Science.gov

Sample records for primary production gpp

  1. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  2. Improving North American gross primary production (GPP) estimates using atmospheric measurements of carbonyl sulfide (COS)

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Montzka, Steve; Andrews, Arlyn; Sweeney, Colm; Jacobson, Andy; Miller, Ben; Masarie, Ken; Jung, Martin; Gerbig, Christoph; Campbell, Elliott; Abu-Naser, Mohammad; Berry, Joe; Baker, Ian; Tans, Pieter

    2013-04-01

    Understanding the responses of gross primary production (GPP) to climate change is essential for improving our prediction of climate change. To this end, it is important to accurately partition net ecosystem exchange of carbon into GPP and respiration. Recent studies suggest that carbonyl sulfide is a useful tracer to provide a constraint on GPP, based on the fact that both COS and CO2 are simultaneously taken up by plants and the quantitative correlation between GPP and COS plant uptake. We will present an assessment of North American GPP estimates from the Simple Biosphere (SiB) model, the Carnegie-Ames-Stanford Approach (CASA) model, and the MPI-BGC model through atmospheric transport simulations of COS in a receptor oriented framework. The newly upgraded Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) will be employed to compute the influence functions, i.e. footprints, to link the surface fluxes to the concentration changes at the receptor observations. The HYSPLIT is driven by the 3-hourly archived NAM 12km meteorological data from NOAA NCEP. The background concentrations are calculated using empirical curtains along the west coast of North America that have been created by interpolating in time and space the observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles. The plant uptake of COS is derived from GPP estimates of biospheric models. The soil uptake and anthropogenic emissions are from Kettle et al. 2002. In addition, we have developed a new soil flux map of COS based on observations of molecular hydrogen (H2), which shares a common soil uptake term but lacks a vegetative sink. We will also improve the GPP estimates by assimilating atmospheric observations of COS in the receptor oriented framework, and then present the assessment of the improved GPP estimates against variations of climate variables such as temperature and precipitation.

  3. Global 4 km resolution monthly gridded Gross Primary Productivity (GPP) data set derived from FLUXNET2015

    SciTech Connect

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; Collier, Nathan

    2016-08-01

    This data set contain global gridded surfaces of Gross Primary Productivity (GPP) at 2 arc minute (approximately 4 km) spatial resolution monthly for the period of 2000-2014 derived from FLUXNET2015 (released July 12, 2016) observations using a representativeness based upscaling approach.

  4. Estimation of Crop Gross Primary Production (GPP). 2; Do Scaled (MODIS) Vegetation Indices Improve Performance?

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Zhang, Xiaoyang; Suyker, Andrew; Verma, Shashi; Shuai, Yanmin; Middleton, Elizabeth M.

    2015-01-01

    Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely been made using spectral Vegetation Indices (VIs) over the past two decades. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band Wide Dynamic Range Vegetation Index (WDRVIgreen), and the green band Chlorophyll Index (CIgreen) have been employed to estimate GPP under the assumption that GPP is proportional to the product of VI and photosynthetically active radiation (PAR) (where VI is one of four VIs: NDVI, EVI, WDRVIgreen, or CIgreen). However, the empirical regressions between VI*PAR and GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for regressions). Therefore they are somewhat difficult to interpret and apply. This study investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts) between the fraction of PAR absorbed by chlorophyll of a canopy (fAPARchl) and the VIs, and (2) whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of which are irrigated and one is rainfed. The four VIs and fAPARchl of the fields were computed with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP estimation performance for the scaled VIs was compared to results obtained with the original VIs and evaluated with standard statistics: the coefficient of determination (R2), the root mean square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EVI obtained the best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved across sites, crop types and soil/background wetness conditions. The scaled CIgreen did not improve results, compared to the original CIgreen. The scaled green band indices (WDRVIgreen, CIgreen) did not exhibit superior performance to either the

  5. Estimating gross primary productivity (GPP) of forests across southern England at high spatial and temporal resolution using the FLIGHT model

    NASA Astrophysics Data System (ADS)

