Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1995-01-01
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1996-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1995-04-25
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, C.D.
1993-12-14
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1996-02-27
A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, Charles D.
1993-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
Atmospheric oxidative chemistry of organic particulate emissions from fuel combustion.
DOT National Transportation Integrated Search
2011-03-25
"Construction and characterization of the University of Vermont Environmental Chamber (UVMEC) : were completed in this last phase of the project. The primary function of the UVMEC is to enable : tropospheric particulate formation and aging studies to...
Determination of the Turkish Primary Students' Views about the Particulate Nature of Matter
ERIC Educational Resources Information Center
Ozmen, Haluk; Kenan, Osman
2007-01-01
This study was conducted to determine 4th, 5th, and 6th grade Turkish primary students' conceptions about the particulate nature of matter via a test. The test consists of 36 items related to the changes of microscopic properties of solid, liquid and gas matters during phase changing, cooling, heating and pressing of them. The sample of the study…
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
Sedimentary particulate iron: the missing micronutrients ?
NASA Astrophysics Data System (ADS)
Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène
2017-04-01
Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter simulations have been performed using a range of particulate iron dissolution rates (from published studies and laboratory experiment results) that will permit to test the sensitivity of the biogeochemical response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, S.B.; Miller, D.J.; Louie, P.K.K.
1996-05-01
Vapor-phase and suspended particulate (<50 {mu}m) samples were collected on polyurethane foam (PUF) and quartz fiber filters in rural North Dakota to determine the air concentrations of pesticides in an area where agriculture is a primary source of semivolatile pollutants. Samples were collected at two sites from 1992 to 1994 that were at least 0.4 km from the nearest farmed fields and known application of pesticides, and analyzed for 22 different organochlorine, triazine, and acid herbicide pesticides. Fourteen pesticides were found above the detection limits (typically <1 pg/m{sup 3}). Concentrations of polychlorinated biphenyl (PCB) congeners were much lower (<50 pg/m{supmore » 3} in all cases) than many of the pesticides. These results demonstrate that pesticides are among the most prevalent chlorinated semivolatile pollutants present in rural North Dakota, that significant transport of pesticides occurs both in the vapor-phase and on suspended particulate matter, and that blown soil may be a significant mechanism for introducing pesticides into surface and ground waters. 32 refs., 2 figs., 4 tabs.« less
Gaseous and particulate emissions from a DC arc melter.
Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M
2003-01-01
Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.
Mounting evidence from field and laboratory observations coupled with atmospheric model analyses shows that primary combustion emissions of organic compounds dynamically partition between the vapor and particulate phases, especially as near-source emissions dilute and cool to amb...
Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...
Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan
NASA Astrophysics Data System (ADS)
Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu
2012-12-01
Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.
NASA Astrophysics Data System (ADS)
Van Wambeke, F.; Pfreundt, U.; Barani, A.; Berthelot, H.; Moutin, T.; Rodier, M.; Hess, W. R.; Bonnet, S.
2015-12-01
N2 fixation fuels ~ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE mesocosm experiment designed to track the fate of diazotroph derived nitrogen (DDN) in the New Caledonia lagoon. Here, we examined the temporal dynamics of heterotrophic bacterial production during this experiment. Three replicate large-volume (~ 50 m3) mesocosms were deployed and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between N2 fixation rates and primary production, determined bacterial growth efficiency and established carbon budgets of the system from the DIP fertilization to the end of the experiment (days 5-23). Heterotrophic bacterioplankton production (BP) and alkaline phosphatase activity (APA) were statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget was notably higher than generally cited for oligotrophic environments (27-43 %), possibly due to a high representation of proteorhodopsin-containing organisms within the picoplanctonic community. The carbon budget showed that the main fate of gross primary production (particulate + dissolved) was respiration (67 %), and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but slightly correlated, and only during P2 phase, with N2 fixation rates. Our results suggest that most of the DDN reached the heterotrophic bacterial community through indirect processes, like mortality, lysis and grazing.
NASA Astrophysics Data System (ADS)
Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa
2017-12-01
To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.
Method of forming particulate materials for thin-film solar cells
Eberspacher, Chris; Pauls, Karen Lea
2004-11-23
A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.
Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-03-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Wang, Wei; Qin, Songtao; Song, Yu; Xu, Qian; Ni, Yuwen; Chen, Jiping; Zhang, Xueping; Mu, Jim; Zhu, Xiuhua
2011-06-01
In December 2009, ambient air was sampled with active high-volume air samplers at two sites: on the roof of the No. l building of Dalian Jiaotong University and on the roof of the building of Dalian Meteorological Observatory. The concentrations and the congeners between vapor phase and particulate phase of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the air were measured. Sample analysis results showed that the concentrations of PCDD/Fs in particulate phase was higher than that in gaseous phase. The ratio of PCDD to PCDF in gaseous phase and particulate phase was lower than 0.4 in all samples. The total I-TEQ value in gaseous phase and particulate phase was 5.5 and 453.8 fg/m(3) at Dalian Jiaotong University, 16.6 and 462.1 fg/m(3) at Dalian Meteorological Observatory, respectively. The I-TEQ value of Dalian atmosphere was 5.5-462.1 fg/m(3) which was lower than international standard, the atmospheric quality in Dalian is better. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-08-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows
NASA Technical Reports Server (NTRS)
Apte, S. V.; Mahesh, K.; Lundgren, T.
2003-01-01
Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.
Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
McCallum, R.W.; Branagan, D.J.
1996-01-23
A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.
Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
McCallum, R. William; Branagan, Daniel J.
1996-01-23
A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.
Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B
2015-12-15
Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.
NASA Technical Reports Server (NTRS)
Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.
2017-01-01
The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.
A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...
40 CFR 63.1652 - Emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (including primary and tapping) containing particulate matter in excess of one of the following: (1) 0.23... from any existing open submerged arc furnace exhaust gases (including primary and tapping) containing... primary, tapping, and vent stacks) containing particulate matter in excess of 11.2 kg/hr (24.7 lb/hr) when...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
NASA Astrophysics Data System (ADS)
Saffari, Arian; Hasheminassab, Sina; Shafer, Martin M.; Schauer, James J.; Chatila, Talal A.; Sioutas, Constantinos
2016-05-01
Recent investigations suggest that aqueous phase oxidation of hydrophilic organic compounds can be a significant source of secondary organic aerosols (SOA) in the atmosphere. Here we investigate the possibility of nighttime aqueous phase formation of SOA in Los Angeles during winter, through examination of trends in fine particulate matter (PM2.5) carbonaceous content during two contrasting seasons. Distinctive winter and summer trends were observed for the diurnal variation of organic carbon (OC) and secondary organic carbon (SOC), with elevated levels during the nighttime in winter, suggesting an enhanced formation of SOA during that period. The nighttime ratio of SOC to OC was positively associated with the relative humidity (RH) at high RH levels (above 70%), which is when the liquid water content of the ambient aerosol would be high and could facilitate dissolution of hydrophilic primary organic compounds into the aqueous phase. Time-integrated collection and analysis of wintertime particles at three time periods of the day (morning, 6:00 a.m.-9:00 a.m.; afternoon, 11:00 a.m.-3:00 p.m.; night, 8:00 p.m.-4:00 a.m.) revealed higher levels of water soluble organic carbon (WSOC) and organic acids during the night and afternoon periods compared to the morning period, indicating that the SOA formation in winter continues throughout the nighttime. Furthermore, diurnal trends in concentrations of semi-volatile organic compounds (SVOCs) from primary emissions showed that partitioning of SVOCs from the gas to the particle phase due to the decreased nighttime temperatures cannot explain the substantial OC and SOC increase at night. The oxidative potential of the collected particles (quantified using a biological macrophage-based reactive oxygen species assay, in addition to the dithiothreitol assay) was comparable during afternoon and nighttime periods, but higher (by at least ∼30%) compared to the morning period, suggesting that SOA formation processes possibly enhance the toxicity of the ambient particles compared to mobile-source dominated primary emissions in the Los Angeles area.
Speciation of strontium in particulates and sediments from the Mississippi River mixing zone
NASA Astrophysics Data System (ADS)
Xu, Yingfeng; Marcantonio, Franco
2004-06-01
Sequential extractions were performed on small amounts of particulate and sediment samples (6 to10 mg) from the Mississippi River mixing zone. The leachates were analyzed for Sr concentration and 87Sr/ 86Sr isotope ratio. Mn and Fe contents were also measured as their oxyhydroxides are potential carrier phases for Sr. The largest fraction of Sr in the solid phase (particulates and sediments) was found to be present in the residual, refractory fraction (>70% of total). By comparison with the corresponding sediment, particulates appear to have higher concentrations of nonresidual, labile Sr (30% vs. 15%). Carbonate components seem to play an important role as carriers for labile Sr in particulates and sediments. Changes in the composition and content of the solid phase may significantly modify both the 87Sr/ 86Sr isotope ratio of the total labile fractions and that of the bulk components. However, such modifications, under normal conditions, exert little measurable influence on the Sr isotope composition of the dissolved phase.
Real-time measurements of jet aircraft engine exhaust.
Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F
2005-05-01
Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.
Grotti, M; Soggia, F; Ardini, F; Magi, E
2011-09-01
In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.
1998-09-08
A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.
1998-01-01
A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.
DOT National Transportation Integrated Search
2011-06-01
The primary objective of this project is to develop an improved understanding of the factors affecting the toxicology of particulate exhaust emissions. Diesel particulate matter is a known carcinogen, and particulate exhaust emissions from both light...
Leachable particulate iron in the Columbia River, estuary, and near-field plume
NASA Astrophysics Data System (ADS)
Lippiatt, Sherry M.; Brown, Matthew T.; Lohan, Maeve C.; Berger, Carolyn J. M.; Bruland, Kenneth W.
2010-03-01
This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004-2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.
Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong
2018-07-01
The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Use of environmental tobacco smoke constituents as markers for exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaKind, J.S.; Jenkins, R.A.; Naiman, D.Q.
1999-06-01
The 16-City Study analyzed for gas-phase environmental tobacco smoke (ETS) constituents (nicotine, 3-ethenyl pyridine [3-EP], and myosmine) and for particulate-phase constituents (respirable particulate matter [RSP], ultraviolet-absorbing particulate matter [UVPM], fluorescing particulate matter [FPM], scopoletin, and solanesol). In this second of three articles, the authors discuss the merits of each constituent as a marker for ETS and report pair-wise comparisons of the markers. Neither nicotine nor UVPM were good predictors for RSP. However, nicotine and UVPM were good qualitative predictors of each other. Nicotine was correlated with other gas-phase constituents. Comparisons between UVPM and other particulate-phase constituents were performed. Its relationmore » with FPM was excellent, with UVPM approximately 1 1/2 times FPM. The correlation between UVPM and solanesol was good, but the relationship between the two was not linear. The relation between UVPM and scopoletin was not good, largely because of noise in the scopoletin measures around its limit of detection. The authors considered the relation between nicotine and saliva cotinine, a metabolite of nicotine. The two were highly correlated on the group level.« less
Toxicity of used drilling fluids to mysids (Mysidopsis bahia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaetz, C.T.; Montgomery, R.; Duke, T.W.
1986-01-01
Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less
Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean
NASA Astrophysics Data System (ADS)
Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.
2016-12-01
An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.
Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...
Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; ...
2014-12-26
The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Peng; Vander Wal, Randy; Boehman, Andre L.
The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less
Fluidizing a mixture of particulate coal and char
Green, Norman W.
1979-08-07
Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.
Modeling Gas-Aerosol Processes during MILAGRO 2006
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Chapman, E. G.; Easter, R. C.; Fast, J. D.; Flocke, F.; Kleinman, L. I.; Madronich, S.; Springston, S. R.; Voss, P. B.; Weinheimer, A.
2007-12-01
Significant gas-aerosol interactions are expected in the Mexico City outflow due to formation of various semi- volatile secondary inorganic and organic gases that can partition into the particulate phase and due to various heterogeneous chemical processes. A number of T0-T1-T2 Lagrangian transport episodes during the MILAGRO campaign provide focused modeling opportunities to elucidate the roles of various chemical and physical processes in the evolution of the primary trace gases and aerosol particles emitted in Mexico City over a period of 4-8 hours. Additionally, one long-range Lagrangian transport episode on March 18-19, 2006, as characterized by the Controlled Meteorological (CMET) balloon trajectories, presents an excellent opportunity to model evolution of Mexico City pollutants over 26 hours. The key tools in our analysis of these Lagrangian episodes include a comprehensive Lagrangian box-model and the WRF-chem model based on the new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), which simulates gas-phase photochemistry, heterogeneous reactions, equilibrium particulate phase-state and water content, and dynamic gas-particle partitioning for size- resolved aerosols. Extensive gas, aerosol, and meteorological measurements onboard the G1 and C130 aircraft and T0, T1, and T2 ground sites will be used to initialize, constrain, and evaluate the models. For the long-range transport event, in-situ vertical profiles of wind vectors from repeated CMET balloon soundings in the Mexico City outflow will be used to nudge the winds in the WRF-chem simulation. Preliminary model results will be presented with the intention to explore further collaborative opportunities to use additional gas and particulate measurements to better constrain and evaluate the models.
Cost Effectiveness Of Selected Roadway Dust Control Methods For Eagle River, Alaska
DOT National Transportation Integrated Search
1988-01-01
The U.S. Environmental Protection Agency has set air quality standards for airborne particulates with diameters equal to or less than ten microns (PM10 particulates). These particulates have been correlated with respiratory illnesses. The primary sta...
CHARACTERIZATION OF EMISSIONS FROM BURNING INCENSE
The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.5 (particulate matte...
SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS
Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...
Potentially bioavailable ferrous iron nanoparticles in glacial sediments
NASA Astrophysics Data System (ADS)
Hawkings, J.; Benning, L. G.; Raiswell, R.; Kaulich, B.; Araki, T.; Abyaneh, M.; Koch-Müller, M.; Stockdale, A.; Tranter, M.; Wadham, J.
2017-12-01
Iron (Fe) is an essential nutrient for marine phytoplankton, the primary producers of the ocean. Despite it being the fourth most abundant element in the Earth's crust, it is highly insoluble, due in part to its rapid oxidation from ferric (Fe2+) to ferrous phases (Fe3+), which often leads to the formation of nanoparticulate iron oxyhydroxide phases1. The insoluble nature of Fe in oxygenated waters means Fe limitation of primary producers is prevalent in 30-50% of the world's oceans, including areas of high biological productivity proximal to significant glacial activity (e.g., the Southern Ocean). Glaciers and ice sheets are a significant source of nanoparticulate Fe, which may be important in sustaining the high productivity observed in the near coastal regions proximal to glacial coverage. The reactivity of particulate iron is poorly understood, despite its importance in the ocean Fe inventory. Here we combined geochemical extractions, high-resolution imaging and spectroscopy to investigate the abundance, morphology and valence state of reactive iron in glacial sediments. Our results document the widespread occurrence of amorphous and Fe(II)-rich nanoparticles in glacial meltwaters and icebergs. Fe(II) is thought to be highly bioavailable in marine environments. We argue that glaciers and ice sheets are therefore able to supply potentially bioavailable Fe(II)-containing nanoparticulate material for downstream ecosystems, including those in a marine setting. The flux of bioavailable particulate iron from Arctic glaciers may increase as rising air temperatures lead to higher meltwater export.
Method for forming solar cell materials from particulars
Eberspacher, Chris; Pauls, Karen Lea
2001-01-01
Materials in bulk and film forms are prepared from fine particulate precursors such as single-phase, mixed-metal oxides; multi-phase, mixed-metal particles comprising a metal oxide; multinary metal particles; mixtures of such particles with other particles; and particulate materials intercalated with other materials.
Colloidal mode of transport in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less
Precipitation scavenging of polychlorinated biphenyl congeners in the great lakes region
NASA Astrophysics Data System (ADS)
Murray, Michael W.; Andren, Anders W.
Ten precipitation events were sampled in the fall of 1986 in Madison, WI and analyzed for individual congener and total polychlorinated biphenyl (PCB) levels in both the dissolved and particulate phases. Total PCB concentrations were generally at the lower end of ranges recently reported for precipitation. Operationally defined dissolved and particulate phase congener distribution patterns for the two events of highest concentration were qualitatively similar to gas-phase and particle-bound patterns for northern Wisconsin air samples. Higher than predicted dissolved-phase concentrations may indicate non-equilibrium processes during scavenging and/or sample processing, the presence of colloids and micro-particulates, and/or more efficient gas-phase transfer to hydrometeors with organic coatings. Observed organic carbon-normalized distribution coefficients increased slightly with increasing octanol-water partition coefficient, giving the relationship log Koc = 0.22 log Kow + 4.64. The data indicate that a third organic-rich colloidal phase could be influencing partitioning, and could explain the higher than expected apparent gas scavenging efficiency for PCBs from the atmosphere. Precipitation-weighted mean fluxes of PCBs in the dissolved and particulate phases were 1.2 and 1.4 μg m -2 year -1, respectively, indicating that precipitation remains a significant source of PCBs to the upper Great Lakes.
FACTORS INFLUENCING THE DEPOSITION OF A COMPOUND THAT PARTITIONS BETWEEN GAS AND PARTICULATE PHASES
How will atmospheric deposition behave for a compound when it reversibly sorbs between gas and atmospheric particulate phases? Two factors influence the answer. What physical mechanisms occur in the sorption process? What are the concentration and composition of atmospheric par...
The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter ...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...
Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W
2003-08-01
The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.
Variability of Ambient Aerosol in the Mexico City Metropolian Area
NASA Astrophysics Data System (ADS)
Onasch, T. B.; Worsnop, D. R.; Canagaratna, M.; Jayne, J. T.; Herndon, S.; Mortimer, P.; Kolb, C. E.; Rogers, T.; Knighton, B.; Dunlea, E.; Marr, L.; de Foy, B.; Molina, M.; Molina, L.; Salcedo, D.; Dzepina, K.; Jimenez, J. L.
2004-12-01
The spatial and temporal variations of the ambient aerosol in the Mexico City Metropolitan area was characterized during the springs of 2002 and 2003 using a mobile laboratory equipped with gas and particulate measurement instrumentation. The laboratory was operated at various fixed sites locations in and at the edge of the metropolitan area (Xalostoc, Merced, Cenica, Pedregal, and Santa Ana). Size-resolved aerosol mass and chemical composition was measured with an aerosol mass spectrometer and selected trace gas species (low mass organic compounds, NO, NO2, NOy, O3, SO2, CH2O, NH3, CO2) were measured using a proton transfer reaction mass spectrometer and various optical systems. The aerosol was predominantly organic in composition with lesser amounts of ammonium nitrate, sulfate, and chloride. The organic component was composed of mixed primary and secondary organic compounds. The mass loading and chemical composition of the aerosol was influenced by local and regional air pollution sources and the meteorology in Mexico City. Most urban sites were influenced by a strong diurnal particulate mass trend indicative of primary organic emissions from traffic during early morning and subsequently oxidized/processed organics and ammonium nitrate particles starting in the mid-morning (~9 AM) and continuing throughout the day. Morning traffic-related primary organic emissions were strongest at La Merced (center of Mexico City, located near a busy food market), more subdued at other fixed sites further from the city center, and varied depending upon the day of week and holiday schedules. Particle-bound polycyclic aromatic hydrocarbons were observed within Mexico City fixed sites and were correlated with traffic organic PM emissions. Oxidized organic and ammonium nitrate events occurred during mid-morning at all city sites and were well correlated with gas phase photochemical activity. The daily ammonium nitrate aerosol event occurred later at sites near the city limits, likely due to transported emissions from the city center. The sulfate particulate mass measured throughout most of the Mexico City area did not show a consistent diurnal pattern, characteristic of aged regional aerosol. Local refuse burns were observed to be a source of inorganic particulate chloride.
Rohr, Annette; McDonald, Jacob
2016-02-01
Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.
Particle-bound benzene from diesel engine exhaust.
Muzyka, V; Veimer, S; Shmidt, N
1998-12-01
The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.
Turkish Primary Students' Conceptions about the Particulate Nature of Matter
ERIC Educational Resources Information Center
Ozmen, Haluk
2011-01-01
This study was conducted to determine 4th, 5th, and 6th grade primary students' conceptions about the particulate nature of matter in daily-life events. Five questions were asked of students and interviews were used to collect data. The interviews were conducted with 12 students, four students from each grade, after they finished the formal…
Source contributions to primary airborne particulate matter calculated using the source-oriented UCD/CIT air quality model and the receptor-oriented chemical mass balance (CMB) model are compared for two air quality episodes in different parts of California. The first episode ...
NASA Astrophysics Data System (ADS)
Gaston, C. J.; Riedel, T. P.; Thornton, J. A.; Wagner, N.; Brown, S. S.; Quinn, P.; Bates, T. S.; Prather, K. A.
2011-12-01
Sea spray particles are ubiquitous in marine environments. Heterogeneous reactions between sea spray particles and gas phase pollutants, such as HNO3(g), and N2O5(g), alter particle composition by displacing particulate phase halogens in sea spray and releasing these halogen species into the gas phase; these halogen-containing gas phase species play a significant role in tropospheric ozone production. Measurements of both gas phase and particle phase species on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of heterogeneous reactivity of marine aerosols along the California coast. During the cruise, coastal measurements were made near the Santa Monica and Port of Los Angeles regions to monitor the chemical processing of marine aerosols. Sea spray particles were analyzed since these particles were the major chloride-containing particles detected. Real-time single particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the nocturnal processing of sea spray particles through the loss of particulate chloride and a simultaneous gain in particulate nitrate. Gas phase measurements are consistent with the particle phase observations: As N2O5(g) levels rose overnight, the production of ClNO2(g) coincided with the decrease in particulate chloride. These observations provide unique insight into heterogeneous reactivity from both a gas and particle phase perspective. Results from these measurements can be used to better constrain the rate of heterogeneous reactions on sea spray particles.
Differential gene expression profiles in rat tracheal epithelial (RTE) cells in response to combustion-source particulate matter (PM) and vanadium (V) a primary metal constituent
Srikanth S. Nadadur, Janice A. Dye and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxico...
Further Examination of Biogeochemical Consequences of Mesoscale Eddies in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Marquez, I. A., Jr.; Krause, J. W.; Lomas, M. W.
2016-02-01
The Bermuda Atlantic Time Series (BATS) is an ongoing 25-year biogeochemical record in the North Atlantic subtropical gyre. Contemporaneous data on the particulate phases of four major bioreactive elements, C, N, P, and Si only exist during two years and also for a companion project (Trophic BATS, i.e. TBATS). A combined dataset from BATS and TBATS was used to better understand the coupling of C, N, P, and Si in the Sargasso Sea by analyzing particulate phases of each element in the water column and exported material. Three conclusions are inferred: first, the effect of mesoscale eddies on standing stocks, export rates, and elemental coupling of C, N, P, and Si displays strong seasonality. Statistically significant differences between particulate water column and export ratios using internal and between site comparisons were robust in the summer only. Second, N, Si and particularly P were more efficiently recycled within the euphotic zones of eddies as elemental ratios in export material were greater than the corresponding ratios in the water column. This suggests that P may have a more critical biogeochemical role and its supply rate to the euphotic zone may control primary production in these closed systems. Third, the trends seen in these eddies do not support that export production was enhanced, instead these features had more efficient recycling of N, P, and Si relative to the BATS site. This decrease in export efficiency suggests a stimulation of export production above 'normal' BATS conditions within eddies would require significantly higher autotrophic standing stock and correspondingly high rates of organic matter production.
NASA Astrophysics Data System (ADS)
Kleindienst, Tadeusz E.; Smith, David F.; Hudgens, Edward E.; Snow, Richard F.; Perry, Erica; Claxton, Larry D.; Bufalini, Joseph J.; Black, Francis M.; Cupitt, Larry T.
Dilute mixtures of automobile emissions (comprising 50% exhaust and 50% surrogate evaporative emissions) were irradiated in a 22.7 m 3 smog chamber and tested for mutagenic activity by using a variant of the Ames test. The exhaust was taken from a single vehicle, a 1977 Ford Mustang equipped with a catalytic converter. Irradiated and nonirradiated gas-phase emissions were used in exposures of the bacteria, Salmonella typhimurium, strains TA100 and TA98. A single set of vehicular operating conditions was used to perform multiple exposures. The mutagenic activities of extracts from the particulate phase were also measured with the standard plate incorporation assay. (In most experiments only direct-acting mutagenic compounds were measured.) The gas-phase data for TA100 and TA98 showed increased activity for the irradiated emissions when compared to the nonirradiated mixture, which exhibited negligible activity with respect to the control values. The particulate phase for both the irradiated and nonirradiated mixtures showed negligible activity when results were compared to the control values for both strains. However, the experimental conditions limited the amount of extractable mass which could be collected in the particulate phase. The measured activities from the gas phase and particulate phase were converted to the number of revertants per cubic meter of effluent (i.e. the mutagenic density) to compare the contributions of each of these phases to the total mutagenic activity for each strain. Under the experimental conditions of this study, the mutagenic density of the gas-phase component of the irradiated mixture contributed approximately two orders of magnitude more of the total TA100 activity than did the particulate phase. For TA98 the gas-phase component contributed approximately one order of magnitude more. However, caution must be exercised in extrapolating these results to urban atmospheres heavily impacted by automotive emissions, because the bacterial mutagenicity assay was used as a screening method, and additional assays using mammalian systems have not yet been conducted. In addition, only limited number of conditions were able to be tested. The significance and limitations of the results are discussed.
Leinweber, Felix C; Tallarek, Ulrich
2003-07-18
Monolithic chromatographic support structures offer, as compared to the conventional particulate materials, a unique combination of high bed permeability, optimized solute transport to and from the active surface sites and a high loading capacity by the introduction of hierarchical order in the interconnected pore network and the possibility to independently manipulate the contributing sets of pores. While basic principles governing flow resistance, axial dispersion and adsorption capacity are remaining identical, and a similarity to particulate systems can be well recognized on that basis, a direct comparison of sphere geometry with monolithic structures is less obvious due, not least, to the complex shape of theskeleton domain. We present here a simple, widely applicable, phenomenological approach for treating single-phase incompressible flow through structures having a continuous, rigid solid phase. It relies on the determination of equivalent particle (sphere) dimensions which characterize the corresponding behaviour in a particulate, i.e. discontinuous bed. Equivalence is then obtained by dimensionless scaling of macroscopic fluid dynamical behaviour, hydraulic permeability and hydrodynamic dispersion in both types of materials, without needing a direct geometrical translation of their constituent units. Differences in adsorption capacity between particulate and monolithic stationary phases show that the silica-based monoliths with a bimodal pore size distribution provide, due to the high total porosity of the material of more than 90%, comparable maximum loading capacities with respect to random-close packings of completely porous spheres.
Janney, Mark A.; Kiggans, Jr., James O.
1999-01-01
A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.
NASA Astrophysics Data System (ADS)
Wei, Wei; Gu, Zhaolin
2015-10-01
Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.
Metal matrix composite of an iron aluminide and ceramic particles and method thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneibel, Joachim H.
A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
Metal matrix composite of an iron aluminide and ceramic particles and method thereof
Schneibel, J.H.
1997-06-10
A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
Metal matrix composite of an iron aluminide and ceramic particles and method thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneibel, J.H.
A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
Atmospheric reactions of ortho cresol: Gas phase and aerosol products
NASA Astrophysics Data System (ADS)
Grosjean, Daniel
Photo-oxidation of ortho-cresol (0.5-1.1 ppm) and oxides of nitrogen (0.12-0.66 ppm) in air yielded the following gas-phase products: pyruvic acid, acetaldehyde, formaldehyde, peroxyacetylnitrate, nitrocresol and trace levels of nitric acid and methyl nitrate. particulate phase products included 2-hydroxy3-nitro toluene, 2-hydroxy-5-nitro toluene, 2-hydroxy-3,5-dinitrotoluene and, tentatively, several hydroxynitrocresol isomers. Yields of gas-phase products (0.8 % for pyruvic acid, 5-11 % for the sum of the aromatic ring fragmentation products) and of aerosol products (5-19% on a carbon basis, with particulate carbon formation rates of 30-80 μ g m -3 h -1) are discussed in terms of photochemical reaction pathways. From 60 to 89 % of the initial NO x was consumed in these reactions and a significant fraction of the reacted NO x could be accounted for as particulate nitro-aromatic products.
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires
NASA Astrophysics Data System (ADS)
Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon
2014-06-01
Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.
Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in urban air, Japan
NASA Astrophysics Data System (ADS)
Ohura, Takeshi; Horii, Yuichi; Kojima, Mitsuhiro; Kamiya, Yuta
2013-12-01
Concentrations of 3- to 5-ring chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and corresponding PAHs were quantified in 3-h integrated air samples, taken serially over 3-day periods in December 2009 (winter) and August 2010 (summer) in the urban area of Shizuoka, Japan. Twenty species of targeted ClPAHs were detected in both gas and particle phases throughout each campaign. Mean concentrations of total ClPAHs in the winter and summer campaigns were 133 ± 53 pg m-3 and 32 ± 27 pg m-3, respectively. Throughout the campaigns, diurnal variations of total ClPAHs concentrations did not have periodic fluctuation such as decreasing in daytime and increasing in nighttime, observed in PAHs. However, the mean concentrations of particulate ClPAHs trended to be slightly higher in nighttime than in daytime, but not for gaseous ClPAHs. Significant correlations were observed between the concentrations of total ClPAHs and total PAHs in particulate phase, but not in gaseous phase. In addition, for particulate phase, there were significant correlations between the concentrations of individual ClPAHs and corresponding parent PAHs, nitrate, and chlorine in summer, but not in winter. Considering these behaviors of ClPAHs in the air, the emission sources could have features of as follows: (i) specific emission sources emitted both ClPAHs and PAHs in particulate phase could be present in the area; (ii) particulate ClPAHs could be more strongly influenced by local sources and photochemical reactions rather than by transboundary air pollution; (iii) the possible sources could be combustion processes included biomass and fossil fuels.
Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento
2010-01-01
Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197
Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.
