingsbury, Lana K.; Atcheson, Paul D.

    2004-10-01

    The Northrop-Grumman/Ball/Kodak team is building the JWST observatory that will be launched in 2011. To develop the flight wavefront sensing and control (WFS&C) algorithms and software, Ball is designing and building a 1 meter diameter, functionally accurate version of the JWST optical telescope element (OTE). This testbed telescope (TBT) will incorporate the same optical element control capability as the flight OTE. The secondary mirror will be controlled by a 6 degree of freedom (dof) hexapod and each of the 18 segmented primary mirror assemblies will have 6 dof hexapod control as well as radius of curvature adjustment capability. In addition to the highly adjustable primary and secondary mirrors, the TBT will include a rigid tertiary mirror, 2 fold mirrors (to direct light into the TBT) and a very stable supporting structure. The total telescope system configured residual wavefront error will be better than 175 nm RMS double pass. The primary and secondary mirror hexapod assemblies enable 5 nm piston resolution, 0.0014 arcsec tilt resolution, 100 nm translation resolution, and 0.04497 arcsec clocking resolution. The supporting structure (specifically the secondary mirror support structure) is designed to ensure that the primary mirror segments will not change their despace position relative to the secondary mirror (spaced > 1 meter apart) by greater than 500 nm within a one hour period of ambient clean room operation.

  1. Honeywell optical investigations on FLASH program

    NASA Astrophysics Data System (ADS)

    O'Rourke, Ken; Peterson, Eric; Yount, Larry

    1995-05-01

    The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.

  2. Structure and mechanical design for a large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Tan, Yufeng; Wang, Jihong; Ren, Ge; Ren, Xiaoli; Xie, Zongliang; Li, Dong

    2018-02-01

    For a better understanding and forecasting of the universe, the high resolution observations are needed. The largeaperture telescope is an integrated success with a combination of material, mechanics, optics and electronics. The telescope is a classic Cassegrain configuration with open structure, alt-azimuth mount, and retractable dome. The instrumentation has a rotating mass of approximately 52 tons and stands over 9 m tall. The 3-m aperture primary mirror is a honeycomb lightweighted mirror with fused silica material and active cooling. The paper will address preliminary design and development of the telescope mount structure, axes drive system, encoder mount and primary mirror system. The structure must have the best performance of stiffness and stability to demand an acceptable image quality. As the largest optical element of the telescope, primary mirror must be well controlled and protected both during operational and non-operational periods. An active cooling system of primary mirror is provided by a flushing subsystem at the front side and sucking subsystem on the central hole to keep the temperature of the facesheet close to that of ambient air. A two-layer mirror cover mounted on the elevation ring is proposed to protect the optical elements and inner beam tube from dust, dirt and debris. Furthermore, the latest plans for future upgrades will be also described.

  3. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    NASA Astrophysics Data System (ADS)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  4. Electro-optically actuated liquid-lens zoom

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  5. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  6. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimallymore » distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.« less

  7. A primary mirror metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.

    2016-07-01

    The Giant Magellan Telescope (GMT)1 is a 25 m "doubly segmented" telescope composed of seven 8.4 m "unit Gregorian telescopes", on a common mount. Each primary and secondary mirror segment will ideally lie on the geometrical surface of the corresponding rotationally symmetrical full aperture optical element. Therefore, each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and cophased. First light with a subset of four unit telescopes is currently scheduled for 2022. The project is currently considering an important aspect of the assembly, integration and verification (AIV) phase of the project. This paper will discuss a dedicated system to directly characterize the on-sky performance of the M1 segments, independently of the M2 subsystem. A Primary Mirror Metrology System (PMS) is proposed. The main purpose of this system will be to he4lp determine the rotation axis of an instrument rotator (the Gregorian Instrument Rotator or GIR in this case) and then to characterize the deflections and deformations of the M1 segments with respect to this axis as a function of gravity and temperature. The metrology system will incorporate a small (180 mm diameter largest element) prime focus corrector (PFC) that simultaneously feeds a <60" square acquisition and guiding camera field, and a Shack Hartmann wavefront sensor. The PMS is seen as a significant factor in risk reduction during AIV; it allows an on-sky characterization of the primary mirror segments and cells, without the complications of other optical elements. The PMS enables a very useful alignment strategy that constrains each primary mirror segments' optical axes to follow the GIR axis to within a few arc seconds. An additional attractive feature of the incorporation of the PMS into the AIV plan, is that it allows first on-sky telescope operations to occur with a system of considerably less optical and control complexity than the final doubly segmented Gregorian telescope configuration. This paper first discusses the strategic rationale for a PMS. Next the system itself is described in some detail. Finally, some description of the various uses the PMS will be put to during AIV of the M1 segments and subsequent characterization will be described.

  8. Astronomical telescope with holographic primary objective

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.

    2011-09-01

    A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.

  9. The PILOT optical alignment for its first flight

    NASA Astrophysics Data System (ADS)

    Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.

    2017-12-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

  10. Wavefront control of large optical systems

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.

    1990-01-01

    Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.

  11. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  12. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test: optical verification

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

    2010-08-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.

  13. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  14. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    NASA Technical Reports Server (NTRS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  15. Micro-X-ray fluorescence spectrometer with x-ray single bounce metallic capillary optics for light element analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mroczka, Robert; Żukociński, Grzegorz; Łopucki, Rafał

    2017-05-01

    In the last 20 years, , due to the rapid development of X-ray optics, micro X-ray fluorescence spectrometry (micro-XRF) has become a powerful tool to determine the spatial distribution of major, minor, and trace elements within a sample. Micro-X-ray fluorescence (micro-XRF) spectrometers for light element analysis (6 <= Z <= 14) using glass polycapillary optics are usually designed and applied to confocal geometry. Two such X-ray optics systems are used in this setup. The first one focuses the primary beam on the sample; the second restricts the field of view of the detector. In order to be able to analyze a wider range of elements especialy with (6 <= Z <= 14), both sample and detector are under vacuum. Depth resolution varies between 100 μm at 1 keV fluorescence energy (Na-Kα) and 30 μm for 17.5 keV (Mo-Kα) [1,2]. In order to improve resolution at energies below 9 keV, our group designed similar spectrometer (in cooperation with PREVAC) but instead of primary polycapillary optics we applied single bounce metallic capillaries optics , designed and manufactured in our Laboratory. The vacuum chumber is currently under construction and is expected to be fully operational in September this year. Single bounce gold capillaries with elliptic internal shape have recently been redesigned and developed in our Laboratory. Surface roughness was reduced up to 0.5 nm and slope error to 0.3 mrad. For these capillaries an expected depth resolution varies from 3 μm (1 keV) and 10 µm for 9 keV (Cu-Kα). The spectrometer equipped with gold capillaries offers the possibility of elemental analysis with better depth resolution than is offerred by glass polycapillaries at energies below 9 keV. Furthermore, we will compare the capabilities and limitations of this spectrometer with others, that use laboratory and/or synchrotron sources. Acknowledgments: This work was supported and co-funded by the European Union as part of the Operational Programme Development of Eastern Poland for 2007-2013, Priority I Innovative Economy, Measure I.3. Support for Innovations and The National Centre for Research and Development, Project no. TANGO1,267102/NCBR/2015

  16. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  17. A comparison of performance of lightweight mirrors

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  18. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  19. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeff; Hayden, Joseph; Khreishi, Manal; Mclean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  20. Optics for MUSIC: a new (sub)millimeter camera for the Caltech Submillimeter Observatory

    NASA Astrophysics Data System (ADS)

    Sayers, Jack; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Schlaerth, James A.; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    We will present the design and implementation, along with calculations and some measurements of the performance, of the room-temperature and cryogenic optics for MUSIC, a new (sub)millimeter camera we are developing for the Caltech Submm Observatory (CSO). The design consists of two focusing elements in addition to the CSO primary and secondary mirrors: a warm off-axis elliptical mirror and a cryogenic (4K) lens. These optics will provide a 14 arcmin field of view that is diffraction limited in all four of the MUSIC observing bands (2.00, 1.33, 1.02, and 0.86 mm). A cold (4K) Lyot stop will be used to define the primary mirror illumination, which will be maximized while keeping spillover at the sub 1% level. The MUSIC focal plane will be populated with broadband phased antenna arrays that efficiently couple to factor of (see manuscript) 3 in bandwidth,1, 2 and each pixel on the focal plane will be read out via a set of four lumped element filters that define the MUSIC observing bands (i.e., each pixel on the focal plane simultaneously observes in all four bands). Finally, a series of dielectric and metal-mesh low pass filters have been implemented to reduce the optical power load on the MUSIC cryogenic stages to a quasi-negligible level while maintaining good transmission in-band.

  1. Using the ISS as a testbed to prepare for the next generation of space-based telescopes

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Sparks, William B.; Liu, Fengchuan; Ess, Kim; Green, Joseph; Carpenter, Kenneth G.; Thronson, Harley; Goullioud, Renaud

    2012-09-01

    The infrastructure available on the ISS provides a unique opportunity to develop the technologies necessary to assemble large space telescopes. Assembling telescopes in space is a game-changing approach to space astronomy. Using the ISS as a testbed enables a concentration of resources on reducing the technical risks associated with integrating the technologies, such as laser metrology and wavefront sensing and control (WFS&C), with the robotic assembly of major components including very light-weight primary and secondary mirrors and the alignment of the optical elements to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems such as the Special Purpose Dexterous Manipulator (SPDM), or by the ISS Flight Crew, allows for future experimentation as well as repair if necessary. In 2015, first light will be obtained by the Optical Testbed and Integration on ISS eXperiment (OpTIIX), a small 1.5-meter optical telescope assembled on the ISS. The primary objectives of OpTIIX include demonstrating telescope assembly technologies and end-to-end optical system technologies that will advance future large optical telescopes.

  2. The magnetic field and the evolution of element spots on the surface of the HgMn eclipsing binary ARAur

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Savanov, I.; Ilyin, I.; González, J. F.; Korhonen, H.; Lehmann, H.; Schöller, M.; Granzer, T.; Weber, M.; Strassmeier, K. G.; Hartmann, M.; Tkachenko, A.

    2010-10-01

    The system ARAur is a young late B-type double-lined eclipsing binary with a primary star of HgMn peculiarity. We applied the Doppler imaging method to reconstruct the distribution of Fe and Y over the surface of the primary using spectroscopic time series obtained in 2005 and from 2008 October to 2009 February. The results show a remarkable evolution of the element distribution and overabundances. Measurements of the magnetic field with the moment technique using several elements reveal the presence of a longitudinal magnetic field of the order of a few hundred gauss in both stellar components and a quadratic field of the order of 8kG on the surface of the primary star. Based on observations obtained at the 2.56-m Nordic Optical Telescope on La Palma, the Karl-Schwarzschild-Observatorium in Tautenburg and the STELLA robotic telescope on Tenerife. E-mail: shubrig@aip.de

  3. Proceedings of the Aero-Optics Symposium on Electromagnetic Wave Propagation from Aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Wind-tunnel and flight experiments concerning natural and induced turbulence around an airplane and the effects on propagation characteristics of an emitter mounted in the airplane are described. Some of the papers are concerned with phase distortion of the propagating radiation, and others deal with mechanical jitter of the optical elements when exposed to open-cavity turbulence. The results include both aerodynamic and optical measurements and a consideration of the relationship between the two. Primary emphasis is on the dynamic disturbances, but theoretical and experimental evaluations of steady-state distortions are also presented.

  4. Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module

    NASA Astrophysics Data System (ADS)

    Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu

    2017-09-01

    Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.

  5. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  6. Design and Performance of the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    White, Mary L.; Shaklan, Stuart; Lisman, P. Doulas; Ho, Timothy; Mouroulis, Pantazis; Basinger, Scott; Ledeboer, Bill; Kwack, Eug; Kissil, Andy; Mosier, Gary; hide

    2004-01-01

    Terrestrial Planet Finder Coronagraph, one of two potential architectures, is described. The telescope is designed to make a visible wavelength survey of the habitable zones of at least thirty stars in search of earth-like planets. The preliminary system requirements, optical parameters, mechanical and thermal design, operations scenario and predicted performance is presented. The 6-meter aperture telescope has a monolithic primary mirror, which along with the secondary tower, are being designed to meet the stringent optical tolerances of the planet-finding mission. Performance predictions include dynamic and thermal finite element analysis of the telescope optics and structure, which are used to make predictions of the optical performance of the system.

  7. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Guberman, David

    2010-01-01

    The article provides information on germanium, an element with electrical properties between those of a metal and an insulator. Applications of germanium include its use as a component of the glass in fiber-optic cable, in infrared optics devices and as a semiconductor and substrate used in electronic and solar applications. Germanium was first isolated by German chemist Clemens Winkler in 1886 and was named after Winkler's native country. In 2008, the leading sources of primary germanium from coal or zinc include Canada, China and Russia.

  8. Progress in ion figuring large optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, L.N.

    1995-12-31

    Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less

  9. The NEAR Multispectral Imager.

    NASA Astrophysics Data System (ADS)

    Hawkins, S. E., III

    1998-06-01

    Multispectral Imager, one of the primary instruments on the Near Earth Asteroid Rendezvous (NEAR) spacecraft, uses a five-element refractive optics telescope, an eight-position filter wheel, and a charge-coupled device detector to acquire images over its sensitive wavelength range of ≍400 - 1100 nm. The primary science objectives of the Multispectral Imager are to determine the morphology and composition of the surface of asteroid 433 Eros. The camera will have a critical role in navigating to the asteroid. Seven narrowband spectral filters have been selected to provide multicolor imaging for comparative studies with previous observations of asteroids in the same class as Eros. The eighth filter is broadband and will be used for optical navigation. An overview of the instrument is presented, and design parameters and tradeoffs are discussed.

  10. The long-term effects of the micrometeoroid and orbital debris environments on materials used in space

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G.

    1989-01-01

    The long-term effects of the orbital debris and micrometeoroid environments on materials that are current candidates for use on space vehicles are discussed. In addition, the limits of laboratory testing to determine these effects are defined and the need for space-based data is delineated. The impact effects discussed are divided into primary and secondary surfaces. Primary surfaces are those that are subject to erosion, pitting, the degradation and delamination of optical coatings, perforation of atomic oxygen erosion barriers, vapor coating of optics and the production of secondary ejecta particles. Secondary surfaces are those that are affected by the result of the perforation of primary surfaces, for example, vapor deposition on electronic components and other sensitive equipment, and the production of fragments with damage potential to internal pressurized elements. The material properties and applications that are required to prevent or lessen the effects described, are defined.

  11. Method and system for processing optical elements using magnetorheological finishing

    DOEpatents

    Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A

    2012-09-18

    A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.

  12. Design of a space-based infrared imaging interferometer

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Hope, Douglas; Romeo, Robert

    2017-07-01

    Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.

  13. Pointing and figure control system for a space-based far-IR segmented telescope

    NASA Technical Reports Server (NTRS)

    Lau, Kenneth

    1993-01-01

    A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.

  14. Cultivation mode research of practical application talents for optical engineering major

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.

  15. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  16. Study of multi-kilowatt solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1983-01-01

    A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.

  17. Erbium-doped fiber amplifier elements for structural analysis sensors

    NASA Technical Reports Server (NTRS)

    Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.

    1992-01-01

    The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.

  18. Polyhedral integrated and free space optical interconnection

    DOEpatents

    Erteza, I.A.

    1998-01-06

    An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.

  19. Polyhedral integrated and free space optical interconnection

    DOEpatents

    Erteza, Ireena A.

    1998-01-01

    An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment.

  20. The dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, P.; Benitez, P.; Li, Y.; Miñano, J. C.; Mendes-Lopes, J.; Araki, K.

    2012-10-01

    Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg = 1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP*=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  1. Integrated thermal disturbance analysis of optical system of astronomical telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jiang, Zibo; Li, Xinnan

    2008-07-01

    During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.

  2. Method of lightening radiation darkened optical elements

    DOEpatents

    Reich, Frederich R.; Schwankoff, Albert R.

    1980-01-01

    A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.

  3. Precision pointing compensation for DSN antennas with optical distance measuring sensors

    NASA Technical Reports Server (NTRS)

    Scheid, R. E.

    1989-01-01

    The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.

  4. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  5. Transceiver optics for interplanetary communications

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  6. Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Anche, Ramya Manjunath; Sen, Asoke Kumar; Anupama, Gadiyara Chakrapani; Sankarasubramanian, Kasiviswanathan; Skidmore, Warren

    2018-01-01

    An analytical model has been developed to estimate the polarization effects, such as instrumental polarization (IP), crosstalk (CT), and depolarization, due to the optics of the Thirty Meter Telescope. These are estimated for the unvignetted field-of-view and the wavelengths of interest. The model estimates an IP of 1.26% and a CT of 44% at the Nasmyth focus of the telescope at the wavelength of 0.6 μm at field angle zero with the telescope pointing to zenith. Mueller matrices have been estimated for the primary, secondary, and Nasmyth mirrors. It is found that some of the Mueller matrix elements of the primary and secondary mirrors show a fourfold azimuthal antisymmetry, which indicates that the polarization at the Cassegrain focus is negligible. At the inclined Nasmyth mirror, there is no azimuthal antisymmetry in the matrix elements, and this results in nonzero values for IP and CT, which would negatively impact the polarization measurements at the telescope focus. The averaged Mueller matrix is estimated at the Nasmyth focus at different instrument ports and various zenith angles of the telescope. The variation in the Mueller matrix elements for different coatings is also estimated. The impact of this polarization effect on the science case requirements has been discussed. This analysis will help in achieving precise requirements for future instruments with polarimetric capability.

  7. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  8. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  9. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    NASA Astrophysics Data System (ADS)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  10. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  11. Free-form Fresnel RXI Köhler design with spectrum-splitting for photovoltaics

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Benítez, P.; Mohedano, R.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.

    2011-10-01

    Here we present a novel optical design of the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) with built-in spectrum splitting concept. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it, both POE and SOE performing Köhler integration to produce light homogenization on the target. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. Design targets equivalent cell efficiency ~46% using commercial 39% 3J and 26% Si cells, and CPV module efficiency greater than 38%, achieved at a concentration level larger than 500X and wide acceptance angle (+/-1°). A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%.

  12. On the Fringe Field of Wide Angle LC Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.

  13. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  14. Optical instruments

    NASA Technical Reports Server (NTRS)

    Abel, I. R. (Inventor)

    1974-01-01

    A wide angle, low focal ratio, high resolution, catoptric, image plane scanner is described. The scanner includes the following features: (1) a reflective improvement on the Schmidt principle, (2) a polar line scanner in which all field elements are brought to and corrected on axis, and (3) a scanner arrangement in which the aperture stop of the system is imaged at the center of curvature of a spherical primary mirror. The system scans are a large radial angle and an extremely high rate of speed with relatively small scanning mirrors. Because the system is symmetrical about the optical axis, the obscuration is independent of the scan angle.