    Pankaew, Prasan; Milton, Edward; Dawson, Terry; Dash, Jadu

    2013-04-01

    Forests and woodlands play an important role in CO2 flux and in the storage of carbon, therefore it is important to be able to estimate gross primary productivity (GPP) and its change over time. The MODIS GPP product (MOD17) provides near-global GPP, but at relatively coarse spatial resolution (1km pixel size) and only every eight days. In order to study the dynamics of GPP over shorter time periods and over smaller areas it is necessary to make ground measurements or use a plant canopy model. The most reliable ground-based GPP data are those from the FLUXNET network, which comprises over 500 sites worldwide, each of which measures GPP using the eddy covariance method. Each FLUXNET measurement corresponds to GPP from an area around the sampling tower, the size and shape of which varies with weather conditions, notably wind speed and direction. The FLIGHT forest light simulation model (North, 1996) is a Monte Carlo based model to estimate the GPP from forest canopies, which does not take into account the spatial complexity of the site or the wind conditions at the time. Forests in southern England are small and embedded in a matrix of other land cover types (agriculture, urban etc.), so GPP estimated from FLIGHT needs to be adjusted to match that measured from a FLUXNET tower. The aim of this paper is to develop and test a method to adjust FLIGHT GPP so that it matches FLUXNET GPP. The advantage of this is that GPP can then be estimated over many other forests which do not possess FLUXNET sites. The study was based on data from two mixed broadleaf forests in southern England (Wytham Woods and Alice Holt forest), both of which have FLUXNET sites located within them. The FLUXNET meteorological data were prepared for use in the FLIGHT model by converting broadband irradiance to photosynthetically active radiance (PAR) and estimating diffuse PAR, using methods developed in previous work by the authors. The standard FLIGHT model tended to overestimate GPP in the winter

  6. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  7. Estimation of Crop Gross Primary Production (GPP): I. Impact of MODIS Observation Footprint and Impact of Vegetation BRDF Characteristics

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Xiao, Xiangming; Suyker, Andrew; Verma, Shashi; Tan, Bin; Middleton, Elizabeth M.

    2014-01-01

    Accurate estimation of gross primary production (GPP) is essential for carbon cycle and climate change studies. Three AmeriFlux crop sites of maize and soybean were selected for this study. Two of the sites were irrigated and the other one was rainfed. The normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the green band chlorophyll index (CIgreen), and the green band wide dynamic range vegetation index (WDRVIgreen) were computed from the moderate resolution imaging spectroradiometer (MODIS) surface reflectance data. We examined the impacts of the MODIS observation footprint and the vegetation bidirectional reflectance distribution function (BRDF) on crop daily GPP estimation with the four spectral vegetation indices (VIs - NDVI, EVI, WDRVIgreen and CIgreen) where GPP was predicted with two linear models, with and without offset: GPP = a × VI × PAR and GPP = a × VI × PAR + b. Model performance was evaluated with coefficient of determination (R2), root mean square error (RMSE), and coefficient of variation (CV). The MODIS data were filtered into four categories and four experiments were conducted to assess the impacts. The first experiment included all observations. The second experiment only included observations with view zenith angle (VZA) = 35? to constrain growth of the footprint size,which achieved a better grid cell match with the agricultural fields. The third experiment included only forward scatter observations with VZA = 35?. The fourth experiment included only backscatter observations with VZA = 35?. Overall, the EVI yielded the most consistently strong relationships to daily GPP under all examined conditions. The model GPP = a × VI × PAR + b had better performance than the model GPP = a × VI × PAR, and the offset was significant for most cases. Better performance was obtained for the irrigated field than its counterpart rainfed field. Comparison of experiment 2 vs. experiment 1 was used to examine the observation

  8. How much do different global GPP products agree in distribution and magnitude of GPP extremes?

    NASA Astrophysics Data System (ADS)

    Kim, S.; Ryu, Y.; Jiang, C.