Li, Jingyan; Xu, Tingting; Lu, Xiaohui; Chen, Hong; Nizkorodov, Sergey A; Chen, Jianmin; Yang, Xin; Mo, Zhaoyu; Chen, Zhiming; Liu, Huilin; Mao, Jingying; Liang, Guiyun
2017-03-01
Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO 2 , coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than 70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak (80SO 3 - ) followed by an increase of sulfate peaks (97HSO 4 - +96SO 4 - ) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO 2 on particles. High concentration of gaseous SO 2 , high relative humidity and high particle loading likely promoted SO 2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO 2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays. Copyright © 2016. Published by Elsevier B.V.
Coccolithovirus facilitation of carbon export in the North Atlantic.
Laber, Christien P; Hunter, Jonathan E; Carvalho, Filipa; Collins, James R; Hunter, Elias J; Schieler, Brittany M; Boss, Emmanuel; More, Kuldeep; Frada, Miguel; Thamatrakoln, Kimberlee; Brown, Christopher M; Haramaty, Liti; Ossolinski, Justin; Fredricks, Helen; Nissimov, Jozef I; Vandzura, Rebecca; Sheyn, Uri; Lehahn, Yoav; Chant, Robert J; Martins, Ana M; Coolen, Marco J L; Vardi, Assaf; DiTullio, Giacomo R; Van Mooy, Benjamin A S; Bidle, Kay D
2018-05-01
Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.
Lai, Chia-Hsiang; Chen, Kang-Shin; Wang, Hsin-Kai
2009-01-01
Atmospheric particulate and polycyclic aromatic hydrocarbons (PAHs) size distribution were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan during the rice straw burning and non-burning periods. The concentrations of total PAHs accounting for a roughly 58% (34%) increment in the concentrations of total PAHs due to rice-straw burning. Combustion-related PAHs during burning periods were 1.54-2.57 times higher than those during non-burning periods. The mass median diameter (MMD) of 0.88-1.21 microm in the particulate phase suggested that rice-straw burning generated the increase in coarse particle number. Chemical mass balance (CMB) receptor model analyses showed that the primary pollution sources at the two sites were similar. However, rice-straw burning emission was specifically identified as a significant source of PAH during burning periods at the two sites. Open burning of rice straws was estimated to contribute approximately 6.3%-24.6% to total atmospheric PAHs at the two sites.
Contamination monitoring approaches for EUV space optics
NASA Technical Reports Server (NTRS)
Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.
1989-01-01
Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.
Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles
NASA Astrophysics Data System (ADS)
May, Andrew A.; Nguyen, Ngoc T.; Presto, Albert A.; Gordon, Timothy D.; Lipsky, Eric M.; Karve, Mrunmayi; Gutierrez, Alváro; Robertson, William H.; Zhang, Mang; Brandow, Christopher; Chang, Oliver; Chen, Shiyan; Cicero-Fernandez, Pablo; Dinkins, Lyman; Fuentes, Mark; Huang, Shiou-Mei; Ling, Richard; Long, Jeff; Maddox, Christine; Massetti, John; McCauley, Eileen; Miguel, Antonio; Na, Kwangsam; Ong, Richard; Pang, Yanbo; Rieger, Paul; Sax, Todd; Truong, Tin; Vo, Thu; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M. Matti; Robinson, Allen L.
2014-05-01
Tailpipe emissions from sixty-four unique light-duty gasoline vehicles (LDGVs) spanning model years 1987-2012, two medium-duty diesel vehicles and three heavy-duty diesel vehicles with varying levels of aftertreatment were characterized at the California Air Resources Board Haagen-Smit and Heavy-Duty Engine Testing Laboratories. Each vehicle was tested on a chassis dynamometer using a constant volume sampler, commercial fuels and standard duty cycles. Measurements included regulated pollutants such as carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and particulate matter (PM). Off-line analyses were performed to speciate gas- and particle-phase emissions. The data were used to investigate trends in emissions with vehicle age and to quantify the effects of different aftertreatment technologies on diesel vehicle emissions (e.g., with and without a diesel particulate filter). On average, newer LDGVs that met the most recent emissions standards had substantially lower emissions of regulated gaseous pollutants (CO, THC and NOx) than older vehicles. For example, THC emissions from the median LDGV that met the LEV2 standard was roughly a factor of 10 lower than the median pre-LEV vehicle; there were also substantial reductions in NOx (factor of ∼100) and CO (factor of ∼10) emissions from pre-LEV to LEV2 vehicles. However, reductions in LDGV PM mass emissions were much more modest. For example, PM emission from the median LEV2 vehicle was only a factor of three lower than the median pre-LEV vehicle, mainly due to the reductions in organic carbon emissions. In addition, LEV1 and LEV2 LDGVs had similar PM emissions. Catalyzed diesel particulate filters reduced CO, THC and PM emissions from HDDVs by one to two orders of magnitude. Comprehensive organic speciation was performed to quantify priority air toxic emissions and to estimate the secondary organic aerosol (SOA) formation potential. The data suggest that the SOA production from cold-start LDGVs exhaust will likely exceed primary PM emissions from LDGVs and could potentially exceed SOA formation from on-road diesel vehicles.
Nakada, N; Yasojima, M; Okayasu, Y; Komori, K; Suzuki, Y
2010-01-01
The behavior of antibacterial triclosan, insect-repellent diethyltoluamide (DEET), anticonvulsant carbamazepine, and antipruritic crotamiton was investigated at two sewage treatment plants (STPs) to clarify their complete mass balance. Twenty-four-hour flow-proportional composite samples were collected from the influent and effluent of primary and final sedimentation tanks, a biofiltration tank and disinfection tanks. Sludge samples (i.e., activated and excess sludge) and samples of the return flow from the sludge treatment process were collected in the same manner. The analytes in both the dissolved and particulate phases were individually determined by a gas chromatograph equipped with mass spectrometer. Triclosan was dominantly detected in the particulate phase especially in the early stage of treatment (up to 83%) and was efficiently removed (over 90%) in STPs, mainly by sorption to sewage sludge. Limited removal was observed for DEET (55+/-24%), while no significant removal was demonstrated for crotamiton or carbamazepine. The solid-water distribution coefficients (K(d), n=4) for triclosan (log K(d): 3.7-5.1), DEET (1.3-1.9) and crotamiton (1.1-1.6) in the sludge samples are also determined in this study. These findings indicate the limitations of current sewage treatment techniques for the removal of these water-soluble drugs (i.e. DEET, carbamazepine, and crotamiton).
The purpose of this SOP is to describe the in-field use of the particulate sampling system (pumping, control unit, and size selective inlet impactors) for collecting samples of particulate matter from the air during a predetermined time period during the Arizona NHEXAS project an...
Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.
1997-01-01
Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.
NASA Technical Reports Server (NTRS)
Bellan, J.; Lathouwers, D.
2000-01-01
A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.
Mudbidre, R; Baskaran, M; Schweitzer, L
2014-12-01
Some of the daughter products in the (222)Rn-decay series, such as (210)Po and (210)Pb, have been widely used as tracers and chronometers in aqueous systems. We measured the concentrations of (210)Pb and (210)Po in the dissolved (≤0.5 μm), bulk (unfiltered) and particulate phases (≥1 μm) collected in the Clinton River in the Lake St. Clair watershed in Southeast Michigan in order to investigate their partitioning between particulate and dissolved phases. Activity measurements of the dissolved and particulate phases revealed that an average of 38% (range: 12-59%) and 33% (range: 12-66%) of the total (210)Pb and (210)Po, respectively, in the water column was found in the particulate phase. The activity of dissolved and total (210)Pb was higher than that of (210)Po because of the higher atmospheric depositional fluxes of (210)Pb compared to (210)Po. Although the calculated Kd values of (210)Pb and (210)Po were similar, there was an inverse relationship between the Kd and suspended particulate matter concentration, indicating the presence of a particle concentration effect and we attribute this observation to the presence of significant amounts of colloidal (210)Po and (210)Pb in the dissolved phase. The fractionation factors for Po and Pb were found to be less than 1 in most cases. The first-order box model calculation-based residence times with respect to scavenging varied from 2 to 25 days for (210)Pb and 19-78 days for (210)Po, indicating higher particle-reactivity of (210)Pb compared to (210)Po. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtold, D.B.
1983-12-31
The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspendedmore » crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN.« less
Effect of ambient particulate matter expousre on hemostasis
Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...
ERIC Educational Resources Information Center
Ozmen, Haluk
2011-01-01
In this study, the effect of animation enhanced conceptual change texts (CCT-CA) on grade 6 students' understanding of the particulate nature of matter (PNM) and transformation during the phase changes was investigated. A quasi-experimental design and one control group (CG, N = 25) and one experimental group (EG, N = 26) were used. While the…
Characterization of urban runoff pollution between dissolved and particulate phases.
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.
Analysis of the high-temperature particulate collection problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razgaitis, R.
1977-10-01
Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.
Secondary aerosol production from agricultural gas precursors
USDA-ARS?s Scientific Manuscript database
Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...
"Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang
2003-01-01
The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.
Gaseous and particulate emissions from prescribed burning in Georgia.
Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark
2005-12-01
Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-10-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.
Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-07-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.
NASA Astrophysics Data System (ADS)
Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi
2016-07-01
Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.
Chen, Yi; Ho, Kin Fai; Ho, Steven Sai Hang; Ho, Wing Kei; Lee, Shun Cheng; Yu, Jian Zhen; Sit, Elber Hoi Leung
2007-12-01
Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in twomore » phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.« less
USDA-ARS?s Scientific Manuscript database
Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...
Comprehensive modeling of a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Liang, P.-Y.; Fisher, S.; Chang, Y. M.
1985-01-01
An analytical model for the simulation of detailed three-phase combustion flows inside a liquid rocket combustion chamber is presented. The three phases involved are: a multispecies gaseous phase, an incompressible liquid phase, and a particulate droplet phase. The gas and liquid phases are continuum described in an Eulerian fashion. A two-phase solution capability for these continuum media is obtained through a marriage of the Implicit Continuous Eulerian (ICE) technique and the fractional Volume of Fluid (VOF) free surface description method. On the other hand, the particulate phase is given a discrete treatment and described in a Lagrangian fashion. All three phases are hence treated rigorously. Semi-empirical physical models are used to describe all interphase coupling terms as well as the chemistry among gaseous components. Sample calculations using the model are given. The results show promising application to truly comprehensive modeling of complex liquid-fueled engine systems.
Tang, Jiao; An, Taicheng; Xiong, Jukun; Li, Guiying
2017-12-01
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ 16 PAHs in the dissolved and particulate phases were obtained as 69-1.5 × 10 2 ng L -1 and 2.3 × 10 3 -8.6 × 10 4 ng g -1 , respectively. The levels of Σ 20 OCPs were 23-66 ng L -1 (dissolved phase) and 19-1.7 × 10 3 ng g -1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.
Green, Norman W.
1982-06-15
Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.
NASA Technical Reports Server (NTRS)
Curran, R. J.; Kropfil, R.; Hallett, J.
1984-01-01
Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.
Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange
NASA Astrophysics Data System (ADS)
Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.
2017-02-01
Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.
Harnish, R.A.; McKnight, Diane M.; Ranville, James F.
1994-01-01
In November 1991, the initial phase of a study to determine the dominant aqueous phases that control the transport of plutonium (Pu), americium (Am), and uranium (U) in surface and groundwater at the Rocky Flats Plant was undertaken by the U.S. Geological Survey. By use of the techniques of stirred-cell spiral-flow filtration and crossflow ultrafiltration, particles of three size fractions were collected from a 60-liter sample of water from well 1587 at the Rocky Flats Plant. These samples and corresponding filtrate samples were analyzed for Pu and Am. As calculated from the analysis of filtrates, 65 percent of Pu 239 and 240 activity in the sample was associated with particulate and largest colloidal size fractions. Particulate (22 percent) and colloidal (43 percent) fractions were determined to have significant activities in relation to whole-water Pu activity. Am and Pu 238 activities were too low to be analyzed. Examination and analyses of the particulate and colloidal phases indicated the presence of mineral species (iron oxyhydroxides and clay minerals) and natural organic matter that can facilitate the transport of actinides in ground water. High concentrations of the transition metals copper and zinc in the smallest colloid fractions strongly indicate a potential for organic complexation of metals, and potentially of actinides, in this size fraction.
Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2008-07-01
The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2015-12-29
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Method of producing particulate-reinforced composites and composties produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.
THE RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY: PM MASS CONCENTRATION RELATIONSHIPS
The U.S. Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a one-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were t...
Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...
INDIVIDUAL PARTICLE ANALYSIS OF PERSONAL SAMPLES FROM THE 1998 BALTIMORE PARTICULATE MATTER STUDY
The United States Environmental Protection Agency (U.S. EPA) recently conducted the 1998 Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly. The primary goal of that study was to establish the relationship between outdoor PM concentrations and actual h...
NASA Astrophysics Data System (ADS)
Estapa, M. L.
2016-02-01
Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.
REGIONAL PARTICULATE MODEL - 1. MODEL DESCRIPTION AND PRELIMINARY RESULTS
The gas-phase chemistry and transport mechanisms of the Regional Acid Deposition Model have been modified to create the Regional Particulate Model, a three-dimensional Eulerian model that simulates the chemistry, transport, and dynamics of sulfuric acid aerosol resulting from pri...
Particulate-Phase Carbonyls: Laboratory and Pacific 2001 Field Measurements
NASA Astrophysics Data System (ADS)
Liggio, J.; McLaren, R.
2002-12-01
Atmospheric aldehydes and ketones are important constituents of the gas phase. They are emitted from athropogenic and biogenic sources directly, but are also formed as secondary oxidation products of a variety of saturated and unsaturated hydrocarbons. Although their gas phase occurrence and chemistry is well known, the presence of these compounds in the particulate phase is not completely understood. A method has been developed to measure particulate phase carbonyls. Analysis was performed by a simultaneous extraction and derivatization of carbonyls by 2,4-dinitrophenylhydrazine. The subsequent derivatives are pre-concentrated and injected onto an HPLC and detected by UV absorption. Laboratory studies of the extraction kinetics, suggest that partitioning of even highly volatile carbonyls may be possible. Also, experiments performed to determine the extent of positive artifacts on Teflon coated filters, indicate that measurements of these volatile carbonyls are likely not a result of gas-phase adsorption to the filter. These studies also indicate that sampling on quartz fiber filters may introduce significantly more uncertainty with respect to positive artifacts. The analytical method was used to analyze filters sampled during the Pacific 2001 field campaign. Particulate samples were collected on Teflon coated glass-fiber filters. Samples were collected at an urban site (Slocan Park,Vancouver), a rural site (Langley) and an elevated rural mountain site (Eagle Ridge, Sumas). Preliminary results show several carbonyls present in aerosols, at pg/m3 to ng/m3 levels. Detected carbonyls of possible anthropogenic origin include formaldehyde, acetaldehyde, acetone, propanal, glyoxal and methylglyoxal. Detected carbonyls of biogenic origin include pinonaldehyde and nopinone, known oxidation products of the biogenically emitted a-pinene and b-pinene. Possible mechanisms for carbonyl partitioning and implications for their contribution to aerosols in the Lower Fraser Valley will be presented.
DSMC simulation of two-phase plume flow with UV radiation
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...
40 CFR 52.2276 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...
40 CFR 52.2276 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...
40 CFR 52.2276 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...
Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto
2015-11-01
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
SIZE-SEGREGATED PARTICULATE MERCURY MEASUREMENTS IN STEUBENVILLE, OH AND DETROIT, MI, USA
This poster presents data on size-segregated particulate-phase mercury made during field intensive measurements in Steubenville, OH and Detroit, MI in 2004. The goal was to obtain information about size distribution of particle-associated mercury. A knowledge of size distributio...
SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I
Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...
Gas Phase Emission Ratios From In-Use Diesel and CNG Curbside Passenger Buses in New York City
NASA Astrophysics Data System (ADS)
Herndon, S. C.; Shorter, J.; Canagaratna, M.; Jayne, J.; Nelson, D. D.; Wormhoudt, J. C.; Williams, P.; Silva, P. J.; Shi, Q.; Ghertner, A.; Zahniser, M.; Worsnop, D.; Kolb, C.; Lanni, T.; Drewnick, F.; Demerjian, K. L.
2002-12-01
The Aerodyne Mobile Laboratory simultaneously measured gas phase and particulate emissions from in use vehicles during two campaigns in New York City. The campaigns took place during two weeks in October, 2000 and four weeks in July-August, 2001. Passenger curbside buses were the primary focus of the study, but school buses and several other heavy duty diesel vehicles were also characterized. This paper describes the methodologies used to measure individual in use vehicles and presents the results of the gas phase measurements. Emission ratios for NO, NO2, SO2, N2O, CO, CH4 and H2CO relative to CO2 have been determined across several classes of buses. The gas phase concentrations were measured each second, using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). Some of the categories of buses into which the data has been sorted are; diesel (both 6V92 and Series 50) with and without the Continuous Regenerative Technology (CRT) retrofit, compressed natural gas powered(CNG) and hybrid diesel-electric buses. The New York Metropolitan Transit Authority (MTA) cooperated with this work, providing details about each of their buses followed. In addition to MTA buses, other New York City passenger bus operators were also measured. In September 2000, MTA began to switch to 30 ppm sulfur diesel fuel while it is believed the non MTA operators did not. The measured emission ratios show that low sulfur fuel greatly reduces the amount of SO2 per CO2. Roughly one third of the MTA fleet of diesel buses have been equipped with the CRT retrofit. The gas phase results of interest in this category show increased direct emission of NO2 and companion work (also submitted to the 12th CRC) show the impact the CRT refit has on particulate emissions. CNG buses show increased H2CO and CH4 emission ratios relative to diesel powered motors.
Primary particulate matter from ocean-going engines in the Southern California Air Basin.
Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R
2009-07-15
The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.
Air pollution: Household soiling and consumer welfare losses
Watson, W.D.; Jaksch, J.A.
1982-01-01
This paper uses demand and supply functions for cleanliness to estimate household benefits from reduced particulate matter soiling. A demand curve for household cleanliness is estimated, based upon the assumption that households prefer more cleanliness to less. Empirical coefficients, related to particulate pollution levels, for shifting the cleanliness supply curve, are taken from available studies. Consumer welfare gains, aggregated across 123 SMSAs, from achieving the Federal primary particulate standard, are estimated to range from $0.9 to $3.2 million per year (1971 dollars). ?? 1982.
ASSOCIATIONS BETWEEN AIR POLLUTION AND MORTALITY IN PHOENIX, 1995-1997
We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM10, PM2.5, and PMCF (PM10 minus PM2.5)], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, us...
An alternative approach to recovering valuable metals from zinc phosphating sludge.
Kuo, Yi-Ming
2012-01-30
This study used a vitrification process (with good potential for commercialization) to recover valuable metals from Zn phosphating sludge. The involved vitrification process achieves two major goals: it transformed hazardous Zn phosphating sludge into inert slag and it concentrated Fe (83.5%) and Zn (92.8%) into ingot and fine particulate-phase material, respectively. The Fe content in the ingot was 278,000 mg/kg, making the ingot a potential raw material for iron making. The fine particulate-phase material (collected from flue gas) contained abundant Zn (544,000 mg/kg) in the form of ZnO. The content (67.7%) of ZnO was high, so it can be directly sold to refineries. The recovered coarse particulate-phase material, with insufficient amount of ZnO, can be recycled as a feeding material for Zn re-concentration. Therefore, the vitrification process can not only treat hazardous materials but also effectively recover valuable metals. Copyright © 2011 Elsevier B.V. All rights reserved.
Are Atoms and Molecules Too Difficult for Primary Children?
ERIC Educational Resources Information Center
Skamp, Keith
1999-01-01
Presents evidence that suggests that upper elementary students can be taught about the particulate nature of matter in a meaningful way. Investigated the effects of lesson sequences on children's ability to apply a particulate understanding to chemical and physical phenomena and found conceptual gains on lesson specific phenomena. (Contains 15…
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY... submission contains the 24-hour fine particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS..., ``National primary and secondary ambient air quality standards for PM 2.5 .'' In the submission, IDEM has...
Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan
2018-04-20
Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.
A multi-phase instrument comparison study was conducted on two different diesel engines on a dynamometer to compare commonly used particulate matter (PM) measurement techniques while sampling the same diesel exhaust aerosol and to evaluate inter- and intra-method variability. In...
A LOW COST CATALYTIC FILTER FOR SIMULTANEOUS VOC AND PARTICULATE REMOVAL - PHASE II
Emissions of VOC's are subject to control by the EPA both because VOC's are regarded as ozone precursors and because many specific VOC's are hazardous air pollutants (HAP's) under the Clean Air Act Amendments. A number of industries generate offgases with both fine particul...
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the "Border" study. Keywords: lab; equipmen...
This collection of papers, which is the first coordinated publication of results from the Phase II Supersites Program, reflects the objectives of the program - to characterize particulate matter, to provide information, such as source-receptor relationships, that support health...
Children's Health and Indoor Air Quality in Primary Schools and Homes in Portugal-Study Design.
Madureira, Joana; Paciência, Inês; Ramos, Elisabete; Barros, Henrique; Pereira, Cristiana; Teixeira, João Paulo; Fernandes, Eduardo de Oliveira
2015-01-01
The main aim of the research project "On the Contribution of Schools to Children's Overall Indoor Air Exposure" is to study associations between adverse health effects, namely, allergy, asthma, and respiratory symptoms, and indoor air pollutants to which children are exposed to in primary schools and homes. Specifically, this investigation reports on the design of the study and methods used for data collection within the research project and discusses factors that need to be considered when designing such a study. Further, preliminary findings concerning descriptors of selected characteristics in schools and homes, the study population, and clinical examination are presented. The research project was designed in two phases. In the first phase, 20 public primary schools were selected and a detailed inspection and indoor air quality (IAQ) measurements including volatile organic compounds (VOC), aldehydes, particulate matter (PM2.5, PM10), carbon dioxide (CO2), carbon monoxide (CO), bacteria, fungi, temperature, and relative humidity were conducted. A questionnaire survey of 1600 children of ages 8-9 years was undertaken and a lung function test, exhaled nitric oxide (eNO), and tear film stability testing were performed. The questionnaire focused on children's health and on the environment in their school and homes. One thousand and ninety-nine questionnaires were returned. In the second phase, a subsample of 68 children was enrolled for further studies, including a walk-through inspection and checklist and an extensive set of IAQ measurements in their homes. The acquired data are relevant to assess children's environmental exposures and health status.
NASA Astrophysics Data System (ADS)
Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.
2012-12-01
During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and vehicle types at atmospherically relevant conditions and without chemical interferences from other primary or secondary aerosol sources.
2012-01-01
Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531
Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree
2012-10-19
Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.
Cantwell, Mark G; Katz, David R; Sullivan, Julia C; Ho, Kay; Burgess, Robert M; Cashman, Michaela
2016-11-01
In many coastal watersheds and ecosystems, rivers discharging to estuaries receive waters from domestic wastewater-treatment plants resulting in the release and distribution of pharmaceuticals to the marine environment. In the present study, 15 active pharmaceutical ingredients were measured regularly over 1 yr in the dissolved and particulate phases as they entered Narragansett Bay from the Pawtuxet River in Cranston (Rhode Island, USA). Of the active pharmaceutical ingredients measured, 14 were consistently present in the dissolved phase, with concentrations ranging from below detection to >310 ng/L, whereas 8 were present in the particulate phase (0.2-18 ng/g). Partition coefficients (K d s and K OC s) were determined, and organic carbon normalization reduced variability associated with K d s for the active pharmaceutical ingredients evaluated. Flux estimates based on river flow were calculated for both dissolved and particulate-phase active pharmaceutical ingredients, with particulate fluxes being low (1-12 g/yr) and dissolved fluxes of active pharmaceutical ingredients being 155 g/yr to 11 600 g/yr. Results indicate that the pharmaceuticals measured in the present study reside primarily in the dissolved phase and thus are likely bioavailable on entering the estuarine waters of Narragansett Bay. This long-term temporal study provides important information on seasonal and annual dynamics of pharmaceuticals in an urban estuarine watershed. Environ Toxicol Chem 2016;35:2665-2673. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Borrás, E; Sánchez, P; Muñoz, A; Tortajada-Genaro, L A
2011-08-05
A reliable multi-residue method for determining gaseous and particulate phase pesticides in atmospheric samples has been developed. This method, based on full scan gas chromatography-mass spectrometry (GC-MS), allowed the proper determination of sixteen relevant pesticides, in a wide range of concentrations and without the influence of interferences. The pesticides were benfluralin, bitertanol, buprofezin, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, ethalfluralin, fenthion, lindane, malathion, methidathion, propachlor, propanil, pyriproxifen, tebuconazol and trifluralin. Comparisons of two types of sampling filters (quartz and glass fibre) and four types of solid-phase cartridges (XAD-2, XAD-4, Florisil and Orbo-49P) showed that the most suitable supports were glass fibre filter for particulate pesticides and XAD-2 and XAD-4 cartridges for gaseous pesticides (>95% recovery). Evaluations of elution solvents for ultrasonic-assisted extraction demonstrated that isooctane is better than ethylacetate, dichloromethane, methanol or a mixture of acetone:hexane (1:1). Recovery assays and the standard addition method were performed to validate the proposed methodology. Moreover, large simulator chamber experiments allowed the best study of the gas-particle partitioning of pesticides for testing the sampling efficiency for the validation of an analytical multiresidue method for pesticides in air. Satisfactory analytical parameters were obtained, with a repeatability of 5±1%, a reproducibility of 13±3% and detection limits of 0.05-0.18 pg m(-3) for the particulate phase and 26-88 pg m(-3) for the gaseous phase. Finally, the methodology was successfully applied to rural and agricultural samples in the Mediterranean area. Copyright © 2011 Elsevier B.V. All rights reserved.
Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities
NASA Astrophysics Data System (ADS)
Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.
2015-09-01
Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.
Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities
NASA Astrophysics Data System (ADS)
Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.
2015-03-01
Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30% of the total hydrocarbon mixing ratio but comprise more than 50% of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that, 60% of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50% of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for but, very significant under-reporting of diesel related hydrocarbons; an underestimation of a factor ~ 4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.
PRODUCTION OF SHEET FROM PARTICULATE MATERIAL
Blainey, A.
1959-05-12
A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2006-11-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential role of aldehydic products of ozonolysis in increasing the oxidative capacity of the troposphere, are also discussed.
Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing
2014-09-05
A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
1996-08-01
An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.
Vehicular emissions in China in 2006 and 2010.
Tang, Guiqian; Chao, Na; Wang, Yuesi; Chen, Jiashan
2016-10-01
Vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution based on the data released by the National Bureau of Statistics, by taking the emission standards into consideration. China's vehicular emissions of carbon monoxide (CO), nitrogen oxides (NO x ), volatile organic compounds (VOCs), ammonia (NH 3 ), fine particulate matters (PM 2.5 ), inhalable particulate matters (PM 10 ), black carbon (BC), and organic carbon (OC) were 30,113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1Gg, respectively, in 2006 and 34,175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2Gg, respectively, in 2010. CO, VOCs, and NH 3 emissions were mainly from motorcycles and light-duty gasoline vehicles, whereas NO X , PM 2.5 , PM 10 , and BC emissions were mainly from rural vehicles and heavy-duty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Vehicles of pre-China I (vehicular emission standard of China before phase I) and China I (vehicular emission standard of China in phase I) were the primary contributors to all of the pollutant emissions except NH 3 , which was mainly from China III and China IV gasoline vehicles. The total emissions of all the pollutants except NH 3 changed little from 2006 to 2010. This finding can be attributed to the implementation of strict emission standards and to improvements in oil quality. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Prevot, A. S.; Slowik, J.; El-Haddad, I.; Pieber, S. M.; Yuan, B.; Stefenelli, G.; Pospisilova, V.; Lopez-Hilfiker, F.; Qi, L.; Tong, Y.; Wang, L.; Daellenbach, K.; Klein, F.; Elser, M.; Junji, C.; Huang, R. J. J.; Baltensperger, U.
2017-12-01
In the recent years, aerosol mass spectrometric (AMS) measurements were performed in Beijing (China), Zurich (Switzerland) and other Chinese and European cities indicating the importance of not only primary sources but also secondary organic aerosol (SOA) sources despite low radiation levels for photooxidation. Among the primary sources, residential burning is especially important in winter including wood and coal burning. Also for secondary organic aerosols, VOC emissions of residential burning are likely an important source in winter. An interesting question is whether daytime photooxidation and/or night-time NO3 radical chemistry are important pathways for the SOA formation. Recently we developed a new measurement technique based on exctractive electrospray ionization (EESI) that allow for the study of the organic molecules in the particulate phase without fragmentation. Combined measurements with AMS and EESI will be discussed for smogchamber experiments (simulating both nighttime and daytime chemistry) SOA formation potential, the link between VOCs and SOA and the SOA composition. In-situ and off-line measurements in Europe and China are analyzed in the light of those experiments with a focus on the importance of residential burning to both primary and secondary organic aerosols in cities during winter.
Hasheminassab, Sina; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos
2014-01-01
Concurrent indoor and outdoor measurements of fine particulate matter (PM2.5) were conducted at three retirement homes in the Los Angeles Basin during two separate phases (cold and warm) between 2005 and 2006. Indoor-to-outdoor relationships of PM2.5 chemical constituents were determined and sources of indoor and outdoor PM2.5 were evaluated using a molecular marker-based chemical mass balance (MM-CMB) model. Indoor levels of elemental carbon (EC) along with metals and trace elements were found to be significantly affected by outdoor sources. EC, in particular, displayed very high indoor-to-outdoor (I/O) mass ratios accompanied by strong I/O correlations, illustrating the significant impact of outdoor sources on indoor levels of EC. Similarly, indoor levels of polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were strongly correlated with their outdoor components and displayed I/O ratios close to unity. On the other hand, concentrations of n-alkanes and organic acids inside the retirement communities were dominated by indoor sources (e.g. food cooking and consumer products), as indicated by their I/O ratios, which exceeded unity. Source apportionment results revealed that vehicular emissions were the major contributor to both indoor and outdoor PM2.5, accounting for 39 and 46% of total mass, respectively. Moreover, the contribution of vehicular sources to indoor levels was generally comparable to its corresponding outdoor estimate. Other water-insoluble organic matter (other WIOM), which accounts for emissions from uncharacterized primary biogenic sources, displayed a wider range of contributions, varying from 2 to 73% of PM2.5, across all sites and phases of the study. Lastly, higher indoor than outdoor contribution of other water-soluble organic matter (other WSOM) was evident at some of the sites, suggesting the production of secondary aerosols as well as direct emissions from primary sources (including cleaning or other consumer products) at the indoor environments. PMID:24880542
The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...