  15. Analysis of the effects of simulated synergistic LEO environment on solar panels

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  16. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  17. Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials

    PubMed Central

    Naik, Gururaj V.; Liu, Jingjing; Kildishev, Alexander V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2012-01-01

    Noble metals such as gold and silver are conventionally used as the primary plasmonic building blocks of optical metamaterials. Making subwavelength-scale structural elements from these metals not only seriously limits the optical performance of a device due to high absorption, it also substantially complicates the manufacturing process of nearly all metamaterial devices in the optical wavelength range. As an alternative to noble metals, we propose to use heavily doped oxide semiconductors that offer both functional and fabrication advantages in the near-infrared wavelength range. In this letter, we replace a metal with aluminum-doped zinc oxide as a new plasmonic material and experimentally demonstrate negative refraction in an Al:ZnO/ZnO metamaterial in the near-infrared range. PMID:22611188

  18. 3D two-photon lithographic microfabrication system

    DOEpatents

    Kim, Daekeun [Cambridge, MA; So, Peter T. C. [Boston, MA

    2011-03-08

    An imaging system is provided that includes a optical pulse generator for providing an optical pulse having a spectral bandwidth and includes monochromatic waves having different wavelengths. A dispersive element receives a second optical pulse associated with the optical pulse and disperses the second optical pulse at different angles on the surface of the dispersive element depending on wavelength. One or more focal elements receives the dispersed second optical pulse produced on the dispersive element. The one or more focal element recombine the dispersed second optical pulse at a focal plane on a specimen where the width of the optical pulse is restored at the focal plane.

  19. Conically scanned lidar telescope using holographic optical elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1992-01-01

    Holographic optical elements (HOE) using volume phase holograms make possible a new class of lightweight scanning telescopes having advantages for lidar remote sensing instruments. So far, the only application of HOE's to lidar has been a non-scanning receiver for a laser range finder. We introduce a large aperture, narrow field of view (FOV) telescope used in a conical scanning configuration, having a much smaller rotating mass than in conventional designs. Typically, lidars employ a large aperture collector and require a narrow FOV to limit the amount of skylight background. Focal plane techniques are not good approaches to scanning because they require a large FOV within which to scan a smaller FOV mirror or detector array. Thus, scanning lidar systems have either used a large flat scanning mirror at which the receiver telescope is pointed, or the entire telescope is steered. We present a concept for a conically scanned lidar telescope in which the only moving part is the HOE which serves as the primary collecting optic. We also describe methods by which a multiplexed HOE can be used simultaneously as a dichroic beamsplitter.

  20. Method And Apparatus For Coupling Optical Elements To Optoelectronic Devices For Manufacturing Optical Transceiver Modules

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; Giunta, Rachel Knudsen; Mitchell, Robert T.; McCormick, Frederick B.; Peterson, David W.; Rising, Merideth A.; Reber, Cathleen A.; Reysen, Bill H.

    2005-06-14

    A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser. The first non-opaque material may be a UV optical adhesive that provides an optical path and mechanical stability. In another embodiment of the alignment process, the first end of at least one optical element is brought proximate to the first end of at least one optoelectronic device in such a manner that an interstitial space exists between the first end of at least one optoelectronic device and the first end of at least one optical element.

  1. Petrographic and petrological study of lunar rock materials

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1977-01-01

    Impact melts and breccias from the Apollo 15 and 16 landing sites were examined optically and by electron microscope/microprobe. Major and trace element abundances were determined for selected samples. Apollo 16 breccias contained impact melts, metamorphic and primary igneous rocks. Metamorphic rocks may be the equivalents of the impact melts. Apollo 15 breccias studied were fragment-laden melts derived from gabbro and more basalt target rocks.

  2. Realization and testing of a deployable space telescope based on tape springs

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Li, Chuang; Zhong, Peifeng; Chong, Yaqin; Jing, Nan

    2017-08-01

    For its compact size and light weight, space telescope with deployable support structure for its secondary mirror is very suitable as an optical payload for a nanosatellite or a cubesat. Firstly the realization of a prototype deployable space telescope based on tape springs is introduced in this paper. The deployable telescope is composed of primary mirror assembly, secondary mirror assembly, 6 foldable tape springs to support the secondary mirror assembly, deployable baffle, aft optic components, and a set of lock-released devices based on shape memory alloy, etc. Then the deployment errors of the secondary mirror are measured with three-coordinate measuring machine to examine the alignment accuracy between the primary mirror and the deployed secondary mirror. Finally modal identification is completed for the telescope in deployment state to investigate its dynamic behavior with impact hammer testing. The results of the experimental modal identification agree with those from finite element analysis well.

  3. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  4. Optimization of lightweight structure and supporting bipod flexure for a space mirror.

    PubMed

    Chen, Yi-Cheng; Huang, Bo-Kai; You, Zhen-Ting; Chan, Chia-Yen; Huang, Ting-Ming

    2016-12-20

    This article presents an optimization process for integrated optomechanical design. The proposed optimization process for integrated optomechanical design comprises computer-aided drafting, finite element analysis (FEA), optomechanical transfer codes, and an optimization solver. The FEA was conducted to determine mirror surface deformation; then, deformed surface nodal data were transferred into Zernike polynomials through MATLAB optomechanical transfer codes to calculate the resulting optical path difference (OPD) and optical aberrations. To achieve an optimum design, the optimization iterations of the FEA, optomechanical transfer codes, and optimization solver were automatically connected through a self-developed Tcl script. Two examples of optimization design were illustrated in this research, namely, an optimum lightweight design of a Zerodur primary mirror with an outer diameter of 566 mm that is used in a spaceborne telescope and an optimum bipod flexure design that supports the optimum lightweight primary mirror. Finally, optimum designs were successfully accomplished in both examples, achieving a minimum peak-to-valley (PV) value for the OPD of the deformed optical surface. The simulated optimization results showed that (1) the lightweight ratio of the primary mirror increased from 56% to 66%; and (2) the PV value of the mirror supported by optimum bipod flexures in the horizontal position effectively decreased from 228 to 61 nm.

  5. Method of holding optical elements without deformation during their fabrication

    DOEpatents

    Hed, P.P.

    1997-04-29

    An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element is disclosed. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool. 16 figs.

  6. Method of holding optical elements without deformation during their fabrication

    DOEpatents

    Hed, P. Paul

    1997-01-01

    An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool.

  7. Thermal Design and Analysis of the Optical Telescope Assembly for the Gondola for High Altitude Planetary Science

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Brooks, Thomas

    2017-01-01

    The NASA Gondola for High Altitude Planetary Science (GHAPS) project is an effort to design, build, and fly a balloon-borne platform for planetary science missions. GHAPS observations will be in the 300 nm to 5 micron wavelength region covering UV, visible, and near-mid IR. The primary element of the project is the Optical Telescope Assembly (OTA). It is a one meter aperture narrow-field-of-view telescope that contains the primary and secondary mirrors, the support system/metering structure, a secondary mirror focusing system, baffles, and insulation. This paper presents the thermal design and analysis that has been done to support the design of the OTA. A major part of the thermal analysis was bounding the flight environment for the six potential Columbia Scientific Balloon Facility launch sites. These analyses were used to give input into the Structural Thermal Optical Performance (STOP) analysis of the telescope. Also the analysis was used to select heater sizes for the few OTA associated electronic components. Currently the telescope is scheduled to have its first flight in 2019.

  8. Technologies for the fabrication of the E-ELT mirrors within the T-REX project

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Aliverti, M.; Bianco, A.; Basso, S.; Citterio, O.; Civitani, M.; Ghigo, M.; Pariani, G.; Sironi, G.; Riva, M.; Vecchi, G.; Zerbi, F.

    With its primary mirror with 39 m of diameter, the E-ELT will be the largest optical/near-infrared telescope in the world and will gather 13 times more light than the largest optical telescopes existing today. The different optical sub-systems of E-ELT, including the primary mirror based on hundreds of reflecting tiles assembled together, represent key components for the implementation of the telescopes. A huge amount of aspherical reflecting elements have to be produced with "state of the art" figuring and polishing technologies and measured with proper metrological equipments. In the past couple of years, in the context of the T-REX project, a specific development program was carried out at the Brera Astronomical Observatory-INAF in order to address a numbers of technology aspects related to the fabrication of the E-ELT mirrors. In this paper we give a short overview of the activities that have been carried out. Other papers in this volume report on specific activities that have pursed within such a development program. skip=8pt

  9. Chemical Composition of RR Lyn - an Eclipsing Binary System with Am and λ Boo Type Components

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Yushchenko, Alexander V.; Doikov, Dmytry N.; Gopka, Vira F.; Yushchenko, Volodymyr O.

    2017-06-01

    High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to Teff = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a λ Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.

  10. Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2015-01-01

    The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.

  11. Optimization study on the primary mirror lightweighting of a remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Huang, Bo-Kai; You, Zhen-Ting; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-07-01

    Remote sensing instrument (RSI) is used to take images for ground surface observation, which will be exposed to high vacuum, high temperature difference, gravity, 15 g-force and random vibration conditions and other harsh environments during operation. While designing a RSI optical system, not only the optical quality but also the strength of mechanical structure we should be considered. As a result, an optimization method is adopted to solve this engineering problem. In the study, a ZERODUR® mirror with a diameter of 466 mm has been chosen as the model and the optimization has been executed by combining the computer-aided design, finite element analysis, and parameter optimization software. The optimization is aimed to obtain the most lightweight mirror with maintaining structural rigidity and good optical quality. Finally, the optimum optical mirror with a lightweight ratio of 0.55 is attained successfully.

  12. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  13. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  14. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  15. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  16. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  17. Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.

    2017-08-01

    Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.

  18. Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan

    2017-01-01

    The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.

  19. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  20. Performance analysis and material dependence of micro holographic optical elements as couplers for fiber optic communication

    NASA Astrophysics Data System (ADS)

    Ambadiyil, Sajan; Prasannan, G.; Sathyan, Jithesh; Ajith Kumar, P. T.

    2005-01-01

    Holographic Optical Elements (HOEs) are gaining much importance and finding newer and better applications in areas of optical fiber communication and optical information processing systems. In contrast to conventional HOEs, optical communication and information systems require smaller and efficient elements of desired characteristics and transfer functions. Such Micro Holographic Optical Elements (MHOEs) can either be an HOE, recorded with two narrow beams of laser light or a segment cut from a larger HOE (SHOEs), and recorded in the conventional manner. In this study, micro holographic couplers, having specific focusing and diffraction characteristics were recorded in different holographic recording media such as silver halide and dichromated gelatin. Wavelength response of the elements was tested at 633 nm and 442 nm. Variation in diffraction efficiency/coupling factor, and insertion loss of the elements were studied. The paper reports in detail about the above results and related design considerations.

  1. Optically intraconnected computer employing dynamically reconfigurable holographic optical element

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A. (Inventor)

    1992-01-01

    An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.

  2. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  3. System and method for reproducibly mounting an optical element

    DOEpatents

    Eisenbies, Stephen; Haney, Steven

    2005-05-31

    The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.

  4. High-speed optical phase-shifting apparatus

    DOEpatents

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  5. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  6. The Bermuda Bio-Optics Program (BBOP). Chapter 16

    NASA Technical Reports Server (NTRS)

    Siegel, David A.

    2001-01-01

    The Bermuda Bio-Optics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the US JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux at and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution Advanced Very High Resolution Radiometer (AVHRR) and Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  7. Bermuda Bio Optics Project. Chapter 14

    NASA Technical Reports Server (NTRS)

    Nelson, Norm

    2003-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda (N. Nelson, P.I.). The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  8. The Bermuda BioOptics Project (BBOP) Years 9-11

    NASA Technical Reports Server (NTRS)

    Maritorena, S.; Siegel, D. A.; Nelson, Norm B.

    2004-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  9. Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array

    DOEpatents

    Davids, Paul; DeRose, Christopher; Rakich, Peter Thomas

    2015-08-11

    An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.

  10. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  11. Ultra-High Efficiency, High-Concentration PV System Based On Spectral Division Between GaInP/GaInAs/Ge And BPC Silicon Cells

    NASA Astrophysics Data System (ADS)

    Benítez, P.; Mohedano, R.; Buljan, M.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.

    2011-12-01

    A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1200 nm band to the silicon cell. Computer simulations predict that four-terminal terminal designs could achieve ˜46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ˜100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%.

  12. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  13. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    PubMed Central

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-01-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits. PMID:27491391

  14. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  15. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    PubMed

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-05

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  16. Tool Releases Optical Elements From Spring Brackets

    NASA Technical Reports Server (NTRS)

    Gum, J. S.

    1984-01-01

    Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.

  17. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  18. Finite-element modelling of multilayer X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xianchao; Zhang, Lin

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less

  19. Successful Completion of the JWST OGSE2 Cryogenic Test at JSC Chamber-A While Managing Numerous Challenges

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Brinckerhoff, Pamela; Franck, Randy; Schweickart, Rusty; Thomson, Shaun; Burt, Bill; Ousley, Wes

    2016-01-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and scheduled for launch in 2018. The JWST OTE, including the primary mirrors, secondary mirror, and the Aft Optics Subsystems (AOS) are designed to be passively cooled and operate at near 45 degrees Kelvin. Due to the size of its large sunshield in relation to existing test facilities, JWST cannot be optically or thermally tested as a complete observatory-level system at flight temperatures. As a result, the telescope portion along with its instrument complement will be tested as a single unit very late in the program, and on the program schedule critical path. To mitigate schedule risks, a set of 'pathfinder' cryogenic tests will be performed to reduce program risks by demonstrating the optical testing capabilities of the facility, characterizing telescope thermal performance, and allowing project personnel to learn valuable testing lessons off-line. This paper describes the 'pathfinder' cryogenic test program, focusing on the recently completed second test in the series called the Optical Ground Support Equipment 2 (OGSE2) test. The JWST OGSE2 was successfully completed within the allocated project schedule while faced with numerous conflicting thermal requirements during cool-down to the final cryogenic operational temperatures, and during warm-up after the cryo-stable optical tests. The challenges include developing a pre-test cool-down and warm-up profiles without a reliable method to predict the thermal behaviors in a rarified helium environment, and managing the test article hardware safety driven by the project Limits and Constraints (L&C's). Furthermore, OGSE2 test included the time critical Aft Optics Subsystem (AOS), a part of the flight Optical Telescope Element that would need to be placed back in the overall telescope assembly integrations. The OGSE2 test requirements included the strict adherence of the project contamination controls due to the presence of the contamination sensitive flight optical elements. The test operations required close coordination of numerous personnel while they being exposed and trained for the 'final' combined OTE and instrument cryo-test in 2017. This paper will also encompass the OGSE2 thermal data look-back review.

  20. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    DOEpatents

    Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS

    2007-07-03

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  1. Hermetic Glass-To-Metal Seal For Instrumentation Window

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1992-01-01

    Proposed mounting scheme for optical element of instrumentation window in pressure vessel ensures truly hermetic seal while minimizing transmission of stress to optical element. Brazed metal seal superior to conventional gaskets of elastomer, carbon, asbestos, or other material compressed between optical element and wall of vessel. Concentric brazed joints in proposed seal bond metal ring to wall of vessel and to optical element. U-shaped cross section allows ring to flex under pressure.

  2. Coupling characteristics of the spun optical fiber with triple stress elements

    NASA Astrophysics Data System (ADS)

    Ji, Minning; Shang, Fengtao; Chen, Dandan

    2018-06-01

    An empirical formula related to the stress field distribution in the optical fiber with triple stress elements is proposed and proved. The possible intercoupling between the fundamental modes and the higher order modes is demonstrated. The transmission property of the spun optical fiber with triple stress elements is analyzed. The experimental data from a sample of the spun optical fiber with triple stress elements confirm the theoretical results very well.

  3. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  4. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  5. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  6. HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye

    NASA Astrophysics Data System (ADS)

    Galetskii, S. O.; Cherezova, T. Yu

    2009-02-01

    An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.

  7. Sighting optics including an optical element having a first focal length and a second focal length

    DOEpatents

    Crandall, David Lynn [Idaho Falls, ID

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  8. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    DOEpatents

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  9. JWST center of curvature test method and results

    NASA Astrophysics Data System (ADS)

    Saif, Babak; Chaney, David; Greenfield, Perry; Van Gorkom, Kyle; Brooks, Keira; Hack, Warren; Bluth, Marcel; Bluth, Josh; Sanders, James; Smith, Koby; Carey, Larkin; Chaung, Sze; Keski-Kuha, Ritva; Feinberg, Lee; Tournois, Severine; Smith, W. Scott; Kradinov, Vladimir

    2017-09-01

    The James Webb Space Telescope (JWST) recently saw the completion of the assembly process for the Optical Telescope Element and Integrated Science Instrument Module (OTIS). This integration effort was performed at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. In conjunction with this assembly process a series of vibration and acoustic tests were performed. To help assure the telescope's primary mirror was not adversely impacted by this environmental testing an optical center of curvature (CoC) test was performed to measure changes in the mirror's optical performance. The primary is a 6.5 meter diameter mirror consisting of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup, an innovative alignment method, and both static and dynamic test results.

  10. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  11. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  12. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  13. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  14. Wide-angle flat field telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1986-01-01

    Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.

  15. 2D XAFS-XEOL Spectroscopy - Some recent developments

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Smith, J. G.; Regier, T. Z.; Sham, T. K.

    2013-03-01

    The use of optical photons to measure the modulation of the absorption coefficient upon X-ray excitation, or optical XAFS, is of particular interest for application to the study of light emitting semiconducting nanomaterials due to the additional information that may be gained. The potential for site-selectivity, elemental and excitation energy specific luminescence decay channels, and surface vs. bulk effects all make the use of X-ray excited optical luminescence (XEOL) desirable as a detection method. Previous experiments have made use of a monochromator to select the optical emission wavelength used to monitor optical XAFS. This method of detection suffers from the primary limitation of only being able to monitor the optical response at one emission wavelength. By combining the high resolution soft X-ray Spherical Grating Monochromator beam-line at the Canadian Light Source with an Ocean Optics QE 65000 fast CCD spectrophotometer and custom integration software we have developed a technique for collecting 2D XAFS-XEOL spectra, in which the excitation energy is scanned and a XEOL spectra is collected for every energy value. Herein we report the development of this technique and its capabilities using the study of the luminescence emitted from single crystal zinc oxide as an example.

  16. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOEpatents

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  17. Micromotion and stress distribution of immediate loaded implants: a finite element analysis.