    2016-12-01

    To evaluate uncertainty of global Gross Primary Productivity (GPP) extremes, we compare three global GPP datasets derived from different data processing methods (e.g. MPI-BGC: machine-learning, MODIS GPP (MOD17): semi-empirical, Breathing Earth System Simulator (BESS): process based). We preprocess the datasets following the method from Zscheischler et al., (2012) to detect GPP extremes which occur in less than 1% of the number of whole pixels, and to identify 3D-connected spatiotemporal GPP extremes. We firstly analyze global patterns and the magnitude of GPP extremes with MPI-BGC, MOD17, and BESS over 2001-2011. For consistent analysis in the three products, spatial and temporal resolution were set at 50 km and a monthly scale, respectively. Our results indicated that the global patterns of GPP extremes derived from MPI-BGC and BESS agreed with each other by showing hotspots in Northeastern Brazil and Eastern Texas. However, the extreme events detected from MOD17 were concentrated in tropical forests (e.g. Southeast Asia and South America). The amount of GPP reduction caused by climate extremes considerably differed across the products. For example, Russian heatwave in 2010 led to 100 Tg C uncertainty (198.7 Tg C in MPI-BGC, 305.6 Tg C in MOD17, and 237.8 Tg C in BESS). Moreover, the duration of extreme events differ among the three GPP datasets for the Russian heatwave (MPI-BGC: May-Sep, MOD17: Jun-Aug, and BESS: May-Aug). To test whether Sun induced Fluorescence (SiF), a proxy of GPP, can capture GPP extremes, we investigate global distribution of GPP extreme events in BESS, MOD17 and GOME-2 SiF between 2008 and 2014 when SiF data is available. We found that extreme GPP events in GOME-2 SiF and MOD17 appear in tropical forests whereas those in BESS emerged in Northeastern Brazil and Eastern Texas. The GPP extremes by severe 2011 US drought were detected by BESS and MODIS, but not by SiF. Our findings highlight that different GPP datasets could result in varying

  9. Evaluation of MODIS NPP and GPP products across multiple biomes.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl

    2006-01-01

    Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...

  10. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Treesearch

    Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito

    2010-01-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...

  11. Temperature acclimation of photosynthesis has only minor effects on gross primary productivity (GPP) in an Earth System Model (ESM)

    NASA Astrophysics Data System (ADS)

    Goll, Daniel; Brovkin, Victor; Kattge, Jens; Zaehle, Soenke; Reick, Christian

    2013-04-01

    The productivity of terrestrial plants influences the dynamics of atmospheric CO2. It is therefore crucial to understand and quantify productivity and predict its future responses to climate change and increasing atmospheric CO2 concentrations. Recently, Booth et al. (2012) found that the temperature dependence of photosynthesis is the most important uncertainty of the climate-carbon cycle feedback in a comprehensive ESM. Using trait data, Kattge and Knorr (2007) found that photosynthesis, in particular the acclimation of the maximum carboxylation rate (Vmax) and electron transport rate (Jmax), acclimates to prevailing temperatures. As a first attempt to address temperature acclimation of photosynthesis on global scale, we replaced the simplified exponential formulation of the temperature dependence of Vmax and Jmax in the Max Planck Institute Earth System Model (MPI-ESM) by a physiologically more plausible and justified model with short-term optimum temperature. For temperature acclimation we then implemented the acclimation descriptions by Kattge and Knorr (2007). We conducted sets of simulations on site scale driven by meteorological observations, and simulations on global scale for present day climate and for a 6 K warmer climate. The physiologically more plausible and justified model with short-term optimum temperature and temperature acclimation yields similar results as the old exponential formulation not accounting for either process. With the new model, global GPP for present day and in the warming scenario is increased by 0.7% and 0.9%, respectively. Acclimation causes a slight shift of productivity from high to low latitudes, too. A slightly larger effect on GPP has the replacement of the exponential formulation with the model with optimum temperature, resulting in a 1.2% decrease in global GPP under both climatic conditions. Acclimation thus compensates for the effects of the physiologically based temperature optimum of photosynthesis. As the effects

  12. Seasonal and diurnal methane emissions from a wetland meadow on the Eastern Qinghai-Tibetan Plateau: effects of soil temperature, water table level and gross primary productivity (GPP)

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Guo, Qian; Hong, Bing; Ding, Hanwei; Xu, Chao; Yao, Hu