40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...
40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...
40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...
40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...
NASA Astrophysics Data System (ADS)
Borchard, C.; Engel, A.
2014-11-01
Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d-1). 14C incubations were accomplished to determine primary production (PP), comprised by particulate (PO14C) and dissolved organic carbon (DO14C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.40 μm, <1000 kDa, <100 kDa and <10 kDa) of DO14C and HMW-dCCHO. Our results revealed relatively low ER during steady state growth, corresponding to ∼4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size (<10 kDa) fraction of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentages of glucose (74-80 Mol%), the composition of HMW-dCCHO size-classes >10 kDa was significantly different with higher Mol% of arabinose. Mol% of acidic sugars increased and Mol% glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.
NASA Astrophysics Data System (ADS)
Borchard, C.; Engel, A.
2015-02-01
Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady-state conditions in phosphorus-controlled chemostats (N:P = 29, growth rate of μ = 0.2 d-1) at present-day and high-CO2 concentrations. 14C incubations were performed to determine primary production (PP), comprised of particulate (PO14C) and dissolved organic carbon (DO14C). Concentration and composition of particulate combined carbohydrates (pCCHO) and high-molecular-weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) were determined by ion chromatography. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.4 μm (DO14C), <0.45 μm (HMW-dCCHO), <1000, <100 and <10 kDa) of DO14CC and HMW-dCCHO. Our results revealed relatively low ER during steady-state growth, corresponding to ~4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size fraction (<10 kDa) of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentage of glucose (74-80 mol%), the composition of HMW-dCCHO size classes >10 kDa was significantly different, with a higher mol% of arabinose. The mol% of acidic sugars increased and that of glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.
One-dimensional wave propagation in particulate suspensions
NASA Technical Reports Server (NTRS)
Rochelle, S. G.; Peddieson, J., Jr.
1976-01-01
One-dimensional small-amplitude wave motion in a two-phase system consisting of an inviscid gas and a cloud of suspended particles is analyzed using a continuum theory of suspensions. Laplace transform methods are used to obtain several approximate solutions. Properties of acoustic wave motion in particulate suspensions are inferred from these solutions.
Deep-sea fluxes of barium and lithogenic trace elements in the subtropical northeast Atlantic
NASA Astrophysics Data System (ADS)
Stern, Judith; Dellwig, Olaf; Waniek, Joanna J.
2017-04-01
Total particle flux, Barium and lithogenic trace element fluxes were measured at the mooring Kiel 276 (33°N, 22°W) in the deep-sea of the subtropical Northeast Atlantic. The particulate material was collected between 2002 and 2008 with a sediment trap in 2000 m depth and analyzed with ICP-OES/-MS to determine its geochemical composition. The particle flux is controlled by primary production, lithogenic particle inputs via atmospheric transport and the migration of the Azores Front. We used refractory trace elements (eg. Ti, Zr, and the rare earth elements) to demonstrate the changes in flux and composition of the material due to lithogenic inputs. Shortly after periods of high dust load and enhanced primary production an increase in lithogenic trace element fluxes occurred. Especially the formation of aggregates with biogenic matter seems to have a major impact on the downwards transport of lithogenic particles. The observation of particulate Ba is of great interest since it is known as a proxy for past and present primary production. Ba fluxes ranging between 0.02 mg m-2 d-1 and 1.21 mg m-2 d-1 with biogenic proportions up to 97%. The fluxes of particulate Barium in the water column are mainly attributed to the strength of primary production.
Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C
2011-01-01
The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.
A two-phase restricted equilibrium model for combustion of metalized solid propellants
NASA Technical Reports Server (NTRS)
Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.
1992-01-01
An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.
Baalousha, Mohamed; Stoll, Serge; Motelica-Heino, Mikaël; Guigues, Nathalie; Braibant, Gilles; Huneau, Frédéric; Le Coustumer, Philippe
2018-02-10
This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10-450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions. Graphical abstract Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.
Jørgensen, Rikke Bramming; Kero, Ida Teresia
2017-12-20
Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPI TM , Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPS TM , TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 10⁴ particles/cm³ for the UFP fraction and 1.0 × 10⁵ particles/cm³ for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon.
2017-01-01
Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPITM, Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPSTM, TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 104 particles/cm3 for the UFP fraction and 1.0 × 105 particles/cm3 for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon. PMID:29261158
Pankow, J.F.; McKenzie, S.W.
1991-01-01
The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.
Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring
NASA Technical Reports Server (NTRS)
Diehl, S. R.; Smith, D. T.; Sydor, M.
1979-01-01
Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.
NASA Astrophysics Data System (ADS)
Mohamed, N.; Ariffin, N. A. N.; Mohamed, C. A. R.
2016-07-01
Distribution of 226Ra and 228Ra radioactive in marine have been studied at Kapar coastal area that closed to Sultan Salahudin Abdul Aziz Shah (SJSSAS) power station. The concentration level of 226Ra and 228Ra were measured in seawater include total suspended solids (TSSrw) and dissolved phases from September 2006 to February 2008. The measurement technique used for 226Ra and 228Ra was using cation exchange column and counted using Liquid Scintillator Ciunter (LSC). The radioactivities of 226Rasw and 228Rasw in the dissolved phase of seawater ranged from 1.29 ± 0.52 mBq/L - 3.69 ± 1.29 mBq/L and 2.12 ± 0.71 mbq/L - 17.07 ± 6.03 mBq/L respectively. The measurement of radioactivities of radium isotopes in the particulate phase of seawater ranged from 15.62 ± 1.99 Bq/kg - 241.76 ± 100.23 Bq/kg (226Ratsw) and 7.19 ± 3.21 Bq/kg - 879.66 ± 365.74 Bq/kg (228Ratsw). Radium isotopes inventory in this study showed that suspended solid have higher inventory value than seawater and sediment. Study also found that suspended solid play an important role for flux contribution at seawater. Based on the finding, the radioactivity concentration of 226Ra and 228Ra is higher in particulate phase than in dissolved phase.
Atkins, A; Bignal, K L; Zhou, J L; Cazier, F
2010-03-01
An investigation was made into the emissions of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as well as inorganic gases (e.g. CO) from a wood fired combustion boiler using wood pellets, under two different boiler operating modes. Levels of total PAHs varied from 6.4 and 154 microg m(-3), and were found to be dominating in the gas phase (>80%), regardless of pellet type and boiler operating mode. In addition to this, PAH concentrations were higher in slumber mode than in full flame, and increased with the moisture content of pellets, consistent with the lower combustion efficiency in slumber mode (58.6-64.3%) than in full flame (74.4-82.3%). PAHs in the gas phase comprised mainly of low molecular mass compounds, while PAHs in the particulate phase were mostly composed of high molecular mass compounds, consistent with the physicochemical properties of such compounds. In comparison to PAHs, significantly lower concentrations of PCBs (a maximum of 2.5 microg m(-3)) were released from pellet combustion, consistent with the virgin nature of the pellets. The PCBs in both the gas and particulate phases were dominated by hexachlorinated congeners, although congeners with more chlorine substitution were more abundant in the particulate phase than in gas phase. Significant relationships were established between CO and organic pollutants, and between PAHs and PCBs, which are useful tools for prediction purposes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.
2003-11-01
Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.
[PBDEs pollution in the atmosphere of a typical E-waste dismantling region].
Chen, Duo-hong; Li, Li-ping; Bi, Xin-hui; Zhao, Jin-ping; Sheng, Guo-ying; Fu, Jia-mo
2008-08-01
The vapor-phase and particulate-phase samples were collected from the E-waste dismantling region (E) and a reference region (S), which is located in the upwind direction of the E and where the costume industry is developed. The aim was to acquire information about the concentrations, gas/particle partitioning and distribution of polybrominated diphenyt ethers (PBDEs). 11 congeners PBDEs were detected with GC-NCI-MS. The results showed that E-waste dismantling has resulted in serious pollution and the PBDE concentrations (from tri-to deca-BDE) ranged from 51.1 pg x m(-3) to 2685 pg x m(-3) (mean:830 pg x m(-3)), while the PBDE concentrations (from tri-to deca-BDE) in S were in the range of 1.00 pg x m(-3) to 98.9 pg x m(-3) (mean: 28.7 pg x m(-3)). The gas/particle partitioning of PBDEs exhibited a strong dependence on bromine number. Low-brominated PBDEs tend to have a higher concentration in the gas-phase while highly brominated PBDEs are mostly associated with the particulate. The mass distribution of PBDEs in E (including vapor-phase and particulate-phase) was dominated by penta-BDE, accounting for 54.3% of the total PBDEs, followed by deca-BDE, accounting for 23.8%. This pollution characters validated that the E-waste did not only come from Asia, but also from North America and Europe.
ERIC Educational Resources Information Center
Demircioglu, Hülya
2017-01-01
The aim of this study is to determine the effect of activities developed in accordance with PDEODE teaching strategy on students' understanding of the particulate nature of matter. The sample of the study consists of the first grade students who study in the Primary School Teacher Education Program. In order to determine the conceptual change on…
Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements
NASA Astrophysics Data System (ADS)
Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua
2017-10-01
A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.
The purpose of this SOP is to describe the stages of preparation required for Harvard particulate matter (PM) sampler impactor: (1) prior to in-field use of the particulate sampling system, (2) in-field sampling, and (3) disassembly after field use. This procedure applies direct...
The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the secondary (welfare-based) national ambient air quality standards (NAAQS) for nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM). The major phases of the ...
A Navier-Stokes phase-field crystal model for colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
A Navier-Stokes phase-field crystal model for colloidal suspensions.
Praetorius, Simon; Voigt, Axel
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A.; Chen, C. P.
1990-01-01
Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.
Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun
2017-01-27
A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cimorelli, A. J.; House, F. B.
1974-01-01
The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.
Measurement of gas and aerosol agricultural emissions
USDA-ARS?s Scientific Manuscript database
Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...
Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios
2018-03-06
We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.
Stanfill, S B; Ashley, D L
2000-04-01
Little is known about the possible health effects associated with inhaling alkenylbenzenes through cigarette smoking, even though these flavor-related compounds have known toxic effects in animals. We developed a rapid and sensitive solid-phase extraction (SPE) method to quantify seven alkenylbenzenes and piperonal in mainstream cigarette smoke particulate. The smoke particulate fraction of a single cigarette was collected on Cambridge filter pads, solvent extracted, concentrated, purified with SPE, and analyzed by selected ion monitoring gas chromatography-mass spectrometry. We positively identified and quantified five alkenylbenzenes compounds (eugenol, isoeugenol, methyleugenol myristicin, and elemicin) and piperonal in the smoke particulate from eight U.S. brands with mean levels (measured in triplicate) ranging from 6.6 to 4210 ng per cigarette. Additionally, complete blocking of nearly invisible ventilation holes in the cigarette filter increased 2- to 7-fold the percent transfer of alkenylbenzenes from tobacco to the particulate fraction of mainstream smoke.
Dang, Feng; Wan, Chunlei; Park, Nam-Hee; Tsuruta, Kazuki; Seo, Won-Seon; Koumoto, Kunihito
2013-11-13
Self-assembled particulate films with a uniform structure over a large area were prepared from La-SrTiO3 nanocubes for thermoelectric applications. UV irradiation was used to assist the formation of particulate film for decomposition of the organic phase in situ to obtain a mechanically robust structure at high temperature. The thermoelectric properties of the particulate film were measured after calcination at 1000 °C under a reductive atmosphere (Ar/H2 = 60/40). A Seebeck coefficient of S = -239 ± 24 μV/K, electrical conductivity of σ = 160 ± 5 S/cm, and thermal conductivity of κ ≈ 1.5 W/mK were obtained for a self-assembled particulate film (La: 5%) corresponding to a ZT value of 0.2 at room temperature, which exceeded that of a La-SrTiO3 single crystal with similar composition.
NASA Astrophysics Data System (ADS)
Zhu, Shupeng; Horne, Jeremy R.; Montoya-Aguilera, Julia; Hinks, Mallory L.; Nizkorodov, Sergey A.; Dabdub, Donald
2018-03-01
Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOCs). This chemistry consumes gas-phase NH3 and may therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM) as well as particle acidity. In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ) model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10-3-10-5). Simulation results indicate that a significant reduction in gas-phase ammonia may be possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter and 67.0 % in the summer with the highest uptake coefficient (10-3). As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased biogenic SOA (BIOSOA) production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. Since ammonia emissions are expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.
Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA a...
Turkish Pupils' Conceptions of the Particulate Nature of Matter
ERIC Educational Resources Information Center
Boz, Yezdan
2006-01-01
The purpose of this research study is to explore year 6, 8 & 11 (13, 15 and 17 years old respectively) Turkish pupils' views about the particulate nature of matter within the context of phase changes. About 300 pupils participated in the study. Questionnaires distributed to year 6, 8 and 11 pupils included 6-item open-ended questions about (a)…
Cheung, C S; Zhu, Ruijun; Huang, Zuohua
2011-01-01
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.
Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation
NASA Technical Reports Server (NTRS)
McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul
1997-01-01
Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.
The Coherent Backscattering Opposition Effect: Measurements at Very Small Phase Angles
NASA Technical Reports Server (NTRS)
Nelson, R.; Hapke, B.; Smythe, W.; Horn, L.; Herrera, P.; Gharakanian, V.
1993-01-01
This oral presentation explains that measurements of the opposition surge (the nonlinear increase in reflectance seen in particulate materials when observed at small phase angles) are the first ever made using the JPL long-arm goniometer, which permits very small phase angle measuremnets to be made.
NASA Astrophysics Data System (ADS)
Kalgin, A. V.; Gridnev, S. A.
2018-03-01
The internal friction in particulate ceramic composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.6) in the vicinity of the phase transition temperatures was studied. We observed the influence of the composite composition on the exponent that characterizes a temperature dependence of the internal friction near the ferroelectric Curie point. The reason for this influence is shown to be the doping of the PbZr0.53Ti0.47O3 ferroelectric phase with atoms of the Mn04Zn0.6Fe2O4 ferrite phase that occurs during high- temperature sintering of composite samples.
Schramke, H; Meisgen, T J; Tewes, F J; Gomm, W; Roemer, E
2006-10-29
The mouse lymphoma thymidine kinase assay (MLA) has been optimized to quantitatively determine the in vitro mutagenicity of cigarette mainstream smoke particulate phase. To test whether the MLA is able to discriminate between different cigarette types, specially constructed cigarettes each containing a single tobacco type - Bright, Burley, or Oriental - were investigated. The mutagenic activity of the Burley cigarette was statistically significantly lower, up to approximately 40%, than that of the Bright and Oriental cigarettes. To determine the impact of two different sets of smoking conditions, American-blend cigarettes were smoked under US Federal Trade Commission/International Organisation for Standardisation conditions and under Massachusetts Department of Public Health (MDPH) conditions. Conventional cigarettes - eight from the US commercial market plus the Reference Cigarettes 1R4F and 2R4F - and an electrically heated cigarette smoking system (EHCSS) prototype were tested. There were no statistically significant differences between the two sets of smoking conditions on a per mg total particulate matter basis, although there was a consistent trend towards slightly lower mutagenic activity under MDPH conditions. The mutagenic activity of the EHCSS prototype was distinctly lower than that of the conventional cigarettes under both sets of smoking conditions. These results show that the MLA can be used to assess and compare the mutagenic activity of cigarette mainstream smoke particulate phase in the comprehensive toxicological assessment of cigarette smoke.
Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit
NASA Astrophysics Data System (ADS)
Sherlock, R. L.; Lehrman, N. J.
1995-06-01
Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.
Carr, R.S.; Chapman, D.C.
1995-01-01
A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.
Butler, Barbara A; Ranville, James F; Ross, Philippe E
2008-06-01
North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand, significantly reduced the positive bias between observed and predicted percentage particulate Cu, while inclusion of hydrous manganese oxide (HMO) yielded model results more representative of the observed percentage particulate Zn. These results indicate that there is validity in the use of an existing model, without alteration and with typically collected water chemistry data, to describe complex natural systems, but that processes considered optimal for one metal might not be applicable for all metals in a given water sample.
Failure Mode Analysis of V-Shaped Pyrotechnically Actuated Valves
NASA Technical Reports Server (NTRS)
Sachdev, Jai S.; Hosangadi, A.; Chenoweth, James D.; Saulsberry, Regor L.; McDougle, Stephen H.
2012-01-01
Current V-shaped stainless steel pyrovalve initiators have rectified many of the deficiencies of the heritage Y-shaped aluminum design. However, a credible failure mode still exists for dual simultaneous initiator (NSI) firings in which low temperatures were detected at the booster cap and less consistent ignition was observed than when a single initiator was fired. In order to asses this issue, a numerical framework has been developed for predicting the flow through pyrotechnically actuated valves. This framework includes a fully coupled solution of the gas-phase equation with a non-equilibrium dispersed phase for solid particles as well as the capability to model conjugate gradient heat transfer to the booster cap. Through a hierarchy of increasingly complex simulations, a hypothesis for the failure mode of the nearly simultaneous dual NSI firings has been proven. The simulations indicate that the failure mode for simultaneous dual NSI firings may be caused by flow interactions between the flame channels. The shock waves from each initiator interact in the booster cavity resulting in a high pressure that prevents the gas and particulate velocity from rising in the booster cap region. This impedes the bulk of the particulate phase from impacting the booster cap and reduces the heat transfer to the booster cap since the particles do not impact it. Heat transfer calculations to the solid metal indicate that gas-phase convective heat transfer may not be adequate by itself and that energy transfer from the particulate phase may be crucial for the booster cap burn through.
Wang, Wen-xin; Fan, Chinbay Q
2014-07-15
Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted between January 2011 and December 2012 in Nanjing (China). Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils were sampled from urban to suburban/remote sites, to investigate the pine needle/soil distribution of PAEs. The results showed that the average total PAE concentration (gas+particle) was 97.0ngm(-3). The six PAE congeners considered predominantly existed in the gas phase and the average contribution of gas phase to total PAEs ranged from 75.0% to 89.1%. The PAE concentrations in rhizosphere soils and pine needles were positively correlated with their particulate- and gas-phase concentrations, respectively, which suggested that surface soils accumulated PAEs mainly through gravity deposition of particles and pine needle stomata absorbed PAEs mainly from the gas phase. The gas/particle partitioning (KP) and soil-pine needle ratio (Rs/n) were determined. Experimentally determined KP values correlated well with the subcooled liquid vapor pressures (PL). A set of interesting relationships of logRs/n-logKP-logPL was employed to explain the experimental findings of PAEs deposition to surface soils and to needles. This data set offered a unique perspective into the influence that Rs/n played in KP and correlated with PL. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong
2018-01-01
Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emission characteristics and vapour/particulate phase partitions under three continued operation conditions, i.e. shut-down, start-up and after start-up, were investigated by sampling stack gas. The results indicated that the PCDD/F emission levels were 0.40–18.03 ng I-TEQ Nm−3, much higher than the annual monitoring level (0.016 ng I-TEQ Nm−3). Additionally, the PCDD/F emission levels in start-up were higher than the other two conditions. Furthermore, the PCDD/F congener profiles differed markedly between shut-down and start-up, and the chlorination degree of PCDD/F increased in shut-down and decreased evidently in start-up. Moreover, PCDD/F vapour/particulate phase distributions varied significantly under three transient conditions. The PCDD/F vapour phase proportion decreased as the shut-down process continued, then increased as the start-up process proceeded, finally more than 98% of the PCDD/F congeners were distributed in the vapour phase after start-up. The correlations between log(Cv/Cs) versus log pL0 of each PCDD/F congener in stack gas were disorganized in shut-down, and trend to a linear distribution after start-up. Besides, polychlorinated biphenyl emissions show behaviour similar to that of PCDD/F, and the lower chlorinated congeners have a stronger relationship with 2,3,7,8-PCDD/Fs, such as M1CB and D2CB. PMID:29410821
PCBs, PCDD/Fs and PAHs in dissolved, suspended and settling particulate matrixes from the Baltic Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naef, C.; Broman, D.; Zebuehr, Y.
The occurrence and dynamics of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) are discussed on the basis of results from samples taken at pristine coastal and off shore locations in the Baltic Sea. The sampling techniques used were high volume cross flow filtration and sediment traps for suspended and settling particulate matter, respectively, and polyurethane foam adsorbents for the compounds associated with the apparently dissolved fractions. All samples were Soxhlet extracted with toluene and separated on a HPLC system followed by quantification on GS/MS. The importance of parameters such as concentrations of particulate lipids, particulatemore » organic carbon and dissolved organic carbon, etc. for the distribution of the compounds between the suspended and settling particulate matrixes and the dissolved phase in the water are discussed. In situ determined particulate organic carbon-water partition coefficients as well as predicted dissolved organic carbon-water partition coefficients and approximations of the average ``truly`` dissolved concentrations are presented. The particulate and dissolved concentrations in the mixed surface layer are discussed in perspective to the particulate flux of PCBs, PCDD/Fs and PAHs.« less
Size- and structure-dependent toxicity of silica particulates
NASA Astrophysics Data System (ADS)
Hanada, Sanshiro; Miyaoi, Kenichi; Hoshino, Akiyoshi; Inasawa, Susumu; Yamaguchi, Yukio; Yamamoto, Kenji
2011-03-01
Nano- and micro-particulates firmly attach with the surface of various biological systems. In some chronic pulmonary disease such as asbestosis and silicosis, causative particulates will induce chronic inflammatory disorder, followed by poor prognosis diseases. However, nano- and micro-scale specific toxicity of silica particulates is not well examined enough to recognize the risk of nano- and micro-particulates from the clinical aspect. To clarify the effect of the size and structure of silica particulates on the cellular damage and the biological response, we assessed the cytotoxicity of the various kinds of silica particles including amorphous and crystalline silica, in mouse alveolar macrophage culture, focusing on the fibrotic and inflammatory response. Our study showed that the cytotoxicity, which depends on the particle size and surface area, is correlated with their inflammatory response. By contrast, production of TGF-β, which is one of the fibrotic agents in lung, by addition of crystal silica was much higher than that of amorphous silica. We conclude that fibrosis and inflammation are induced at different phases and that the size- and structure-differences of silica particulates affect the both biological responses, caused by surface activity, radical species, and so on.
Environmental Compliance Assessment System (ECAS). Kentucky Supplement (Revised)
1994-02-01
vehicles or vehicle bodies. "* FGD - Flue Gas Desulfurization . "* Field-Erected - assembled from components at a final site of operation. "* Flare - a...34* Spare Flue Gas Desulfurization System Module - a separate system of sulfur dioxide emission con- trol equipment capable of treating an amount of flue ...Carryover - particulate matter which is passed from the primary chamber of an incinerator into the flue gas stream. " Particulate Matter Emissions
A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate
NASA Technical Reports Server (NTRS)
Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya
2007-01-01
One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.
LeBlanc, L.A.; Schroeder, R.A.
2008-01-01
In order to examine the transport of contaminants associated with river-derived suspended particles in the Salton Sea, California, large volume water samples were collected in transects established along the three major rivers emptying into the Salton Sea in fall 2001. Rivers in this area carry significant aqueous and particulate contaminant loads derived from irrigation water associated with the extensive agricultural activity, as well as wastewater from small and large municipalities. A variety of inorganic constituents, including trace metals, nutrients, and organic carbon were analyzed on suspended material isolated from water samples collected at upriver, near-shore, and off-shore sites established on the Alamo, New, and Whitewater rivers. Concentration patterns showed expected trends, with river-borne metals becoming diluted by organic-rich algal particles of lacustrine origin in off-shore stations. More soluble metals, such as cadmium, copper, and zinc showed a more even distribution between sites in the rivers and off-shore in the lake basin. General distributional trends of trace elements between particulate and aqueous forms were discerned by combining metal concentration data for particulates from this study with historical aqueous metals data. Highly insoluble trace metals, such as iron and aluminum, occurred almost entirely in the particulate phase, while major cations and approximately 95% of selenium were transported in the soluble phase. Evidence for greater reducing conditions in the New compared to the Alamo River was provided by the greater proportion of reduced (soluble) manganese in the New River. Evidence of bioconcentration of selenium and arsenic within the lake by algae was provided by calculating "enrichment" concentration ratios from metal concentrations on the algal-derived particulate samples and the off-shore sites. ?? 2008 Springer Science+Business Media B.V.
Goel, Reema; Bitzer, Zachary T; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P
2018-05-07
Cigarette smoke is a major exogenous source of free radicals, and the resulting oxidative stress is one of the major causes of smoking-caused diseases. Yet, many of the factors that impact free radical delivery from cigarettes remain unclear. In this study, we machine-smoked cigarettes and measured the levels of gas- and particulate-phase radicals by electron paramagnetic resonance (EPR) spectroscopy using standardized smoking regimens (International Organization of Standardization (ISO) and Canadian Intense (CI)), puffing parameters, and tobacco blends. Radical delivery per cigarette was significantly greater in both gas (4-fold) and particulate (6-fold) phases when cigarettes were smoked under the CI protocol compared to the ISO protocol. Total puff volume per cigarette was the major factor with radical production being proportional to total volume, regardless of whether volume differences were achieved by changes in individual puff volume or puff frequency. Changing puff shape (bell vs sharp vs square) or puff duration (1-5 s), without changing volume, had no effect on radical yields. Tobacco variety did have a significant impact on free radical production, with gas-phase radicals highest in reconstituted > burley > oriental > bright tobacco and particulate-phase radicals highest in burley > bright > oriental > reconstituted tobacco. Our findings show that modifiable cigarette design features and measurable user smoking behaviors are key factors determining free radical exposure in smokers.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele
2018-04-01
In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei
2017-05-01
Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change.
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
ERIC Educational Resources Information Center
Aktas, Idris; Bilgin, Ibrahim
2015-01-01
Background: Many researchers agree that students, especially primary students, have learning difficulties on the "Particulate Nature of Matter" unit. One reason for this difficulty is not considering individual differences for teaching science. In 4MAT model learning, environment is arranged according to individual differences. Purpose:…
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.
Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.
NASA Astrophysics Data System (ADS)
Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi
2017-04-01
The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.
Significance of floods in metal dynamics and export in a small agricultural catchment
NASA Astrophysics Data System (ADS)
Roussiez, Vincent; Probst, Anne; Probst, Jean-Luc
2013-08-01
High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72-82%) and moderate for dissolved elements (0-20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals - enriched by anthropogenic sources - associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and...
High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom
Shoenfelt, Elizabeth M.; Sun, Jing; Winckler, Gisela; Kaplan, Michael R.; Borunda, Alejandra L.; Farrell, Kayla R.; Moreno, Patricio I.; Gaiero, Diego M.; Recasens, Cristina; Sambrotto, Raymond N.; Bostick, Benjamin C.
2017-01-01
Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe′) dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods. PMID:28691098
On the theory of evolution of particulate systems
NASA Astrophysics Data System (ADS)
Buyevich, Yuri A.; Alexandrov, Dmitri V.
2017-04-01
An analytical method for the description of particulate systems at sufficiently long times is developed. This method allows us to obtain very simple analytical expressions for the particle distribution function. The method under consideration can be applied to a number of practically important problems including evaporation of a polydisperse mist, dissolution of dispersed solids, combustion of dispersed propellants, physical and chemical transformation of powders and phase transitions in metastable materials.
Real-time non-invasive detection of inhalable particulates delivered into live mouse airways.
Donnelley, Martin; Morgan, Kaye S; Fouras, Andreas; Skinner, William; Uesugi, Kentaro; Yagi, Naoto; Siu, Karen K W; Parsons, David W
2009-07-01
Fine non-biological particles small enough to be suspended in the air are continually inhaled as we breathe. These particles deposit on airway surfaces where they are either cleared by airway defences or can remain and affect lung health. Pollutant particles from vehicles, building processes and mineral and industrial dusts have the potential to cause both immediate and delayed health problems. Because of their small size, it has not been possible to non-invasively examine how individual particles deposit on live airways, or to consider how they behave on the airway surface after deposition. In this study, synchrotron phase-contrast X-ray imaging (PCXI) has been utilized to detect and monitor individual particle deposition. The in vitro detectability of a range of potentially respirable particulates was first determined. Of the particulates tested, only asbestos, quarry dust, fibreglass and galena (lead sulfate) were visible in vitro. These particulates were then examined after delivery into the nasal airway of live anaesthetized mice; all were detectable in vivo but each exhibited different surface appearances and behaviour along the airway surface. The two fibrous particulates appeared as agglomerations enveloped by fluid, while the non-fibrous particulates were present as individual particles. Synchrotron PCXI provides the unique ability to non-invasively detect and track deposition of individual particulates in live mouse airways. With further refinement of particulate sizing and delivery techniques, PCXI should provide a novel approach for live animal monitoring of airway particulates relevant to lung health.
Air-to-sea fluxes of lipids at Enewetak Atoll
NASA Astrophysics Data System (ADS)
Zafiriou, Oliver C.; Gagosian, Robert B.; Peltzer, Edward T.; Alford, Jane B.; Loder, T.