    PubMed

    Fazel, A; Aalai, S; Rismanchian, M; Sadr-Eshkevari, P

    2009-12-01

    Primary stability and micromotion of the implant fixture is mostly influenced by its macrodesign. To assess and compare the peri-implant stress distribution and micromotion of two types of immediate loading implants, immediate loaded screw (ILS) Nisastan and Xive (DENTSPLY/Friadent, Monnheim, Germany), and to determine the best macrodesign of these two implants by finite element analysis. In this experimental study, the accurate pictures of two fixtures (ILS: height = 13, diameter = 4 mm and Xive: height = 13, diameter = 3.8 mm) were taken by a new digital camera (Nikon Coolpix 5700 [Nikon, Japan], resolution = 5.24 megapixel, lens = 8x optical, 4x digital zoom). Following accurate measurements, the three-dimensional finite element computer model was simulated and inserted in simulated mandibular bone (D(2)) in SolidWorks 2003 (SolidWork Corp., MA, USA) and Ansys 7.1 (Ansys, Inc., Canonsburg, PA, USA). After loading (500 N, 75 degrees above horizon), the displacement was displayed and von Mises stress was recorded. It was found that the primary stability of ILS was greater (152 microm) than Xive (284 microm). ILS exhibited more favorable stress distribution. Maximum stress concentration found in periapical bone around Xive ( approximately 30 MPa) was lesser than Nisastan ( approximately 37 MPa). Macrodesign of ILS leads to better primary stability and stress distribution. Maximum stress around Xive was less.

  18. An easy packaging hybrid optical element in grating based WDM application

    NASA Astrophysics Data System (ADS)

    Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang

    2005-08-01

    We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.

  19. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  20. Holographic rugate structures for x-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.; Savant, G.

    1990-03-19

    Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less

  1. Final acceptance testing of the LSST monolithic primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.

  2. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  3. Histological evidence for a supraspinous ligament in sauropod dinosaurs

    PubMed Central

    Cerda, Ignacio A.; Casal, Gabriel A.; Martinez, Rubén D.; Ibiricu, Lucio M.

    2015-01-01

    Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin of this structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of the supraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains of primary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element. PMID:26587248

  4. The Bermuda BioOptics Project (BBOP) Years 9-11

    NASA Technical Reports Server (NTRS)

    Nelson, Norm

    2003-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle. This final report addresses specific research activities, research results, and lists of presentations and papers submitted for publication.

  5. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  6. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  7. Optical coupling elements for coherent optical multiport receivers

    NASA Astrophysics Data System (ADS)

    Langenhorst, Ralf

    1992-05-01

    Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.

  8. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  9. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  10. Injection-seeded optical parametric oscillator and system

    DOEpatents

    Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.

    2007-10-09

    Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.

  11. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough intomore » National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.« less

  12. Holographic optical elements: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zech, R. G.; Shareck, M.; Ralston, L. M.

    1974-01-01

    The basic properties and use of holographic optical elements were investigated to design and construct wide-angle, Fourier-transform holographic optical systems for use in a Bragg-effect optical memory. The performance characteristics are described along with the construction of the holographic system.

  13. Paraxial design of an optical element with variable focal length and fixed position of principal planes.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2018-05-10

    In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.

  14. TESS Lens-Bezel Assembly Modal Testing

    NASA Technical Reports Server (NTRS)

    Dilworth, Brandon J.; Karlicek, Alexandra

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) program, led by the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology (MIT) will be the first-ever spaceborne all-sky transit survey. MIT Lincoln Laboratory is responsible for the cameras, including the lens assemblies, detector assemblies, lens hoods, and camera mounts. TESS is scheduled to be launched in August of 2017 with the primary goal to detect small planets with bright host starts in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. The TESS payload consists of four identical cameras and a data handling unit. Each camera consists of a lens assembly with seven optical elements and a detector assembly with four charge-coupled devices (CCDs) including their associated electronics. The optical prescription requires that several of the lenses are in close proximity to a neighboring element. A finite element model (FEM) was developed to estimate the relative deflections between each lens-bezel assembly under launch loads to predict that there are adequate clearances preventing the lenses from making contact. Modal tests using non-contact response measurements were conducted to experimentally estimate the modal parameters of the lens-bezel assembly, and used to validate the initial FEM assumptions. Key Words Non-contact measurements, modal analysis, model validation

  15. Monolithic fiber optic sensor assembly

    DOEpatents

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  16. Apparatus and Method for Focusing a Light Beam in a Three-Dimensional Recording Medium by a Dynamic Holographic Device

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1998-01-01

    An apparatus is disclosed for reading and/or writing information or to from an optical recording medium having a plurality of information storage layers. The apparatus includes a dynamic holographic optical element configured to focus light on the optical recording medium. a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element focusses light on a first one of the plurality of information storage layers when driven by the first drive signal on a second one of the plurality of information storage layers when driven by the second drive signal. An optical switch is also disclosed for connecting at least one light source in a source array to at least one light receiver in a receiver array. The switch includes a dynamic holographic optical element configured to receive light from the source array and to transmit light to the receiver array, a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element connects a first light source in the source array to a first light receiver in the receiver array when driven by the first drive signal and the holographic optical element connects the first light source with the first light receiver and a second light receiver when driven by the second drive signal.

  17. Transpiration purged optical probe

    DOEpatents

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  18. Measuring In-Plane Displacements with Variable Sensitivity Using Diffractive Optic Interferometry

    NASA Technical Reports Server (NTRS)

    Shepherd, Robert L.; Gilbert, John A.; Cole, Helen J.; Ashley, Paul R.

    1998-01-01

    This paper introduces a method called diffractive optic interferometry (DOI) which allows in-plane displacement components to be measured with variable sensitivity. DOI relies on binary optical elements fabricated as phase-type Dammann gratings which produce multiple diffraction orders of nearly equal intensity. Sensitivity is varied by combining the different wavefronts produced by a conjugate pair of these binary optical elements; a transmission element is used to produce several illumination beams while a reflective element, replicated on the surface of a specimen, provides the reference for the undeformed state. The steps taken to design and fabricate these binary optical elements are described. The specimen grating is characterized, and tested on a disk subjected to diametrical compression. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.

  19. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  20. Stanford-USGS shrimp-RG ion microprobe: A new approach to determining the distribution of trace elements in coal

    USGS Publications Warehouse

    Kolker, A.; Wooden, J.L.; Persing, H.M.; Zielinski, R.A.

    2000-01-01

    The distribution of Cr and other trace metals of environmental interest in a range of widely used U.S. coals was investigated using the Stanford-USGS SHRIMP-RG ion microprobe . Using the oxygen ion source, concentrations of Cr (11 to 176 ppm), V (23 to 248 ppm), Mn (2 to 149 ppm), Ni (2 to 30 ppm), and 13 other elements were determined in illite/smectite, a group of clay minerals commonly present in coal. The results confirm previous indirect or semi-quantitative determinations indicating illite/smectite to be an important host of these metals. Calibration was achieved using doped aluminosilicate-glass synthetic standards and glasses prepared from USGS rock standards. Grains for analysis were identified optically, and confirmed by 1) precursory electron microprobe analysis and wavelength-dispersive compositional mapping, and 2) SHRIMP-RG major element data obtained concurrently with trace element results. Follow-up investigations will focus on the distribution of As and other elements that are more effectively ionized with the cesium primary beam currently being tested.

  1. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  2. Last results of MADRAS, a space active optics demonstrator

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Devilliers, Christophe; Liotard, Arnaud; Lopez, Céline; Chazallet, Frédéric

    2017-11-01

    The goal of the MADRAS project (Mirror Active, Deformable and Regulated for Applications in Space) is to highlight the interest of Active Optics for the next generation of space telescope and instrumentation. Wave-front errors in future space telescopes will mainly come from thermal dilatation and zero gravity, inducing large lightweight primary mirrors deformation. To compensate for these effects, a 24 actuators, 100 mm diameter deformable mirror has been designed to be inserted in a pupil relay. Within the project, such a system has been optimized, integrated and experimentally characterized. The system is designed considering wave-front errors expected in 3m-class primary mirrors, and taking into account space constraints such as compactness, low weight, low power consumption and mechanical strength. Finite Element Analysis allowed an optimization of the system in order to reach a precision of correction better than 10 nm rms. A dedicated test-bed has been designed to fully characterize the integrated mirror performance in representative conditions. The test set up is made of three main parts: a telescope aberrations generator, a correction loop with the MADRAS mirror and a Shack-Hartman wave-front sensor, and PSF imaging. In addition, Fizeau interferometry monitors the optical surface shape. We have developed and characterized an active optics system with a limited number of actuators and a design fitting space requirements. All the conducted tests tend to demonstrate the efficiency of such a system for a real-time, in situ wave-front. It would allow a significant improvement for future space telescopes optical performance while relaxing the specifications on the others components.

  3. LOLA: Lunar Optical Long-baseline Array. 1992-1993 space design

    NASA Technical Reports Server (NTRS)

    Bronte, Daniel; Chaney, Joanne; Curran, Christine; Ferguson, Keith; Flint, Eric; Giunta, Tony; Knill, Duane; Levesque, Daniel; Lyon, Donald; Murphy, Sean

    1993-01-01

    In the fall of 1992, the design and analysis of a lunar-based optical interferometer telescope array was initiated by a group of students in the Department of Aerospace Engineering at Virginia Tech. This project was undertaken at the suggestion of the Space Exploration Initiative Office at the NASA Langley Research Center. The original array design requirements, listed below, centered on the primary objective of resolving earth-type planets about stars out to a distance of ten parsecs: spectrum coverage spanning wavelengths from five nm to five mm, with a primary operating mode in the visible spectrum; a total collecting area providing a signal-to-noise ratio (SNR) of no less than 10.0 for a median wavelength of 500 nm; the individual array elements must be identical and have a maximum optical diameter of 2.0 m; and lunar site selection is limited to ten degrees north and south of the lunar equator on the lunar far side while not closer than 15 degrees to either near-side limb. Following construction by astronaut crews, array operation will be conducted from earth and astronomical observations will not be conducted during the lunar day. The entire system is designed for minimum achievable mass. The majority of the original design requirements for the telescope array were met.

  4. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  5. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system].

    PubMed

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu

    2015-02-01

    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  6. MANN: A program to transfer designs for diffractive optical elements to a MANN photolithographic mask generator

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1994-01-01

    There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the project described in this report is how the design information from the lens design program is incorporated into the photolithographic process. It is shown that the MANN program, a photolithographic mask generator, fills the need for a link between lens design programs and mask generation controllers.The generated masks can be used to expose a resist-coated substrate which is etched and then must be re-coated, re-exposed, and re-etched for making copies, just as in the electronics industry.

  7. Paraxial diffractive elements for space-variant linear transforms

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan

    1998-06-01

    Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.

  8. Method and apparatus for staking optical elements

    DOEpatents

    Woods, Robert O.

    1988-01-01

    A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.

  9. Method and apparatus for staking optical elements

    DOEpatents

    Woods, Robert O.

    1988-10-04

    A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.

  10. Method and apparatus for making an optical element having a dielectric film

    NASA Technical Reports Server (NTRS)

    Augason, Gordon C. (Inventor)

    1987-01-01

    A film-application device (FAD) comprising a pair of exterior, tapered, O-ring bearing plate members and a central plate member for simplifying the process of thermally bonding a thin dielectric film to a substrate comprising an optical element are discussed. In use, the film is sandwiched between the O rings and stretched across the optical element by squeezing the exterior plates together before bonding to the element. The film may be used for protecting the optical element or to reduce surface reflection of radiation. The FAD may also be used without the center plate to stretch a dielectric film prior to its attachment to or insertion in a holder to make pellicles or beam-splitters.

  11. Mobile glasses-free 3D using compact waveguide hologram

    NASA Astrophysics Data System (ADS)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  12. Multiple intensity distributions from a single optical element

    NASA Astrophysics Data System (ADS)

    Berens, Michael; Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter

    2013-09-01

    We report on an extension of the previously published two-step freeform optics tailoring algorithm using a Monge-Kantorovich mass transportation framework. The algorithm's ability to design multiple freeform surfaces allows for the inclusion of multiple distinct light paths and hence the implementation of multiple lighting functions in a single optical element. We demonstrate the procedure in the context of automotive lighting, in which a fog lamp and a daytime running lamp are integrated in a single optical element illuminated by two distinct groups of LEDs.

  13. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  14. See-through 3D technology for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young

    2017-06-01

    Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.

  15. [Calculation of optic system of superfine medical endoscopes based on gradient elements].

    PubMed

    Díakonov, S Iu; Korolev, A V

    1994-01-01

    The application of gradient optic elements to rigid endoscopes decreases their diameter to 1.5-2.0 mm. The given mathematical dependences determine aperture and field characteristics, focus and focal segments, resolution of the optic systems based on gradient optics. Parameters of the gradient optic systems for superfine medical endoscopes are characterized and their practical application is shown.

  16. Holographic telescope

    NASA Astrophysics Data System (ADS)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  17. Sparse aperiodic arrays for optical beam forming and LIDAR.

    PubMed

    Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E

    2017-02-06

    We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.

  18. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  19. Top-quality security optical elements: from holography towards 500.000 dpi

    NASA Astrophysics Data System (ADS)

    Kotačka, Libor; Těthal, Tomas; Kolařík, Vladimir

    2005-09-01

    Invented in late 1940s, holography has played a very important role in many technical applications. While the 60s and 70s belonged to, say, a classical period of the holography and diffractive optics (optical elements, lenses, beam splitters), the last two decades have shown an enormous expansion of various mainly synthetically designed and created holographic elements. Ever since its invention, holograms have also attracted our attention, because of their true three-dimension perception of a depicted object and related optical features. These phenomena caused, the holograms have become very well and easily publicly recognized, but still very difficult to falsify. Holography based optically variable microstructures and related advanced anti-counterfeit measures are thus ones of the leading features in security elements used for the protection against falsification of valuables, documents (banknotes, visa, passports, ID cards, tax stamps, etc.), serving for the protection of interests and many others. Our talk deals with the survey of currently exploited technologies to produce several protective optical elements. A special attention will be paid to the synthetically developed special optical elements by means of the unique technology - the electron beam lithography, what is one of the world's most advanced technologies used for the protection against falsification. The computer-synthesized security elements are recorded with an incredible resolution of up to 500.000 dpi and are specially developed for the security of the most important state valuables and documents. Finally, we shall discuss some technological possibilities for its future development.

  20. Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT).

    PubMed

    Stock, S R; Ignatiev, K I; Dahl, T; Veis, A; De Carlo, F

    2003-12-01

    This paper reports the first noninvasive, volumetric study of entire cross-sections of a sea urchin tooth in which the individual calcite structural elements could be resolved. Two cross-sectionally intact fragments of a Lytechinus variegatus tooth were studied with synchrotron microCT (microcomputed tomography) with 1.66 microm voxels (volume elements). These fragments were from the plumula, that is the tooth zone with rapidly increasing levels of mineral; one fragment was from a position aboral of where the keel developed and the second was from the zone where the keel was developing. The primary plates, secondary plates, carinar process plates, prisms, and elements of the lamellar-needle complex were resolved. Comparison of the microCT data with optical micrographs of stained thin sections confirmed the identifications and measured dimensions of the characteristic microarchitectural features. The interplay of reinforcing structures (plates and prisms) was more clearly revealed in the volumetric numerical data sets than in single or sequential slices. While it is well known that the primary plates and prisms in camarodont teeth are situated to improve resistance to bending (which can be termed primary bending), the data presented provide a new understanding of the mechanical role of the carinar process plates, that is, a geometry consistent with that required in the keel to resist lateral or transverse bending of the tooth about a second axis. The increase in robustness of teeth incorporating lateral keel reinforcement suggests that the relative development of carinar processes (toward a geometry similar to that of L. variegatus) is a character which can be used to infer which sea urchins among the stirodonts are most primitive and among the camarodonts which are more primitive.

  1. Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes

    NASA Technical Reports Server (NTRS)

    Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth

    2012-01-01

    The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.

  2. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  3. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  4. Conceptual design and structural analysis for an 8.4-m telescope

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  5. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.

  6. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.

  7. Sub-lethal Ocular Trauma (SLOT): Establishing a Standardized Blast Threshold to Facilitate Diagnostic, Early Treatment, and Recovery Studies for Blast Injuries to the Eye and Optic Nerve

    DTIC Science & Technology

    2014-09-01

    the less, we observed 64 a broad array of ocular injuries. Petras et al. (1997) observed a similar trend in rats exposed to overpressures of...2013. PMID: 22185582. Petras , J.M., Bauman, R.A., and Elsayed, N.M., 1997, Visual system degeneration induced by blast overpressure: Toxicology...2012, Primary blast injury to the eye and orbit: Finite element modeling: Investigative Ophthalmology: v. 53, pp. 8057–8066. Sanchez, R., Martin , R

  8. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  9. Free-form Fresnel RXI-RR Köhler design for high-concentration photovoltaics with spectrum-splitting

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Benítez, P.; Mohedano, R.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.

    2011-10-01

    Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of +/-1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.

  10. Plume mass flow and optical damage distributions for an MMH/N2O4 RCS thruster. [exhaust plume contamination of spacecraft components

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Bowman, R. L.; Jack, J. R.

    1973-01-01

    The data obtained from two recent experiments conducted in a continuing series of experiments at the Lewis Research Center into the contamination characteristics of a 5-pound thrust MMH/N2O4 engine are presented. The primary objectives of these experiments were to establish the angular distribution of condensible exhaust products within the plume and the corresponding optical damage angular distribution of transmitting optical elements attributable to this contaminant. The plume mass flow distribution was measured by five quartz crystal microbalances (QCM's) located at the engine axis evaluation. The fifth QCM was located above the engine and 15 deg behind the nozzle exit plane. The optical damage was determined by ex-situ transmittance measurements for the wavelength range from 0.2 to 0.6 microns on 2.54 cm diameter fused silica discs also located at engine centerline elevation. Both the mass deposition and optical damage angular distributions followed the expected trend of decreasing deposition and damage as the angle between sensor or sample and the nozzle axis increased. A simple plume gas flow equation predicted the deposition distribution reasonably well for angles of up to 55 degrees. The optical damage measurements also indicated significant effects at large angles.

  11. JWST Integrated Science Instrument Module Alignment Optimization Tool

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2013-01-01

    During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.

  12. Binary-mask generation for diffractive optical elements using microcomputers.

    PubMed

    O'Shea, D C; Beletic, J W; Poutous, M

    1993-05-10

    A new technique for generation of binary masks for the fabrication of diffractive optical elements is investigated. This technique, which uses commercially available desktop-publishing hardware and software in conjunction with a standard photoreduction camera, is much faster and less expensive thanhe conventional methods. The short turnaround time and low cost should give researchers a much greater degree of flexibility in the field of binary optics and enable wider application of diffractive-optics technology. Techniques for generating optical elements by using standard software packages that produce PostScript output are described. An evaluation of the dimensional fidelity of the mask reproduction from design to its realization in photoresist is presented.

  13. Development of integrated optical tracking sensor by planar optics

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio

    1999-03-01

    A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.