1985-02-01
We report data for the Enewetak site of the SEAREX program from the rainy season in 1979. The concentrations of n-alkanes, n-alkanols, sterols, n-alkanoic acids and their salts, and total organic compounds in rain are reported, as well as the apparent gaseous hydrocarbon concentrations. These data and information on the particulate forms are analyzed in conjunction with ancillary chemical and meteorological data to draw inferences about sources, fluxes, and chemical speciations. While the higher molecular weight lipid biomarker components are exclusively terrestrial, the organic carbon in rain may be derived from atmospheric transformations of terrestrial carbon. Distinctively marine components are nearly absent. Comparison of the scavenging ratios of the organic components in rain vs. those for clays reveals that the alkanoic acids and the higher molecular weight alkanols behave as essentially particulate materials, whereas lower alkanols and most hydrocarbons show much higher scavenging ratios, probably due to the involvement of a gaseous phase or sampling artifact. Vaporization in the atmosphere and scavenging of a gas phase would lead to higher scavenging ratios; vaporization during sampling would give low aerosol concentrations and high gas-phase concentrations, leading to high scavenging ratios. The major fluxes at Enewetak result from rain rather than dry deposition, and extrapolating the measured values to meaningful annual averages requires adjustment for seasonally varying source intensity and rain dynamics. Aerosol data for other seasons and other substances are used to correct for source-strength intensity variations, and a 210Pb/organic compound correlation is established and extrapolated to adjust for rainfall volume effects. These corrections, assumed independent and applied together, yield inferred fluxes 2.5-9 times larger than the fluxes calculated for mean concentrations. The inferred fluxes to the ocean, while small compared to primary production, are large enough to have potential impacts in the cycle of dissolved organic carbon and the sedimentary geochemistry of refractory lipid components.
Searles, J A; Carpenter, J F; Randolph, T W
2001-07-01
The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.
Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...
40 CFR 62.3100 - Identification of plan-negative declaration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...
40 CFR 62.3100 - Identification of plan-negative declaration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...
40 CFR 62.3100 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...
40 CFR 62.3100 - Identification of plan-negative declaration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...
Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment
NASA Astrophysics Data System (ADS)
Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf
2016-11-01
About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.
Product study of oleic acid ozonolysis as function of humidity
NASA Astrophysics Data System (ADS)
Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M.
The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC-MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Gould, R. K.; Srivastava, R.
1979-01-01
Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.
NASA Astrophysics Data System (ADS)
White, A. E.; Letelier, R. M.
2016-02-01
The rate of primary production (PP) in the ocean is a fundamental step in the ocean's food web and biological carbon pump. For more than 50 years oceanographers have relied primarily on estimates of PP based on in vitro measurements of 14CO2 uptake rates. Yet, it is difficult to reconcile PP rates measured in vitro with in situ rates. Here we present diurnal cycles of optically-derived particulate organic carbon (POC) and particle size distributions measured over a series of cruises in the North Pacific relative to traditional 14C-based PP measurements. We have calculated net PP from the daytime increase in optically-derived particulate organic carbon (POC) and the sum of respiration, grazing and sinking from the nighttime POM decrease. Comparison of optically derived NPP to parallel 12-hr 14C incubations are highly significant. The variability in productivity measurements over daily to seasonal to annual time-scales are discussed relative to predominant chemical, physical and climactic forcing.
Aged particles derived from emissions of coal-fired power plants: The TERESA field results
Kang, Choong-Min; Gupta, Tarun; Ruiz, Pablo A.; Wolfson, Jack M.; Ferguson, Stephen T.; Lawrence, Joy E.; Rohr, Annette C.; Godleski, John; Koutrakis, Petros
2013-01-01
The Toxicological Evaluation of Realistic Emissions Source Aerosols (TERESA) study was carried out at three US coal-fired power plants to investigate the potential toxicological effects of primary and photochemically aged (secondary) particles using in situ stack emissions. The exposure system designed successfully simulated chemical reactions that power plant emissions undergo in a plume during transport from the stack to receptor areas (e.g., urban areas). Test atmospheres developed for toxicological experiments included scenarios to simulate a sequence of atmospheric reactions that can occur in a plume: (1) primary emissions only; (2) H2SO4 aerosol from oxidation of SO2; (3) H2SO4 aerosol neutralized by gas-phase NH3; (4) neutralized H2SO4 with secondary organic aerosol (SOA) formed by the reaction of α-pinene with O3; and (5) three control scenarios excluding primary particles. The aged particle mass concentrations varied significantly from 43.8 to 257.1 μg/m3 with respect to scenario and power plant. The highest was found when oxidized aerosols were neutralized by gas-phase NH3 with added SOA. The mass concentration depended primarily on the ratio of SO2 to NOx (particularly NO) emissions, which was determined mainly by coal composition and emissions controls. Particulate sulfate (H2SO4 + neutralized sulfate) and organic carbon (OC) were major components of the aged particles with added SOA, whereas trace elements were present at very low concentrations. Physical and chemical properties of aged particles appear to be influenced by coal type, emissions controls and the particular atmospheric scenarios employed. PMID:20462390
NASA Astrophysics Data System (ADS)
Liu, Junwen; Li, Jun; Liu, Di; Ding, Ping; Shen, Chengde; Mo, Yangzhi; Wang, Xinming; Luo, Chunling; Cheng, Zhineng; Szidat, Sönke; Zhang, Yanlin; Chen, Yingjun; Zhang, Gan
2016-03-01
Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.
NASA Astrophysics Data System (ADS)
Liu, J.; Li, J.; Liu, D.; Ding, P.; Shen, C.; Mo, Y.; Wang, X.; Luo, C.; Cheng, Z.; Szidat, S.; Zhang, Y.; Chen, Y.; Zhang, G.
2015-12-01
Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities of China, yet seldom study simultaneously focuses on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), respectively, using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 % in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 % in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.
Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications
NASA Astrophysics Data System (ADS)
Singh, Nandita; Mhawish, Alaa; Deboudt, Karine; Singh, R. S.; Banerjee, Tirthankar
2017-05-01
Organic aerosol (OA) constitutes a dominant fraction of airborne particulates over Indo-Gangetic Plain (IGP) especially during post-monsoon and winter. Its exposure has been associated with adverse health effects while there are evidences of its interference with Earth's radiation balance and cloud condensation (CC), resulting possible alteration of hydrological cycle. Therefore, presence and effects of OA directly link it with food security and thereby, sustainability issues. In these contexts, atmospheric chemistry involving formation, volatility and aging of primary OA (POA) and secondary OA (SOA) have been reviewed with specific reference to IGP. Systematic reviews on science of OA sources, evolution and climate perturbations are presented with databases collected from 82 publications available throughout IGP till 2016. Both gaseous and aqueous phase chemical reactions were studied in terms of their potential to form SOA. Efforts were made to recognize the regional variation of OA, its chemical constituents and sources throughout IGP and inferences were made on its possible impacts on regional air quality. Mass fractions of OA to airborne particulate showed spatial variation likewise in Lahore (37 and 44% in fine and coarse fractions, respectively), Patiala (28 and 37%), Delhi (25 and 38%), Kanpur (24 and 30%), Kolkata (11 and 21%) and Dhaka. Source apportionment studies indicate biomass burning, coal combustion and vehicular emissions as predominant OA sources. However, sources represent considerable seasonal variations with dominance of gasoline and diesel emissions during summer and coal and biomass based emissions during winter and post-monsoon. Crop residue burning over upper-IGP was also frequently held responsible for massive OA emission, mostly characterized by its hygroscopic nature, thus having potential to act as CC nuclei. Conclusively, climatic implication of particulate bound OA has been discussed in terms of its interaction with radiation balance.
NASA Astrophysics Data System (ADS)
Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.
2014-12-01
Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 < k < (1.7 ± 0.1) · 10-4 s-1 from slowest to the fastest: pendimethalin < cyprodinil < deltamethrin < difenoconazole < oxadiazon < fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during these photolysis processes were followed continuously and on-line by PTR-ToF-MS. We hope that the obtained results from this study will help in the development of future environmental strategies to better understand and control phyto-sanitary product application and human exposure.
An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows
NASA Astrophysics Data System (ADS)
Sewerin, Fabian; Rigopoulos, Stelios
2017-10-01
Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also indicates the computational efficiency of the numerical solution scheme.
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
Effective phase function of light scattered at small angles by polydisperse particulate media
NASA Astrophysics Data System (ADS)
Turcu, I.
2008-06-01
Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.
Patil, M P; Sonolikar, R L
2008-10-01
This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.
NASA Astrophysics Data System (ADS)
Busca, R.; Saccon, M.; Moukhtar, S.; Rudolph, J.
2009-05-01
Atmospheric particulate organic matter (POM) adversely affects health and climate. One of the still poorly understood sources of secondary organic matter (SOM) is the formation of secondary POM from the photo- oxidation of atmospheric volatile organic compounds (VOC). Nitrophenols, which are toxic semi-volatile compounds, are formed in the atmosphere by OH-radical initiated photo-oxidation of aromatic hydrocarbons, such as toluene. A method was developed to determine concentrations and stable carbon isotope ratios of particulate methyl nitrophenols in the atmosphere. This method has been used to quantify methyl nitrophenols, specifically 2-methyl-4-nitrophenol and 4-methyl-2-nitrophenol, found in atmospheric PM samples in trace quantities. Using this method, we conducted measurements of methyl nitrophenols in atmospheric PM in rural and suburban areas in Southern Ontario. The results of these measurements showed that the concentration of methyl nitrophenols in atmospheric PM is much lower than expected from the extrapolation of laboratory experiments and measured atmospheric toluene concentrations. In order to better understand the reasons for these findings, an analytical method for the analysis of nitrophenols in the gas phase is currently being developed. Similarly, the measurement technique is modified to allow analysis of other phenolic products of the oxidation of aromatic hydrocarbons in PM as well as in the gas phase. In this poster, sampling techniques for collection and GC-MS analysis of nitrophenols in gas phase and PM will be presented along with preliminary results from summer 2008 and spring 2009 studies.
CENTRAL CAROLINA VEHICLE PARTICULATE EMISSION STUDY (FINAL REPORT)
A study to characterize the exhaust emissions from a light-duty fleet of in-use vehicles representative of central North Carolina was conducted in 1999 during both a winter phase (February) and a summer phase (June - July). Summer temperatures averaged 78 F, while the winter te...
COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worsnop, Douglas R.
2014-07-28
This project funded the participation of scientists from seven research groups, running more than thirty instruments, in the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London. The primary science questions for the ClearfLo Winter IOP were, 1) what is the urban increment of particulate matter (PM) and other pollutants in the greater London area, and, 2) what is the contribution of solid fuel use for home heating to wintertime PM? An additional motivation for the Detling measurements was the question ofmore » whether coatings on black carbon particles enhance absorption. The following four key accomplishments have been identified so far: 1) Chemical, physical and optical characterization of PM from local and regional sources (Figures 2, 4, 5 and 6). 2) Measurement of urban increment in particulate matter and gases in London (Figure 3). 3) Measurement of optical properties and chemical composition of coatings on black carbon containing particles indicates absorption enhancement. 4) First deployment of chemical ionization instrument (MOVI-CI-TOFMS) to measure both particle-phase and gas-phase organic acids. (See final report from Joel Thornton, University of Washington, for details.) Analysis of the large dataset acquired in Detling is ongoing and will yield further key accomplishments. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal. The measurement of absorption enhancement by coatings on black carbon will contribute to improved modeling of the direct radiative properties of PM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi-Gang Feng
2012-05-31
The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less
Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E
2016-11-01
An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.
On the mechanical behaviours of a craze in particulate-polymer composites
NASA Astrophysics Data System (ADS)
Zhang, Y. M.; Zhang, W. G.; Fan, M.; Xiao, Z. M.
2018-05-01
In polymeric composites, well-defined inclusions are incorporated into the polymer matrix to alleviate the brittleness of polymers. When a craze is initiated in such a composite, the interaction between the craze and the surrounding inclusions will greatly affect the composite's mechanical behaviours and toughness. To the best knowledge of the authors, only little research work has been found so far on the interaction between a craze and the near-by inclusions in particulate-polymer composites. In the current study, the first time, the influences of the surrounding inclusions on the craze are investigated in particulate-polymer composites. The three-phase model is adopted to study the fracture behaviours of the craze affected by multiple inclusions. An iterative procedure is proposed to solve the stress intensity factors. Parametric studies are performed to investigate the influences of the reinforcing particle volume fraction and the shear modulus ratio on fracture behaviours of particulate-polymer composites.
Librando, Vito; Tringali, Giuseppe; Calastrini, Francesca; Gualtieri, Giovanni
2009-11-01
Mathematical models were developed to simulate the production and dispersion of aerosol phase atmospheric pollutants which are the main cause of the deterioration of monuments of great historical and cultural value. This work focuses on Particulate Matter (PM) considered the primary cause of monument darkening. Road traffic is the greatest contributor to PM in urban areas. Specific emission and dispersion models were used to study typical urban configurations. The area selected for this study was the city of Florence, a suitable test bench considering the magnitude of architectural heritage together with the remarkable effect of the PM pollution from road traffic. The COPERT model, to calculate emissions, and the street canyon model coupled with the CALINE model, to simulate pollutant dispersion, were used. The PM concentrations estimated by the models were compared to actual PM concentration measurements, as well as related to the trend of some meteorological variables. The results obtained may be defined as very encouraging even the models correlated poorly: the estimated concentration trends as daily averages moderately reproduce the same trends of the measured values.
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
NASA Astrophysics Data System (ADS)
Lorente, Flávio Lima; Pessenda, Luiz Carlos Ruiz; Oboh-Ikuenobe, Francisca; Buso Junior, Antonio Alvaro; Rossetti, Dilce de Fátima; Giannini, Paulo César Fonseca; Cohen, Marcelo Cancela Lisboa; de Oliveira, Paulo Eduardo; Mayle, Francis Edward; Francisquini, Mariah Izar; França, Marlon Carlos; Bendassolli, José Albertino; Macario, Kita
2018-07-01
The aim of this paper is to reconstruct an 11,000-year history of depositional environmental change in southeastern Brazil, based upon the integration of particulate organic matter and stable isotope (C and N) data from a 136-cm sediment core from Lake Canto Grande. These proxies are used to explore the evolution of terrestrial and marine influence on the lake. Isotopic (δ13C: -27.87‰ to -31.9‰; δ15N: -0.07‰-4.9‰) and elemental (total organic carbon - TOC: 0.58%-37.19%; total nitrogen - TN: 0.08%-1.73%; C/N: 0.3 to 54.7) values recorded in Lake Canto Grande suggest that the sedimentary organic matter was derived from mostly C3 land plants and freshwater phytoplankton. Particulate organic matter and cluster analyses distinguished four associations characterized by the predominance of amorphous organic matter, followed by phytoclasts and palynomorphs. These results indicate two different phases of lake evolution. The first phase (136 - 65 cm; ∼10,943 cal yr. B.P. to ∼8529 cal yr. B.P.) is recorded by sand layers interbedded with mud, which contain amorphous organic matter (AOM, 45-59%) and phytoclasts (opaques - OP: 6-18%; non-opaques - NOP: 17-23%) which indicate a floodplain area. The second phase (65-0 cm; ∼8529 cal yr. B.P. to ∼662 cal yr. B.P.) comprises mud, AOM (68-86%) and palynomorphs (PAL, 8-16%) related to lake establishment comparable to modern conditions. Thus, characterizing particulate organic matter, in combination with stable isotopes, proved to be invaluable proxies for lacustrine paleoenvironmental change through the Holocene.
NASA Astrophysics Data System (ADS)
Gonzalez Abraham, R.; Zavala, M.; Molina, L. T.; Fortner, E.; Wormhoudt, J.; Knighton, B.; Herndon, S.; Roscioli, J. R.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Masera, O.; Berrueta, V.
2013-12-01
Black carbon emissions are a major contributor to climate change, with cookstoves being one of the top sources. The SLCF cookstove study was conducted in March 2013 at the Interdisciplinary Group for Appropriate Rural Technology (GIRA) in Pátzcuaro, Mexico. Seven different types of wood-burning cookstoves were measured giving insight to the effects of different designs and operating conditions on particle and gas phase emissions. High-time resolution measurements of emissions were made. For most of the cookstoves, measurements were made throughout a standard water boiling test. The Aerodyne Mobile Laboratory conducted these emission measurements utilizing extractive sampling from the stove exhaust. Sample flow to the gas phase instruments was extracted directly from the stovepipe and then quickly diluted with nitrogen. Sample flows for the particulate instruments were taken at points under a meter from the exit of the stovepipe, after dilution with ambient air. The key particulate instrument was the Aerodyne soot particle aerosol mass spectrometer (SP-AMS), which provided measurements of black carbon, divided into several sub-components, along with other classes of particulate matter classified by chemical composition. Gas phase measurements conducted included CO, CO2, NO, NOx, SO2, CH4, C2H2, C2H6, and a variety of VOCs (including benzene, methanol, acetaldehyde, toluene, acetone, acetonitrile, and terpene) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different cookstove types and different stove operating conditions. Comparisons will be made to previous measurements of cookstove emissions in the literature, with a focus on the variety of particulate measurements reported.
40 CFR 227.6 - Constituents prohibited as other than trace contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... included in the applicable marine water quality criteria, bioassay results on the liquid phase of the waste... possibility of danger associated -with their bioaccumulation in marine -organisms. (c) The potential for... of results of bioassays on liquid, suspended particulate, and solid phases of wastes according to...
Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g. incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury (Hg(p)) and divalent reactive gas-phase mercury (RGM). RG...
Controlled diesel exposures: Inter-phasing human and animal studies and their use in the risk assessment process.
Michael C. Madden, US EPA.
Particulate matter (PM) has been reported to be associated with health effects (e.g., premature deaths, hospitalizations, lung ...
INTEGRATED AND REAL-TIME DIFFUSION DENUDER SAMPLE FOR PM2.5. (R825367)
Particulate matter (PM) is a complex mixture of stable condensed phases, adsorbed or dissolved gases, and semi-volatile materials, i.e. compounds that transfer between the gas and condensed phases. Fine particles in both rural and urban environments contain su...
Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.
Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H
2017-07-01
Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same
Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.
1992-12-22
A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.
Clean-burning diesel engines. Interim report, June-December 1985 on Phase 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietzmann, H.E.; Smith, L.R.
Gaseous and particulate emissions were measured from diesel forklift engines under a variety of steady-state conditions. An EPA certification fuel was used to determine CO, CO/sub 2/, NOx, HC, particulate, aldehydes, smoke and SO/sub 2/ emission rates from Isuzu C-240, Peugeot XD3P, and Teledyne TMD-20 diesel engines. Emission rates were reported in b/hp-hr, g/hr, and observed concentration, i.e., ppm, percent, or mg/cu. m.
Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John
2014-08-01
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev
2018-02-01
Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.
Savareear, Benjamin; Lizak, Radoslaw; Brokl, Michał; Wright, Chris; Liu, Chuan; Focant, Jean-Francois
2017-10-20
A method involving headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was developed and optimised to elucidate the volatile composition of the particulate phase fraction of aerosol produced by tobacco heating products (THPs). Three SPME fiber types were studied in terms of extraction capacity and precision measurements. Divinylbenzene polydimethylsiloxane appeared as the most efficient coating for these measurements. A central composite design of experiment was utilised for the optimization of the extraction conditions. Qualitative and semi-quantitative analysis of the headspace above THP aerosol condensate was carried out using optimised extraction conditions. Semi-quantitative analyses of detected constituents were performed by assuming that their relative response factors to the closest internal standard ( i t R ) were equal to 1. Using deconvoluted mass spectral data (library similarity and reverse match >750) and linear retention indices (match window of ±15 index units), 205 peaks were assigned to individual compounds, 82 of which (including 43 substances previously reported to be present in tobacco) have not been reported previously in tobacco aerosol. The major volatile fraction of the headspace contained ketones, alcohols, aldehydes, alicyclic hydrocarbons alkenes, and alkanes. The method was further applied to compare the volatiles from the particulate phase of aerosol composition of THP with that of reference cigarette smoke and showed that the THP produced a less complex chemical mixture. This new method showed good efficiency and precision for the peak areas and peak numbers from the volatile fraction of aerosol particulate phase for both THP and reference cigarettes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Nebedum, A.; Kroner, D. O.; Shkuratov, Y.; Psarev, V.; Vanderoort, K.; Smythe, W. D.
2015-12-01
For several decades, unusual reflectance and polarization phase curves have been reported on Europa by experienced ground based astronomers (Rosenbush et al., 1997, 2015). The observed reflectance phase curve is consistent with the phase curves reported in the laboratory in fine grained particulate media (Nelson et al., 2000, 2002, Shkuratov et al., 2002). Shkuratov et al. (2002) also measured polarization properties of fine grained media showing that they relate to the coherent backscatter enhancement phenomenon and are consistent with the astronomical data. We have reconfigured a goniometric photopolarimeter (GPP) (Nelson et al., 2000, 2002) to measure in the laboratory the polarization phase curves of highly reflective particulate materials that simulate the Europa's predominately water ice regolith. We apply the Helmholtz Reciprocity Principle - we present our samples with linearly polarized light and measure the change in the intensity of the reflected component with phase angle from 0.05 to 15 degrees. This is physically equivalent to the astronomical polarization measurements. We report here the polarization phase curves for a suite of high albedo particulates of size 0.1
NASA Astrophysics Data System (ADS)
Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.
2013-10-01
The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).
NASA Astrophysics Data System (ADS)
Chang, E. I.; Pankow, J. F.
2008-01-01
Secondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p) approach. The N·2p approach neglects: 1) variation of activity coefficient (ζi) values and mean molecular weight MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p)ζ, MW ,θ approach (θ is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of ζi and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,i° (atm). To facilitate adoption of the (N·2p)ζ, MW, θ approach in large-scale models, this study also develops CP-Wilson.1, a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975). Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2p)ζ,MW, θ approach is applied (using CP-Wilson.1) to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≍400 to 1000 μg m-3) when relative humidity (RH) ≍50%. Good agreement between the chamber and predicted results is obtained using both the (N·2p)ζ, MW, θ and N·2p approaches, indicating relatively small water effects under these conditions. However, for a hypothetical α-pinene/O3 case at ΔHC=30 μg m-3 and RH=50%, the (N·2p)ζ, MW, θ approach predicts that water uptake will lead to an organic PM level that is more double that predicted by the N·2p approach. Adoption of the (N·2p)ζ, MW, θ approach using reasonable lumped structures for SOA and POA compounds is recommended for ambient PM modeling.
Researchers at the U.S. Environmental Protection Agency's (EPA's) Office of Research and
Development (ORD) have conducted a series of tests to characterize the size and composition of primary particulate matter (PM) generated from the combustion of heavy fuel oil and pulverize...
NASA Astrophysics Data System (ADS)
Wang, Xuri; Cai, Yihua; Guo, Laodong
2013-07-01
Riverine export of dissolved and particulate organic matter to the sea is one of the major components in marine carbon cycles, affecting biogeochemical processes in estuarine and coastal regions. However, the detailed composition of organic material and the relative partitioning among the dissolved, colloidal, and particulate phases are poorly quantified. The abundance of carbohydrate species and their partitioning among dissolved, colloidal, and particulate phases were examined in the waters from the lower Mississippi River (MR), the lower Pearl River (PR), and the Bay of St. Louis (BSL). Particulate carbohydrates (PCHO) represented a small fraction of the particulate organic carbon (POC) pool, with 4.7 ± 3.1%, 4.5 ± 2.4% and 1.8 ± 0.83% in the MR, PR, and BSL, respectively. Dissolved carbohydrates (DCHO) were a major component of the bulk dissolved organic carbon (DOC) pool, comprising 23%, 35%, and 18% in the MR, PR, and BSL, respectively. Differences in the DCHO/DOC ratio between the MR, PR, and BSL were related to their distinct characteristics in drainage basins, anthropogenic impacts, and hydrological conditions, reflecting differences in sources and composition of organic matter in different aquatic environments. Within the total carbohydrates (TCHO) pool, the high-molecular-weight carbohydrates (HMW-CHO, 1 kDa-0.45 μm) were the dominant species, representing 52-71% of the TCHO pool, followed by the low-molecular-weight carbohydrates (LMW-CHO, <1 kDa), representing 14-44% of the TCHO. The PCHO accounted for 4-16% of the bulk TCHO. Variations in the size distribution of carbohydrates among the MR, PR, and BSL were closely linked to the cycling pathway of organic matter and the interactions between different size fractions of the carbohydrates.
NASA Astrophysics Data System (ADS)
Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.
2017-12-01
A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm < DP < 120 nm) we boost the already excellent limits of detection of the PTR-TOF 6000 X2 system to unprecedented levels. We demonstrate that particulate organic analytes of mass concentrations down to 100 pg m-3 can be detected on-line and in single-minute time-resolutions. In addition, PTR-MS allows for a quantitative detection of almost the full range of particulate organics of intermediate to low volatility. With the high mass resolution (R > 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H M; Young, T M; Buchholz, B A
2009-04-16
This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I)more » and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.« less
NASA Astrophysics Data System (ADS)
Li, Guiying; Sun, Hongwei; Zhang, Zhengyong; An, Taicheng; Hu, Jianfang
2013-09-01
Semi-volatile organic compounds (SVOCs) air pollution caused by municipal garbage compressing process was investigated at a garbage compressing station (GCS). The most abundant contaminants were phthalate esters (PAEs), followed by polycyclic aromatic hydrocarbons (PAHs) and organic chlorinated pesticides (OCPs). ∑16PAHs concentrations ranged from 58.773 to 68.840 ng m-3 in gas and from 6.489 to 17.291 ng m-3 in particulate phase; ∑20OCPs ranged from 4.181 to 5.550 ng m-3 and from 0.823 to 2.443 ng m-3 in gas and particulate phase, respectively; ∑15PAEs ranged from 46.498 to 87.928 ng m-3 and from 414.765 to 763.009 ng m-3 in gas and particulate phase. Lung-cancer risk due to PAHs exposure was 1.13 × 10-4. Both non-cancer and cancer risk levels due to OCPs exposure were acceptable. Non-cancer hazard index of PAEs was 4.57 × 10-3, suggesting safety of workers as only exposure to PAEs at GCS. At pilot scale, 60.18% of PAHs, 70.89% of OCPs and 63.2% of PAEs were removed by an integrated biotrickling filter-photocatalytic reactor at their stable state, and health risk levels were reduced about 50%, demonstrating high removal capacity of integrated reactor.
Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K
2011-07-01
The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.
Air cleaning performance of a new environmentally controlled primary crusher operator booth.
Organiscak, J A; Cecala, A B; Zimmer, J A; Holen, B; Baregi, J R
2016-02-01
The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company's Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system's effectiveness in controlling airborne dusts and particulates. The booth's dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions.
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
NASA Astrophysics Data System (ADS)
Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick
2018-02-01
The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.
Trace gas and particulate emissions from biomass burning in temperate ecosystems
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.
1991-01-01
Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.
40 CFR 86.137-94 - Dynamometer test run, gaseous and particulate emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... within 20 minutes of the end of the sample collection phase of the test. Obtain methanol and formaldehyde... the sample collection phase of the test. Obtain methanol and formaldehyde sample analyses, if... methanol-fueled vehicles, with the sample selector valves in the “standby” position, insert fresh sample...
40 CFR 86.137-94 - Dynamometer test run, gaseous and particulate emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... within 20 minutes of the end of the sample collection phase of the test. Obtain methanol and formaldehyde... the sample collection phase of the test. Obtain methanol and formaldehyde sample analyses, if... methanol-fueled vehicles, with the sample selector valves in the “standby” position, insert fresh sample...
Level 1 environmental assessment performance evaluation. Final report jun 77-oct 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, E.D.; Smith, F.; Wagoner, D.E.
1979-02-01
The report gives results of a two-phased evaluation of Level 1 environmental assessment procedures. Results from Phase I, a field evaluation of the Source Assessment Sampling System (SASS), showed that the SASS train performed well within the desired factor of 3 Level 1 accuracy limit. Three sample runs were made with two SASS trains sampling simultaneously and from approximately the same sampling point in a horizontal duct. A Method-5 train was used to estimate the 'true' particulate loading. The sampling systems were upstream of the control devices to ensure collection of sufficient material for comparison of total particulate, particle sizemore » distribution, organic classes, and trace elements. Phase II consisted of providing each of three organizations with three types of control samples to challenge the spectrum of Level 1 analytical procedures: an artificial sample in methylene chloride, an artificial sample on a flyash matrix, and a real sample composed of the combined XAD-2 resin extracts from all Phase I runs. Phase II results showed that when the Level 1 analytical procedures are carefully applied, data of acceptable accuracy is obtained. Estimates of intralaboratory and interlaboratory precision are made.« less
Composite materials for thermal energy storage
Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.
1986-01-01
The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.
NASA Astrophysics Data System (ADS)
Alliot, Fabrice; Moreau-Guigon, Elodie; Bourges, Catherine; Desportes, Annie; Teil, Marie-Jeanne; Blanchard, Martine; Chevreuil, Marc
2014-08-01
A number of semi-volatile compounds occur in indoor air most of them being considered as potent endocrine disruptors and thus, exerting a possible impact upon health. To assess their concentration levels in indoor air, we developed and validated a method for sampling and multi-residue analysis of 58 compounds including phthalates, polycyclic aromatic hydrocarbons (PAHs), polybromodiphenylethers (PBDEs), polychlorobiphenyls (PCBs), parabens, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) in gaseous and particulate phases of air. We validated each step of procedures from extraction until analysis. Matrice spiking were performed at extraction, fractionation and purification stages. The more volatile compounds were analyzed with a gas chromatography system coupled with a mass spectrometer (GC/MS) or with a tandem mass spectrometer (GC/MS/MS). The less volatile compounds were analyzed with a liquid chromatography system coupled with a tandem mass spectrometer (LC/MS/MS). Labeled internal standard method was used ensuring high quantification accuracy. The instrumental detection limits were under 1 pg for all compounds and therefore, a limit of quantification averaging 1 pg m-3 for the gaseous and the particulate phases and a volume of 150 m3, except for phthalates, phenol compounds and BDE-209. Satisfactory recoveries were found except for phenol compounds. That method was successfully applied to several indoor air samples (office, apartment and day nursery) and most of the targeted compounds were quantified, mainly occurring in the gaseous phase. The most abundant were phthalates (up to 918 ng m-3 in total air), followed by PCBs > parabens > BPA > PAHs > PBDEs.
Composition and oxidation state of sulfur in atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.
2016-10-01
The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.
Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.
Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A
2014-01-01
Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.
NASA Astrophysics Data System (ADS)
Kleeman, Michael J.; Ying, Qi; Kaduwela, Ajith
The effect of NO x, volatile organic compound (VOC), and NH 3 emissions control programs on the formation of particulate ammonium nitrate in the San Joaquin Valley (SJV) was examined under the typical winter conditions that existed on 4-6 January, 1996. The UCD/CIT photochemical transport model was used for this study so that the source origin of primary particulate matter and secondary particulate matter could be identified. When averaged across the entire SJV, the model results predict that 13-18% of the reactive nitrogen (NO y=NO x+reaction products of NO x) emitted from local sources within the SJV was converted to nitrate at the ground level. Each gram of NO x emitted locally within the SJV (expressed as NO 2) produced 0.23-0.31 g of particulate ammonium nitrate (NH 4NO 3), which is much smaller than the maximum theoretical yield of 1.7 g of NH 4NO 3 per gram of NO 2. The fraction of reactive nitrogen converted to nitrate varied strongly as a function of location. Urban regions with large amounts of fresh NO emissions converted little reactive nitrogen to nitrate, while remote areas had up to 70% conversion (equivalent to approximately 1.2 g of NH 4NO 3 per gram of NO 2). The use of a single spatially averaged ratio of NH 4NO 3/NO x as a predictor of how changes to NO x emissions would affect particulate nitrate concentrations would not be accurate at all locations in the SJV under the conditions studied. The largest local sources of particulate nitrate in the SJV were predicted to be diesel engines and catalyst equipped gasoline engines under the conditions experienced on 6 January, 1996. Together, these sources accounted for less than half of the ground-level nitrate aerosol in the SJV. The remaining fraction of the aerosol nitrate originated from reactive nitrogen originally released upwind of the SJV. The majority of this upwind reactive nitrogen was already transformed to nitrate by the time it entered the SJV. The effect of local emissions controls on this upwind material was small. A 50% reduction in NO x emissions applied to sources within the SJV reduced the predicted concentration of total nitrate by approximately 25% during the study episode. VOC emissions controls were less effective, while reasonable NH 3 emissions controls had the smallest effect on the amount of ammonium nitrate produced. A 50% reduction in VOC emissions lowered predicted concentrations of total nitrate by 17.5%, while a 50% reduction in NH 3 emissions lowered predicted concentrations of total nitrate by only 10%. This latter result is expected since the formation of ammonium nitrate aerosol is limited by the availability of gas-phase nitric acid, with large amounts of excess NH 3 available. NO x emissions controls appear to be the most efficient method to reduce the concentration of locally generated particulate nitrate in the SJV under the conditions experienced on 4-6 January, 1996.
Reactive Iron Delivery to the Central Gulf of Alaska via Two Mesoscale Eddies (Invited)
NASA Astrophysics Data System (ADS)
Lippiatt, S. M.; Brown, M. T.; Lohan, M. C.; Bruland, K. W.
2010-12-01
Coastal waters in the northern Gulf of Alaska (GoA) are considered Fe-rich and nitrate-poor, in contrast to the Fe-poor, high-nitrate, low chlorophyll (HNLC) waters of the central GoA. Mixing between these two regimes can lead to enhanced primary productivity. Mesoscale anticyclonic eddies are an important mechanism for cross-shelf exchange of coastal and HNLC waters. This presentation will discuss findings from a cruise in the GoA during late summer 2007, namely dissolved Fe, leachable particulate Fe (defined as the portion of the particulate Fe that is solubilized with a two hour, 25% acetic acid leach with a short heating step and a reducing agent), and nitrate. Leachable particulate Fe concentrations in coastal surface waters between Yakutat, AK and the Kenai Peninsula ranged from over 1 uM in the Alsek River plume to less than 5 nM at the base of Cook Inlet, and were more variable and at least an order of magnitude higher than dissolved Fe concentrations. Relatively low and consistent dissolved Fe (~2 nM) suggests that the system’s ability to solubilize this large concentration of leachable particulate Fe is overwhelmed by the massive input of glacial-derived particulate Fe. Suspended leachable particulate Fe is available for exchange to the dissolved phase and is suggested to maintain a relatively constant 2 nM concentration of dissolved Fe in the coastal GoA. Glacial meltwaters were not a significant source of nitrate compared to central GoA HNLC or upwelled waters. The work completed in the coastal GoA set the stage for assessing the delivery of this glacial-derived coastal Fe to HNLC waters via mesoscale eddies. Two mesoscale eddies were sampled during this study: a Sitka eddy located off Yakutat, Alaska and a Kenai eddy sampled off the shelf break near Kodiak Island. The temperature and salinity structures of the eddies reflected their coastal origin; core waters were warmer and fresher than surrounding basin waters, coincident with elevated dissolved and leachable particulate Fe. In the core of the Yakutat eddy at 50 - 100 m depth there was on average 0.8 nM reactive Fe (dissolved + leachable particulate Fe), approximately five times more reactive Fe compared to adjacent GoA basin waters (0.16 nM). At the same depths in the core of the Kenai eddy there was on average 1.9 nM reactive Fe, ten times more reactive Fe than the basin waters (0.19 nM). In addition, for a given density, core waters had elevated nitrate and silicate compared to outside the eddy. Storms can mix Fe-enriched eddy core waters to the surface. Furthermore, anticyclonic GoA eddies can be a significant source of Fe to HNLC waters when they propagate into the central GoA and eventually relax with the Fe and nutrient rich subsurface waters rebounding or upwelling towards the surface. The transport of coastal waters into central GoA waters via mesoscale eddies is shown to be an important mechanism for Fe delivery into this HNLC region.
Gas/particle partitioning and particle size distribution of PCDD/Fs and PCBs in urban ambient air.
Barbas, B; de la Torre, A; Sanz, P; Navarro, I; Artíñano, B; Martínez, M A
2018-05-15
Urban ambient air samples, including gas-phase (PUF), total suspended particulates (TSP), PM 10 , PM 2.5 and PM 1 airborne particle fractions were collected to evaluate gas-particle partitioning and size particle distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Clausius-Clapeyron equation, regressions of logKp vs logP L and logK OA, and human respiratory risk assessment were used to evaluate local or long-distance transport sources, gas-particle partitioning sorption mechanisms, and implications for health. Total ambient air levels (gas phase+particulate phase) of TPCBs and TPCDD/Fs, were 437 and 0.07pgm -3 (median), respectively. Levels of PCDD/F in the gas phase (0.004-0.14pgm -3 , range) were significantly (p<0.05) lower than those found in the particulate phase (0.02-0.34pgm -3 ). The concentrations of PCDD/Fs were higher in winter. In contrast, PCBs were mainly associated to the gas phase, and displayed maximum levels in warm seasons, probably due to an increase in evaporation rates, supported by significant and strong positive dependence on temperature observed for several congeners. No significant differences in PCDD/Fs and PCBs concentrations were detected between the different particle size fractions considered (TSP, PM 10 , PM 2.5 and PM 1 ), reflecting that these chemicals are mainly bounded to PM 1 . The toxic content of samples was also evaluated. Total toxicity (PUF+TSP) attributable to dl-PCBs (13.4fg-TEQ 05 m -3 , median) was higher than those reported for PCDD/Fs (6.26fg-TEQ 05 m -3 ). The inhalation risk assessment concluded that the inhalation of PCDD/Fs and dl-PCBs pose a low cancer risk in the studied area. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Z Gerald; Vasys, Victoria N; Kittelson, David B
2007-09-15
The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.
Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini
2014-07-01
Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 52.1880 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements in the federally approved SIP remain in effect. See § 52.1870(c)(27). (j) Approval—EPA is...) for the Huntington-Ashland area. (3) Ohio's 2005 NOX, primary PM2.5, and SO2 and 2007/2008 ammonia and... Clean Air Act for Washington County. (4) Ohio's 2005 NOX, primary PM2.5, and SO2 and 2007/2008 ammonia...
ERIC Educational Resources Information Center
Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael
2010-01-01
This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…
Flame extinction limit and particulates formation in fuel blends
NASA Astrophysics Data System (ADS)
Subramanya, Mahesh
Many fuels used in material processing and power generation applications are generally a blend of various hydrocarbons. Although the combustion and aerosol formation dynamics of individual fuels is well understood, the flame dynamics of fuel blends are yet to be characterized. This research uses a twin flame counterflow burner to measure flame velocity, flame extinction, particulate formation and particulate morphology of hydrogen fuel blend flames at different H2 concentration, oscillation frequencies and stretch conditions. Phase resolved spectroscopic measurements (emission spectra) of OH, H, O and CH radical/atom concentrations is used to characterize the heat release processes of the flame. In addition flame generated particulates are collected using thermophoretic sample technique and are qualitative analyzed using Raman Spectroscopy and SEM. Such measurements are essential for the development of advanced computational tools capable of predicting fuel blend flame characteristics at realistic combustor conditions. The data generated through the measurements of this research are representative, and yet accurate, with unique well defined boundary conditions which can be reproduced in numerical computations for kinetic code validations.
Di Filippo, Patrizia; Riccardi, Carmela; Pomata, Donatella; Marsiglia, Riccardo; Console, Carla; Puri, Daniele
2018-01-01
Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes. PMID:29686933
NASA Astrophysics Data System (ADS)
Catalano, G.; Povero, P.; Fabiano, M.; Benedetti, F.; Goffart, A.
1997-01-01
The relationships among vertical stability, estimated nutrient utilisation and particulate organic matter in the Ross Sea are analysed from data collected during two cruises in the summers of 1987-1988 and 1989-1990. In the upper mixed layer (UML), identified through the vertical stability E( Z(UML)), nutrient consumption is calculated as the difference between the "diluted" nutrient value and the mean calculated from the integrated value in the UML. The nutrient utilisation ratio and E( Z(UML)) are linearly related for E( Z(UML))≤25, whereas for values > 25, the distribution pattern is more scattered and independent of E( Z(UML)). For E( Z(UML))≥25, utilisation values were ≥4, 0.4 and 10 mmol m -3 for nitrate, phosphate and silicate, respectively. Significant relationships between nutrient depletion and both particulate organic carbon (POC) and particulate protein/particulate carbohydrate ratios (PPRT/PCHO) are found. The analysis of particulate matter distribution vs nutrient utilisation shows that the stations could be divided into two groups having different characteristics. The first group includes coastal stations, where high nutrient utilisation, POC and PPRT/PCHO are typical of areas with high production. In the second group (pelagic stations), nutrient utilisation, POC and PPRT/PCHO are lower. The vertical stability can be used to discriminate among the factors that influence primary production.
Analysis of airborne and waterborne particles around a taconite ore processing facility.
Axten, Charles W; Foster, David
2008-10-01
Since the mid-1970s, samples of airborne and waterborne fibrous particulates have been collected in the area of the Northshore Taconite Ore Processing Facility by the Minnesota Department of Health (MDH), the Minnesota Pollution Control Agency (PCA), and the University of Minnesota. Indirect sample preparation has consistently been used although other aspects of the sampling methods and sites have varied and analytical procedures were altered over time as more accurate and precise microscopy methods were developed (i.e., phase contrast optical microscopy, transmission electron microscopy, transmission electron microscopy with energy dispersive spectroscopy). In the mid-1970s, levels of airborne fibrous particulate in the Silver Bay area averaged from 0.00030 to 0.03 f/ml. This level was significantly greater than levels of similar particulates in the St. Paul, MN area, although two of the Silver Bay sampling sites, considered individually, did not indicate levels of fibrous particulate markedly different than that seen in St. Paul. More recent sampling data (i.e., 1990-2001) indicate mean concentration of airborne fibrous particulates (amphibole-like fibrous particulates) of 0.0020 f/ml with a range of values from 0.0001 to 0.0140 f/ml. Such levels are not significantly different from those seen in other non-urban environments in the US and Europe. Concentrations of fibrous particulates in water samples were higher in the mid-1970 when iron ore tailings were being deposited in Lake Superior, but since the tailings have been deposited on land waterborne levels of fibrous particulate in the Beaver River have remained relatively constant averaging in the range of 7.5 MFL. This level is only slightly in excess of the current EPA drinking water standard for fibrous particulates. Review and consideration of this data is important in determining the potential health risks associated with airborne and waterborne fibrous particulates in the areas of the Northshore Taconite Ore Processing Facility.
A case study of real-world tailpipe emissions for school buses using a 20% biodiesel blend.
Mazzoleni, Claudio; Kuhns, Hampden D; Moosmüller, Hans; Witt, Jay; Nussbaum, Nicholas J; Oliver Chang, M-C; Parthasarathy, Gayathri; Nathagoundenpalayam, Suresh Kumar K; Nikolich, George; Watson, John G
2007-10-15
Numerous laboratory studies report carbon monoxide, hydrocarbon, and particulate matter emission reductions with a slight nitrogen oxides emission increase from engines operating with biodiesel and biodiesel blends as compared to using petroleum diesel. We conducted a field study on a fleet of school buses to evaluate the effects of biodiesel use on gaseous and particulate matter fuel-based emission factors under real-world conditions. The field experiment was carried out in two phases during winter 2004. In January (phase I), emissions from approximately 200 school buses operating on petroleum diesel were measured. Immediately after the end of the first phase measurement period, the buses were switched to a 20% biodiesel blend. Emission factors were measured again in March 2004 (phase II) and compared with the January emission factors. To measure gaseous emission factors we used a commercial gaseous remote sensor. Particulate matter emission factors were determined with a combination of the gaseous remote sensor, a Lidar (light detection and ranging), and transmissometer system developed at the Desert Research Institute of Reno, NV, U.S.A. Particulate matter emissions from school buses significantly increased (up to a factor of 1.8) after the switch from petroleum diesel to a 20% biodiesel blend. The fuel used during this campaign was provided by a local distributor and was independently analyzed at the end of the on-road experiment. The analysis found high concentrations of free glycerin and reduced flash points in the B 100 parent fuel. Both measures indicate improper separation and processing of the biodiesel product during production. The biodiesel fuels used in the school buses were not in compliance with the U.S.A. ASTM D6751 biodiesel standard that was finalized in December of 2001. The U.S.A. National Biodiesel Board has formed a voluntary National Biodiesel Accreditation Program for producers and marketers of biodiesel to ensure product quality and compliance with the ASTM standard. The results of our study underline the importance of the program since potential emission benefits from biodiesel may be reduced or even reversed without appropriate fuel quality control on real-world fuels.
Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters.
Babiarz, C L; Hurley, J P; Hoffmann, S R; Andren, A W; Shafer, M M; Armstrong, D E
2001-12-15
Using tangential flow ultrafiltration, total mercury (HgT) and methylmercury (MeHg) concentrations in the colloidal phase (0.4 microm-10 kDa) were determined for 15 freshwaters located in the upper Midwest (Minnesota, Michigan, and Wisconsin) and the Southern United States (Georgia and Florida). Unfiltered concentrations were typical of those reported for freshwater and ranged from 0.9 to 27.1 ng L(-1) HgT and from 0.08 to 0.86 ng L(-1) MeHg. For some rivers, HgT and MeHg in the colloidal phase comprised up to 72% of the respective unfiltered concentration. On average, however, HgT and MeHg concentrations were evenly distributed between the particulate (>0.4 microm), colloidal, and dissolved (<10 kDa) phases. The pool of Hg in the colloidal phase decreased with increasing specific conductance. Results from experiments on freshwaters with artificially elevated specific conductance suggest that HgT and MeHg may partition to different subfractions of colloidal material. The colloidal-phase HgT correlation with filtered organic carbon (OC(F)) was generally poor (r2 < 0.14; p > 0.07), but the regression of MeHg with OC(F) was strong, especially in the upper Midwest (r2 = 0.78; p < 0.01). On a mass basis, colloidal-phase Hg concentrations were similar to those of unimpacted sediments in the Midwest. Mercury to carbon ratios averaged 352 pg of HgT/mg of C and 25 pg of MeHg/mg of C and were not correlated to ionic strength. The log of the partition coefficient (log K(D)) for HgT and MeHg ranged from 3.7 to 6.4 and was typical of freshwater values determined using a 0.4 microm cutoff between the particulate phase and the dissolved phase. Log K(D) calculated using the <10 kDa fraction as "dissolved" ranged from 4.3 to 6.6 and had a smaller standard deviation about the mean. In addition, our data support the "particle concentration effect" (PCE) hypothesis that the association of Hg with colloids in the filter-passing fraction can lower the observed log K(D). The similarity between colloidal and particulate-phase partition coefficients suggests that colloidal mass and not preferential colloidal partitioning drives the PCE.
When black carbon (bc) and biologically derived organic carbon (bioc) phases are present in sediments or suspended particulates, both forms of carbon act additively to sorb organic chemicals but the bc phase has more sorption capacity per unit mass. . . .
Thermoplastic Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge
NASA Technical Reports Server (NTRS)
Roberts, Scott N. (Inventor); Schramm, Joseph P. (Inventor); Hofmann, Douglas C. (Inventor); Johnson, William L. (Inventor); Kozachkov, Henry (Inventor); Demetriou, Marios D. (Inventor)
2015-01-01
Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.
The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together seventeen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and bound...
Zgheib, Sally; Moilleron, Régis; Saad, Mohamed; Chebbo, Ghassan
2011-01-01
This paper presents results about the occurrence, the concentrations of urban priority substances on both the dissolved and the particulate phases in stormwater. Samples were collected at the outlet of a dense urban catchment in Paris suburb (2.30 km(2)). 13 chemical groups were investigated including 88 individual substances. Results showed that stormwater discharges contained 45 substances among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and one volatile organic compound, i.e. methylene chloride. With respect to the European Water Framework Directive, these substances included 47% of the priority hazardous substances (n = 8), 38% of the priority substances (n = 10). The remaining substances (n = 27) belong to a list of others specific urban substances not included in the Water Framework Directive but monitored during this work. Finally, stormwater quality was evaluated by comparing the substance concentrations to environmental quality standards (EQS) and the particulate content to Canadian sediment quality guidelines. This showed that stormwater was highly contaminated and should be treated before being discharged to receiving waters in order to avoid any adverse impact on the river quality. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, C.R.; Larsen, I.L.; Lowry, P.D.
Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioningmore » among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.« less
Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh
Lion, Leonard W.
1982-01-01
The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.
Detection Of Gas-Phase Polymerization in SiH4 And GeH4
NASA Technical Reports Server (NTRS)
Shing, Yuh-Han; Perry, Joseph W.; Allevato, Camillo E.
1990-01-01
Inelastic scattering of laser light found to indicate onset of gas-phase polymerization in plasma-enhanced chemical-vapor deposition (PECVD) of photoconductive amorphous hydrogenated silicon/germanium alloy (a-SiGe:H) film. In PECVD process, film deposited from radio-frequency glow-discharge plasma of silane (SiH4) and germane (GeH4) diluted with hydrogen. Gas-phase polymerization undesirable because it causes formation of particulates and defective films.
Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David
2007-01-01
Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.
Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris
2005-07-01
The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.
Plasma regenerated particulate trap and NO.sub.x reduction system
Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.
2000-01-01
A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.
Air cleaning performance of a new environmentally controlled primary crusher operator booth
Organiscak, J.A.; Cecala, A.B.; Zimmer, J.A.; Holen, B.; Baregi, J.R.
2016-01-01
The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company’s Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system’s effectiveness in controlling airborne dusts and particulates. The booth’s dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions. PMID:26937052
NASA Astrophysics Data System (ADS)
Tang, Yi; Stewart, Gillian; Lam, Phoebe J.; Rigaud, Sylvain; Church, Thomas
2017-10-01
The disequilibrium between 210Po and 210Pb has been used as a proxy for the particle flux from the upper ocean. The particle concentration and composition effect on the partitioning behavior of 210Po and 210Pb is, however, still unclear. Here, we investigate this association by comparing dissolved (< 0.45 μm) and particulate (small: 1-51 μm; large: > 51 μm) 210Po and 210Pb activity with size-fractionated major particle concentration and composition data from the US GEOTRACES GA03 zonal transect cruises. We observed inverse relationships between partition coefficients (Kd) for the radionuclides and the concentration of suspended particulate matter (SPM) in the water column, known as the ;particle concentration effect.; We examined the relationships between 210Po, 210Pb, and particle composition in the top 500 m by using Pearson pairwise correlations for individual phases and principal components analysis (PCA) for variations among multiple phases. In addition to these analyses, an end-member mixing model was developed to estimate Kd for 210Po and 210Pb in the small particulate size fraction from the compositional phases. The model predicted the range of observed Kd(Pb) well, but was unable to predict the observed Kd(Po) as consistently, possibly because of the bio-reactive nature of 210Po. Despite this, we found a strong relationship between 210Po and both CaCO3 and POM, as well as between 210Pb and both opal and lithogenic phases. All of our analyses demonstrated that the fractionation of 210Po and 210Pb differed between the margins and open ocean along the GA03 transect.
Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden
2014-11-01
The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).
Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim
2017-10-01
Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM 1 , total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.
2014-01-01
Background Tobacco smoke toxicity has traditionally been assessed using the particulate fraction under submerged culture conditions which omits the vapour phase elements from any subsequent analysis. Therefore, methodologies that assess the full interactions and complexities of tobacco smoke are required. Here we describe the adaption of a modified BALB/c 3T3 neutral red uptake (NRU) cytotoxicity test methodology, which is based on the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) protocol for in vitro acute toxicity testing. The methodology described takes into account the synergies of both the particulate and vapour phase of tobacco smoke. This is of particular importance as both phases have been independently shown to induce in vitro cellular cytotoxicity. Findings The findings from this study indicate that mainstream tobacco smoke and the gas vapour phase (GVP), generated using the Vitrocell® VC 10 smoke exposure system, have distinct and significantly different toxicity profiles. Within the system tested, mainstream tobacco smoke produced a dilution IC50 (dilution (L/min) at which 50% cytotoxicity is observed) of 6.02 L/min, whereas the GVP produced a dilution IC50 of 3.20 L/min. In addition, we also demonstrated significant dose-for-dose differences between mainstream cigarette smoke and the GVP fraction (P < 0.05). This demonstrates the importance of testing the entire tobacco smoke aerosol and not just the particulate fraction, as has been the historical preference. Conclusions We have adapted the NRU methodology based on the ICCVAM protocol to capture the full interactions and complexities of tobacco smoke. This methodology could also be used to assess the performance of traditional cigarettes, blend and filter technologies, tobacco smoke fractions and individual test aerosols. PMID:24935030
Analysis of Particulate and Dissolved Metabolite Pools at Station ALOHA
NASA Astrophysics Data System (ADS)
Boysen, A.; Carlson, L.; Hmelo, L.; Ingalls, A. E.
2016-02-01
Metabolomic studies focus on identifying and quantifying the small organic molecules that are the currency by which an organism lives and dies. Metabolite profiles of microorganisms have the potential to elucidate mechanisms of chemically mediated interactions that influence the success of microbial groups living in a complex environment. However, the chemical diversity of metabolites makes resolving a wide range of compounds analytically challenging. As such, metabolomics has lagged behind other genomic analyses. Here we conduct targeted analysis of over 200 primary and secondary metabolites present in the intracellular and extracellular metabolite pools at Station ALOHA using both reverse phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. We selected the metabolites in our method due to their known importance in primary metabolism, secondary metabolism, and interactions between marine microorganisms such as nutrient exchange, growth promotion, and cell signaling. Through these analyses we obtain a snapshot of microbial community status that, blended with other forms of genomic data, can further our understanding of microbial dynamics. We hypothesize that monitoring a large suite of important metabolites across environmental gradients and diurnal cycles can elucidate factors controlling the distribution and activity of important microbial groups.
Concentration variations in primary and secondary particulate matter near a major road in Korea
Ghim, Young Sung; Won, Soo Ran; Choi, Yongjoo; ...
2016-03-31
Here, particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, PM 10 concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both PM 10 and PM 2.5 was significant due to highmore » temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in PM 10 concentrations became smaller, and PM 2.5 concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in PM 10, as well as PM 2.5 in May.« less
Concentration variations in primary and secondary particulate matter near a major road in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghim, Young Sung; Won, Soo Ran; Choi, Yongjoo
Here, particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, PM 10 concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both PM 10 and PM 2.5 was significant due to highmore » temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in PM 10 concentrations became smaller, and PM 2.5 concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in PM 10, as well as PM 2.5 in May.« less
Tsai, Jiun H; Huang, Yao S; Shieh, Zhu X; Chiang, Hung L
2011-01-01
The electronics industry is a major business in the Central Taiwan Science Park (CTSP). Particulate samples and 11 water-soluble ionic species in the particulate phase were measured by ionic chromatography (IC). Additionally, acid and base gases were sampled by denuder absorption and analyzed by IC. Volatile organic compounds (VOCs) were collected in stainless-steel canisters four times daily and analyzed via gas chromatography/mass spectrometry. Ozone formation potential (OFP) was measured using maximum increment reactivity. In addition, airborne pollutants during (1) construction and (2) mass production were measured. Particulate matter concentration did not increase significantly near the optoelectronic plant during construction, but it was higher than during mass production. SO(2), HNO(2) and NH(3) were the dominant gases in the denuder absorption system. Nitrate, sulfate, and ammonium ions predominated both in PM(2.5) and PM(10-2.5); but calcium ion concentration was significantly higher in PM(10-2.5) samples during construction. Toluene, propane, isopentane, and n-butane may have come from vehicle exhaust. Construction equipment emitted high concentrations of ethylbenzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene, and toluene. During mass production, methyl ethyl ketone), acetone and ethyl acetate were significantly higher than during construction, although there was continuous rain. The aromatic group constituted >50% of the VOC concentration totals and contributed >70% of OFP.
NASA Astrophysics Data System (ADS)
Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru
2016-09-01
Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.
NASA Astrophysics Data System (ADS)
Bharathkumar, S.; Sakar, M.; Balakumar, S.
2018-04-01
We made an attempt to construct a photocatalytic and biosensor platform by using bismuth ferrite (BiFeO3/BFO) particulates and fibers nanostructures towards the degradation of dye and electrochemical sensing of ascorbic acid. The crystal phase and morphology of the BFO nanostructures were confirmed using XRD and FESEM respectively. Further, their photocatalytic activity was tested under sunlight. The BFO fibers showed relatively an enhanced degradation property and an efficient electrochemical sensing property compared to the Particulates.
Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D
2013-12-03
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.
Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean
Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.
2013-01-01
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565
Wang, Juan; Liu, Guannan; Wu, Hao; Zhang, Tao; Liu, Xinhui; Li, Wuqing
2018-04-01
The physicochemical properties and heavy metal(loid) concentrations of the river water both fluctuate greatly along the river affected by mining activities, and the transportation of heavy metal(loid)s is therefore more complicated than unpolluted river. Dissolved and particulate heavy metal(loid)s in a river polluted by mining activities were measured to study their temporal-spatial variation and partitioning. The concentrations of dissolved arsenic (As), cadmium (Cd), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were considerably high at the sites near the mine area. Notably, dissolved As at most sites were higher than the Chinese quality criterion of class II for surface water indicating high environmental risk. Mn and Pb at most sites and Ni at a part of the sites mainly existed in the particulate phase. For other heavy metal(loid)s, i.e., As, Cd, chromium (Cr), and Zn, the particulate phase was extremely high at the sites near the mine area and responsible for heavy metal(loid) transport. Significant correlations between particulate heavy metal(loid)s and temperature and electrical conductivity (EC) were found. However, the partitioning of heavy metal(loid)s did not significantly relate to the river water properties, due to most heavy metal(loid)s in suspended particulate matter (SPM) are stable and affected less by water properties. Except for Cr and Ni, other heavy metal(loid)s showed high concentrations in sediments, and considerable Cd, Mn, and Zn existed in exchangeable and carbonate fraction indicating high environmental risk. The environmental assessment of SPM showed that Cd, Zn, and As, as the main pollutants in SPM, all reached extremely polluted level at the sites near the mine area, and the environmental risk of heavy metal(loid)s in SPM was higher during dry season than that during wet season. The results can contribute to understanding the partitioning and transportation of heavy metal(loid)s in the river affected by mining activities.
MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model
NASA Technical Reports Server (NTRS)
Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.
2015-01-01
The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.
Zhi, Guorui; Peng, Conghu; Chen, Yingjun; Liu, Dongyan; Sheng, Guoying; Fu, Jiamo
2009-08-01
The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 +/- 12%, 61 +/- 10%, and 98 +/- 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world.
Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.
Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M
2015-12-15
Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.
Gasoline- and diesel-powered vehicles are known to contribute appreciable amounts of inhalable fine particulate matter to the atmosphere in urban areas. Internal combustion engines burning gasoline and diesel fuel contribute more than 21% of the primary fine particulate organic carbon emitted to the Los Angeles atmosphere. In the present study, particulate (d[sub p] [le] 2 [mu]m) exhaust emissions from six noncatalyst automobiles, seven catalyst-equipped automobiles, and two heavy-duty diesel trucks are examined by gas chromatography/mass spectrometry. The purposes of this study are as follows: (a) to search for conservative marker compounds suitable for tracing the presence of vehicular particulate exhaustmore » emissions in the urban atmosphere, (b) to compile quantitative source profiles, and (c) to study the contributions of fine organic particulate vehicular exhaust to the Los Angeles atmosphere. More than 100 organic compounds are quantified, including n-alkanes, n-alkanoic acids, benzoic acids, benzaldehydes, PAH, oxy-PAH, steranes, pentacyclic triterpanes, azanaphthalenes, and others. Although fossil fuel markers such as steranes and pentacyclic triterpanes can be emitted from other sources, it can be shown that their ambient concentrations measured in the Los Angeles atmosphere are attributable mainly to vehicular exhaust emissions. 102 refs., 9 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Richardson, M. J.; Zuck, N.; Gardner, W. D.