  14. Double peacock eye optical element for extended focal depth imaging with ophthalmic applications.

    PubMed

    Romero, Lenny A; Millán, María S; Jaroszewicz, Zbigniew; Kolodziejczyk, Andrzej

    2012-04-01

    The aged human eye is commonly affected by presbyopia, and therefore, it gradually loses its capability to form images of objects placed at different distances. Extended depth of focus (EDOF) imaging elements can overcome this inability, despite the introduction of a certain amount of aberration. This paper evaluates the EDOF imaging performance of the so-called peacock eye phase diffractive element, which focuses an incident plane wave into a segment of the optical axis and explores the element's potential use for ophthalmic presbyopia compensation optics. Two designs of the element are analyzed: the single peacock eye, which produces one focal segment along the axis, and the double peacock eye, which is a spatially multiplexed element that produces two focal segments with partial overlapping along the axis. The performances of the peacock eye elements are compared with those of multifocal lenses through numerical simulations as well as optical experiments in the image space. The results demonstrate that the peacock eye elements form sharper images along the focal segment than the multifocal lenses and, therefore, are more suitable for presbyopia compensation. The extreme points of the depth of field in the object space, which represent the remote and the near object points, have been experimentally obtained for both the single and the double peacock eye optical elements. The double peacock eye element has better imaging quality for relatively short and intermediate distances than the single peacock eye, whereas the latter seems better for far distance vision.

  15. ISS-based Development of Elements and Operations for Robotic Assembly of A Space Solar Power Collector

    NASA Technical Reports Server (NTRS)

    Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.

    2013-01-01

    We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.

  16. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE PAGES

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; ...

    2013-04-12

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  17. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  18. Optimization of Dish Solar Collectors with and without Secondary Concentrators

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.

  19. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  20. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  1. Electro-Optic Propagation

    DTIC Science & Technology

    2002-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful

  2. Reflective optical imaging system

    DOEpatents

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  3. Reflective optical imaging method and circuit

    DOEpatents

    Shafer, David R.

    2001-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  4. Optical filter including a sub-wavelength periodic structure and method of making

    DOEpatents

    Kaushik, Sumanth; Stallard, Brian R.

    1998-01-01

    An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.

  5. Optical filter including a sub-wavelength periodic structure and method of making

    DOEpatents

    Kaushik, S.; Stallard, B.R.

    1998-03-10

    An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.

  6. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat

    2017-09-12

    A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.

  7. Design of a solar collector system formed by a Fresnel lens and a CEC coupled to plastic fibers

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo

    2015-08-01

    Among the main challenges for systems based in solar concentrators and plastic optical fibers (POF) the accuracy needed for the solar tracking is founded. One approach to overcome these requirements is increasing acceptance angle of the components, usually by secondary optical elements (SOE), however this technique is effective for photovoltaic applications but it has not been analyzed for systems coupled to POFs for indoor illumination. On this subject, it is presented a numerical analysis of a solar collector assembled by a Fresnel lens as primary optical element (POE) combined with a compound elliptical concentrator (CEC) coupled to POF in order to compare its performance under incidence angle direction and also to show a trade-off analysis for two different Fresnel lens shapes, imaging and nonimaging, used in the collector system. The description of the Fresnel lenses and its designs are included, in addition to the focal areas with space and angular distribution profiles considering the optimal alignment with the source and maximum permissible incident angle for each case. For both systems the coupling between the optical components is analyzed and the total performance is calculated, having as result its comparison for indoor illumination. In both cases, the systems have better performance increasing the final output power, but the angular tolerance only was improved for the system with nonimaging concentrator that had an efficiency over 80% with acceptance angles 𝜃𝑖 ≤ 2° and, the system integrated by the imaging lens, presented an efficiency ratio over 75% for acceptance angles 𝜃𝑖 ≤ 0.7°.

  8. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.

  9. Optics outreach in Irish context

    NASA Astrophysics Data System (ADS)

    McHugh, Emer; Smith, Arlene

    2009-06-01

    The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.

  10. Simple, monolithic optical element for forward-viewing spectrally encoded endoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Do, Dukho; Kang, Dongkyun; Ikuta, Mitsuhiro; Tearney, Guillermo J.

    2016-03-01

    Spectrally encoded endoscopy (SEE) is a miniature endoscopic technology that can acquire images of internal organs through a hair-thin probe. While most previously described SEE probes have been side viewing, forward-view (FV)-SEE is advantageous in certain clinical applications as it provides more natural navigation of the probe and has the potential to provide a wider field of view. Prior implementations of FV-SEE used multiple optical elements that increase fabrication complexity and may diminish the robustness of the device. In this paper, we present a new design that uses a monolithic optical element to realize FV-SEE imaging. The optical element is specially designed spacer, fabricated from a 500-μm-glass rod that has a mirror surface on one side and a grating stamped on its distal end. The mirror surface is used to change the incident angle on the grating to diffract the shortest wavelength of the spectrum so that it is parallel to the optical axis. Rotating the SEE optics creates a circular FV-SEE image. Custom-designed software processes FV-SEE images into circular images, which are displayed in real-time. In order to demonstrate this new design, we have constructed the FV-SEE optical element using a 1379 lines/mm diffraction grating. When illuminated with a source with a spectral bandwidth of 420-820 nm, the FV-SEE optical element provides 678 resolvable points per line. The imaging performance of the FV-SEE device was tested by imaging a USAF resolution target. SEE images showed that this new approach generates high quality images in the forward field with a field of view of 58°. Results from this preliminary study demonstrate that we can realize FV-SEE imaging with simple, monolithic, miniature optical element. The characteristics of this FV-SEE configuration will facilitate the development of robust miniature endoscopes for a variety of medical imaging applications.

  11. Ring-laser gyroscope system using dispersive element(s)

    NASA Technical Reports Server (NTRS)

    Smith, David D. (Inventor)

    2010-01-01

    A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.

  12. Fabrication of amplitude-phase type diffractive optical elements in aluminium films

    NASA Astrophysics Data System (ADS)

    Fomchenkov, S. A.; Butt, M. A.

    2017-11-01

    In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.

  13. Sensored fiber reinforced polymer grate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Michael P.; Mack, Thomas Kimball

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based onmore » a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.« less

  14. The South Pole Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope willmore » be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.« less

  15. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  16. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  17. Compound lens

    DOEpatents

    Brixner, B.B.; Klein, M.M.; Winkler, M.A.

    1980-05-21

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  18. Compound lens

    DOEpatents

    Brixner, Berlyn B.; Klein, Morris M.; Winkler, Max A.

    1982-01-01

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  19. The DKIST Data Center: Meeting the Data Challenges for Next-Generation, Ground-Based Solar Physics

    NASA Astrophysics Data System (ADS)

    Davey, A. R.; Reardon, K.; Berukoff, S. J.; Hays, T.; Spiess, D.; Watson, F. T.; Wiant, S.

    2016-12-01

    The Daniel K. Inouye Solar Telescope (DKIST) is under construction on the summit of Haleakalā in Maui, and scheduled to start science operations in 2020. The DKIST design includes a four-meter primary mirror coupled to an adaptive optics system, and a flexible instrumentation suite capable of delivering high-resolution optical and infrared observations of the solar chromosphere, photosphere, and corona. Through investigator-driven science proposals, the facility will generate an average of 8 TB of data daily, comprised of millions of images and hundreds of millions of metadata elements. The DKIST Data Center is responsible for the long-term curation and calibration of data received from the DKIST, and for distributing it to the user community for scientific use. Two key elements necessary to meet the inherent big data challenge are the development of flexible public/private cloud computing and coupled relational and non-relational data storage mechanisms. We discuss how this infrastructure is being designed to meet the significant expectation of automatic and manual calibration of ground-based solar physics data, and the maximization the data's utility through efficient, long-term data management practices implemented with prudent process definition and technology exploitation.

  20. Wolter-Schwarzschild optics for the extreme-ultraviolet - The Berkeley stellar spectrometer and the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Finley, D.; Cash, W.

    1979-01-01

    The design, fabrication and performance of two Wolter-Schwarzschild grazing incidence optics are described. Both telescopes have been figured by single point diamond turning and have achieved better than 15-arcsec on-axis imaging. The telescope for the stellar spectrometer is an f/10 Type II system with an effective area of 225 sq cm at 250 A and 300 cm2 at 500 A. The primary has a maximum diameter of 38 cm and was fabricated in three elements. The copper-plated aluminum substrate was diamond turned; following nickel plating, the surface was polished and coated with evaporated gold. The performance during a sounding rocket flight is discussed. The prototype telescope for the Extreme Ultraviolet Explorer is an f/1.24 Type I system with an effective field of view of 5.0-deg diameter. The telescope has a maximum diameter of 40 cm and was fabricated as a single element. The aluminum substrate is to be diamond turned; the nickel plated surface will be polished and electroplated with gold. The design choice and defocusing optimization aimed at maximizing the field of view and number of image pixels is examined.

  1. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  2. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  3. Alignment of the writing beam with the diffractive structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system

    NASA Astrophysics Data System (ADS)

    Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-03-01

    A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.

  4. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Almeida, Euclides; Shalem, Guy; Prior, Yehiam

    2016-01-01

    Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.

  5. Fast Erase Method and Apparatus For Digital Media

    NASA Technical Reports Server (NTRS)

    Oakely, Ernest C. (Inventor)

    2006-01-01

    A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.

  6. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  7. Optical analog-to-digital converter

    DOEpatents

    Vawter, G Allen [Corrales, NM; Raring, James [Goleta, CA; Skogen, Erik J [Albuquerque, NM

    2009-07-21

    An optical analog-to-digital converter (ADC) is disclosed which converts an input optical analog signal to an output optical digital signal at a sampling rate defined by a sampling optical signal. Each bit of the digital representation is separately determined using an optical waveguide interferometer and an optical thresholding element. The interferometer uses the optical analog signal and the sampling optical signal to generate a sinusoidally-varying output signal using cross-phase-modulation (XPM) or a photocurrent generated from the optical analog signal. The sinusoidally-varying output signal is then digitized by the thresholding element, which includes a saturable absorber or at least one semiconductor optical amplifier, to form the optical digital signal which can be output either in parallel or serially.

  8. Bringing it all together: a unique approach to requirements for wavefront sensing and control on the James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Contos, Adam R.; Acton, D. Scott; Atcheson, Paul D.; Barto, Allison A.; Lightsey, Paul A.; Shields, Duncan M.

    2006-06-01

    The opto-mechanical design of the 6.6 meter James Webb Space Telescope (JWST), with its actively-controlled secondary and 18-segment primary mirror, presents unique challenges from a system engineering perspective. To maintain the optical alignment of the telescope on-orbit, a process called wavefront sensing and control (WFS&C) is employed to determine the current state of the mirrors and calculate the optimal mirror move updates. The needed imagery is downloaded to the ground, where the WFS&C algorithms to process the images reside, and the appropriate commands are uploaded to the observatory. Rather than use a dedicated wavefront sensor for the imagery as is done in most other applications, a science camera is used instead. For the success of the mission, WFS&C needs to perform flawlessly using the assets available among the combination of separate elements (ground operations, spacecraft, science instruments, optical telescope, etc.) that cross institutional as well as geographic borders. Rather than be yet another distinct element with its own set of requirements to flow to the other elements as was originally planned, a novel approach was selected. This approach entails reviewing and auditing other documents for the requirements needed to satisfy the needs of WFS&C. Three actions are taken: (1) when appropriate requirements exist, they are tracked by WFS&C ; (2) when an existing requirement is insufficient to meet the need, a requirement change is initiated; and finally (3) when a needed requirement is missing, a new requirement is established in the corresponding document. This approach, deemed a "best practice" at the customer's independent audit, allows for program confidence that the necessary requirements are complete, while still maintaining the responsibility for the requirement with the most appropriate entity. This paper describes the details and execution of the approach; the associated WFS&C requirements and verification documentation; and the implementation of the primary database tool for the project, DOORS (Dynamic Object-Oriented Requirements System).

  9. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    PubMed

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Optic Neuropathy Associated with Primary Sjögren's Syndrome: A Case Series.

    PubMed

    Bak, Eunoo; Yang, Hee Kyung; Hwang, Jeong-Min

    2017-04-01

    To determine the diverse clinical features of optic neuropathy associated with primary Sjögren's syndrome in Korean patients. Five women with acute and/or chronic optic neuropathy who were diagnosed as primary Sjögren's syndrome were retrospectively evaluated. Primary Sjögren's syndrome was diagnosed by signs and symptoms of keratoconjunctivitis sicca, positive serum anti-Ro/SSA and/or anti-La/SSB antibodies, and/or minor salivary gland biopsy. All patients underwent a complete ophthalmologic examination. Among the five patients diagnosed as optic neuropathy related to primary Sjögren's syndrome, four patients had bilateral optic neuropathy and one patient was unilateral. The clinical course was chronic in three patients and one of them showed acute exacerbation and was finally diagnosed with neuromyelitis optica spectrum disorder. The other two patients presented as acute optic neuritis and one was diagnosed with neuromyelitis optica spectrum disorder. Sicca symptoms were present in four patients, but only two patients reported these symptoms before the onset of optic neuropathy. Patients showed minimal response to systemic corticosteroids or steroid dependence, requiring plasmapheresis in the acute phase and immunosuppressive agents for maintenance therapy. Optic neuropathy associated with primary Sjögren's syndrome may show variable clinical courses, including acute optic neuritis, insidious progression of chronic optic atrophy, or in the context of neuromyelitis optica spectrum disorders. Optic neuropathy may be the initial manifestation of primary Sjögren's syndrome without apparent sicca symptoms, which makes the diagnosis often difficult. The presence of specific antibodies including anti-Ro/SSA, anti-La/SSB, and anti-aquaporin-4 antibodies are supportive for the diagnosis and treatment in atypical cases of optic neuropathy.

  11. Microoptical System And Fabrication Method Therefor

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-03-15

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  12. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  13. Microoptical system and fabrication method therefor

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  14. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope

    NASA Astrophysics Data System (ADS)

    Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang

    2017-12-01

    A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.

  15. Advanced Wavefront Sensor Concepts.

    DTIC Science & Technology

    1981-01-01

    internal optics (a) Characteristics (see Figure 47) - Intensification with a 256 element linear self scanned diode array - Optical input; lenticular ...34 diameter - Lenticular array input to fiber optics which spread out to tubes - Photon counting for low noise fac- tor (b) Pe r fo rmance - Bialkali...problem in making the lenslet arrays in the pupil divider rectangular. The last optical elements are the lenticular lens arrays. In this group, the first

  16. Reflective optical imaging system with balanced distortion

    DOEpatents

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  17. Method and apparatus for removing unwanted reflections from an interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)

    1994-01-01

    A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.

  18. Blunt forehead trauma and optic canal involvement: finite element analysis of anterior skull base and orbit on causes of vision impairment.

    PubMed

    Huempfner-Hierl, Heike; Bohne, Alexander; Wollny, Gert; Sterker, Ina; Hierl, Thomas

    2015-10-01

    Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy. A finite element study simulating impact forces on the paramedian forehead in different grades was initiated. The set-up consisted of a high-resolution skull model with about 740 000 elements, a blunt impactor and was solved in a transient time-dependent simulation. Individual bone material parameters were calculated for each volume element to increase realism. Results showed stress propagation from the frontal impact towards the optic foramen and the chiasm even at low-force fist-like impacts. Higher impacts produced stress patterns corresponding to typical fracture patterns of the anterior skull base including the optic canal. Transient simulation discerned two stress peaks equalling oscillation. It can be concluded that even comparatively low stresses and oscillation in the optic foramen may cause micro damage undiscerned by CT or MRI explaining consecutive vision loss. Higher impacts lead to typical comminuted fractures, which may affect the integrity of the optic canal. Finite element simulation can be effectively used in studying head trauma and its clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Toward high throughput optical metamaterial assemblies.

    PubMed

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

  20. Prism-type holographic optical element design and verification for the blue-light small-form-factor optical pickup head.

    PubMed

    Shih, Hsi-Fu; Chiu, Yi; Cheng, Stone; Lee, Yuan-Chin; Lu, Chun-Shin; Chen, Yung-Chih; Chiou, Jin-Chern

    2012-08-20

    This paper presents the prism-type holographic optical element (PT-HOE) design for a small-form-factor (SFF) optical pickup head (OPH). The surface of the PT-HOE was simulated by three steps of optimization and generated by binary optics. Its grating pattern was fabricated on the inclined plane of a microprism by using the standard photolithography and specific dicing procedures. The optical characteristics of the device were verified. Based on the virtual image method, the SFF-OPH with the device was assembled and realized.

  1. Reflective optical imaging systems with balanced distortion

    DOEpatents

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  2. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  3. Spectral diffraction efficiency characterization of broadband diffractive optical elements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony

    Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the workingmore » bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.« less

  4. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  5. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  6. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  7. Space active optics: in flight aberrations correction for the next generation of large space telescopes

    NASA Astrophysics Data System (ADS)

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2017-11-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.

  8. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.

    PubMed

    Robach, J S; Stock, S R; Veis, A

    2009-12-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.

  9. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus

    PubMed Central

    Robach, J. S.; Stock, S. R.; Veis, A.

    2009-01-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101

  10. Cartesian oval representation of freeform optics in illumination systems.

    PubMed

    Michaelis, D; Schreiber, P; Bräuer, A

    2011-03-15

    The geometrical method for constructing optical surfaces for illumination purpose developed by Oliker and co-workers [Trends in Nonlinear Analysis (Springer, 2003)] is generalized in order to obtain freeform designs in arbitrary optical systems. The freeform is created by a set of primitive surface elements, which are generalized Cartesian ovals adapted to the given optical system. Those primitives are determined by Hamiltonian theory of ray optics. The potential of this approach is demonstrated by some examples, e.g., freeform lenses with collimating front elements.

  11. Optical fiber-based biosensors.

    PubMed

    Monk, David J; Walt, David R

    2004-08-01

    This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.

  12. Fabrication of the Advanced X-ray Astrophysics Facility (AXAF) Optics: A Deterministic, Precision Engineering Approach to Optical Fabrication

    NASA Technical Reports Server (NTRS)

    Gordon, T. E.

    1995-01-01

    The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.

  13. Seasonal control skylight glazing panel with passive solar energy switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.V.

    1983-10-25

    A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.

  14. A Wafer-Bonded, Floating Element Shear-Stress Sensor Using a Geometric Moire Optical Transduction Technique

    NASA Technical Reports Server (NTRS)

    Horowitz, Stephen; Chen, Tai-An; Chandrasekaran, Venkataraman; Tedjojuwono, Ken; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2004-01-01

    This paper presents a geometric Moir optical-based floating-element shear stress sensor for wind tunnel turbulence measurements. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Measured results indicate a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.

  15. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  16. Micromachined edge illuminated optically transparent automotive light guide panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas

    2012-03-01

    Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.