2016-02-01
Flow from the Mississippi-Atchafalaya River System generally peaks during the spring freshet, discharging nutrient-rich fresh water and sediment into the northern Gulf of Mexico. The peak discharge varies year to year as a result of varying drought or flood conditions in the Mississippi watershed. When compared to an 8-year climatological average, summer 2012 is characterized by low discharge into the northern Gulf of Mexico, whereas summer 2013 is characterized by average discharge conditions. Water samples were collected during four cruises during June and August of 2012 and 2013 to assess the changes in concentration and composition of bulk particulate matter. While no consistent relationship between particulate matter composition and hypoxia was observed, there are several statistically significant seasonal and inter-annual changes in the concentration and composition of particulate matter associated with varying river discharge. There is also evidence that some sub-pycnocline turbidity and chlorophyll-a may be due to in situ primary productivity, rather than settled plankton containing chlorophyll-a.
NASA Astrophysics Data System (ADS)
Mukai, Hitoshi; Ambe, Yoshinari
A brown substance having the solubility characteristics of humic acid was extracted from airborne particulate matter sampled in a rural area of Japan. This brown substance contributed 0.6-3% of the total carbon in airborne particulate matter. This fraction also contained pollen protein in samples collected during the pollen season. Patterns of elution from gel permeation chromatography suggested a molecular weight range from 500 to 10,000, with a still higher upper limit for one sample. The infrared spectra were compared with those of humic acid from the local soil, extracts from dead leaves, smoke from burning plant matter, and soot from automotive exhaust, all possible sources of the brown substance. The closest similarity was with the extract smoke. This identification is strengthened by lack of correlation of the brown substance with aluminum, a tracer for soil content, and a value of K/Fe ratio in the associated particulate matter higher than any plausible source other than combustion. It is probable that the primary source of this brown, high molecular weight acidic materials is agricultural burning.
Method for inducing hypothermia
Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.
2003-04-15
Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.
Method for inducing hypothermia
Becker, Lance B [Chicago, IL; Hoek, Terry Vanden [Chicago, IL; Kasza, Kenneth E [Palos Park, IL
2008-09-09
Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.
Method for inducing hypothermia
Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.
2005-11-08
Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.
Optimizing the milling characteristics of Al-SiC particulate composites
NASA Astrophysics Data System (ADS)
Karthikeyan, R.; Raghukandan, K.; Naagarazan, R. S.; Pai, B. C.
2000-12-01
The present investigation focuses on the face milling characteristics of LM25Al-SiC particulate composites produced through stir casting. Experiments were conducted according to an L27 orthogonal array and mathematical models were developed for such machining characteristics as flank wear, specific energy and surface roughness whose adequacy was checked. The insignificant effects present in the models were eliminated using a t-test. Goal programming was employed to optimize the cutting conditions by considering such primary objectives as maximizing the metal removal rate and minimizing tool wear, specific energy and surface roughness.
Muñoz, Alexandra; Costa, Max
2012-01-01
Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses - most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980’s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanism of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties. PMID:22206756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz, Alexandra; Costa, Max, E-mail: Max.Costa@nyumc.org
Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses — most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanismmore » of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties.« less
Infiltration processing of metal matrix composites using coated ceramic particulates
NASA Astrophysics Data System (ADS)
Leon-Patino, Carlos Alberto
2001-07-01
A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The overall Ni and Cu content increased from bottom to top of the samples due to dissolution of the metal film by the stream of liquid Al during infiltration. The strengths of the Al/Ni-SiC composites, measured by four-point bending, were 205 and 225 MPa for samples reinforced with 78 mum and 49 mum Ni-SiC, respectively. The mode of fracture was mainly controlled by SiC particle fracture.
Novel Process for Removal and Recovery of Vapor Phase Mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwell, Collin; Roberts, Daryl L; Albiston, Jason
We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less
NASA Astrophysics Data System (ADS)
Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.
2013-05-01
A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.
ANALYSIS OF PARTICULATE BOUND NUTRIENTS IN URBAN STORMWATER
Nutrients are important players in the degradation of waterbodies because they are often the elements that limit primary productivity and, hence, are the key factors controlling eutrophication. Eutrophication causes unsightly algal blooms leading to oxygen depletion, stress on o...
A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS
Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and se...
This technical memorandum provides a description of the Adjustment to the Primary Particulate Matter Emissions Estimates and the Modeled Attainment Test Software Analysis (MATS) Procedure for the 812 Second Prospective Analysis
Benthic phosphorus regeneration in the Potomac River Estuary
Callender, E.
1982-01-01
The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.
1990-01-01
Spacelab-3 (SL-3) was the first microgravity mission of extended duration involving crew interaction with animal experiments. This interaction involved sharing the Spacelab environmental system, changing animal food, and changing animal waste trays by the crew. Extensive microbial testing was conducted on the animal specimens and crew and on their ground and flight facilities during all phases of the mission to determine the potential for cross contamination. Macroparticulate sampling was attempted but was unsuccessful due to the unforseen particulate contamination occurring during the flight. Particulate debris of varying size (250 micron to several inches) and composition was recovered post flight from the Spacelab floor, end cones, overhead areas, avionics fan filter, cabin fan filters, tunnel adaptor, and from the crew module. These data are discussed along with solutions, which were implemented, for particulate and microbial containment for future flight facilities.
Improving properties of Mg with Al–Cu additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashad, Muhammad, E-mail: rashadphy87@gmail.com; National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044; Pan, Fusheng, E-mail: fspan@cqu.edu.cn
The present work reports improvement in tensile properties of the Mg matrix reinforced with micron-sized copper–aluminum particulate hybrids. The Al–Cu particulate hybrids were incorporated into the Mg matrix through powder metallurgy method. The synthesized alloys exhibited homogeneously dispersed Mg{sub 2}Cu particles in the matrix, therefore leading to a 110% increase in yield strength (221 MPa) and a 72% enhancement in ultimate tensile strength (284 MPa) by addition of 1.0 wt.%Al–0.6 wt.%Cu particle hybrids. Optical microscopy, scanning election microscopy, transmission electron microscopy and X-ray diffraction were used to investigate the microstructure and intermetallic phases of the synthesized alloys. - Highlights: •more » Mg matrix is reinforced with Al–Cu particulate hybrids. • Powder metallurgic method is used to fabricate the alloys. • Tensile strength and ductility were increased simultaneously.« less
Thanh-Nho, Nguyen; Strady, Emilie; Nhu-Trang, Tran-Thi; David, Frank; Marchand, Cyril
2018-04-01
Mangroves can be considered as biogeochemical reactors along (sub)tropical coastlines, acting both as sinks or sources for trace metals depending on environmental factors. In this study, we characterized the role of a mangrove estuary, developing downstream a densely populated megacity (Ho Chi Minh City, Vietnam), on the fate and partitioning of trace metals. Surface water and suspended particulate matter were collected at four sites along the estuarine salinity gradient during 24 h cycling in dry and rainy seasons. Salinity, pH, DO, TSS, POC, DOC, dissolved and particulate Fe, Mn, Cr, As, Cu, Ni, Co and Pb were measured. TSS was the main trace metals carrier during their transit in the estuary. However, TSS variations did not explain the whole variability of metals distribution. Mn, Cr and As were highly reactive metals while the other metals (Fe, Ni, Cu, Co and Pb) presented stable log K D values along the estuary. Organic matter dynamic appeared to play a key role in metals fractioning. Its decomposition during water transit in the estuary induced metal desorption, especially for Cr and As. Conversely, dissolved Mn concentrations decreased along the estuary, which was suggested to result from Mn oxidative precipitation onto solid phase due to oxidation and pH changes. Extra sources as pore-water release, runoff from adjacent soils, or aquaculture effluents were suggested to be involved in trace metal dynamic in this estuary. In addition, the monsoon increased metal loads, notably dissolved and particulate Fe, Cr, Ni and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Dal Maso, M.; Ahlberg, E.; Svenningsson, B.; Brune, W. H.; Hillamo, R.; Keskinen, J.; Rönkkö, T.
2015-11-01
Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.
NASA Astrophysics Data System (ADS)
Zhang, L.; Cheng, I.; Muir, D.; Charland, J.-P.
2015-02-01
The Athabasca oil sands industry in northern Alberta, Canada, is a possible source of polycyclic aromatic compounds (PACs). Monitored PACs, including polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and dibenzothiophenes (DBTs), in precipitation and in air at three near-source sites in the Fort MacKay and Fort McMurray area during January 2011 to May 2012, were used to generate a database of scavenging ratios (Wt) for PACs scavenged by both snow and rain. Higher concentrations in precipitation and air were observed for alkylated PAHs and DBTs compared to the other PACs. The sums of the median precipitation concentrations over the period of data analyzed were 0.48 μ g L-1 for the 18 PAHs, 3.38 μ g L-1 for the 20 alkylated PAHs, and 0.94 μ g L-1 for the 5 DBTs. The sums of the median air concentrations for parent PAHs, alkylated PAHs, and DBTs were 8.37, 67.26, and 11.83 ng m-3, respectively. Median Wt over the measurement period were 6100 - 1.1 × 106 from snow scavenging and 350 - 2.3 × 105 from rain scavenging depending on the PAC species. Median Wt for parent PAHs were within the range of those observed at other urban and suburban locations, but Wt for acenaphthylene in snow samples were 2-7 times higher compared to other urban and suburban locations. Wt for some individual snow and rain samples exceeded literature values by a factor of 10. Wt for benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in snow samples had reached 107, which is the maximum for PAH snow scavenging ratios reported in the literature. From the analysis of data subsets, Wt for particulate-phase dominant PACs were 14-20 times greater than gas-phase dominant PACs in snow samples and 7-20 times greater than gas-phase dominant PACs in rain samples. Wt from snow scavenging were ~ 9 times greater than from rain scavenging for particulate-phase dominant PACs and 4-9.6 times greater than from rain scavenging for gas-phase dominant PACs. Gas-particle fractions of each PAC, particle size distributions of particulate-phase dominant PACs, and the Henry's law constant of gas-phase dominant PACs explained, to a large extent, the different Wt values among the different PACs and precipitation types. The trend in Wt with increasing alkyl substitutions may be attributed to their physico-chemical properties, such as octanol-air and particle partition coefficients and subcooled vapor pressure, which increases gas-particle partitioning and, subsequently, the particulate mass fraction. This study verified findings from a previous study of Wang et al. (2014) that suggested that snow scavenging is more efficient than rain scavenging of particles for equivalent precipitation amounts, and also provided new knowledge of the scavenging of gas-phase PACs and alkylated PACs by snow and rain.
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
NASA Astrophysics Data System (ADS)
Chang, E. I.; Pankow, J. F.
2010-06-01
Secondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p) approach. The N·2p approach neglects: 1) variation of activity coefficient (ζi) values and mean molecular weight MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p)ζpMW,ζ approach (θ is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of ζi and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,io (atm). To facilitate adoption of the (N·2p)ζpMW,θ approach in large-scale models, this study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1), a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975). Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2p)ζpMW,θ approach is applied (using CP-Wilson.1) to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≈400 to 1000 μg m-3) when relative humidity (RH) ≍50%. Good agreement between the chamber and predicted results is obtained using both the (N·2p)ζpMW,θ and N·2p approaches, indicating relatively small water effects under these conditions. However, for a hypothetical α-pinene/O3 case at ΔHC=30 μg m-3 and RH=50%, the (N·2p)ζpMW,θ approach predicts that water uptake will lead to an organic PM level that is more double that predicted by the N·2p approach. Adoption of the (N·2p)ζpMW,θ approach using reasonable lumped structures for SOA and POA compounds is recommended for ambient PM modeling.
Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc
2017-01-01
The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.
Quantifying particulate and colloidal release of radionuclides in waste-weathered hanford sediments.
Perdrial, Nicolas; Thompson, Aaron; LaSharr, Kelsie; Amistadi, Mary Kay; Chorover, Jon
2015-05-01
At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder
2012-01-01
The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083
NASA Astrophysics Data System (ADS)
Xu, Jiang; Kan, Yide; Liu, Wenjin
In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.
Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime
2013-11-01
We analyzed the source-receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40 °N, 40-60%) and central China (30-40 °N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guigue, Catherine; Tedetti, Marc; Giorgi, Sébastien; Goutx, Madeleine
2011-12-01
Aliphatic (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dissolved and particulate material from surface microlayer (SML) and subsurface water (SSW) sampled at nearshore observation stations, sewage effluents and harbour sites from Marseilles coastal area (Northwestern Mediterranean) in 2009 and 2010. Dissolved and particulate AH concentrations ranged 0.05-0.41 and 0.04-4.3 μg l(-1) in the SSW, peaking up to 38 and 1366 μg l(-1) in the SML, respectively. Dissolved and particulate PAHs ranged 1.9-98 and 1.9-21 ng l(-1) in the SSW, amounting up 217 and 1597 ng l(-1) in the SML, respectively. In harbours, hydrocarbons were concentrated in the SML, with enrichment factors reaching 1138 for particulate AHs. Besides episodic dominance of biogenic and pyrogenic inputs, a moderate anthropisation from petrogenic sources dominated suggesting the impact of shipping traffic and surface runoffs on this urbanised area. Rainfalls increased hydrocarbon concentrations by a factor 1.9-11.5 in the dissolved phase. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomkins, B.A.; Jenkins, R.A.; Griest, W.H.
The benzo(a)pyrene (BaP) delivery of reference and commercially available tobacco cigarettes, as well as reference and placebo marijuana cigarettes, is determined using a sequential liquid chromatographic/liquid chromatographic procedure. The total particulate matter of sample cigarette smoke is collected using a Cambridge filter pad, which is ultrasonically extracted with acetone. The resulting extract is filtered, then fractionated using semipreparative-scale normal phase liquid chromatography (LC). Quantitative determination is achieved using analytical-scale reverse phase LC equipped with a fluorescence detector. The method is precise (+/- 10-15% relative standard deviation) and yields 85% or better BaP recovery at the ng/cig. level. A single padmore » may be analyzed in 8 person-hours, while a more typical lot of 12 pads (6 pads each for 2 cigarette brands) may be analyzed in 10 person-days.« less
Composite materials for thermal energy storage
NASA Astrophysics Data System (ADS)
Benson, D. K.; Burrows, R. W.; Shinton, Y. D.
1985-01-01
A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.
Composite materials for thermal energy storage
Benson, D.K.; Burrows, R.W.; Shinton, Y.D.
1985-01-04
A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.
Liu, Dan; Liu, Jining; Guo, Min; Xu, Huaizhou; Zhang, Shenghu; Shi, Lili; Yao, Cheng
2016-11-15
The occurrence and distribution of nine selected compounds were investigated in surface water, suspended particulate matter (SPM), and sediment in Taihu Lake and its tributaries. With the exception of 4-Butylphenol, all compounds were detected in at least two phases, and nonylphenol (NP) and 4-tert-Octylphenol (4-OP) were the predominant alkylphenols (APs) in the lake. A significant correlation was observed between NP and 4-OP, indicating that they may share the same source. Moreover, surface water phase was the dominant sink of Bisphenol A (BPA) in the aquatic environment. The concentrations of BPA between the surface water and SPM phases were closely related to each other. In addition, Tetrabromobisphenol A (TBBPA) exhibited relatively higher concentrations and detection frequencies in the SPM. Risk assessment revealed greater risk associated with the surface water than the sediment, indicating that the discharge of industrial wastewater and domestic sewage poses a serious threat to aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distribution of metals between particulate and gaseous forms in a volcanic plume
Hinkley, T.K.
1991-01-01
In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.
Murakami, Michio; Shibayama, Nao; Sueki, Keisuke; Mouri, Goro; O, Haechong; Nomura, Mihiro; Koibuchi, Yukio; Oki, Taikan
2016-04-01
After the 2011 nuclear accident in Fukushima, radiocesium was released from the Fukushima Dai-ichi Nuclear Power Plant and contaminated waters in urban areas near Tokyo. By intensive field monitoring during 3 years, this study investigated the temporal trends and the occurrence of radiocesium during dry and wet weather, and analyzed the variations in radiocesium during rainfall events and factors controlling them. Concentrations of particulate radiocesium decreased rapidly from May 2012 to March 2013 and reached an equilibrium in 2014. Concentrations of particulate (137)Cs during wet weather were almost double those during dry weather in the same period. In contrast to the small variations in (137)Cs concentrations in the particulate phase on a suspended solids (SS) weight basis during events, those in the dissolved phase on a liquid-volume basis fluctuated greatly, resulting in variations in the partition coefficient (apparent Kd). The apparent Kd of (137)Cs during wet weather ranged from 30,000 to 150,000 L kg(-1) and showed a significant negative correlation with SS concentrations during wet weather. Specific surface area in solids contributed to the variations in apparent Kd. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aircraft NOx and O3 measurements during wintertime temperature inversions in Salt Lake City, Utah
NASA Astrophysics Data System (ADS)
Womack, C.; Fibiger, D. L.; McDuffie, E. E.; Franchin, A.; Goldberger, L.; Moravek, A.; Middlebrook, A. M.; Thornton, J. A.; Murphy, J. G.; Baasandorj, M.; Brown, S. S.
2017-12-01
The topography of northern Utah results in several multi-day persistent cold-air pools (PCAPs) each winter, during which a temperature inversion prevents the mix-out of anthropogenic emissions. Pollutant levels rise over the course of several days, resulting in particulate matter (PM2.5) levels exceeding the US National Ambient Air Quality Standard of 35 µg/m3, often reaching 60-70 µg/m3 or higher. However, there is significant variability within individual valleys, whose emissions are predominately urban (as in Salt Lake City Valley), agricultural (as in Cache Valley), or a combination of the two. The Utah Winter Fine Particulate Matter Study (UWFPS 2017) was a ground- and aircraft-based field campaign that took place in Jan-Feb 2017 with the aim of better characterizing the complex chemistry involved in the buildup of PM2.5. On board the NOAA Twin Otter aircraft was a cavity ringdown instrument for measuring nitrogen oxides and ozone, an I- CIMS for gas phase oxidized reactive nitrogen, an AMS that measured particulate phase nitrate, and a mid-infrared absorption instrument for NH3. We report vertical and horizontal distributions of NOx, NOy, and O3, and their variation with meteorological conditions and time of day, in the urban and rural valleys of northern Utah.
Nano-composite stainless steel
Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.
2015-07-14
A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.
Observations on particulate organic nitrates and unidentified components of NO y
NASA Astrophysics Data System (ADS)
Nielsen, Torben; Egeløv, Axel H.; Granby, Kit; Skov, Henrik
A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, N02, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOY and particulate inorganic nitrate have been performed in the spring and early summer at an agricultural site in Denmark and compared with measurements of ozone, H 2O 2, SO 2, formic acid, acetic acid and methane sulphonic acid. The gas NO y detector determines the sum NO + NO 2 + HNO 2 + HNO 3 + PAN + PPN + gas phase organic nitrates + 2 × N 2O 5 + NO 3. The content of residual gas NO y ( = gas NO y - NO - NO 2 - HNO 3 - PAN - PPN) was determined and a group of unidentified NO y compounds was found. The phenomenon was observed at a site with relatively high NO x/NO y ratios compared to previous observations in U.S.A. and Canada. The residual gas NO y made up 7 ± 6% of total NOY (total NO y = gas NO y + particulate inorganic nitrate). Residual gas NO y was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 ± 0.11% of total NO y. Both residual gas NO y and particulate organic nitrates episodes occurred with elevated concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source. Clean marine air can be discarded as a source for PON and residual gas NO y.
A SELF-CONSISTENT DEUTSCHIAN ESP MODEL
The report presents a new version of the EPA I Southern Research Institute electrostatic precipitator (ESP) model. The primary difference between this and the standard (Revision 3) versions is in the treatment of the particulate space charge. Both models apply the Deutsch equatio...
EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants
EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.
New Federal Air Quality Standards.
ERIC Educational Resources Information Center
Stopinski, O. W.
The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)
NASA Astrophysics Data System (ADS)
Fujitani, Yuji; Saitoh, Katsumi; Fushimi, Akihiro; Takahashi, Katsuyuki; Hasegawa, Shuich; Tanabe, Kiyoshi; Kobayashi, Shinji; Furuyama, Akiko; Hirano, Seishiro; Takami, Akinori
2012-11-01
To investigate the effect of isothermal dilution (30 °C) on emission factors (EFs) of semivolatile and nonvolatile compounds of heavy-duty diesel exhaust, we measured EFs for particulate matter (PM), organic carbon (OC), and elemental carbon (EC) in the particle phase, and EFs for n-alkanes in both the particle phase and the gas phase of exhaust produced under high-idle engine operating conditions at dilution ratios (DRs) ranging from 8 to 1027. The EC EFs did not vary with DR, whereas the OC EFs in the particle phase determined at DR = 1027 were 13% of the EFs determined at DR = 8, owing to evaporation of organic compounds. Using partitioning theory and n-alkane EFs measured at DR = 14 and 238, we calculated the distributions of compounds between the particle and gas phases at DR = 1760, which corresponds to the DR for tailpipe emissions as they move from the tailpipe to the roadside atmosphere. The gas-phase EF of a compound with a vapor pressure of 10-7 Pa was 0.01 μg kg-1-fuel at DR = 14, and this value is 1/330 the value derived at DR = 1760. Our results suggest that the EFs of high-volatility compounds in the particle phase will be overestimated and that the EFs of low-volatility compounds in the gas phase will be underestimated if the estimates are derived from data obtained at the low DRs and they are applied to the real world. Therefore, extrapolation from EFs derived at low DR values to EFs at atmospherically relevant DRs will be a source of error in predictions of the concentrations of particulate matter and gas-phase precursors to secondary organic aerosols in air quality models.
NASA Astrophysics Data System (ADS)
Mohddin, S. A.; Aminuddin, N. M.
2014-02-01
Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.
Sokolowski, A; Wolowicz, M; Hummel, H
2001-10-01
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.
NASA Astrophysics Data System (ADS)
Simpson, W. R.; Nattinger, K.; Hooper, M.
2017-12-01
High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.
SURFACE PLASMA ELECTRODE FOR ELECTROSTATIC PRECIPITATORS - PHASE I
Electrostatic precipitators are widely used for the removal of particulate matter from boiler exhaust gases. The U.S. Environmental Protection Agency (EPA) promulgation of National Emissions Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial, and Insti...
PLASMA DISCHARGE ELECTRODE FOR ELECTROSTATIC PRECIPITATORS - PHASE II
Electrostatic precipitators are widely used for removal of particulate matter form boiler exhaust gases. The EPA promulgation of National emission Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial and Institutional Boilers and Process Heater will req...
Modeling Reduced Nitrogen Deposition in Regulatory Context
Wet and dry deposition of gas phase ammonia (NH3) and particulate ammonium (NH4+) contribute substantially to adverse ecological impacts (e.g., eutrophication) from additional nitrogen loading to terrestrial and aquatic systems. Mitigating ecosystem damage from reduced nitrogen ...
NASA Technical Reports Server (NTRS)
Zhang, Yang; Sunwoo, Young; Kotamarthi, Veerabhadra; Carmichael, Gregory R.
1994-01-01
The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a surface for a variety of heterogeneous reactions. Dust is found to be an important surface for particulate nitrate formation. For dust loading and ambient concentrations representative of conditions in East Asia, particulate nitrate levels of 1.5-11.5 micrograms/cubic meter are predicted, consistent with measured levels in this region. Dust is also found to reduce NO(x) levels by up to 50%, HO2 concentrations by 20%-80%, and ozone production rates by up to 25%. The magnitude of the influence of dust is sensitive to mass concentration of the aerosol, relative humidity, and the value of the accommodation coefficient.
Apparatus and method for noninvasive particle detection using doppler spectroscopy
Sinha, Dipen N.
2016-05-31
An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.
A32A-0126: A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS
Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and sec...
VASCULAR RESPONSE TO TRAFFIC-DERIVED INHALATION IN HUMANS
By coordinating closely with Center Projects 1-3, we will determine whether specific aspects of traffic-derived exposure (primary vs. secondary organics, particulate vs. gases, spark-ignition vs. diesel engine vs. a mixture) enhance the human vascular response to pollutants. W...
Measurement of gas and particulate amines at a dairy operation
USDA-ARS?s Scientific Manuscript database
Agricultural facilities are a source of particles and gases that can exhibit influences on air quality. Particle mass concentration influences from agricultural sources can include both primary emissions and secondary particle formation through the emission of gaseous precursors. Reports showing ami...
Gas and Particle Oxidation Products from Ozone Aging of Airborne Diesel Particles
NASA Astrophysics Data System (ADS)
Holmen, B. A.; Chen, Z.
2005-12-01
Diesel exhaust emissions contain fine particulate matter (PM2.5) composed of carbon-based particles with adsorbed compounds, including water soluble and insoluble substances. Many nonpolar organic compounds associated with diesel particulate matter (DPM) are known to be mutagenic and carcinogenic. In the presence of ozone, these DPM compounds can be transformed into polar species that are more toxic and poorly characterized. Understanding the gas and particle reaction products from DPM aging in the presence of tropospheric ozone is important for air quality, climate change and aerosol health effects. Aging experiments were conducted in a flow reactor to identify gas and particle-phase reaction products of DPM exposed to ambient levels of ozone. Diesel bus exhaust particles were collected on filters and then exposed to 0.1 - 0.5 ppm O3 for 0 to 72 h. Gaseous polar organic products formed during the aging experiments were collected on Tenax TA adsorbent coated with PFBHA derivatization agent. A thermal desorption gas chromatography mass spectrometry (TD/GC/MS) method was developed to determine gas-phase and particle-phase organic compounds. PFBHA and BSTFA derivatization agents converted polar species into less polar analogues prior to analysis. Preliminary results indicate that DPM hydrocarbons react with O3 to form many gas-phase polar products containing C=O (carbonyl) and COOH (carboxy) functional groups. Particle-phase PAH and alkane concentrations decreased significantly depending on time of exposure.
An Interactive Tool for Discrete Phase Analysis in Two-Phase Flows
NASA Technical Reports Server (NTRS)
Dejong, Frederik J.; Thoren, Stephen J.
1993-01-01
Under a NASA MSFC SBIR Phase 1 effort an interactive software package has been developed for the analysis of discrete (particulate) phase dynamics in two-phase flows in which the discrete phase does not significantly affect the continuous phase. This package contains a Graphical User Interface (based on the X Window system and the Motif tool kit) coupled to a particle tracing program, which allows the user to interactively set up and run a case for which a continuous phase grid and flow field are available. The software has been applied to a solid rocket motor problem, to demonstrate its ease of use and its suitability for problems of engineering interest, and has been delivered to NASA Marshall Space Flight Center.
do Carmo, Cleber Nascimento; Hacon, Sandra; Longo, Karla Maria; Freitas, Saulo; Ignotti, Eliane; Ponce de Leon, Antonio; Artaxo, Paulo
2010-01-01
To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors (situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects (such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. A 10 microg/m3 increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.
Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.
Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing
2014-09-16
The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.
NASA Astrophysics Data System (ADS)
Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei
2015-11-01
Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.
2001-01-01
A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.
Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.
Gieseler, Henning; Lee, Geoffrey
2009-09-01
The profile of drying rate versus primary drying time for a spray freeze-dried trehalose aqueous solution is much different from that determined for regular freeze-drying. Drying rate declines very rapidly, attributed to rate-limiting heat transfer through the packed bed of frozen microparticles contained in a vial. The inter-particulate spaces appear to be the cause of this rate limitation. Use of either liquid nitrogen or liquid propane as a cryogenic produced strong differences in both SFD particle morphology and drying rate using trehalose, sucrose, or mannitol. The lack of any evident correlation supports the argument that the inter-particulate voids determine drying behavior.
Characterization of the Particulate Emissions from the BP ...
Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di
Detection of Oil in Water Column, Final Report: Detection Prototype Tests
2014-07-01
first phase of the project involved initial development and testing of three technologies to address the detection problem . This second phase...important oceanic phenomena such as density stratification and naturally occurring particulate matter, which will affect the performance of sensors in the ...2 UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public July 2014 spills of submerged oil is far more complex due to the problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; McKinney, R.A.; Brown, W.A.
1996-08-01
In this study, the three phase distributions (i.e., dissolved, colloidal, and particulate) of approximately 75 PCB congeners were measured in a marine sediment core from New Bedford Harbor, M.A. These distributions are the first report of colloid-PCB interactions in an environmentally contaminated sediment. Colloids <1.2 {mu}m in size were isolated from interstitial waters using reverse-phase chromatography with size-selected C{sub 18}. Regardless of solubility or chlorination, the majority of PCBs were associated with the particulate phase. PCBs were distributed in filtered interstitial waters between colloidal and dissolved phases as a function of solubility and degree of chlorination. Interstitial dissolved PCB concentrationsmore » generally agreed with literature-reported solubilities. The magnitude of colloid-PCB interactions increased with decreasing PCB solubility and increasing PCB chlorination. Di- and trichlorinated PCBs were approximately 40% and 65% colloidally bound, respectively, while tetra-, penta-, hexa-, hepta-, and octachlorinated PCBs were about 80% colloidally bound. As core depth increased, the magnitude of PCB-colloid interactions also increased. The relationships of organic carbon-normalized colloidal partitioning coefficient(K{sub coc}) to K{sub ow} for several PCB congeners were not linear and suggest that interstitial waters were not equilibrated. 62 refs., 8 figs., 3 tabs.« less
Electron irradiation induced phase separation in a sodium borosilicate glass
NASA Astrophysics Data System (ADS)
Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.
2004-06-01
Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.
Kiepper, B H; Merka, W C; Fletcher, D L
2008-12-01
Experiments were conducted to compare the effects of tertiary microscreen gap size on the proximate composition and rate of recovery of particulate matter from poultry processing wastewater (PPW). A high-speed vibratory screen was installed within the wastewater treatment area of a southeast US broiler slaughter plant after the existing primary and secondary mechanical rotary screens. Microscreen panels with nominal gap size openings of 212, 106 and 45mum were investigated. The particulate matter samples recovered were subjected to proximate analysis to determine percent moisture, fat, protein, crude fiber and ash. The average percent wet weight moisture (%WW) content for all samples was 79.1. The average percent dry matter (%DM) fat, protein, crude fiber and ash were 63.5, 17.5, 4.8 and 1.5, respectively. The mean concentration of total solids (TS) recovered from all microscreen runs was 668mg/L, which represents a potential additional daily offal recovery rate of 12.1metric tons (MT) per 3.78 million L (1.0 million gallons US) of PPW. There was no significant difference in the performance of the three microscreen gap sizes with regard to proximate composition or mass of particulate matter recovered.
NASA Astrophysics Data System (ADS)
Ge, C.; Stenhouse, K. J.; Du, K.; Xing, Z.; Norman, A. L.
2016-12-01
Carbonaceous matter is often the dominant contributor to Particulate Matter (PM) which has a significant influence on climate, air quality and human health. The measurement of particulate carbon in rainfall in Calgary, Alberta has not been studied. This study reports the sulfate and the first concentrations of particulate carbon (PC) in rainfall in Calgary. It traces seasonal carbonaceous sources for the purpose of understanding sources for air quality control. Precipitation samples are collected twice a day at the University of Calgary. Thermo-optical methods are used to analyze concentrations of PC, including elemental carbon (EC), primary organic carbon (POC) and secondary organic carbon (SOC). Sulfate concentrations are measured using ion chromatography. In this study, sources from long range transport and local emissions are examined. We emphasized the apportionment of OC/EC in oil and gas emissions and diurnal variations in transportation emissions. Weekly average data for dry deposition were calculated to estimate the scavenging ratio of EC/POC/SOC and ions in precipitation. The results of this study will be presented with an emphasis on the relationship of carbonaceous material and sulfate. A range of apportionment methods have been applied to examine limitations in quantifying SOC in fall.
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low Cost Sensors-Current Capabilities and Gaps
1. Present the findings from the a recent technology review of gas and particulate phase sensors 2. Focus on the lower-cost sensors 3. Discuss current capabilities, estimated range of measurement, selectivity, deployment platforms, response time, and expected range of acceptabl...
Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K
2012-04-01
Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.
RECRUITING AND RETAINING PARTICIPANTS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH
The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...
PHOTOCHEMICAL AND AEROSOL MODELING WITH THE CMAQ PLUME-IN-GRID APPROACH
Emissions of nitrogen oxides (NO) and/or sulfur oxides (SO) from individual point sources, such as coal-fired power plants, with tall stacks contribute to reduced air quality. These primary species are important precursors of various oxidant species and secondary fine particul...
NASA Astrophysics Data System (ADS)
Nakaya, Shinji; Chi, Hai; Muroda, Kengo; Masuda, Harue
2018-06-01
In this study, we focus on the behavior of geogenic, toxic trace elements, particularly As, Cs, Cd, and Pb, during their transportation in two rivers for irrigation commonly used in monsoon Asia; one river originates from an active volcano, Mt. Asama, and the other originates from a currently inactive volcano, Yatsugatake Mountains in Nagano, Japan. These rivers were investigated to understand the role of river water as a pollutant of rice and other aquatic plants (via irrigation) and aquatic animals. The results indicated that the behavior of toxic trace elements in river water are likely controlled by their interactions with particulate Fe, Al, and Ti compounds. The majority of Pb and Cd is transported as particulate matter with Fe, Al, and Ti, while the majority of As is transported in the dissolved form, predominantly as arsenate, with low abundance of particulate matter. Cs is transported either as the dissolved form or as particulate matter in both rivers. The investigated elements are transported in the rivers as particulate and dissolved forms, and the ratio of these forms is controlled by the pH and presence of particulate Fe, Al, and Ti phases in the river water. With respect to Cs in both rivers, the parameter governing the concentration and transportation of Cs, in the bimodal form (i.e., particulate and dissolved forms), through the river possibly shifts from sorption to pH by particulate Fe-Al-Ti, according to the abrupt increase in the concentration of Cs in the river. The chemical attraction of particulate Fe-Al-Ti for Cs is weaker than that for Pb and Cd, indicating that the lower electronegativity of Cs weakens the chemical attraction on a colloid for the competitive sorption with the other trace elements. The different relationships between As and Fe in the river and in the irrigation water and soil water, as well as those in paddy rice, suggested that As in paddy rice is not directly derived from As in the irrigation water from the river under flooding.
NASA Astrophysics Data System (ADS)
Bhattu, D.; Stefenelli, G.; Zotter, P.; Zhou, J.; Nussbaumer, T.; Bertrand, A.; Marchand, N.; Termine-Roussel, B.; Baltensperger, U.; Slowik, J.; Prevot, A. S.; El-Haddad, I.; Dommen, J.
2016-12-01
Current legislation limits the emission of particulate matter, but does not regulate the precursors potentially forming secondary organic aerosol (SOA). Recent literature has shown that only 22 non-traditional SOA precursors from residential wood combustion explains 84-116% of the observed SOA mass whereas traditional precursors in the models account for only 3-27% of the SOA mass (Bruns et al., 2016). Investigation of gas phase emissions from wood combustion and their SOA formation potential have largely focused on single combustion devices with limited operating conditions. As, both primary emissions and SOA formation is a strong function of device type, load, fuel and operating conditions, we have performed a detailed chamber study investigating the gas-phase precursors from beech wood using three combustion devices namely a pellet boiler (combustion conditions: optimum, lack and excess of oxygen), an industrial wood chip grate boiler (30% and 100% power), and a log wood stove (varying fuel load and moisture content) using a potential aerosol mass reactor (PAM) with varying OH exposure. The short residence time in the reactor allowed a time resolved picture of SOA production potential and reduced wall losses. The main aim of this study is to characterize the primary and aged gaseous emissions and investigate their SOA formation potential depending on their mass yield, molecular structures, functional groups and OH reactivity in order to ascertain the contribution of residential wood burning in total carbonaceous OA budget. The physical and chemical effects of different OA aging conditions were monitored using an SMPS, an Aethalometer, an HR-ToF-AMS, as well as a PTR-ToF-MS and other gas monitors. In pellet boiler, significant SOA mass enhancement is observed in excess oxygen conditions compared to optimum and oxygen deprived conditions. Highest gas phase emissions from wood stove are observed at cold start (start of each burn cycle) and lowest in burn out phase (end of each burn cycle). Despite of the comparable total gas phase emissions, the compositional space of wood stove emissions is largely occupied by SOA precursors compared to pellet boiler. Finally we will determine effective SOA mass yield of the speciated and unspeciated precursors and assess the extent to which SOA mass closure can be achieved.
NASA Technical Reports Server (NTRS)
Wolfe, R. W.
1976-01-01
A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.
Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto
2015-10-06
The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and fractal prefactor, is insignificant.
Transport and attenuation of chloroacetanilides in an agricultural headwater catchment
NASA Astrophysics Data System (ADS)
Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain
2015-04-01
Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for assessing chloroacetanilide biodegradation and could be complemented with laboratory benchmark studies on enantiomeric fractionation during chloroacetanilide degradation combined with an analysis of the degradation products to evaluate the extent of biodegradation in agro-ecosystems. We anticipate that our results will be a starting point for better understanding and predicting transport and degradation of chloroacetanilides at the agricultural catchment scale.
NASA Astrophysics Data System (ADS)
Yoshimura, Takeshi; Nishioka, Jun; Ogawa, Hiroshi; Tsuda, Atsushi
2018-01-01
Phosphorus (P) is an essential element for all organisms and thus the P cycle plays a key role in determining the dynamics of lower trophic levels in marine ecosystems. P in seawater occurs conceptually in particulate and dissolved organic and inorganic (POP, PIP, DOP, and DIP, respectively) pools and clarification of the dynamics in these P pools is the basis to assess the biogeochemical cycle of P. Despite its importance, behaviors of each P pool with phytoplankton dynamics have not been fully examined. We measured the four operationally defined P pools (POPop, PIPop, DOPop, and SRP) during an iron-induced phytoplankton bloom (as part of the subarctic ecosystem response to iron enrichment study (SERIES)) in the eastern subarctic Pacific in summer 2002. During our observations of the iron-enriched patch from day 15 to day 26 after the iron infusion, chlorophyll-a concentration in the surface layer decreased from 6.3 to 1.2 μg L- 1, indicating the peak through decline phase of the phytoplankton bloom. At the bloom peak, P was partitioned into POPop, PIPop, and DOPop in proportions of 60, 27, and 13%, respectively. While chlorophyll-a and POPop showed similar temporal variations during the declining phase, PIPop showed a different peak timing with a 2 day delay compared to POPop, resulting in a rapid change in the relative proportion of PIPop to total particulate P (TPP = POPop + PIPop) at the peak (25%) and during the declining phase of the bloom (50%). A part of POPop was replaced by PIPop just after slowing down of phytoplankton growth. This process may have a significant role in the subsequent regeneration of P. We conclude that measurement of TPP alone is insufficient to show the interaction between P and phytoplankton dynamics and fractionation of TPP into POPop and PIPop provides useful insights to clarify the biogeochemical cycle of P.
NASA Astrophysics Data System (ADS)
Haslett, Sophie L.; Thomas, J. Chris; Morgan, William T.; Hadden, Rory; Liu, Dantong; Allan, James D.; Williams, Paul I.; Keita, Sekou; Liousse, Cathy; Coe, Hugh
2018-01-01
Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on the variability of particulate emissions in atmospheric systems.
Particulate organic matter in rivers of Fukushima: An unexpected carrier phase for radiocesiums.
Naulier, Maud; Eyrolle-Boyer, Frédérique; Boyer, Patrick; Métivier, Jean-Michel; Onda, Yuichi
2017-02-01
The role of particulate organic matter in radiocesium transfers from soils to rivers was investigated in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Suspended and deposited sediments, filtered water, macro organic debris and dead leaves were sampled along the six most contaminated coastal river catchments of the Fukushima prefecture in the early autumns 2013 and 2014. Radiocesium concentrations of river samples and total organic carbon concentrations in suspended and deposited sediments were measured. Radiocesium concentrations of suspended and deposited sediments were significantly correlated to 137 Cs inventories in soils and total organic carbon. The distributions of radiocesium between the organic and mineral phases of both types of sediment were assessed by using a modelling approach. The results suggest that, during the early autumn season, the organic fraction was the main phase that carried the radiocesiums in deposited sediments and in suspended sediments for suspended loads <25mg·L -1 . For higher suspended loads like those occurring during typhoon periods, the mineral fraction was the main carrier phase. Thus, high apparent distribution coefficient values noted by various authors in Fukushima could be attributed to the high radiocesium contents of particulate organic matter. Since it is well known that organic compounds generally do not significantly adsorb radiocesium onto specific sites, several hypotheses are suggested: 1) Radiocesiums may have been absorbed into organic components at the early stage of atmospheric radioactive deposits and/or later due to biomass recycling and 2) Those elements would be partly carried by glassy hot particles together with organic matter transported by rivers in Fukushima. Both hypotheses would lead to conserve the amount of radiocesiums associated with particles during their transfers from the contaminated areas to the marine environment. Finally, such organically bound radiocesium would lead to significant deliveries of bioavailable radiocesium for living organisms at Fukushima. Copyright © 2016 Elsevier B.V. All rights reserved.
1997-01-01
perturbed strain, [L/ L] P501263.PDF [Page: 12 of 122] UNCLASSIFIED viii €~j constrained strain, [L/ L] €£j eigenstrain , [L/ L] €£J c corrected... eigenstrain of phase-r material, [L/ L] £iJ u uncorrected eigenstrain of phase~r material, [L/ L] fijkl correction matrix of phase-r material... eigenstrains , [2] wher·e St.jkl is known as the Eshelby tensor. The tensor is a function of the matrix Poisson ratio and the shape of the inclusion
DOT National Transportation Integrated Search
2008-01-31
The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atl...
MULTIDISCIPLINARY SCIENTIFIC AND ENGINEERING APPROACHES TO ASSESSING DIESEL EXHAUST TOXICITY
Based on epidemiology reports, diesel exhaust (DE) containing particulate matter (PM) may play a role in increasing cardiopulmonary mortality and morbidity, such as lung infection and asthma symptoms. DE gas-phase components may modify the PM effects. DE components vary depending...
Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric
2011-10-15
Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.
NASA Astrophysics Data System (ADS)
St-Amand, Annick D.; Mayer, Paul M.; Blais, Jules M.
Spruce needle and atmospheric (gaseous and particulate-bound) concentrations were surveyed near a sanitary landfill from February 2004 to June 2005. The influence of several parameters such as temperature, relative humidity, wind speed and direction, as well as increased domestic heating during the winter was assessed. In general, polybrominated diphenyl ethers (PBDE) and polycyclic aromatic hydrocarbons (PAH) concentrations in spruce needles increased over time and decreased following snowmelt with a minimum coinciding with bud burst of deciduous trees. Atmospheric concentrations of PBDE and PAH, both particulate-bound and gaseous phase, were linked to daily weather events and thus showed more variability than those in spruce needles. Highest PAH concentrations were encountered during the winter, likely reflecting increased emission from heating homes. Pseudo Clausius-Clapeyron plots revealed higher PBDE gaseous concentrations with increasing temperature, but showed no correlation between PAH gaseous concentrations and temperature as this effect was obscured by seasonal emission patterns. Finally, air mass back trajectories and local wind directions revealed that particulate-bound PBDEs, along with both gaseous and particulate-bound PAHs were from local sources, whereas gaseous PBDEs were likely from distant sources.
Effects of dispersed particulates on the rheology of water ice at planetary conditions
NASA Technical Reports Server (NTRS)
Durham, William B.; Kirby, Stephen H.; Stern, Laura A.
1992-01-01
Effects of the initial grain size and the hard particulate impurities on the transient and the steady state flows of water ice I were investigated under laboratory conditions selected as appropriate for simulating those of the surfaces and interiors of large moons. The samples were molded with particulate volume fraction, phi, of 0.001 to 0.56 and particle sizes of 1 to 150 microns; deformation experiments were conducted at constant shortening rates of 4.4 x 10 exp -7 to 4.9 x 10 exp -4 per sec at pressures of 50 and 100 MPa and temperatures 77 to 223 K. The results obtained suggest that viscous drag occurs in the ice as it flows around hard particulates. Mixed-phase ice was found to be tougher than pure ice, extending the range of bulk plastic deformation vs. faulting to lower temperatures and higher strain rates. It is suggested that bulk planetary compositions of ice + rock (phi = 0.4-0.5) are roughly 2 orders of magnitude more viscous than pure ice, leading to thermal instability inside giant icy moons and possibly explaining the retention of crater topography on icy planetary surfaces.
Analysis of benzo(a)pyrene in airborne particulates by gas chromatography
NASA Technical Reports Server (NTRS)
Luedecke, E.
1976-01-01
A routine method was developed to measure benzo(a)pyrene in airborne particulates. Samples were collected on a filter and the organic portion was extracted with cyclohexane. The polynuclear hydrocarbon (PNHC) fraction was separated from the aliphatics by column chromatography. An internal standard was added to the extract and a portion of it was injected into a gas chromatograph. Although the gas chromatographic method has often been reported in the literature, satisfactory separation of benzo(a)pyrene and benzo(e)pyrene has not been achieved. With the introduction of a nematic liquid crystal as the stationary phase good separation is now possible.
Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters
NASA Astrophysics Data System (ADS)
Meyers, Philip A.; Owen, Robert M.
1980-11-01
Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.
PM2.5 ORGANIC COMPOSITION FROM SEVERAL SITES IN THE UNITED STATES
Organic constituents make up an important component of fine particulate matter (PM2.5) in ambient environments. While part of the composition of organic aerosol results from emissions of primary sources, an additional component appears to come from gas-to-particle conversion o...
RECRUITING AND RETAINING AFRICAN-AMERICANS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH
The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...
Respiratory deposition of inhaled micron particles in subjects with mild asthma
Rational: Particulate matter (PM) in the ambient air can cause adverse health effects to some people including an aggravation of asthma. Although compromised lung conditions in disease are likely to be the primary cause of the effects, enhanced respiratory dose of particles may a...
HAP-PRO USER'S MANUAL (FOR USE WITH VERSION 1.0)
The primary purpose of the Hazardous Air Pollutant Program (HAP-PRO) is to assist permit engineers in reviewing applications for control of air toxics by calculating the capital and annual costs for 6 volatile organic compound (VOC) and 3 different particulate control devices, i...
Identification of causal particle characteristics and mechanisms of injury would allow linkage of particulate air pollution adverse health effects to sources. Research has examined the direct cardiovascular effects of air pollution particle constituents since previous studies dem...
STRUCTURE OF PRIMARY PM2.5 DERIVED FROM DIESEL TRUCK EXHAUST
The U.S. Environmental Protection Agency is currently considering regulations on airborne particulate matter < 2.5 microns in mean diameter (PM2.5). It is important that the molecular structure and microstructure of PM2.5 from various sources be thoroughly characterized in order ...
Chemical characterization and sources of PM2.5 at 12-h resolution in Guiyang, China
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part o...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... dryer stack a. The average mass flow of particulate matter from the control system applied to emissions...
Gentner, Drew R; Jathar, Shantanu H; Gordon, Timothy D; Bahreini, Roya; Day, Douglas A; El Haddad, Imad; Hayes, Patrick L; Pieber, Simone M; Platt, Stephen M; de Gouw, Joost; Goldstein, Allen H; Harley, Robert A; Jimenez, Jose L; Prévôt, André S H; Robinson, Allen L
2017-02-07
Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.
Strontium stable isotope behaviour accompanying basalt weathering
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.
2016-12-01
The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.
Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.
Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf
2017-04-01
Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.
Occupational PAH exposures during prescribed pile burns.
Robinson, M S; Anthony, T R; Littau, S R; Herckes, P; Nelson, X; Poplin, G S; Burgess, J L
2008-08-01
Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 microg m(-3). The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 +/- 0.15) than ignition (0.55 +/- 0.04 microg mg(-1)). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements.
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
Lee, Seyong; Han, Seunghee; Gill, Gary A
2011-06-01
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.
Bosch-Orea, Cristina; Sanchís, Josep; Farré, Marinella; Barceló, Damià
2017-09-01
Marine biotoxins regularly occur along the coast, with several consequences for the environment as well as the food industry. Monitoring of these compounds in seawater is required to assure the safety of marine resources for human consumption, providing a means for forecasting shellfish contamination events. In this study, an analytical method was developed for the detection of ten lipophilic marine biotoxins in seawater: azaspiracids 1, 2, 3, 4 and 5, classified as azaspiracid shellfish poisoning toxins, and pectenotoxin 2, okadaic acid and the related dinophysistoxin 1, yessotoxin and homoyessotoxin, classified as diarrheic shellfish poisoning toxins. The method is based on the application of solid-liquid ultrasound-assisted extraction and solid-phase extraction, followed by high-performance liquid chromatography coupled with high-resolution mass spectrometry. The limits of detection of this method are in the range of nanograms per litre and picograms per litre for most of the compounds, and recoveries range from 20.5% to 97.2%. To validate the effectiveness of this method, 36 samples of surface water from open coastal areas and marinas located along the Catalan coast on the Mediterranean Sea were collected and analysed. Eighty-eight per cent of these samples exhibited okadaic acid in particulate and aqueous phases in concentrations ranging from 0.11 to 560 μg/g and from 2.1 to 1780 ng/L respectively. Samples from open coastal areas exhibited higher concentrations of okadaic acid in particulate material, whereas in samples collected in sportive ports, the particulate material exhibited lower levels than the aqueous phase. Graphical Abstract Biotoxins investigated in seawater of the Catalan coast.
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Vandervoort, K.; Vides, C.; Quinones, J.
2017-12-01
We report reflectance phase curves of selected materials, including several that, if distributed as particulate aerosols, might regulate solar insolation and hence reduce Earth's surface temperature. (See e.g. Teller et al., 1997). We have identified several materials that have phase functions that are remarkably backscattering at very small phase angles (Nelson et al., 2017). When these materials are of appropriately small particle size and in the form of dispersed discrete random media, they are highly reflective at ultraviolet and visual wavelengths. Particles of less than 0.5 microns in diameter are transparent in the infrared. The most promising of these is the mineral halite (NaCl). NaCl and its sister materials exhibit this property due to their simple cubic crystal structure. In crystalline form they are `corner cube' reflectors similar to those on bicycle reflectors used throughout the world, and in arrays deployed by astronauts on the Moon for precise distance determination. As aerosols distributed in relatively small quantities, NaCl might reduce the solar forcing function by several W/m2, the amount estimated by the IPCC to be the anthropogenic contribution to global warming. Furthermore, NaCl is environmentally benign and, as a particulate aerosol, it would have short residence time in the atmosphere. With great trepidation, we suggest potential use in these areas: Temporary regional application to mitigate short-term, life-threatening conditions in areas where extreme temperature events are expected on timescales of days, and Global application for immediate relief during a near-term transition period to an atmosphere that is generally free of anthropogenic greenhouse gas. We offer this as a temporary relief measure and not a solution, somewhat analogous to the application of morphine in a medical situation. This work partially supported by NASA's Cassini Orbiter Program
Gradoville, Mary R.; White, Angelicque E.; Letelier, Ricardo M.
2014-01-01
We investigated the effects of elevated pCO2 on cultures of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH8501. Using CO2-enriched air, cultures grown in batch mode under high light intensity were exposed to initial conditions approximating current atmospheric CO2 concentrations (∼400 ppm) as well as CO2 levels corresponding to low- and high-end predictions for the year 2100 (∼750 and 1000 ppm). Following acclimation to CO2 levels, the concentrations of particulate carbon (PC), particulate nitrogen (PN), and cells were measured over the diurnal cycle for a six-day period spanning exponential and early stationary growth phases. High rates of photosynthesis and respiration resulted in biologically induced pCO2 fluctuations in all treatments. Despite this observed pCO2 variability, and consistent with previous experiments conducted under stable pCO2 conditions, we observed that elevated mean pCO2 enhanced rates of PC production, PN production, and growth. During exponential growth phase, rates of PC and PN production increased by ∼1.2- and ∼1.5-fold in the mid- and high-CO2 treatments, respectively, when compared to the low-CO2 treatment. Elevated pCO2 also enhanced PC and PN production rates during early stationary growth phase. In all treatments, PC and PN cellular content displayed a strong diurnal rhythm, with particulate C:N molar ratios reaching a high of 22∶1 in the light and a low of 5.5∶1 in the dark. The pCO2 enhancement of metabolic rates persisted despite pCO2 variability, suggesting a consistent positive response of Crocosphaera to elevated and fluctuating pCO2 conditions. PMID:25343645
NASA Astrophysics Data System (ADS)
Ji, Tianyi; Lin, Tian; Wang, Fengwen; Li, Yuanyuan; Guo, Zhigang
2015-05-01
Eighty paired gaseous phase and PM2.5 (particulate matter < 2.5 μm in diameter) samples, covering four seasons from October 2011 to August 2012 were collected simultaneously from a remote island in the East China Sea (ECS). The samples were analyzed for organochlorine pesticides (OCPs) to determine their seasonal variation and potential sources over the coastal marine environment. The concentrations of individual OCPs in the PM2.5 samples were higher in winter and lower in summer, and the reverse trend was observed for the measured OCP compounds (except hexachlorocyclohexanes, HCHs) in the gaseous phase. Principal component analysis revealed one trend that contributed 40% to PM2.5-bound OCPs characterized by β-HCH, α-HCH, p,p‧-dichlorodiphenyldichloroethane (p,p‧-DDD), p,p‧-dichlorodiphenyldichloroethylene (p,p‧-DDE), and chlordanes; whereas two seasonal trends, represented by dichlorodiphenyltrichloroethanes (DDTs) or chlordanes and HCHs, were responsible for 38% and 23% of the gaseous OCPs, respectively. Continental outflow driven by the East Asian monsoon brought large quantities of particulate OCPs to the ECS, especially in winter. Possible fresh sources or net volatilization from the Yangtze River induced by both higher ambient temperature and higher discharge rates caused the higher gaseous DDT and chlordane levels observed in summer. However, the lower concentrations of gaseous HCHs observed in summer suggested that net volatilization had a relatively limited impact on gaseous HCHs due to the long-term prohibition of their use and their low residual levels in the catchment, whereas the elevated concentrations of gaseous HCHs in winter controlled by gas-particle partitioning, resulted from increased particulate HCHs producing a partial shift to gaseous HCHs over ECS.
NASA Astrophysics Data System (ADS)
Soderling, M.; Aguilar, C.; Cuhel, R. L.
2016-02-01
Diatoms are single-celled organelle containing eukaryotes living in "glass houses". As diatoms only take up silica when they replicate, measuring the amounts of dissolved and particulate silicate were an important aspect of this study. Silica was used as a proxy of the diatom reproduction. Depending on growth conditions, some algal species divide throughout the day and night; this suggests that protein synthesis can be an important component of algal night metabolism and hence nitrogen utilization. The goal of this experiment was to measure the amount of night protein synthesis occurring in a culture of diatoms from Lake Michigan. Diatoms were enriched with light for energy and excess nutrients—including phosphate, silicate, nitrate and limited ammonium for some—along with use of physical separation methods. Growing conditions were prepared in a way which anticipated the diatoms would synchronize to a 14:10 day/night cycle and store energy, during their day phase, to use for night protein synthesis and replication. Their growth was monitored by taking samples before and after the transitions of light to dark along with midday and midnight samples. Assays of dissolved and particulate silicate were used to measure utilization, which confirmed their nighttime growth. As hypothesized, the diatoms had significant growth during their night phase. There were decreases in the nighttime dissolved silicate and increases in the nighttime particulate silicate. When available, the diatoms preferred to use ammonium instead of nitrate. Cell division during the night phase indicated sufficient daytime energy storage to fuel night protein synthesis and cell replication. Uptake of nutrients occurred at night almost as if the "sun" did not set. There was continuous growth of this photosynthetic community.
NASA Astrophysics Data System (ADS)
Wu, Ying; Liu, Zongguang; Hu, Jun; Zhu, Zhuoyi; Liu, Sumei; Zhang, Jing
2016-02-01
Total suspended matter (TSM) was collected in the Changjiang Estuary and adjacent areas of the East China Sea in July, August, and November 2011, to study the composition and fate of particulate organic nitrogen (PON) during an August typhoon event and bottom trawling activities. Concentrations of particulate organic carbon (POC), particulate nitrogen (PN), and hydrolyzable particulate amino acids (PAA, D- and L-enantiomers) were higher during July and August than during November; however, D-arginine and alanine levels were significantly higher in November. Seasonal trends in the composition of PAAs indicate that in situ production is a key factor in their temporal distribution. No significant increase in TSM or decrease in labile organic matter was observed during the transit period following a typhoon event in August. In contrast, higher primary production was observed at this time as a result of the penetration of Changjiang Diluted Water caused by the typhoon event. Trawling effects were studied by comparing the calm season (July) with the bottom-trawling period (November) at similar sampling sites. The effect of trawling on the composition of bottom organic matter was studied by comparing D-amino acids concentrations and C/N ratios in the calm season (July) with the bottom-trawling period (November). A substantial contribution of microbial organic matter during the November cruise was indicated by a decrease in glutamic acid, an increase in TSM and D-alanine, and a lower carbon/nitrogen (C/N) ratio. In shallow coastal regions, anthropogenic activities (bottom trawling) may enhance the transfer of low-nutritional-value particulate organic matter into the benthic food chain.
Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning
NASA Astrophysics Data System (ADS)
Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.
2016-12-01
Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.
Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning
NASA Astrophysics Data System (ADS)
Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.
2017-12-01
Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.
NASA Astrophysics Data System (ADS)
Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa
2016-04-01
Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic. A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged emissions. This instrument is capable of identifying the molecular formulas of species in the gas phase. The FIGAERO inlet, also enabled the characterisation of the particle phase, as particles were simultaneously collected on a filter, from which they could then be thermally desorbed and detected. Acetate (negative) ionization was utilised to allow high sensitivity measurements of organic acids, aldehydes, ketones, diols and halogenated species. The H2O, O3 and NOx concentrations inside the PAM flow reactor were monitored, and an organic tracer for OH exposure was also continuously measured. The concentrations of dominant species in both fresh and aged gaseous and particulate bus emissions from the different fuel types will be presented as well as their emission factors, calculated from concurrent CO2 measurements.
FILTRATION OF GROUND WATER SAMPLES FOR METALS ANALYSIS
The filtration of a ground water samples with 0.45 um filters for determination of 'dissolved' metals is not only inaccurate for distinguishing between dissolved and particulate phases, but if used for estimates of mobile contaminant loading in a given aquifer, may result in sign...
Contribution of ship emissions to the concentration and deposition of air pollutants in Europe
NASA Astrophysics Data System (ADS)
Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.
2015-11-01
Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along the shipping routes whereas sulfate wet deposition occurs mainly along the Scandinavian and Adriatic coasts. The results presented in this paper suggest that evolution of NOx emissions from ships and land-based NH3 emissions will play a significant role in the future European air quality.
Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea
2016-04-01
Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.
NASA Astrophysics Data System (ADS)
Ordou, N.; Agranovski, I. E.
2017-12-01
Air contamination resulting from bushfires is becoming increasingly important research question, as such disasters frequently occur in many countries. The objectives of this project were focused on physical and chemical characterisations of particulate emission resulting from burning of common representatives of Australian vegetation under controlled laboratory conditions. It was found that leaves are burned mostly with flaming phase and producing black smoke resulting in larger particles compared to white smoke in case of branches and grass, dominated by smouldering phase, producing finer particles. Following elemental analysis determined nine main elements in three different size fractions of particulate matter for each category of burning material, ranging from 14.1 μm to particle sizes below 2.54 μm. Potassium was found to be one of the main biomass markers, and sulphur was the ubiquitous element among the smoke particles followed by less prevalent trace elements like Na, Al, Mg, Zn, Si, Ca, and Fe.
Li, Juan-Ying; Cui, Yu; Su, Lei; Chen, Yiqin; Jin, Ling
2015-08-01
PAHs were analyzed for samples of seawater, sediment, and oyster (Saccostrea cucullata) collected from Yangshan Port, East China between 2012 and 2013. Concentrations of ∑PAHs in seawater (180-7,700 ng/L) and oyster (1,100-29,000 ng/g dry weight (dw)) fell at the higher end of the global concentration range, while sediment concentrations (120-780 ng/g dw) were generally comparable to or lower than those reported elsewhere. PAHs in the particulate phase accounted for 85% (52-93%) of the total PAHs in seawater. Congener profile analysis revealed that PAHs in waters originate mainly from petrogenic sources, while high-temperature combustion processes are the predominant sources for sediment. ∑PAHs in oyster well correlated with ∑PAHs in the particulate phase, suggesting particle ingestion as an important pathway for bioaccumulation of PAHs. Cancer risk assessment of PAHs in oyster indicated high human health risks posed by these chemicals to the coastal population consuming this seafood.