  17. Optical propagation analysis in photobioreactor measurements on cyanobacteria

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2017-12-01

    Biotechnology applications are nowadays increasing in many areas, from agriculture to biochemistry, or even biomedicine. Knowledge on biological processes is becoming essential in order to be able to adequately estimate and control the production of these elements. Cyanobacteria present the capability of producing oxygen and biomass, from CO2 and light irradiation. Therefore, they could be fundamental for human subsistence in adverse environments, as basic needs of breathing and food would be guaranteed. Cyanobacteria cultivation, as other microorganisms, is carried out in photo-bioreactors. The adequate design of photobioreactors greatly influences elements production throughput. This design includes optical illumination and optical measurement of cyanobacteria growth. In this work an analysis of optical measurement of cyanobacteria growth in a photobioreactor is made. As cyanobacteria are inhomogeneous elements, the influence of light scattering is significant. Several types of cyanobacteria are considered, as long as several spatial profiles and irradiances of the incident light. Depending on cyanobacteria optical properties, optical distribution of transmitted light can be estimated. These results allow an appropriate consideration, in the optical design, of the relationship between detected light and cyanobacteria growth. As a consequence, the most adequate conditions of elements production from cyanobacteria could be estimated.

  18. Dielectric perturbations and Rayleigh scattering from an optical fiber near a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick

    As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.

  19. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    NASA Astrophysics Data System (ADS)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  20. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.

    PubMed

    George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y

    2014-09-22

    In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.

  1. Performance assessment of geotechnical structural elements using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin

    2017-04-01

    Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.

  2. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  3. Design of a flexure mount for optics in dynamic and cryogenic environments

    NASA Technical Reports Server (NTRS)

    Pollard, Lloyd Wayne

    1989-01-01

    The design of a flexure mount for a mirror operating in a cryogenic environment is presented. This structure represents a design effort recently submitted to NASA Ames for the support of the primary mirror of the Space Infrared Telescope Facility (SIRTF). The support structure must passively accommodate the differential thermal contraction between the glass mirror and the aluminium structure of the telescope during cryogenic cooldown. Further, it must support the one meter diameter, 116 kilogram (258 pound) primary mirror during a severe launch to orbit without exceeding the micro-yield of the material anywhere in the flexure mount. Procedures used to establish the maximum allowable radial stiffness of the flexural mount, based on the finite element program NASTRAN and the optical program FRINGE, are discussed. Early design concepts were evaluated using a parametric design program, and the development of that program is presented. Dynamic loading analyses performed with NASTRAN are discussed. Methods of combining modal responses resulting from a displacement response spectrum analysis are discussed, and a combination scheme called MRSS, modified root of sum of squares, is presented. Model combination schemes using MRSS, SRSS, and ABS are compared to the results of the modal frequency response analysis performed with NASTRAN.

  4. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.

    PubMed

    Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal

    2016-07-01

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.

  5. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE PAGES

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; ...

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  6. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  7. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.

    PubMed

    Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R

    2009-11-09

    Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

  8. Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Jessica; Fedoruk, Michael; Hrelescu, Calin; Lutich, Andrey A.; Feldmann, Jochen

    2011-06-01

    We have coated gold nanorods (NRs) with thermoresponsive microgel shells based on poly(N-isopropylacrylamide) (pNIPAM). We demonstrate by simultaneous laser-heating and optical extinction measurements that the Au NR cores can be simultaneously used as fast optothermal manipulators (switchers) and sensitive optical reporters of the microgel state in a fully externally controlled and reversible manner. We support our results with optical modeling based on the boundary element method and 3D numerical analysis on the temperature distribution. Briefly, we show that due to the sharp increase in refractive index resulting from the optothermally triggered microgel collapse, the longitudinal plasmon band of the coated Au NRs is significantly red-shifted. The optothermal control over the pNIPAM shell, and thereby over the optical response of the nanocomposite, is fully reversible and can be simply controlled by switching on and off a NIR heating laser. In contrast to bulk solution heating, we demonstrate that light-triggering does not compromise colloidal stability, which is of primary importance for the ultimate utilization of these types of nanocomposites as remotely controlled optomechanical actuators, for applications spanning from drug delivery to photonic crystals and nanoscale motion.

  9. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    NASA Astrophysics Data System (ADS)

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  10. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma.

    PubMed

    Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J

    2018-06-01

    To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.

  11. Laser window with annular grooves for thermal isolation

    DOEpatents

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  12. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  13. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  14. The selection criteria elements of X-ray optics system

    NASA Astrophysics Data System (ADS)

    Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.

    2018-01-01

    At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konov, V I

    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  16. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  17. High-performance image processing architecture

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick C.

    1992-04-01

    The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.

  18. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    DOE PAGES

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less

  19. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  20. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    NASA Technical Reports Server (NTRS)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  1. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  2. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  3. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  4. Miniature mechanical transfer optical coupler

    DOEpatents

    Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  5. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  6. Design Trade Study for a 4-Meter Off-Axis Primary Mirror Substrate and Mount for the Habitable-Zone Exoplanet Direct Imaging Mission

    NASA Technical Reports Server (NTRS)

    Arnold, William R.; Stahl, H. Philip

    2017-01-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study’s purpose is not to produce a final design, but rather to established a design methodology for matching the mirror’s properties (mass and stiffness) with the mission’s optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs. open-back vs. partial-back; meniscus vs. flat back vs. shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  7. Design trade study for a 4-meter off-axis primary mirror substrate and mount for the Habitable-zone Exoplanet Direct Imaging Mission

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Stahl, H. Philip

    2017-09-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study's purpose is not to produce a final design, but rather to established a design methodology for matching the mirror's properties (mass and stiffness) with the mission's optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs open-back vs partial-back; meniscus vs flat back vs shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  8. Size and Structure of Clusters Formed by Shear Induced Coagulation: Modeling by Discrete Element Method.

    PubMed

    Kroupa, Martin; Vonka, Michal; Soos, Miroslav; Kosek, Juraj

    2015-07-21

    The coagulation process has a dramatic impact on the properties of dispersions of colloidal particles including the change of optical, rheological, as well as texture properties. We model the behavior of a colloidal dispersion with moderate particle volume fraction, that is, 5 wt %, subjected to high shear rates employing the time-dependent Discrete Element Method (DEM) in three spatial dimensions. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to model noncontact interparticle interactions, while contact mechanics was described by the Johnson-Kendall-Roberts (JKR) theory of adhesion. The obtained results demonstrate that the steady-state size of the produced clusters is a strong function of the applied shear rate, primary particle size, and the surface energy of the particles. Furthermore, it was found that the cluster size is determined by the maximum adhesion force between the primary particles and not the adhesion energy. This observation is in agreement with several simulation studies and is valid for the case when the particle-particle contact is elastic and no plastic deformation occurs. These results are of major importance, especially for the emulsion polymerization process, during which the fouling of reactors and piping causes significant financial losses.

  9. First-order error budgeting for LUVOIR mission

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.

  10. Multi-gigabit WDM optical networking for next generation avionics system communications

    NASA Astrophysics Data System (ADS)

    Gardner, Robert D.; Andonovic, I.; Hunter, D. K.; Hamoudi, A.; McLaughlin, A. J.; Aitchison, J. S.; Marsh, J. H.

    2000-04-01

    It is envisaged that photonic networking will play a significant role in improving performance and reliability in both civil and military avionics systems. Of all the available photonic multiplexing technologies, wavelength-division multiplexing (WDM) has been the primary focus of attention within mainstream telecommunications offering increased throughput at a reasonable cost, with scope for enhanced routing flexibility, connectivity and network survivability. A direct mapping of techniques and devices from the maturing telecommunications sector is, however, not possible because of the stringent requirements of systems operating in the hostile aerospace environment. This paper gives an outline of these requirements and discusses, in detail, the design and development of a multi-gigabit, broadband optical WDM network architecture, specifically for use on aerospace platforms. The paper will also discuss a key element in the system, the arrayed-waveguide grating (AWG) wavelength multiplexing component, which has been designed to allow operation over the full military temperature specification without environmental conditioning.

  11. Modeling of the laser device for the stress therapy

    NASA Astrophysics Data System (ADS)

    Matveev, Nikolai V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.

    2017-05-01

    Recently there is a great interest to the drug-free methods of treatment of various diseases. For example, audiovisual therapy is used for the stress therapy. The main destination of the method is the health care and well-being. Visual content in the given case is formed when laser radiation is passing through the optical mediums and elements. The therapy effect is achieved owing to the color varying and complicated structure of the picture which is produced by the refraction, dispersion effects, diffraction and interference. As the laser source we use three laser sources with wavelengths of 445 nm, 520 nm and 640 nm and the optical power up to 1 W. The beam is guided to the optical element which is responsible for the final image of the dome surface. The dynamic image can be achieved by the rotating of the optical element when the laser beam is static or by scanning the surface of the element. Previous research has shown that the complexity of the image connected to the therapy effect. The image was chosen experimentally in practice. The evaluation was performed using the fractal dimension calculation for the produced image. In this work we model the optical image on the surface formed by the laser sources together with the optical elements. Modeling is performed in two stages. On the first stage we perform the simple modeling taking into account simple geometrical effects and specify the optical models of the sources.

  12. A Practical Guide to Experimental Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  13. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.

  14. Optical elements with extended depth of focus and arbitrary distribution of intensity along the focal segment obtained by angular modulation of the optical power

    NASA Astrophysics Data System (ADS)

    Kakarenko, K.; Ducin, I.; Jaroszewicz, Z.; Kołodziejczyk, A.; Petelczyc, K.; Stompor, A.; Sypek, M.

    2015-04-01

    Light Sword Lens (LSL), i.e., an optical element with extended depth of focus (EDOF) characterized by angular modulation of the optical power in its conventional form is characterized by a linear relationship between the optical power and the angular coordinate of the corresponding angular lens sector. This dependence may be manipulated in function of the required design needs. In the present communicate this additional degree of freedom of design is used for elimination of the LSL shape discontinuity.

  15. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  16. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.

    Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic inmore » providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.« less

  17. Adjustable bipod flexures for mounting mirrors in a space telescope.

    PubMed

    Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo

    2012-11-10

    A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.

  18. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  19. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  20. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  1. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  2. Optimization of x-ray capillary optics for mammography

    NASA Astrophysics Data System (ADS)

    Ross, Richard E.; Bradford, Carla D.; Peppler, Walter W.

    2002-05-01

    The purpose of this study is to develop a full-field digital mammography system utilizing capillary optics. Specific aims are to identify optic properties that affect image quality and to optimize those properties in the design of a multi-element capillary array. It has been shown that polycapillary optics significantly improve mammographic image quality through increased resolution and reduced x-ray scatter. For practical clinical application much larger multi-element optics will be required. This study quantified the contributing factors to the multi-element optic MTF and investigated methods to determine optimal parameters for a practical design. Individual and a prototype multi-element array of linearly tapered optics with a common focal point were investigated. A conventional (MO/MO) mammography tube and computed radiography system were used. The system and optic MTF were measured using the angled slit method with a slit camera (10 micron slit). MTF measurements were performed with both stationary and scanned optics. Contributions to MTF included: distortion within individual optics, misalignment between optics, capillary channel size, and vibration. Measurement techniques used to identify and quantify the contributions to optic MTF included a phantom chosen specifically for polycapillary optics. This phantom provided a method for assessing the coherence among capillaries within an optic as well as the relative alignment of the optics within the array. In addition, modifications to the scanning procedure allowed for the isolation and quantification of several contributors to the system MTF. Specifically, measurements were made using a stationary optic, a scanning optic, and an optic placed at multiple locations within the imaged field of view. These techniques yielded the optic MTF, the degradation of MTF due to loss of coherence within the optic, and the degradation of MTF due to vibration of the scanning mechanism. Distortion within individual optics was, typically, quite small. However, MTF degradation resulting from twist was significant in some optics. MTF degradation due to misalignment was relatively large in the prototype triad. Modeling found that misalignment up to 50 microns reduced MTF by less than 10 percent up to 3 cycles/mm. Channel diameters of 52 microns and 85 microns reduced MTF by 9 percent to 20 percent at 5 cycles/mm and provided an optimal tradeoff between transmission and MTF. Vibration was identified as a significant degradation to MTF but can easily reduced with simple modifications. In spite of some reduced optic MTF values, system MTF has always been significantly improved - in some cases almost by the magnification ratio. These results allow for accurate modeling of optic performance and optimization of design parameters. This study demonstrates that a multi-element array can be produced with nearly optimal properties. A large area array suitable for clinical trial is feasible and is the next step in this program.

  3. Photovoltaic device with increased light absorption and method for its manufacture

    DOEpatents

    Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  4. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOEpatents

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  5. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared to the ferrite, the pitting corrosion occurred at the ferrite and austenite interface or within the austenite.

  6. Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements

    NASA Astrophysics Data System (ADS)

    Kravets, Nina; Brasselet, Etienne

    2018-01-01

    We propose to couple the optical orientational nonlinearities of liquid crystals with their ability to self-organize to tailor them to control space-variant-polarized optical fields in a nonlinear manner. Experimental demonstration is made using a liquid crystal light valve that behaves like a light-driven geometric phase optical element. We also unveil two original nonlinear optical processes, namely self-induced separability and nonseparability. These results contribute to the advancement of nonlinear singular optics that is still in its infancy despite 25 years of effort, which may foster the development of nonlinear protocols to manipulate high-dimensional optical information both in the classical and quantum regimes.

  7. Optical computing, optical memory, and SBIRs at Foster-Miller

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  8. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  9. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  10. The Zwicky Transient Facility Camera

    NASA Astrophysics Data System (ADS)

    Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.

    2016-08-01

    The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.

  11. Finite Element Modeling of a Semi-Rigid Hybrid Mirror and a Highly Actuated Membrane Mirror as Candidates for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Craig, Larry; Jacobson, Dave; Mosier, Gary; Nein, Max; Page, Timothy; Redding, Dave; Sutherlin, Steve; Wilkerson, Gary

    2000-01-01

    Advanced space telescopes, which will eventually replace the Hubble Space Telescope (HTS), will have apertures of 8 - 20 n. Primary mirrors of these dimensions will have to be foldable to fit into the space launcher. By necessity these mirrors will be extremely light weight and flexible and the historical approaches to mirror designs, where the mirror is made as rigid as possible to maintain figure and to serve as the anchor for the entire telescope, cannot be applied any longer. New design concepts and verifications will depend entirely on analytical methods to predict optical performance. Finite element modeling of the structural and thermal behavior of such mirrors is becoming the tool for advanced space mirror designs. This paper discusses some of the preliminary tasks and study results, which are currently the basis for the design studies of the Next Generation Space Telescope.

  12. Optically inspired biomechanical model of the human eyeball.

    PubMed

    Sródka, Wieslaw; Iskander, D Robert

    2008-01-01

    Currently available biomechanical models of the human eyeball focus mainly on the geometries and material properties of its components while little attention has been given to its optics--the eye's primary function. We postulate that in the evolution process, the mechanical structure of the eyeball has been influenced by its optical functions. We develop a numerical finite element analysis-based model in which the eyeball geometry and its material properties are linked to the optical functions of the eye. This is achieved by controlling in the model all essential optical functions while still choosing material properties from a range of clinically available data. In particular, it is assumed that in a certain range of intraocular pressures, the eye is able to maintain focus. This so-called property of optical self-adjustments provides a more constrained set of numerical solutions in which the number of free model parameters significantly decreases, leading to models that are more robust. Further, we investigate two specific cases of a model that satisfies optical self-adjustment: (1) a full model in which the cornea is flexibly attached to sclera at the limbus, and (2) a fixed cornea model in which the cornea is not allowed to move at the limbus. We conclude that for a biomechanical model of the eyeball to mimic the optical function of a real eye, it is crucial that the cornea is allowed to move at the limbal junction, that the materials used for the cornea and sclera are strongly nonlinear, and that their moduli of elasticity remain in a very close relationship.

  13. Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system

    NASA Astrophysics Data System (ADS)

    Kampmann, R.; Sinzinger, S.

    2014-12-01

    In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.

  14. Method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David E.

    2004-02-03

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and second plurality of stacked optical waveguides, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  15. Small inlet optical panel and a method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David

    2001-01-01

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and to the second plurality, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  16. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Reversible logic elements as a new field of application of optical solitons

    NASA Astrophysics Data System (ADS)

    Maimistov, Andrei I.

    1995-10-01

    An analysis is made of the fundamental concepts of conservative logic. It is shown that the existing optical soliton switches can be converted into logic gates which act as conservative logic elements. A logic device of this type, based on a nonlinear fibre-optic directional coupler, is considered. Polarised solitons are used in this coupler. This use of solitons leads in a natural way to the desirability of developing conservative triple-valued logic.

  17. Creation of an anti-imaging system using binary optics.

    PubMed

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H P; Gan, Fuxi; Zhuang, Songlin

    2016-09-13

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element.

  18. Apparatus for injecting high power laser light into a fiber optic cable

    DOEpatents

    Sweatt, William C.

    1997-01-01

    High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber.

  19. Creation of an anti-imaging system using binary optics

    PubMed Central

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  20. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  1. Design, fabrication and space suitability tests of wide field of view, ultra-compact, and high resolution telescope for space application.

    PubMed

    Tumarina, M; Ryazanskiy, M; Jeong, S; Hong, G; Vedenkin, N; Park, I H; Milov, A

    2018-02-05

    We report on the design, manufacture, and testing of an ultra-compact telescope for 16 unit (16U) CubeSats for Earth and space observation. This telescope provides 1 arcsec resolution at a 2.9 degree field of view. Dimensions are optimized to 230 × 230 × 330mm 3 with a mass of less than 6kg including support structure. Our catadioptric 5-element design consists of a full-aperture corrector, a Mangin primary mirror (PM), a secondary mirror (SM), and a 2-lens field corrector. The focal length is 745mm, and squared-circular aperture has an equivalent diameter of 241mm. The designed modulation transfer function (MTF) is 0.275 for the entire unit including baffles at a Nyquist frequency of 161 cycles/mm for the 450-800nm band. As one of the distinguishing features of our state-of-the-art design, all optical surfaces are spherical to simplify adjustment. For the best thermal stability, all optical elements are produced from fused silica. We describe the details of design, adjustment, and laboratory performance tests for space environments in accordance with the requirements for in-orbit operation onboard Earth-observation micro-satellites to be launched in 2018.

  2. Finite elements numerical codes as primary tool to improve beam optics in NIO1

    NASA Astrophysics Data System (ADS)

    Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.

    2017-08-01

    The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.

  3. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  4. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  5. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  6. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  7. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  8. CO-SPATIAL LONG-SLIT UV/OPTIC AL SPECTRA OF 10 GALACTIC PLANETARY NEBULAE WITH HST/STIS. I. DESCRIPTION OF THE OBSERVATIONS, GLOBAL EMISSION-LINE MEASUREMENTS, AND CNO ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.