Polychlorinated biphenyls (PCBs) in the atmosphere of sub-alpine northern Italy.
Castro-Jiménez, J; Dueri, S; Eisenreich, S J; Mariani, G; Skejo, H; Umlauf, G; Zaldívar, J M
2009-03-01
The main objective of this work was to assess the atmospheric concentrations and seasonal variations of selected POPs in a sub-alpine location where few data are available. A monitoring and research station was set up at the JRC Ispra EMEP site (Italy). We present and discuss a one-year data set (2005-2006) on PCB air concentrations. Sigma 7PCBs monthly averaged concentration varied from 31 to 76 pgm(-3). Concentrations in the gas phase (21-72 pgm(-3)) were higher than those in the particulate phase (3-10 pgm(-3)). Advection of air masses and re-volatilization from local sources seem to play a dominant role as drivers of PCB atmospheric concentrations in the area. Indications of seasonal variation affecting PCB congener patterns and the gas/particulate partitioning were found. Modeling calculations suggest a predominant importance of the wet deposition in this region (1 microgm(-2)yr(-1) Sigma 7PCBs yearly total wet deposition flux; 650-2400 pgL(-1) rainwater concentrations).
Incidence of real-world automotive parent and halogenated PAH in urban atmosphere.
Gao, Pan-Pan; Zhao, Yi-Bo; Ni, Hong-Gang
2018-06-01
This study reports results from a tunnel experiment impact of real-world traffic-related particle and gas parent and halogenated polycyclic aromatic hydrocarbons (PAHs and HPAHs) on urban air. The traffic related emission characteristics and subsequent environmental behavior of these compounds were investigated. To understand the significance of real-world transport emissions to the urban air, traffic-related mass emissions of PAHs and HPAHs were estimated based on measured emission factors. According to our results, PAHs and HPAHs emissions via particulate phase were greater than those via gaseous phase; particles in 2.1-3.3 μm size fraction, have the major contribution to particulate PAHs and HPAHs emissions. Over all, contribution of traffic-related emission of PAHs (only ∼3% of the total PAHs emission in China) is an overstated source of PAHs pollution in China. Actually, exhaust pipe emission contributed much less than the total traffic-related emission of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment
NASA Astrophysics Data System (ADS)
Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus
2018-02-01
The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.
NASA Astrophysics Data System (ADS)
Norman, Michael; Leck, Caroline
2005-08-01
Over the Atlantic Ocean and southern Indian Ocean an overall large variation in gas phase ammonia was encountered with peak values occurring in regions heavily influenced by the smoke plume from biomass combustion and continental sources on the African continent. Concentrations were typically in the range 7 to 22 nmol m-3. Over the remote clean South Atlantic and Indian Oceans, median gas phase ammonia concentrations ranged between 1.1 and 3.2 nmol m-3, but were occasionally as high as 8.1 nmol m-3 or as low as 0.3 nmol m-3. It was reasonable to assume that the ocean was a net emitter of ammonia to the atmosphere and thus responsible for the ammonia levels measured. An average residence time of the order of a few hours was estimated. One implication of such a rapid removal of ammonia is that it prevented attainment of equilibrium between the gas phase and particulate phase ammonium. In areas under the influence of African biomass burning or dust, however, the particulate phase ammonium was concluded to be in equilibrium with the gas phase ammonia. The removal of atmospheric ammonia during the time of travel from the African continent to the position of the ship was estimated using a simplified Lagrangian approach. A response or residence time of 20 to 130 hours resulted. Thus, in order to explain the observed atmospheric ammonia levels at the ship, it seemed necessary to allow for an ammonia residence time of the order of several days within the plume which differs widely from previous reported estimates.
Using Advanced Monitoring Tools to Evaluate PM PM2.5 2.5 in San Joaquin Valley
One of the primary data deficiencies that prevent the advance of policy relevant research on particulate matter, ozone, and associated precursors is the lack of measurement data and knowledge on the true vertical profile and synoptic-scale spatial distributions of the pollutants....
Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...
Atmospheric ammonia (NH3) is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurement...
Summertime concentrations of fine particulate carbon in the southeastern United States are consistently underestimated by air quality models. In an effort to understand the cause of this error, the Community Multiscale Air Quality (CMAQ) model is instrumented to track primary org...
Fire and Pesticides: A Review of Air Quality Considerations
Parshall B. Bush; Daniel G. Neary; Charles K. McMahon
2000-01-01
The classes of primary chemical products naturally produced by the combustion of forest fuels are: carbon dioxide, water, carbon monoxide, particulate matter, methane and non-methane hydrocarbons, polynuclear aromatic hydrocarbons, nitrogen and sulfur oxides, aldehydes, free radicals, and inorganic elements. Secondary chemical products produced by reactions in smoke...
MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...
PARTICIPANT RECRUITMENT AND RETENTION FOR THE NERL RTP PM PANEL STUDY
EPA's National Exposure Research Laboratory (NERL) completed a 12 month Particulate Matter (PM) Panel Study in the Research Triangle Park, NC area in May 2001. A primary goal of the study was to compare PM levels measured at an ambient and residential sites with those from per...
The U.S. Environmental Protection Agency and its collaborators are conducting a series of human exposure panel studies on elderly (65+ years) subpopulations. The primary objectives of these studies are
-To determine personal and indoor exposures to particles and relate...
The National Exposure Research Laboratory is currently in the process of conducting panel studies to investigate personal exposure to particulate matter(PM). One of the primary goals of PM exposure studies is to establish mathematical relationships between personal exposure and...
The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...
The first of EPA's Particulate Matter (PM) Supersites projects was established in Atlanta, GA during the summer of 1999 in conjunction with the Southern Oxidants Study. The short-term primary focus was a one month intensive field campaign to evaluate advanced PM measurement me...
TLR-2 IS INVOLVED IN AIRWAY EPITHELIAL CELL RESPONE TO AIR POLLUTION PARTICLES
Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of a number of oxidant stress response genes. Components of ambient air PM responsible for stim...
Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discret...
Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discret...
Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discrete ...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Chen, Fei; Hu, Wei; Zhong, Qin
2013-04-01
Real-world vehicle emission factors for PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and particle-phase polycyclic aromatic hydrocarbons (PAHs) from mixed vehicles were quantified in the Fu Gui-shan Tunnel of Nanjing during summer and winter of 2010. Concentrations of PM10 and sixteen particle phase polycyclic aromatic hydrocarbons (PAHs) in the entrance and exit of the tunnel were studied. The results showed that the four most abundant particular phase polycyclic aromatic hydrocarbons (PAHs) of motor vehicle were benzo[ghi]perylene, benzo[k]fluoranthene, benz[a]anthracene and benzo[a]pyrene. The emission factors for PM10 and particle-phase PAHs were 687 mg veh- 1 km- 1 and 18.853 mg veh- 1 km- 1 in summer, 714 mg veh- 1 km- 1 and 20.374 mg veh- 1 km- 1 in winter. Higher particle-phase PAH emission factors were found to be associated with a high proportion of diesel-fueled vehicles (DV). The estimated PM10 emission factor of gasoline-fueled vehicles (GV) was 513 mg veh- 1 km- 1 and the value for DV was 914 mg veh- 1 km- 1, while EFDV of particulate PAH (31.290 mg veh- 1 km- 1) was nearly 4 times higher than EFGV (9.310 mg veh- 1 km- 1). The five highest emission factors of diesel-fueled vehicles (DV) were benzo[ghi]perylene, benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, benz[a]anthracene and benzo[a]pyrene, which was similarly found in the gasoline-fueled vehicles (GV). The sum of these five emission factors accounted for ~ 69% of the total particle-phase PAH of DV and ~ 67% of GV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paffenhofer, G.A.; Verity, P.G.
1995-12-31
Three fates potentially consume primary production occurring on ocean margins: portions can be oxidized within the water column, portions can sediment to shelf/slope depots, and portions can be exported to the interior ocean. Zooplankton mediate all three of these processes and thus can alter the pathway and residence time of particulate organic carbon, depending on the size structure and composition of the zooplankton (and phytoplankton). To achieve the long-term goal of quantifying the role of proto- and metazooplankton in removing newly formed POC (primary production), the authors must accomplish two major component objectives: (a) determine plankton carbon biomass at relevantmore » temporal and spatial scales; and (b) measure zooplankton carbon consumption rates and (for metazoan zooplankton) fecal pellet production. These measurements will specify the importance of different zooplankton groups as consumers and transformers of phytoplankton carbon. During Phase 1, they concentrated on methodological and technological developments prerequisite to an organized field program. Specifically, they proposed to develop and test an optical zooplankton counter, and to fully enhance the color image analysis system. In addition, they proposed to evaluate a solid-phase enzyme-linked immunospot assay to quantify predation by metazoan zooplankton on protozoans; and to improve methodology to determine ingestion and growth rates of salps, and accompanying pellet production rates, under conditions which very closely resemble their environment. The image analyzer data provide insights on basic ecosystem parameters relevant to carbon flux from the continental ocean to the deep ocean. Together these approaches provide a powerful set of tools to probe food web relationships in greater detail, to increase the accuracy and speed of carbon biomass and rate measurements, and to enhance data collection and analysis.« less
NASA Astrophysics Data System (ADS)
Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.
2013-02-01
PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.
McDonald-Buller, Elena; Kimura, Yosuke; Craig, Michael; McGaughey, Gary; Allen, David; Webster, Mort
2016-02-02
Cap and trade programs have historically been designed to achieve annual or seasonal reductions in emissions of nitrogen oxides and sulfur dioxide from power plants. Emissions reductions may not be temporally coincident with meteorological conditions conducive to the formation of peak ozone and fine particulate matter concentrations. Integrated power system and air quality modeling methods were developed to evaluate time-differentiated emissions price signals on high ozone days in the Mid-Atlantic portion of the Pennsylvania-New Jersey-Maryland (PJM) Interconnection and Electric Reliability Council of Texas (ERCOT) grids. Sufficient flexibility exists in the two grids with marked differences in demand and fuel generation mix to accommodate time-differentiated emissions pricing alone or in combination with a season-wide program. System-wide emissions reductions and production costs from time-differentiated pricing are shown to be competitive with those of a season-wide program on high ozone days and would be more cost-effective if the primary policy goal was to target emissions reductions on these days. Time-differentiated pricing layered as a complement to the Cross-State Air Pollution Rule had particularly pronounced benefits for the Mid-Atlantic PJM system that relies heavily on coal-fired generation. Time-differentiated pricing aimed at reducing ozone concentrations had particulate matter reduction co-benefits, but if particulate matter reductions are the primary objective, other approaches to time-differentiated pricing may lead to greater benefits.
Optical and Gravimetric Partitioning of Coastal Ocean Suspended Particulate Inorganic Matter (PIM)
NASA Astrophysics Data System (ADS)
Stavn, R. H.; Zhang, X.; Falster, A. U.; Gray, D. J.; Rick, J. J.; Gould, R. W., Jr.
2016-02-01
Recent work on the composition of suspended particulates of estuarine and coastal waters increases our capabilities to investigate the biogeochemal processes occurring in these waters. The biogeochemical properties associated with the particulates involve primarily sorption/desorption of dissolved matter onto the particle surfaces, which vary with the types of particulates. Therefore, the breakdown into chemical components of suspended matter will greatly expand the biogeochemistry of the coastal ocean region. The gravimetric techniques for these studies are here expanded and refined. In addition, new optical inversions greatly expand our capabilities to study spatial extent of the components of suspended particulate matter. The partitioning of a gravimetric PIM determination into clay minerals and amorphous silica is aided by electron microprobe analysis. The amorphous silica is further partitioned into contributions by detrital material and by the tests of living diatoms based on an empirical formula relating the chlorophyll content of cultured living diatoms in log phase growth to their frustules determined after gravimetric analysis of the ashed diatom residue. The optical inversion of composition of suspended particulates is based on the entire volume scattering function (VSF) measured in the field with a Multispectral Volume Scattering Meter and a LISST 100 meter. The VSF is partitioned into an optimal combination of contributions by particle subpopulations, each of which is uniquely represented by a refractive index and a log-normal size distribution. These subpopulations are aggregated to represent the two components of PIM using the corresponding refractive indices and sizes which also yield a particle size distribution for the two components. The gravimetric results of partitioning PIM into clay minerals and amorphous silica confirm the optical inversions from the VSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research
Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less
Global Particulate Matter Source Apportionment
NASA Astrophysics Data System (ADS)
Lamancusa, C.; Wagstrom, K.
2017-12-01
As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.
Ternon, Eva; Tolosa, Imma
2015-07-24
Solid-phase extraction of both aliphatic (AHs) and aromatic polycyclic hydrocarbons (PAHs) from seawater samples was evaluated using a GFF filter stacked upon an octadecyl bonded silica (C18) disk. Stable-isotope measurements were developed on hydrocarbons extracted from both GFF and C18-disks in order to characterize the source of hydrocarbons. A clear partition of hydrocarbon compounds between the dissolved and the particulate phase was highlighted. PAHs showed a higher affinity with the dissolved phase (recoveries efficiency of 48-71%) whereas AHs presented strong affinity with the particulate phase (up to 76% of extraction efficiency). Medium volumes of seawater samples were tested and no breakthrough was observed for a 5L sample. Isotopic fractionation was investigated within all analytical steps but none was evidenced. This method has been applied to harbor seawater samples and very low AH and PAH concentrations were achieved. Due to the low concentration levels of hydrocarbons in the samples, the source of hydrocarbons was determined by molecular indices rather than isotopic measurements and a pyrolytic origin was evidenced. The aliphatic profile also revealed the presence of long-chain linear alkylbenzenes (LABs). The methodology presented here would better fit to polluted coastal environments affected by recent oil spills. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Xiaoyu; Wang, Yuan; Qin, Yaqiong; Ding, Li; Chen, Yi; Xie, Fuwei
2015-08-01
A simple method has been developed for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke. The procedure is based on employing a homemade graphene-coated solid-phase microextraction (SPME) fiber for extraction prior to GC/MS. In comparison to commercial 100-μm poly(dimethyl siloxane) (PDMS) fiber, the graphene-coated SPME fiber exhibits advantageous cleanup and preconcentration efficiencies. By collecting the particulate phase 5 cigarettes, the LODs and LOQs of 16 target PAHs were 0.02-0.07 and 0.07-0.22 ng/cigarette, respectively, and all of the linear correlation efficiencies were larger than 0.995. The validation results also indicate that the method has good repeatability (RSD between 4.2% and 9.5%) and accuracy (spiked recoveries between 80% and 110%). The developed method was applied to analyze two Kentucky reference cigarettes (1R5F and 3R4F) and six Chinese brands of cigarettes. In addition, the PAH concentrations in the particulate phase of the smoke from the 1R5F Kentucky cigarettes were in good agreement with recently reported results. Due to easy operation and good validation results, this SPME-GC/MS method may be an excellent alternative for trace analysis of PAHs in cigarette smoke. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trocine, Robert P.; Trefry, John H.
1988-04-01
Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.
NASA Astrophysics Data System (ADS)
Tamelander, Tobias; Reigstad, Marit; Hop, Haakon; Carroll, Michael L.; Wassmann, Paul
2008-10-01
The structure and function of the marine food web strongly regulate the cycling of organic matter derived from primary production by phytoplankton and ice algae in Arctic shelf seas. Improved knowledge of trophic relationships and export of organic matter from the surface layer is needed to better understand how the Arctic marine ecosystem may respond to climate-related changes in distribution of sea ice, water masses, and associated primary production regimes. Pelagic and sympagic inputs of organic matter to dominant meso- and macrozooplankton species and vertical export were investigated in the northern Barents Sea by means of stable carbon and nitrogen isotopes (δ 13C and δ 15N). Samples were collected during spring and summer (2003-2005) from a total of 13 stations with different ice conditions, abundances of ice algae, and phytoplankton bloom phases. δ 13C signatures were different in organic matter of phytoplankton (mean -24.3‰) and ice algal origin (mean -20.0‰). Stable carbon isotope compositions showed that most of the energy assimilated by zooplankton originated from pelagic primary production, but at times ice algae also contributed to zooplankton diets. Trophic level (TL) estimates of copepods ( Calanus glacialis and Calanus hyperboreus) and krill ( Thysanoessa inermis and Thysanoessa longicaudata), calculated based on δ 15N values, varied among stations from 1.3 to 2.7 and from 1.5 to 3.1, for respective taxa. TL in C. glacialis was significantly and inversely related to the depth-integrated phytoplankton chlorophyll a concentration. A similar trend, although weaker, also was observed for the other species. This relationship indicates that copepods graze primarily on the abundant autotrophic biomass during the peak bloom phase. At stations with lower chlorophyll a concentration, the TL of Calanus spp. was 1.0 higher, indicating omnivory outside the peak bloom phase in response to changed food availability. The majority of organic matter exported from the euphotic zone was derived from pelagic primary production, but at 3 of 11 stations within the marginal ice zone (MIZ), the ice algal signal dominated the isotope composition of sinking material. The δ 13C of settling organic matter was positively related to the vertical flux of particulate organic carbon, with maximum values around -21‰ during the peak bloom phase. Sedimentation of isotopically light copepod faecal pellets (mean δ 13C -25.4‰) was reflected in a depletion of 13C in the sinking material. The results illustrate tight pelagic-benthic coupling in the Barents Sea MIZ through vertical export of fresh phytodetritus during phytoplankton blooms and episodic export of ice algae.
Primary and secondary organic aerosols in summer 2016 in Beijing
NASA Astrophysics Data System (ADS)
Tang, Rongzhi; Wu, Zepeng; Li, Xiao; Wang, Yujue; Shang, Dongjie; Xiao, Yao; Li, Mengren; Zeng, Limin; Wu, Zhijun; Hallquist, Mattias; Hu, Min; Guo, Song
2018-03-01
To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP) and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS) during the Photochemical Smog in China
field campaign in summer 2016. Chemical mass balance (CMB) modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be the important SOA formation mechanism in summer in Beijing.
ATMOSPHERIC MERCURY IN THE LAKE MICHIGAN BASIN: INFLUENCE OF THE CHICAGO/GARY URBAN AREA
The relative importance of the Chicago/Gay urban area was investigated to determine its impact on atmospheric mercury (Hg) concentrations and wet deposition in the Lake Michigan basin. Event wet-only precipitation, total particulate, and vapor phase samples were collected for ...
Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...
The importance of new processing techniques in tissue engineering
NASA Technical Reports Server (NTRS)
Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1996-01-01
The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.
The production of photochemical atmospheres under controlled conditions in an irradiated chamber permits the manipulation of a variety of parameters that influences resulting air pollutant chemistry and potential biological effects. To date no studies have examined how contrastin...
Rationale: Intravascular thrombosis and platelet aggregation are enhanced following exposure to diesel exhaust (DE) and other respirable particulate matter; however, the roles of endothelial and circulating mediators on platelet aggregation remain unclear. We hypothesized that ad...
We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicited changes in cardiac gene expression pattern that broadly mimicked gene expression in non-exposed spontaneously hypertensive rats. We hypothesized that healthy ...
The Partitioning of Triclosan between Aqueous and Particulate Phases in the Hudson River Estuary
The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Tricl...
Comparative Soot Diagnostics: Preliminary Results
NASA Technical Reports Server (NTRS)
Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.
1997-01-01
The motivation for the Comparative Soot Diagnostics (CSD) experiment lies in the broad practical importance of understanding combustion generated particulate. Depending upon the circumstances, particulate matter can affect the durability and performance of combustion equipment, can be a pollutant, can be used to detect fires and, in the form of soot, can be the dominant source of radiant energy from flames. The nonbuoyant structure of most flames of practical interest makes understanding of soot processes in low gravity flames important to our ability to predict fire behavior on earth. These studies also have direct applications to fire safety in human-crew spacecraft, since smoke is the indicator used for automated detection in current spacecraft. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 20 UV-sensing fire detectors. The Space Shuttle has 9 particle-ionization smoke detectors in the mid-deck and flight deck and Spacelab has six additional particle-ionization smoke detectors. The designated detectors for the ISS are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from incipient and fully developed low-g fires, all three of these detector systems were designed based upon l-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection grows significantly. To provide this level of protection, more knowledge is needed concerning low-gravity fire phenomena and, in particular, how they might be detected and suppressed. Prior to CSD, no combustion-generated particulate samples had been collected near the flame zone for well-developed microgravity flames. All of the extant data either came from drop tower tests and therefore only corresponded to the early stages of a fire or were collected far from the flame zone. The fuel sources in the drop tower tests were restricted to laminar gas-jet diffusion flames and very rapidly overheated wire insulation. The gas-jet tests indicated, through thermophoretic sampling, (2) that soot primaries and aggregates (groups of primary particles) in low-gravity may be significantly larger than those in normal gravity (1-g). This raises new scientific questions about soot processes as well as practical issues for particulate size sensitivity and detection alarm threshold levels used in on-orbit smoke detectors. Preliminary tests in the 2.2 second drop tower suggest that particulate generated by overheated wire insulation may be larger in low-g than in 1-g. Transmission Electron Microscope (TEM) grids downstream of the fire region in the Wire Insulation Flammability experiment as well as visual observation of long string-like aggregates, further confirm this suggestion. The combined impact of these limited results and theoretical predictions is that, as opposed to extrapolation from l-g data, direct knowledge of low-g combustion particulate is needed for more confident design of smoke detectors for spacecraft. This paper describes the operation and preliminary results of the CSD, a project conceived and developed at NASA Lewis Research Center. The CSD flight experiment was conducted in the Middeck Glovebox Facility (MGBX) on USMP-3. The project is support by NASA Headquarters Microgravity Science and Applications Division and Code Q. The results presented here are from the microgravity portion of the experiment, including the temporal response of the detectors and average sizes of the primary and aggregate particles captured on the thermophoretic probes.
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I
2007-11-15
Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.
Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J
2014-01-01
Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.
Process for forming coal compacts and product thereof
Gunnink, Brett; Kanunar, Jayanth; Liang, Zhuoxiong
2002-01-01
A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.
Kotarek, Joseph; Stuart, Christine; De Paoli, Silvia H; Simak, Jan; Lin, Tsai-Lien; Gao, Yamei; Ovanesov, Mikhail; Liang, Yideng; Scott, Dorothy; Brown, Janice; Bai, Yun; Metcalfe, Dean D; Marszal, Ewa; Ragheb, Jack A
2016-03-01
Peginesatide (Omontys(®); Affymax, Inc., Cupertino, CA) was voluntarily withdrawn from the market less than a year after the product launch. Although clinical trials had demonstrated the drug to be safe and efficacious, 49 cases of anaphylaxis, including 7 fatalities, were reported not long after market introduction. Commercialization was initiated with a multiuse vial presentation, which differs in formulation from the single-use vial presentation used in phase 3 studies. Standard physical and chemical testing did not indicate any deviation from product specifications in either formulation. However, an analysis of subvisible particulates using nanoparticle tracking analysis and flow imaging revealed a significantly higher concentration of subvisible particles in the multiuse vial presentation linked to the hypersensitivity cases. Although it is unknown whether the elevated particulate content is causally related to these serious adverse events, this report illustrates the utility of characterizing subvisible particulates not captured by conventional light obscuration. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent
2014-10-01
This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.
Particulate polycyclic aromatic hydrocarbons (PAH) in the atmosphere of Bizerte city, Tunisia.
Ben Hassine, S; Hammami, B; Ben Ameur, W; El Megdiche, Y; Barhoumi, B; Driss, M R
2014-09-01
The particle-phase concentrations of polycyclic aromatic hydrocarbons (PAH) were determined in 13 air samples collected in an urban area of Bizerte (Tunisia) during 2009-2010. Atmospheric particulate samples were extracted by ultrasonic bath and analyzed by high-performance liquid chromatography with fluorescence detection. PAH were found in all the analyzed air samples and the most abundant compounds were pyrene, fluoranthene, benzo[g,h,i]perylene, benzo[b]fluoranthene, chrysene and benzo[a]pyrene. ∑14-PAH concentrations ranging from 9.38 to 44.81 ng m(-3) with mean value of 25.39 ng m(-3). PAH diagnostic ratio source analysis revealed gasoline and diesel vehicular emissions as major sources. The mean total benzo[a]pyrene toxicity equivalent calculated for samples was 3.66 ng m(-3) and the mean contribution of the carcinogenic potency of benzo[a]pyrene was determined to be 55.8 %. Concentrations of particulate PAH in Bizerte city atmosphere were approximately eight times greater than sampled at a nearby rural site.
Agricultural Influences on Cache Valley, Utah Air Quality During a Wintertime Inversion Episode
NASA Astrophysics Data System (ADS)
Silva, P. J.
2017-12-01
Several of northern Utah's intermountain valleys are classified as non-attainment for fine particulate matter. Past data indicate that ammonium nitrate is the major contributor to fine particles and that the gas phase ammonia concentrations are among the highest in the United States. During the 2017 Utah Winter Fine Particulate Study, USDA brought a suite of online and real-time measurement methods to sample particulate matter and potential gaseous precursors from agricultural emissions in the Cache Valley. Instruments were co-located at the State of Utah monitoring site in Smithfield, Utah from January 21st through February 12th, 2017. A Scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) acquired size distributions of particles from 10 nm - 10 μm in 5-min intervals. A URG ambient ion monitor (AIM) gave hourly concentrations for gas and particulate ions and a Chromatotec Trsmedor gas chromatograph obtained 10 minute measurements of gaseous sulfur species. High ammonia concentrations were detected at the Smithfield site with concentrations above 100 ppb at times, indicating a significant influence from agriculture at the sampling site. Ammonia is not the only agricultural emission elevated in Cache Valley during winter, as reduced sulfur gas concentrations of up to 20 ppb were also detected. Dimethylsulfide was the major sulfur-containing gaseous species. Analysis indicates that particle growth and particle nucleation events were both observed by the SMPS. Relationships between gas and particulate concentrations and correlations between the two will be discussed.
Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Nattinger, K.; Simpson, W. R.; Huff, D.
2015-12-01
Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this study regarding primary versus possible secondary PM2.5 production processes can help in identifying effective PM2.5 control strategies.
Process of making carbon-carbon composites
NASA Technical Reports Server (NTRS)
Kowbel, Witold (Inventor); Withers, James C. (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor); Loutfy, Raouf O. (Inventor)
2000-01-01
A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.
Fabrication of cast particle-reinforced metals via pressure infiltration
NASA Technical Reports Server (NTRS)
Klier, E. M.; Mortensen, A.; Cornie, J. A.; Flemings, M. C.
1991-01-01
A new casting process for fabrication of particle-reinforced metals is presented whereby a composite of particulate reinforcing phase in metal is first produced by pressure infiltration. This composite is then diluted in additional molten metal to obtain the desired reinforcement volume fraction and metal composition. This process produces a pore-free as-cast particulate metal-matrix composite. This process is demonstrated for fabrication of magnesium-matrix composites containing SiC reinforcements of average diameter 30, 10 and 3 microns. It is compared with the compocasting process, which was investigated as well for similar SiC particles in Mg-10 wt pct Al, and resulted in unacceptable levels of porosity in the as-cast composite.
NASA Astrophysics Data System (ADS)
Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prévôt, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.
2010-12-01
Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.
Sinking fluxes of 210Pb and 210Po in the deep basin of the northern South China Sea.
Wei, Ching-Ling; Chia, Chao-Yuan; Chou, Wen-Chen; Lee, Wen-Huei
2017-08-01
Vertical fluxes of total mass (F mass ), particulate organic carbon (F POC ), particulate inorganic carbon (F PIC ), 210 Pb (F Pb-210 ), and 210 Po (F Po-210 ) were determined by sediment traps deployed at two depths, 2000 m and 3500 m, at SEATS (South East Asian Time-series Study, 116°00°E, 18°00°N) in the northern South China Sea during June 2008-June 2009. The F mass ranges from 12.2 to 55.1 mg m -2 d -1 and from 89.3 to 250.8 mg m -2 d -1 , at 2000 m and 3500 m, respectively, and shows seasonal and inter-annul variation. The temporal variation of F POC , F PIC , and F Pb-210 were in phase with the F mass , which was coupled with the seasonal cycles of primary production in the euphotic layer. The F Pb-210 ranges from 5 to 48 dpm m -2 d -1 and from 38 to 105 dpm m -2 d -1 , at 2000 m and 3500 m, respectively. Contrasting with 210 Pb, the F Po-210 shows poor correlation with F mass . The F Po-210 ranges from 3 to 146 dpm m -2 d -1 and from 50 to 309 dpm m -2 d -1 , at 2000 m and 3500 m, respectively. Episodic events of the settling of biological particles from the surface layer and the regeneration processes the deep layer control the 210 Po removal in the water column of the South China Sea. Strong correlations of the flux and source ratio of 210 Pb, (F/P) Pb-210 , and the particulate carbon fluxes were found, which give relationships of F POC (μg cm -2 y -1 ) = 26.8 + 371.0 (F/P) Pb-210 and F PIC (μg cm -2 y -1 ) = -1.4 + 533.1 (F/P) Pb-210 . Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2013-09-01
Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NOx ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas-chromatography. The unspeciated organics - likely comprising less volatile species, such as intermediate volatility organic compounds - appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep+idle operation was 3-4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.
NASA Astrophysics Data System (ADS)
Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prevot, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.
2010-06-01
Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the final vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC<0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, primary particles with a mobility diameter above 5 nm were 300±19 cm-3, and only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.097 to 0.190. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.208 to 0.369.
Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian
2017-09-01
In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m 3 Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel -1 , respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel -1 and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10 15 particleskg-fuel -1 , and particles with diameters less than 50nm dominated in total particle numbers. Traditional C 2 -C 12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.