    We present observations and initial analysis from a Hubble Space Telescope (HST) Cycle 19 program using STIS to obtain the first co-spatial, UV–optical spectra of 10 Galactic planetary nebulae (PNs). Our primary objective was to measure the critical emission lines of carbon and nitrogen with unprecedented signal-to-noise ratio (S/N) and spatial resolution over the wavelength range 1150–10270 Å, with the ultimate goal of quantifying the production of these elements in low- and intermediate-mass stars. Our sample was selected from PNs with a near-solar metallicity, but spanning a broad range in N/O based on published ground-based and IUE spectra. This study,more » the first of a series, concentrates on the observations and emission-line measurements obtained by integrating along the entire spatial extent of the slit. We derived ionic and total elemental abundances for the seven PNs with the strongest UV line detections (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, and NGC 7662). We compare these new results with other recent studies of the nebulae and discuss the relative merits of deriving the total elemental abundances of C, N, and O using ionization correction factors (ICFs) versus summed abundances. For the seven PNs with the best UV line detections, we conclude that summed abundances from direct diagnostics of ions with measurable UV lines give the most accurate values for the total elemental abundances of C and N (although ICF abundances often produced good results for C). In some cases where significant discrepancies exist between our abundances and those from other studies, we show that the differences can often be attributed to their use of fluxes that are not co-spatial. Finally, we examined C/O and N/O versus O/H and He/H in well-observed Galactic, LMC, and SMC PNs and found that highly accurate abundances are essential for properly inferring elemental yields from their progenitor stars. Future papers will discuss photoionization modeling of our observations, of both the integrated spectra and spatial variations of the UV versus optical lines along the STIS slit lengths, which are unique to our observations.« less

  9. Diffractive optical elements with radial four-level microrelief fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Pavelyev, V.; Osipov, V.; Kachalov, D.; Chichkov, B.

    2013-01-01

    The two-photon polymerization technique is applied for the fabrication of diffractive optical elements (DOE) with a four-level microrelief. These DOEs form longitudinal intensity distribution (axial light segment) with dimensions required for ophthalmological applications.

  10. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  11. Measurement of the complex transmittance of large optical elements with Ptychographical Iterative Engine.

    PubMed

    Wang, Hai-Yan; Liu, Cheng; Veetil, Suhas P; Pan, Xing-Chen; Zhu, Jian-Qiang

    2014-01-27

    Wavefront control is a significant parameter in inertial confinement fusion (ICF). The complex transmittance of large optical elements which are often used in ICF is obtained by computing the phase difference of the illuminating and transmitting fields using Ptychographical Iterative Engine (PIE). This can accurately and effectively measure the transmittance of large optical elements with irregular surface profiles, which are otherwise not measurable using commonly used interferometric techniques due to a lack of standard reference plate. Experiments are done with a Continue Phase Plate (CPP) to illustrate the feasibility of this method.

  12. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of thermooptic distortions of a Nd:YVO4 active element at different methods of its mounting

    NASA Astrophysics Data System (ADS)

    Kijko, V. V.; Ofitserov, Evgenii N.

    2006-05-01

    Thermooptic distortions of the active element of an axially diode-pumped Nd:YVO4 solid-state laser are studied at different methods of its mounting. The study was performed by the Hartmann method. A mathematical model for calculating the optical power of a thermal lens produced in the crystal upon pumping is developed and verified experimentally. It is shown that the optical power of a thermal lens produced upon axial pumping of the convectively cooled active element sealed off in a copper heat sink is half the optical power observed upon convective cooling of the active element without heat sink. The experimental and theoretical results are in good agreement.

  13. Micro-optical elements produced using an photo-embossing technique in photopolymers

    NASA Astrophysics Data System (ADS)

    O'Neill, Feidhlim T.; Rowsome, Ita C.; Carr, Alun J.; Daniels, Stephen M.; Gleeson, Michael R.; Kelly, John V.; Close, Ciara; Lawrence, Justin R.; Sheridan, John T.

    2005-09-01

    Micro-optical devices are very important in current high-tech consumer items. The development of future products depends on both the evolution of fabrication techniques and on the development of new low cost mass production methods. Polymers offer ease of fabrication and low cost and are therefore excellent materials for the development of micro-optical devices. Polymer optical devices include passive optical elements, such as microlens arrays and waveguides, as well as active devices such as polymer based lasers. One of the most important areas of micro-optics is that of microlens design, manufacture and testing. The wide diversity of fabrication methods used for the production of these elements indicates their importance. One of these fabrication techniques is photo-embossing. The use of the photo-embossing technique and a photopolymer holographic recording material will be examined in this paper. A discussion of current attempts to model the fabrication process and a review of the experimental method will be given.

  14. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  15. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  16. MEMS-tunable dielectric metasurface lens.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraji-Dana, MohammadSadegh; Faraon, Andrei

    2018-02-23

    Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

  17. Photonic Multitasking Interleaved Si Nanoantenna Phased Array.

    PubMed

    Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L

    2016-12-14

    Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.

  18. Source Apportionment of PM2.5 Mass and Optical Attenuation Over an Ecologically Sensitive Zone in Central India by Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Nirmalkar, J.; Raman, R. S.

    2016-12-01

    Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.

  19. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  20. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, William J.

    1985-06-18

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.

  1. Modified-Signed-Digit Optical Computing Using Fan-Out

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Zhou, Shaomin; Yeh, Pochi

    1996-01-01

    Experimental optical computing system containing optical fan-out elements implements modified signed-digit (MSD) arithmetic and logic. In comparison with previous optical implementations of MSD arithmetic, this one characterized by larger throughput, greater flexibility, and simpler optics.

  2. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  3. System Architecture of Explorer Class Spaceborne Telescopes: A look at Optimization of Cost, Testability, Risk and Operational Duty Cycle from the Perspective of Primary Mirror Material Selection

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Westerhoff, Thomas

    2015-01-01

    Management of cost and risk have become the key enabling elements for compelling science to be done within Explorer or M-Class Missions. We trace how optimal primary mirror selection may be co-optimized with orbit selection. And then trace the cost and risk implications of selecting a low diffusivity low thermal expansion material for low and medium earth orbits, vs. high diffusivity high thermal expansion materials for the same orbits. We will discuss that ZERODUR®, a material that has been in space for over 30 years, is now available as highly lightweighted open-back mirrors, and the attributes of these mirrors in spaceborne optical telescope assemblies. Lightweight ZERODUR® solutions are practical from mirrors < 0.3m in diameter to >4m in diameter. An example of a 1.2m lightweight ZERODUR® mirror will be discussed.

  4. SCARLET: Design of the Fresnel concentrator array for New Millennium Deep Space 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, D.M.; Eskenazi, M.I.

    1997-12-31

    The primary power for the JPL New Millennium Deep Space 1 spacecraft is a 2.6 kW concentrator solar array. This paper surveys the design and analysis employed to combine line-focus Fresnel lenses and multijunction (GaInP{sub 2}/GaAs/Ge) solar cells in the second-generation SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) system. The array structure and mechanisms are reviewed. Discussion is focused on the lens and receiver, from the optimizations of optical efficiency and thermal management, to the design issues of environmental extremes, reliability, producibility, and control of pointing error.

  5. Method for Balancing Detector Output to a Desired Level of Balance at a Frequency

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor)

    2003-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  6. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  7. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    PubMed

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  8. The first aluminum coating of the 3700mm primary mirror of the Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Bheemireddy, Krishna Reddy; Gopinathan, Maheswar; Pant, Jayshreekar; Omar, Amitesh; Kumar, Brijesh; Uddin, Wahab; Kumar, Nirmal

    2016-07-01

    Initially the primary mirror of the 3.6m Devasthal Optical Telescope is uncoated polished zerodur glass supplied by Lytkarino Optical Glass Factory, Russia/Advanced Mechanical and Optical Systems, Belgium. In order to do the aluminium coating on the primary mirror the coating plant including washing unit is installed near the telescope (extension building of telescope) by Hind High Vacuum (HHV) Bangalore, India. Magnetron sputtering technique is used for the coating. Several coating trials are done before the primary mirror coating; samples are tested for reflectivity, uniformity, adhesivity and finally commissioned. The primary mirror is cleaned, coated by ARIES. We present here a brief description of the coating plant installation, Mirror cleaning and coating procedures and the testing results of the samples.

  9. Medical catheters thermally manipulated by fiber optic bundles

    DOEpatents

    Chastagner, Philippe

    1992-01-01

    A maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.

  10. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    NASA Astrophysics Data System (ADS)

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  11. Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.

    PubMed

    Itoh, Yuta; Klinker, Gudrun

    2015-04-01

    A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.

  12. Ultraminiature video-rate forward-view spectrally encoded endoscopy with straight axis configuration

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Wu, Tzu-Yu; Hamm, Mark A.; Altshuler, Alexander; Mach, Anderson T.; Gilbody, Donald I.; Wu, Bin; Ganesan, Santosh N.; Chung, James P.; Ikuta, Mitsuhiro; Brauer, Jacob S.; Takeuchi, Seiji; Honda, Tokuyuki

    2017-02-01

    As one of the smallest endoscopes that have been demonstrated, the spectrally encoded endoscope (SEE) shows potential for the use in minimally invasive surgeries. While the original SEE is designed for side-view applications, the forwardview (FV) scope is more desired by physicians for many clinical applications because it provides a more natural navigation. Several FV SEEs have been designed in the past, which involve either multiple optical elements or one optical element with multiple optically active surfaces. Here we report a complete FV SEE which comprises a rotating illumination probe within a drive cable, a sheath and a window to cover the optics, a customized spectrometer, hardware controllers for both motor control and synchronization, and a software suite to capture, process and store images and videos. In this solution, the optical axis is straight and the dispersion element, i.e. the grating, is designed such that the slightly focused light after the focusing element will be dispersed by the grating, covering forward view angles with high diffraction efficiencies. As such, the illumination probe is fabricated with a diameter of only 275 μm. The twodimensional video-rate image acquisition is realized by rotating the illumination optics at 30 Hz. In one finished design, the scope diameter including the window assembly is 1.2 mm.

  13. Multi-source ion funnel

    DOEpatents

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  14. Hybrid RF / Optical Communication Terminal with Spherical Primary Optics for Optical Reception

    NASA Technical Reports Server (NTRS)

    Charles, Jeffrey R.; Hoppe, Daniel H.; Sehic, Asim

    2011-01-01

    Future deep space communications are likely to employ not only the existing RF uplink and downlink, but also a high capacity optical downlink. The Jet Propulsion Laboratory (JPL) is currently investigating the benefits of a ground based hybrid RF and deep space optical terminal based on limited modification of existing 34 meter antenna designs. The ideal design would include as large an optical aperture as technically practical and cost effective, cause minimal impact to RF performance, and remain cost effective even when compared to a separate optical terminal of comparable size. Numerous trades and architectures have been considered, including shared RF and optical apertures having aspheric optics and means to separate RF and optical signals, plus, partitioned apertures in which various zones of the primary are dedicated to optical reception. A design based on the latter is emphasized in this paper, employing spherical primary optics and a new version of a "clamshell" corrector that is optimized to fit within the limited space between the antenna sub-reflector and the existing apex structure that supports the subreflector. The mechanical design of the hybrid accommodates multiple spherical primary mirror panels in the central 11 meters of the antenna, and integrates the clamshell corrector and optical receiver modules with antenna hardware using existing attach points to the maximum extent practical. When an optical collection area is implemented on a new antenna, it is possible to design the antenna structure to accommodate the additional weight of optical mirrors providing an equivalent aperture of several meters diameter. The focus of our near term effort is to use optics with the 34 meter DSS-13 antenna at Goldstone to demonstrate spatial optical acquisition and tracking capability using an optical system that is temporarily integrated into the antenna.

  15. Analysis of thermal stresses in HfO2/SiO2 high reflective optical coatings for high power laser applications

    NASA Astrophysics Data System (ADS)

    Gao, Chunxue; Zhao, Zhiwei; Zhu, Zhuoya; Li, Shuang; Mi, Changwen

    2015-02-01

    HfO2/SiO2 high reflective optical coatings are widely used in high power laser applications because of their high laser damage resistance and appropriate spectral performance. The residual stresses strongly influence the performance and longevity of the optical coatings. Thermal stresses are the primary components of the residual stresses. In the present work, the distribution of thermal stresses in HfO2/SiO2 high reflective optical coatings was investigated using two different computational methods: finite element method (FEM) and an analytical method based on force and moment balances and classical beam bending theory. The results by these two methods were compared and found to be in agreement with each other, demonstrating that these two methods are effective and accurate ways to predict the thermal stresses in HfO2/SiO2 optical coatings. In addition, these two methods were also used to obtain the thermal stresses in HfO2/SiO2 optical coatings with different layer number to investigate the effect of the layer number on the thermal stresses of the HfO2/SiO2 optical coatings. The results show that with the increase of the layer number, the stresses in the substrate increase, while the stresses in the respective SiO2 and HfO2 layers decrease. Besides, it was also found that the radius of curvature of the coating system decreases as the layer number increases, leading to larger bending curvature in the system.

  16. AERONET-OC: Strengths and Weaknesses of a Network for the Validation of Satellite Coastal Radiometric Products

    NASA Technical Reports Server (NTRS)

    Zibordi, Giuseppe; Holben, Brent; Slutsker, Ilya; Giles, David; D'Alimonte, Davide; Melin, Frederic; Berthon, Jean-Francois; Vandemark, Doug; Feng, Hui; Schuster, Gregory; hide

    2008-01-01

    The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The ultimate purpose of AERONET-OC is the production of standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. The AERONET-OC primary data product is the normalized water leaving radiance determined at center-wavelengths of interest for satellite ocean color applications, with an uncertainty lower than 5% in the blue-green spectral regions and higher than 8% in the red. Measurements collected at 6 sites counting the northern Adriatic Sea, the Baltic Proper, the Gulf of Finland, the Persian Gulf, and, the northern and southern margins of the Middle Atlantic Bay, have shown the capability of producing quality assured data over a wide range of bio-optical conditions including Case-2 yellow substance- and sedimentdominated waters. This work briefly introduces network elements like: deployment sites, measurement method, instrument calibration, processing scheme, quality-assurance, uncertainties, data archive and products accessibility. Emphases is given to those elements which underline the network strengths (i.e., mostly standardization of any network element) and its weaknesses (i.e., the use of consolidated, but old-fashioned technology). The work also addresses the application of AERONET-OC data to the validation of primary satellite radiometric products over a variety of complex coastal waters and finally provides elements for the identification of new deployment sites most suitable to support satellite ocean color missions.

  17. Dielectric Metasurface Optics: A New Platform for Compact Optical Sensing

    NASA Astrophysics Data System (ADS)

    Colburn, Shane

    Metasurfaces, the 2D analogue of bulk metamaterials, show incredible promise for achieving nanoscale optical components that could support the growing infrastructure for the Internet of Things (IoT) and future sensing technologies. Consisting of quasiperiodic arrays of subwavelength scattering elements, metasurfaces apply spatial transfer functions to incident wavefronts, abruptly altering properties of light over a wavelength-scale thickness. By appropriately patterning scatterers on the structure, arbitrary functions can be implemented up to the limitations on the scattering properties of the particular elements. This thesis details theoretical work and simulations on the design of scattering elements with advanced capabilities for dielectric metasurfaces, showing polarization-multiplexed operation in the visible regime, multiwavelength capability in the visible regime along with a general methodology for eliminating chromatic aberrations at discrete wavelengths, and compact and tunable elements for 1550 nm operation inspired by an asymmetric Fabry-Perot cavity. These advancements enhance the capabilities of metasurfaces in the visible regime and help move toward the goal of achieving reconfigurable metasurfaces for compact and efficient optical sensors.

  18. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  19. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  20. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  1. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  2. The Submillimeter Wave Electron Cyclotron Emission Diagnostic for the Alcator C-Mod Tokamak.

    NASA Astrophysics Data System (ADS)

    Hsu, Thomas C.

    This thesis describes the engineering design, construction, and operation of a high spatial resolution submillimeter wave diagnostic for electron temperature measurements on Alcator C-Mod. Alcator C-Mod is a high performance compact tokamak capable of producing diverted, shaped plasmas with a major radius of 0.67 meters, minor radius of 0.21 centimeters, plasma current of 3 MA. The maximum toroidal field is 9 Tesla on the magnetic axis. The ECE diagnostic includes three primary components: a 10.8 meter quasioptical transmission line, a rapid scanning Michelson interferometer, and a vacuum compatible calibration source. Due to the compact size and high field of the tokamak the ECE system was designed to have a spectral range from 100 to 1000 GHz with frequency resolution of 5 GHz and spatial resolution of one centimeter. The beamline uses all reflecting optical elements including two off-axis parabolic mirrors with diameters of 20 cm. and focal lengths of 2.7 meters. Techniques are presented for grinding and finishing the mirrors to sufficient surface quality to permit optical alignment of the system. Measurements of the surface figure confirm the design goal of 1/4 wavelength accuracy at 1000 GHz. Extensive broadband tests of the spatial resolution of the ECE system are compared to a fundamental mode Gaussian beam model, a three dimensional vector diffraction model, and a geometric optics model. The Michelson interferometer is a rapid scanning polarization instrument which has an apodized frequency resolution of 5 GHz and a minimum scan period of 7.5 milliseconds. The novel features of this instrument include the use of precision linear bearings to stabilize the moving mirror and active counterbalancing to reduce vibration. Beam collimation within the instrument is done with off-axis parabolic mirrors. The Michelson also includes a 2-50 mm variable aperture and two signal attenuators constructed from crossed wire grid polarizers. To make full use of the advantages of an evacuated optical path a dual element in-situ calibration source was designed and constructed. The calibration source operates as a thermal blackbody at temperatures from 77K to 373K and base pressures down to 10^{-7} torr. The top element of the source serves as a room temperature reference while the lower element can be heated or cooled by the circulation of an appropriate fluid through the internal heat transfer tubes. The submillimeter absorbing bodies of both elements are made from arrays of knife edge tiles cast from thermally conductive, alumina filled epoxy. A boundary element heat transfer model of the tiles was constructed which indicates temperature uniformity within 1.5 percent. Operation during the 1993 startup of Alcator C -Mod demonstrates the excellent potential of the new instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.) (Abstract shortened by UMI.).

  3. Hilbert's Hotel in polarization singularities.

    PubMed

    Wang, Yangyundou; Gbur, Greg

    2017-12-15

    We demonstrate theoretically how the creation of polarization singularities by the evolution of a fractional nonuniform polarization optical element involves the peculiar mathematics of countably infinite sets in the form of "Hilbert's Hotel." Two distinct topological processes can be observed, depending on the structure of the fractional optical element.

  4. A novel design for maskless direct laser writing nanolithography: Combination of diffractive optical element and nonlinear absorption inorganic resists

    NASA Astrophysics Data System (ADS)

    Zha, Yikun; Wei, Jingsong; Gan, Fuxi

    2013-09-01

    Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.

  5. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  6. Cryogenic Optical Position Encoders for Mechanisms in the JWST Optical Telescope Element Simulator (OSIM)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Anderjaska, Thomas; Badger, James (Inventor); Capon, Tom; Davis, CLinton; Dicks, Brent (Inventor); Eichhorn, William; Garza, Mario; Guishard, Corina; Haghani, Shadan; hide

    2013-01-01

    The JWST Optical Telescope Element Simulator (OSIM) is a configurable, cryogenic, optical stimulus for high fidelity ground characterization and calibration of JWST's flight instruments. OSIM and its associated Beam Image Analyzer (BIA) contain several ultra-precise, cryogenic mechanisms that enable OSIM to project point sources into the instruments according to the same optical prescription as the flight telescope images stars - correct in focal surface position and chief ray angle. OSIM's and BIA's fifteen axes of mechanisms navigate according to redundant, cryogenic, absolute, optical encoders - 32 in all operating at or below 100 K. OSIM's encoder subsystem, the engineering challenges met in its development, and the encoders' sub-micron and sub-arcsecond performance are discussed.

  7. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  8. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  9. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.

  10. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.

  11. New solutions to realize complex optical systems by a combination of diffractive and refractive optical components

    NASA Astrophysics Data System (ADS)

    Brunner, Robert; Steiner, Reinhard; Dobschal, Hans-Juergen; Martin, Dietrich; Burkhardt, Matthias; Helgert, Michael

    2003-11-01

    Diffractive optical elements (DOEs) have a great potential in the complete or partial substitution of refractive or reflective optical elements in imaging systems. The greater design flexibility compared to an all-refractive/reflective solution allows a more convenient realization of the optical systems and additionally opens up new possibilities for optimizing the performance or compactness. To demonstrate the opportunities of the hybrid optical concept we discuss different imaging systems for various applications. We present the lens design of a hybrid microscope objective which is especially applicable for wafer inspection technologies. Meeting the requirements for such a system used in the deep-UV regime (248 nm) is very challenging. The short wavelength limits the material selection and demands cement free optical groups. The additional requirement of an autofocus system, working at a wavelength in the near infrared region, is fulfilled by the special combination of two selected and adjusted DOEs. Furthermore, we discuss the opportunities of the hybrid concept c of a slit lamp used for ophthalmologic examinations. The DOEs are the basic elements of this hybrid concept. We demonstrate that holographic lithography is an appropriate technology to realize a wide variety of elements with different profile geometries. We address in particular the additional possibilities of an UV-laser system as an exposure tool. Additionally to the high spatial frequencies, the 266 nm exposure wavelength allows the use of novel photo resists with advantageous development behavior.

  12. New generation all-silica based optical elements for high power laser systems

    NASA Astrophysics Data System (ADS)

    Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.

    2017-08-01

    Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.

  13. Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 degrees micro-reflector.

    PubMed

    Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn

    2009-11-09

    A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.

  14. Optical diffraction properties of multimicrogratings

    DOE PAGES

    Rothenbach, Christian A.; Kravchenko, Ivan I.; Gupta, Mool C.

    2015-02-27

    This paper shows the results of optical diffraction properties of multimicrograting structures fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the individual effects of the several periodic elements of multimicrogratings. The observed optical diffraction pattern is shown to be the combined effect of the periodic and non-periodic elements that define the multimicrogratings and the interaction between different elements. We measured the total transverse electric (TE) diffraction efficiency of multimicrogratings andmore » found it to be 32.1%, which is closely related to the diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor technique. Interference fringes were observed under certain conditions formed by multimicrograting beams interfering with each other. Finally, these diffraction structures may find applications in sensing, nanometrology, and optical interconnects.« less

  15. Structural-Thermal-Optical Program (STOP)

    NASA Technical Reports Server (NTRS)

    Lee, H. P.

    1972-01-01

    A structural thermal optical computer program is developed which uses a finite element approach and applies the Ritz method for solving heat transfer problems. Temperatures are represented at the vertices of each element and the displacements which yield deformations at any point of the heated surface are interpolated through grid points.

  16. Objective lens

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  17. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  18. Study on light scattering characterization for polishing surface of optical elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo

    2017-02-01

    Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.

  19. Combined catalysts for the combustion of fuel in gas turbines

    DOEpatents

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  20. True-time-delay photonic beamformer for an L-band phased array radar

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications. This paper also serves as an update of work-in-progress at the Rome Laboratory Photonics Center Optical Beamforming Lab. The multi-faceted aspects of the design and construction of this state-of-the-art beamforming project will be discussed. Experimental results which demonstrate the performance of the system to-date with regard to both maximum delay and resolution over a broad bandwidth are presented.

  1. System of the optic-electronic sensors for control position of the radio telescope elements

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  2. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa L.; Capon, Thomas L.; Hakun, Claef; Haney, Paul; Koca, Corina; Guzek, Jeffrey

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  3. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-01-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215

  4. Optical memory development. Volume 3: The membrane light value page composer

    NASA Technical Reports Server (NTRS)

    Cosentino, L. S.; Nagle, E. M.; Stewart, W. C.

    1972-01-01

    The feasibility of producing a page composer for optical memory systems using thin, deformable, membrane-mirror elements as light valves was investigated. The electromechanical and optical performances of such elements were determined both analytically and experimentally. It was found that fast switching (approximately 10 microseconds), high-contrast (10 or greater), fatigue-free operation over missions of cycles, and efficient utilization of input light could be obtained with membrane light valves. Several arrays of 64 elements were made on substrates with feedthroughs, allowing access to individual elements from the backside of the substrate. Single light valves on such arrays were successfully operated with the transistors designed and produced for selection and storage at each bit location. This simulated the operation of a prototype page composer with semiconductor chips beam-lead bonded to the back of the substrate.

  5. Memory device using movement of protons

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Fleetwood, D.M.; Devine, R.A.B.

    1998-11-03

    An electrically written memory element is disclosed utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element. 19 figs.

  6. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    1998-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  7. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    2000-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  8. Silicon-based all-optical memory elements for 1.54 μm photonics

    NASA Astrophysics Data System (ADS)

    Forcales, M.; Gregorkiewicz, T.; Zavada, J. M.

    2003-01-01

    We present experimental evidence of an optical memory effect in crystalline silicon doped with Er 3+ ions. It is observed at low temperature using two-color experiments in the visible and the mid-infrared (with a free-electron laser). Based on the physical mechanism governing the effect, possibilities for improvement of thermal stability and increase of archival time are discussed. An all-optical all-silicon memory element for use in photonic circuits is proposed.

  9. Resolving ability and image discretization in the visual system.

    PubMed

    Shelepin, Yu E; Bondarko, V M

    2004-02-01

    Psychophysiological studies were performed to measure the spatial threshold for resolution of two "points" and the thresholds for discriminating their orientations depending on the distance between the two points. Data were compared with the scattering of the "point" by the eye's optics, the packing density of cones in the fovea, and the characteristics of the receptive fields of ganglion cells in the foveal area of the retina and neurons in the corresponding projection zones of the primary visual cortex. The effective zone was shown to have to contain a scattering function for several receptors, as this allowed preliminary blurring of the image by the eye's optics to decrease the subsequent (at the level of receptors) discretization noise created by a matrix of receptors. The concordance of these parameters supports the optical operation of the spatial elements of the neural network determining the resolving ability of the visual system at different levels of visual information processing. It is suggested that the special geometry of the receptive fields of neurons in the striate cortex, which are concordant with the statistics of natural scenes, results in a further increase in the signal:noise ratio.

  10. Calcitic microlenses as part of the photoreceptor system in brittlestars

    NASA Astrophysics Data System (ADS)

    Aizenberg, Joanna; Tkachenko, Alexei; Weiner, Steve; Addadi, Lia; Hendler, Gordon

    2001-08-01

    Photosensitivity in most echinoderms has been attributed to `diffuse' dermal receptors. Here we report that certain single calcite crystals used by brittlestars for skeletal construction are also a component of specialized photosensory organs, conceivably with the function of a compound eye. The analysis of arm ossicles in Ophiocoma showed that in light-sensitive species, the periphery of the labyrinthic calcitic skeleton extends into a regular array of spherical microstructures that have a characteristic double-lens design. These structures are absent in light-indifferent species. Photolithographic experiments in which a photoresist film was illuminated through the lens array showed selective exposure of the photoresist under the lens centres. These results provide experimental evidence that the microlenses are optical elements that guide and focus the light inside the tissue. The estimated focal distance (4-7µm below the lenses) coincides with the location of nerve bundles-the presumed primary photoreceptors. The lens array is designed to minimize spherical aberration and birefringence and to detect light from a particular direction. The optical performance is further optimized by phototropic chromatophores that regulate the dose of illumination reaching the receptors. These structures represent an example of a multifunctional biomaterial that fulfills both mechanical and optical functions.

  11. Optical design of MOEMS-based micro-mechatronic modules for applications in spectroscopy

    NASA Astrophysics Data System (ADS)

    Tortschanoff, A.; Kremer, M.; Sandner, T.; Kenda, A.

    2014-05-01

    One of the important challenges for widespread application of MOEMS devices is to provide a modular interface for easy handling and accurate driving of the MOEMS elements, in order to enable seamless integration in larger spectroscopic system solutions. In this contribution we present in much detail the optical design of MOEMS driver modules comprising optical position sensing together with driver electronics, which can actively control different electrostatically driven MOEMS. Furthermore we will present concepts for compact spectroscopic devices, based on different MOEMS scanner modules with lD and 2D optical elements.

  12. Adaptive optical system for writing large holographic optical elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyutchev, M.V.; Kalyashov, E.V.; Pavlov, A.P.

    1994-11-01

    This paper formulates the requirements imposed on systems for correcting the phase-difference distribution of recording waves over the field of a large-diameter photographic plate ({le}1.5 m) when writing holographic optical elements (HOEs). A technique is proposed for writing large HOEs, based on the use of an adaptive phase-correction optical system of the first type, controlled by the self-diffraction signal from a latent image. The technique is implemented by writing HOEs on photographic plates with an effective diameter of 0.7 m on As{sub 2}S{sub 3} layers. 13 refs., 4 figs.

  13. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  14. Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues

    DOEpatents

    Demos,; Stavros, G [Livermore, CA

    2011-05-17

    An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.

  15. Progress in holographic applications; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Ebbeni, Jean (Editor)

    1986-01-01

    Papers are presented on a holographic recording material containing poly-n-vinylcarbozole, photoelectrochemical etching of holographic gratings in semiconductors, the analysis and construction of powered reflection holographic optical elements, achromatic display holograms in dichromated gelatin, and image blurring in display holograms and in holographic optical elements. Topics discussed include two-dimensional optical beam switching techniques using dynamnic holography, a new holographic interferometer with monomode fibers for integrated optics applications, computer controlled holography, and the copying of holograms using incoherent light. Consideration is given to holography of very far objects, rainbow holography with a multimode laser source, and the use of an endoscope for optical fiber holography.

  16. Optical computing using optical flip-flops in Fourier processors: use in matrix multiplication and discrete linear transforms.

    PubMed

    Ando, S; Sekine, S; Mita, M; Katsuo, S

    1989-12-15

    An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.

  17. Methods of both destructive and non-destructive metrology of GRIN optical elements

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2015-05-01

    Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.

  18. NEMO educational kit on micro-optics at the secondary school

    NASA Astrophysics Data System (ADS)

    Flores-Arias, M. T.; Bao-Varela, Carmen

    2014-07-01

    NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.

  19. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  20. Grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Davis, J. M.; Krieger, A. S.; Underwood, J. H.

    1982-01-01

    The necessity to work in the focal plane of the primary mirrors has been one of the factors limiting the utility of grazing incidence telescopes in X-ray astronomy. In connection with the reported investigation, computer ray tracing programs have been used to study the performance of several grazing incidence relay optics (GIRO) systems used together with a large nested solar X-ray telescope. It was found that GIRO magnifiers are useful to map appropriate sized regions of the sun onto available CCD detectors. GIRO collimators can be used together with an X-ray spectrometer to study the X-ray spectrum from very small regions on the sun. Attention is given to the stationary mode, the tracking mode, and the size of GIRO elements. It is found that for a given GIRO size and magnification a use of the diverging system has the advantage of reducing the overall length of the main telescope-GIRO combination. However, the resolution provided by the diverging GIRO may not be as good as that obtained with the corresponding converging GIRO.

  1. Using laser micro mass spectrometry with the LAMMA-1000 instrument for monitoring relative elemental concentrations in vitrinite

    USGS Publications Warehouse

    Morelli, J.J.; Hercules, D.M.; Lyons, P.C.; Palmer, C.A.; Fletcher, J.D.

    1988-01-01

    The variation in relative elemental concentrations among a series of coal macerals belonging to the vitrinite maceral group was determined using laser micro mass spectrometry (LAMMS). Variations in Ba, Cr, Ga, Sr, Ti, and V concentrations among the coals were determined using the LAMM A-1000 instrument. LAMMS analysis is not limited to these elements; their selection illustrates the application of the technique. Ba, Cr, Ga, Sr, Ti, and V have minimal site-to-site variance in the vitrinite macerals of the studied coals as measured by LAMMS. The LAMMS data were compared with bulk elemental data obtained by instrumental neutron activation analysis (INAA) and D. C. arc optical emission spectroscopy (DCAS) in order to determine the reliability of the LAMMS data. The complex nature of the ionization phenomena in LAMMS and the lack of standards characterized on a microscale makes obtaining quantitative elemental data within the ionization microvolume difficult; however, we demonstrate that the relative variation of an element among vitrinites from different coal beds in the eastern United States can be observed using LAMMS in a "bulk" mode by accumulating signal intensities over several microareas of each vitrinite. Our studies indicate gross changes (greater than a factor of 2 to 5 depending on the element) can be monitored when the elemental concentration is significantly above the detection limit. "Bulk" mode analysis was conducted to evaluate the accuracy of future elemental LAMMS microanalyses. The primary advantage of LAMMS is the inherent spatial resolution, ~ 20 ??m for coal. Two different vitrite bands in the Lower Bakerstown coal bed (CLB-1) were analyzed. The analysis did not establish any certain concentration differences in Ba, Cr, Ga, Sr, Ti, and V between the two bands. ?? 1988 Springer-Verlag.

  2. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    PubMed

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  3. The research and realization of digital management platform for ultra-precision optical elements within life-cycle

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun

    2014-08-01

    In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.

  4. Medical catheters thermally manipulated by fiber optic bundles

    DOEpatents

    Chastagner, P.

    1992-10-06

    A maneuverable medical catheter comprising a flexible tube having a functional tip is described. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts. 10 figs.

  5. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  6. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  7. The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles

    2017-10-01

    We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.

  8. Nonlinear transient survival level seismic finite element analysis of Magellan ground based telescope

    NASA Astrophysics Data System (ADS)

    Griebel, Matt; Buleri, Christine; Baylor, Andrew; Gunnels, Steve; Hull, Charlie; Palunas, Povilas; Phillips, Mark

    2016-07-01

    The Magellan Telescopes are a set of twin 6.5 meter ground based optical/near-IR telescopes operated by the Carnegie Institution for Science at the Las Campanas Observatory (LCO) in Chile. The primary mirrors are f/1.25 paraboloids made of borosilicate glass and a honeycomb structure. The secondary mirror provides both f/11 and f/5 focal lengths with two Nasmyth, three auxiliary, and a Cassegrain port on the optical support structure (OSS). The telescopes have been in operation since 2000 and have experienced several small earthquakes with no damage. Measurement of in situ response of the telescopes to seismic events showed significant dynamic amplification, however, the response of the telescopes to a survival level earthquake, including component level forces, displacements, accelerations, and stresses were unknown. The telescopes are supported with hydrostatic bearings that can lift up under high seismic loading, thus causing a nonlinear response. For this reason, the typical response spectrum analysis performed to analyze a survival level seismic earthquake is not sufficient in determining the true response of the structure. Therefore, a nonlinear transient finite element analysis (FEA) of the telescope structure was performed to assess high risk areas and develop acceleration responses for future instrument design. Several configurations were considered combining different installed components and altitude pointing directions. A description of the models, methodology, and results are presented.

  9. Single-element optical injection locking of diode-laser arrays

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1988-01-01

    By optically injecting a single end-element of a semiconductor laser array, both the spatial and spectral emission characteristics of the entire laser array is controlled. With the output of the array locked, the far-field emission angle of the array is continuously scanned over several degrees by varying the injection frequency.

  10. Sensitivity of Inverse Estimation of 2004 Elemental Carbon Emissions Inventory in the United States to the Choice of Observational Networks

    EPA Science Inventory

    Choice of observational networks used for inverse re-estimation of elemental (or black) carbon (EC) emissions in the United States impacts results. We convert the Thermal Optical Transmittance (TOT) EC measurements to the Thermal Optical Reflectance (TOR) equivalent to make full...

  11. Method and systems for collecting data from multiple fields of view

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K. (Inventor)

    2002-01-01

    Systems and methods for processing light from multiple fields (48, 54, 55) of view without excessive machinery for scanning optical elements. In an exemplary embodiment of the invention, multiple holographic optical elements (41, 42, 43, 44, 45), integrated on a common film (4), diffract and project light from respective fields of view.

  12. Analog of Optical Elements for Sound Waves in Air

    ERIC Educational Resources Information Center

    Gluck, Paul; Perkalskis, Benjamin

    2009-01-01

    Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…

  13. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    NASA Astrophysics Data System (ADS)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  14. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    PubMed

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  15. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer

    PubMed Central

    Xie, Yawen

    2018-01-01

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540

  16. 3D micro-lenses for free space intra-chip coupling in photonic-integrated circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thomas, Robert; Williams, Gwilym I.; Ladak, Sam; Smowton, Peter M.

    2017-02-01

    The integration of multiple optical elements on a common substrate to create photonic integrated circuits (PIC) has been successfully applied in: fibre-optic communications, photonic computing and optical sensing. The push towards III-Vs on silicon promises a new generation of integrated devices that combine the advantages of both integrated electronics and optics in a single substrate. III-V edge emitting laser diodes offer high efficiency and low threshold currents making them ideal candidates for the optically active elements of the next generation of PICs. Nevertheless, the highly divergent and asymmetric beam shapes intrinsic to these devices limits the efficiency with which optical elements can be free space coupled intra-chip; a capability particularly desirable for optical sensing applications e.g. [1]. Furthermore, the monolithic nature of the integrated approach prohibits the use of macroscopic lenses to improve coupling. However, with the advent of 3D direct laser writing, three dimensional lenses can now be manufactured on a microscopic-scale [2], making the use of micro-lens technology for enhanced free space coupling of integrated optical elements feasible. Here we demonstrate the first use of 3D micro-lenses to improve the coupling efficiency of monolithically integrated lasers. Fabricated from IP-dip photoresist using a Nanoscribe GmbH 3D lithography tool, the lenses are embedded directly onto a structured GaInP/AlGaInP substrate containing arrays of ridge lasers free space coupled to one another via a 200 μm air gap. We compare the coupling efficiency of these lasers with and without micro-lenses through photo-voltage and beam profile measurements and discuss optimisation of lens design.

  17. Durable silver thin film coating for diffraction gratings

    DOEpatents

    Wolfe, Jesse D [Discovery Bay, CA; Britten, Jerald A [Oakley, CA; Komashko, Aleksey M [San Diego, CA

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  18. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-07-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein, we propose a scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semimajor axis of 4Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the PKDGRAV package with a soft-sphere discrete element method to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best matching to the shape of Toutatis at an approaching distance rp = 1.4-1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  19. The formation mechanism of 4179 Toutatis' elongated bi-lobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-04-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein we propose an scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semi-major axis of 4 Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the pkdgrav package with a soft-sphere discrete element method (SSDEM) to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best-matching to the shape of Toutatis at an approaching distance rp = 1.4 ˜ 1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  20. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  1. Advanced solar concentrator: Preliminary and detailed design

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.

    1981-01-01

    A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.

  2. Modular off-axis solar concentrator

    DOEpatents

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  3. Method and program product for determining a radiance field in an optical environment

    NASA Technical Reports Server (NTRS)

    Reinersman, Phillip N. (Inventor); Carder, Kendall L. (Inventor)

    2007-01-01

    A hybrid method is presented by which Monte Carlo techniques are combined with iterative relaxation techniques to solve the Radiative Transfer Equation in arbitrary one-, two- or three-dimensional optical environments. The optical environments are first divided into contiguous regions, or elements, with Monte Carlo techniques then being employed to determine the optical response function of each type of element. The elements are combined, and the iterative relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. This hybrid model is capable of providing estimates of the under-water light field needed to expedite inspection of ship hulls and port facilities. It is also capable of providing estimates of the subaerial light field for structured, absorbing or non-absorbing environments such as shadows of mountain ranges within and without absorption spectral bands such as water vapor or CO.sub.2 bands.

  4. Farbrication of diffractive optical elements on a Si chip by an imprint lithography using nonsymmetrical silicon mold

    NASA Astrophysics Data System (ADS)

    Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio

    2001-11-01

    Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.

  5. Novel method of optical image registration in wide wavelength range using matrix of piezoelectric crystals

    NASA Astrophysics Data System (ADS)

    Pigarev, Aleksey V.; Bazarov, Timur O.; Fedorov, Vladimir V.; Ryabushkin, Oleg A.

    2018-02-01

    Most modern systems of the optical image registration are based on the matrices of photosensitive semiconductor heterostructures. However, measurement of radiation intensities up to several MW/cm2 -level using such detectors is a great challenge because semiconductor elements have low optical damage threshold. Reflecting or absorbing filters that can be used for attenuation of radiation intensity, as a rule, distort beam profile. Furthermore, semiconductor based devices have relatively narrow measurement wavelength bandwidth. We introduce a novel matrix method of optical image registration. This approach doesn't require any attenuation when measuring high radiation intensities. A sensitive element is the matrix made of thin transparent piezoelectric crystals that absorb just a small part of incident optical power. Each crystal element has its own set of intrinsic (acoustic) vibration modes. These modes can be exited due to the inverse piezoelectric effect when the external electric field is applied to the crystal sample providing that the field frequency corresponds to one of the vibration mode frequencies. Such piezoelectric resonances (PR) can be observed by measuring the radiofrequency response spectrum of the crystal placed between the capacitor plates. PR frequencies strongly depend on the crystal temperature. Temperature calibration of PR frequencies is conducted in the uniform heating conditions. In the case a crystal matrix is exposed to the laser radiation the incident power can be obtained separately for each crystal element by measuring its PR frequency kinetics providing that the optical absorption coefficient is known. The operating wavelength range of such sensor is restricted by the transmission bandwidth of the applied crystals. A plane matrix constituting of LiNbO3 crystals was assembled in order to demonstrate the possibility of application of the proposed approach. The crystal elements were placed between two electrodes forming a capacitor which was interconnected to the lock-in detection system. The radiofrequency response to the applied voltage from the generator was measured simultaneously for all elements.

  6. Optical system storage design with diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Kostuk, Raymond K.; Haggans, Charles W.

    1993-01-01

    Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.

  7. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  8. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Astrophysics Data System (ADS)

    Bohnhoff-Hlavacek, Gail

    1992-09-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  9. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  10. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Chen, Andrew

    1994-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.

  11. Fusion materials semiannual progress report for the period ending December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less

  12. Integrated optical transceiver with electronically controlled optical beamsteering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less

  13. Stratified Volume Diffractive Optical Elements as Low-Mass Coherent Lidar Scanners

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.; Kavaya, Michael J.

    1999-01-01

    Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.

  14. Optical frequency selective surface design using a GPU accelerated finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Ashbach, Jason A.

    Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide. In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed. Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.

  15. Electro-optical tunable birefringent filter

    DOEpatents

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  16. Mass Manufacturing Challenges For CPV Primary And Secondary Optics

    NASA Astrophysics Data System (ADS)

    Luce, Thomas; Cohen, Joel

    2010-10-01

    Crucial for the performance and longevity of CPV installations is the efficiency of the optics used. Low production cost and high performance are key for the economical success of a CPV concept. To be able to compete with existing energy sources, proven mass production methods as well as high performance materials have to be employed. The injection molding process is the ideal serial production process capable to deliver at the same time high part quantities, excellent part precision and repeatable part quality at low manufacturing cost. Primary and secondary optics require different materials to be applied. The Pros and Cons of these materials in terms of production properties and achievable part precision will be discussed. We will show quality results for primary Fresnel optics using PMMA and, alternatively Silicone on Glass. For secondary optics we will demonstrate the use of optical silicone lenses widely used for high power LED applications today. Optical grade silicone has an excellent environmental stability even when encountering high energy density levels. The experience of Eschenbach Optik in injection molding silicone optics shows that this material is a very cost competitive alternative for glass secondary optics providing both highest optical performance and precision.

  17. Secondary optics for Fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    Fu, Ling; Leutz, Ralf; Annen, Hans Philipp

    2010-08-01

    Secondary optics are used in concentrating photovoltaic (CPV) systems with Fresnel lens primaries to increase the optical system efficiency by catching refracted light that otherwise would miss the receiver, better the tracking tolerance (acceptance half-angle) and enhance the flux uniformity on the cell. Several refractive secondary optics under the same Fresnel lens primary are designed, analyzed and compared based on their optical performances, materials, manufacturability, manufacturing tolerancing and cost. The goal of this work is to show the basic two different design approaches statistical mixing as opposed to deterministic mixing. Caustics are elementary in the deterministic tailoring approach. We find that statistical mixing offers higher flexibility for the solar application. It is also shown that there are conventional, i.e. designs based on conic section ("half-egg") that work well as solar secondaries. It is also made clear that primary and secondary must be designed as optical train.

  18. Comparison of vision through surface modulated and spatial light modulated multifocal optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-04-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

  19. Comparison of vision through surface modulated and spatial light modulated multifocal optics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-01-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near. PMID:28736655

  20. Optically imprinted reconfigurable photonic elements in a VO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jostmeier, Thorben; Betz, Markus; Zimmer, Johannes

    We investigate the optical and thermal hysteresis of single-domain vanadium dioxide nanocrystals fabricated by ion beam synthesis in a fused silica matrix. The nanocrystals exhibit a giant hysteresis, which permits to optically generate a long-time stable supercooled metallic phase persistent down to practically room temperature. Spatial patterns of supercooled and insulating nanocrystals feature a large dielectric contrast, in particular, for telecom wavelengths. We utilize this contrast to optically imprint reconfigurable photonic elements comprising diffraction gratings as well as on- and off-axis zone plates. The structures allow for highly repetitive (>10{sup 4}) cycling through the phase transition without structural damage.

  1. Porous Silicon Gradient Refractive Index Micro-Optics.

    PubMed

    Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V

    2016-12-14

    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.

  2. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  3. The schemes and methods for producing of the visual security features used in the color hologram stereography

    NASA Astrophysics Data System (ADS)

    Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.

    2017-05-01

    Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.

  4. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  5. Application of holographic elements in displays and planar illuminators

    NASA Astrophysics Data System (ADS)

    Putilin, Andrew; Gustomiasov, Igor

    2007-05-01

    Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.

  6. Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2016-11-01

    Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.

  7. Modeling thermoelastic distortion of optics using elastodynamic reciprocity

    NASA Astrophysics Data System (ADS)

    King, Eleanor; Levin, Yuri; Ottaway, David; Veitch, Peter

    2015-07-01

    Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high-power beams. In advanced-generation laser-interferometric gravitational wave detectors, for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector, thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants, and so predictive feed-forward control systems could be required, but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate, using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.

  8. Effects of thermal deformation on optical instruments for space application

    NASA Astrophysics Data System (ADS)

    Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.

    2017-11-01

    Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.

  9. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.

  10. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    NASA Astrophysics Data System (ADS)

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  11. Micro-optics for microfluidic analytical applications.

    PubMed

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  12. Optical flip-flops and sequential logic circuits using a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.

    1984-01-01

    This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.

  13. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.

    PubMed

    Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R

    2008-09-29

    We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.

  14. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  15. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism Used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  16. Transfer matrix calculation for ion optical elements using real fields

    NASA Astrophysics Data System (ADS)

    Mishra, P. M.; Blaum, K.; George, S.; Grieser, M.; Wolf, A.

    2018-03-01

    With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient transport of ion species from the ion source area to the experimental setup becomes essential. Some available, powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from the standard first order transfer matrix based ion optical simulation program implementing the derived transfer matrix is compared with the real field beam tracking simulations.

  17. Study of 3D printing method for GRIN micro-optics devices

    NASA Astrophysics Data System (ADS)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  18. Chalcogenide glass sensors for bio-molecule detection

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong

    2017-02-01

    Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.

  19. Investigations of Multiple Swirl-Venturi Fuel Injector Concepts: Recent Experimental Optical Measurement Results for 1-Point, 7-Point, and 9-Point Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert C.; Tedder, Sarah A.; Tacina, Kathleen M.

    2015-01-01

    This paper presents results obtained during testing in optically-accessible, JP8-fueled, flame tube combustors using swirl-venturi lean direct injection (LDI) research hardware. The baseline LDI geometry has 9 fuel/air mixers arranged in a 3 x 3 array within a square chamber. 2-D results from this 9-element array are compared to results obtained in a cylindrical combustor using a 7-element array and a single element. In each case, the baseline element size remains the same. The effect of air swirler angle, and element arrangement on the presence of a central recirculation zone are presented. Only the highest swirl number air swirler produced a central recirculation zone for the single element swirl-venturi LDI and the 9-element LDI, but that same swirler did not produce a central recirculation zone for the 7-element LDI, possibly because of strong interactions due to element spacing within the array.

  20. Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi

    1993-01-01

    Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new results from detailed balance calculations, new critical densities for collisional de-excitation, intrinsic photon rates, branching ratios, and excitation temperatures for the majority of the compiled transitions. The temperature and density parameter space for dominant cooling via infrared coronal lines is presented, and the relationship of infrared to optical coronal lines is discussed.

  1. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. Themore » optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.« less

  2. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  3. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  4. Accuracy of Three Dimensional Solid Finite Elements

    NASA Technical Reports Server (NTRS)

    Case, W. R.; Vandegrift, R. E.

    1984-01-01

    The results of a study to determine the accuracy of the three dimensional solid elements available in NASTRAN for predicting displacements is presented. Of particular interest in the study is determining how to effectively use solid elements in analyzing thick optical mirrors, as might exist in a large telescope. Surface deformations due to thermal and gravity loading can be significant contributors to the determination of the overall optical quality of a telescope. The study investigates most of the solid elements currently available in either COSMIC or MSC NASTRAN. Error bounds as a function of mesh refinement and element aspect ratios are addressed. It is shown that the MSC solid elements are, in general, more accurate than their COSMIC NASTRAN counterparts due to the specialized numerical integration used. In addition, the MSC elements appear to be more economical to use on the DEC VAX 11/780 computer.

  5. On the way to unveiling the atomic structure of superheavy elements

    NASA Astrophysics Data System (ADS)

    Laatiaoui, Mustapha

    2016-12-01

    Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.

  6. CubeX: The CubeSAT X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.

    2017-12-01

    The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.

  7. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  8. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    NASA Astrophysics Data System (ADS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  9. Smart and precise alignment of optical systems

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel

    2013-09-01

    For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.

  10. Optical fiber-fault surveillance for passive optical networks in S-band operation window

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chi, Sien

    2005-07-01

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  11. Arbitrarily Complete Bell-State Measurement Using only Linear Optical Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grice, Warren P

    2011-01-01

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  12. Optical fiber-fault surveillance for passive optical networks in S-band operation window.

    PubMed

    Yeh, Chien-Hung; Chi, Sien

    2005-07-11

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  13. Influence of pitting defects on quality of high power laser light field

    NASA Astrophysics Data System (ADS)

    Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong

    2018-01-01

    With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.

  14. Infrared trace element detection system

    DOEpatents

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  15. Extracting More Information from Passive Optical Tracking Observations for Reliable Orbit Element Generation

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Gehly, S.

    2016-09-01

    This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  16. Infrared trace element detection system

    DOEpatents

    Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.

    1988-01-01

    An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.

  17. Optical performance assessment under environmental and mechanical perturbations in large, deployable telescopes

    NASA Astrophysics Data System (ADS)

    Folley, Christopher; Bronowicki, Allen

    2005-09-01

    Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.

  18. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    NASA Astrophysics Data System (ADS)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  19. Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines

    NASA Astrophysics Data System (ADS)

    Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.

    1994-10-01

    An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.

  20. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  1. Method and apparatus for a multibeam beacon laser assembly for optical communications

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit (Inventor); Sanji, Babak (Inventor); Wright, Malcolm W. (Inventor); Page, Norman Alan (Inventor)

    2005-01-01

    An optical beacon is comprised of a telescope having a primary focal plane or Coud? focal plane, a plurality of fiber coupled laser sources for generating a plurality of beams, a collimator for collimating the plurality of beams, and optics for combining and focusing the plurality of collimated beams onto the primary or Coud? focal plane of the telescope. The telescope propagates the optical beacon, which is arranged into a ring of incoherent plurality of collimated beams. The apparatus further comprises fiber splitters coupled to each laser source to provide at least eight beams from at least four laser sources. The optics comprises a prism assembly, a combiner lens, a focusing lens and a field lens for focusing the plurality of collimated beams onto the primary focal plane or Coud? focal plane of the telescope.

  2. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  3. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be convenientlymore » extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.« less

  4. MEMS: A new approach to micro-optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less

  5. Optical eye simulator for laser dazzle events.

    PubMed

    Coelho, João M P; Freitas, José; Williamson, Craig A

    2016-03-20

    An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models.

  6. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  7. Holographic Plossl Retroreflectors

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    2006-01-01

    Holographic retroreflectors that function equivalently to Plossl eyepieces have been developed and used in free-space optical communication systems that utilize laser beams. Plossl eyepieces are well known among telescope designers. They have been adopted for use a retroreflectors and as focusing elements (for reception) and collimating elements (for transmission) in optical communication systems. A retro-reflector that incorporates a Plossl eyepiece is termed a cat's-eye retroreflector.

  8. Micro-Thin Lens Final Report CRADA No. TC-0331-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, D.; Zhang, X.

    The general objective of the CRADA was to develop ophthalmic optical elements that are so thin that they can be placed on the human eye in revolutionary new ways. More .specifically,the major accomplishment of this CRADA was to study the feasability of producing a prototype optical element in the form of a bifocal contact lens, for presbyopic vision correction.

  9. Solar-blind ultraviolet optical system design for missile warning

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2015-03-01

    Solar-blind region of Ultraviolet (UV) spectrum has very important application in military field. The spectrum range is from 240nm to 280nm, which can be applied to detect the tail flame from approaching missile. A solar-blind UV optical system is designed to detect the UV radiation, which is an energy system. iKon-L 936 from ANDOR company is selected as the UV detector, which has pixel size 13.5μm x 13.5 μm and active image area 27.6mm x 27.6 mm. CaF2 and F_silica are the chosen materials. The original structure is composed of 6 elements. To reduce the system structure and improve image quality, two aspheric surfaces and one diffractive optical element are adopted in this paper. After optimization and normalization, the designed system is composed of five elements with the maximum spot size 11.988μ m, which is less than the pixel size of the selected CCD detector. Application of aspheric surface and diffractive optical element makes each FOV have similar spot size, which shows the system almost meets the requirements of isoplanatic condition. If the focal length can be decreased, the FOV of the system can be enlarged further.

  10. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    PubMed Central

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168

  11. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    PubMed

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.

  12. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  13. Optical pseudomotors for soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedreira, P., E-mail: ppedreira@cells.es; Sics, I.; Sorrentino, A.

    2016-05-15

    Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others.more » We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.« less

  14. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Y.; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  15. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Yuan; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  16. Optical flip-flops in a polarization-encoded optical shadow-casting scheme.

    PubMed

    Rizvi, R A; Zubairy, M S

    1994-06-10

    We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.

  17. Broadband high-efficiency dielectric metasurfaces for the visible spectrum

    PubMed Central

    Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  18. Design of near-field irregular diffractive optical elements by use of a multiresolution direct binary search method.

    PubMed

    Li, Jia-Han; Webb, Kevin J; Burke, Gerald J; White, Daniel A; Thompson, Charles A

    2006-05-01

    A multiresolution direct binary search iterative procedure is used to design small dielectric irregular diffractive optical elements that have subwavelength features and achieve near-field focusing below the diffraction limit. Designs with a single focus or with two foci, depending on wavelength or polarization, illustrate the possible functionalities available from the large number of degrees of freedom. These examples suggest that the concept of such elements may find applications in near-field lithography, wavelength-division multiplexing, spectral analysis, and polarization beam splitters.

  19. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  20. Development of liquid crystal based adaptive optical elements for space applications

    NASA Astrophysics Data System (ADS)

    Geday, M. A.; Quintana, X.; Otón, E.; Cerrolaza, B.; Lopez, D.; Garcia de Quiro, F.; Manolis, I.; Short, A.

    2017-11-01

    In this paper we present the results obtained within the context of the ESA-funded project Programmable Optoelectronic Adaptive Element (AO/1-5476/07/NL/EM). The objective of this project is the development of adaptive (reconfigurable) optical elements for use in space applications and the execution of preliminary qualification tests in the relevant environment. The different designs and materials that have been considered and manufactured for a 2D beam steerer based on passive matrix liquid crystal programmable blaze grating will described and discussed.

Top