    2017-04-01

    Peatlands covered about 4.6×109 m2 land surface of the eastern Qinghai-Tibet Plateau, and accumulated about 7.14×108 t C since the beginning of Holocene. Over the last decades, more than 30% of these peatlands have degradated due to climate change, land management and disturbance. For assessing the magnitude of diurnal and seasonal variations in CH4 fluxes, and identifying the depence of CH4 fluxes on environmental factors, we measured CH4 fluxes in a typical alpine peatland in this region using eddy covariance technique, and tested the depence of CH4 fluxes on soil temperature, water table level and gross primary productivity (GPP). The annual CH4 emission of Hongyuan peatland is 47.04 g CH4/m2, while growing season emissions account for 75 of the annual sum. During growing season, there was a clear diurnal pattern in CH4 fluxes with peaks and valleys appeared at16:30 and 1:00, respectively. While during non-growing season, CH4 fluxes varied at a relatively low level and showed no clear diurnal patterns. The CH4 fluxes were significantly correlated with the variations of soil temperature, and soil temperature at 25 cm depth can explain 83% of the variations in CH4 fluxes. The CH4 emissions during the growing season were barely correlated with the water table level (R2=-0.0001), and the water table mostly varied from 0 cm to -20 cm, which indicate that the anaerobic environment below -20 cm was relatively stable for methanogenesis and CH4 transportation. In addition, considering the fact that CH4 fluxes were more significantly correlated with soil temperature at 25 cm depth, it might be concluded that the CH4 were mostly produced in the peat deposits below -20 cm. The daily mean CH4 emissions were significantly correlated with GPP (R2=0.82), which suggest that CH4 emissions were also regulated by plant growth activities, and the CH4 fluxes might be decreased due to peatland degradation.

  13. Estimation of crop gross primary production (GPP): fAPAR_chl versus MOD15A2 FPAR

    USDA-ARS?s Scientific Manuscript database

    Within leaf chloroplasts chlorophylls absorb photosynthetically active radiation (PAR) for photosynthesis (PSN). The MOD15A2 FPAR (fraction of PAR absorbed by canopy, i.e., fAPARcanopy) product has been widely used to compute absorbed PAR for PSN (APARPSN). The MOD17A2 algorithm uses MOD15A2 FPAR i...

  14. Monitoring of spatiotemporal patterns of Net and Gross Primary Productivity (NPP & GPP) and their ratios (NPP/GPP) derived from MODIS data: assessment natural drivers and their effects on NDVI anomalies in arid and semi-arid zones of Central Asia.

    NASA Astrophysics Data System (ADS)

    Aralova, Dildora; Jarihani, Ben; Khujanazarov, Timur; Toderich, Kristina; Gafurov, Dilshod; Gismatulina, Liliya

    2017-04-01

    Previous studies have shown that precipitation anomalies and raising of temperature trends were deteriorate affected on large-scale of vegetation surveys in Central Asia (CA). Nowadays, remote sensing techniques can provide estimation of Net and Gross Primary Productivity (NPP & GPP) for regional and global scales, and selected zones in CA (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) dominated by C4 plants (biomes) what it reveals more accurately simulate C4 carbon. The estimation of NPP & GPP from source (MOD17A2/A3) would be beneficial to determine natural driver factors, whether on rangeland ecosystem is a carbon sink or source, such as a vast area of the selected zones incorporates exacerbate regional drought-risk factors nowadays. Generally, we have combined last available NPP & GPP (2000-2015) with 1 km resolution from MODIS, with investigation of long-term vegetation patterns under Normalized Difference Vegetation Indices (NDVI) with 8 km resolution from AVHRR-GIMMS 3g sources (2001-2015) within aim to estimate potential values of rangeland ecosystems. Interaction ratios of NPP/GPP are integrating more accurately describe carbon sink process under natural or anthropogenic factors, specifically last results of NDVI trends were described as decreasing trends due to climate anomalies, besides the eastern and northern parts of CA (mostly boreal forest zones) where accumulated or indicated of raising trends of NDVI in last three years (2012-2015). Results revealed that, in CA were averaged annually value NDVI ranges from 0.19-0.21; (Kyrgyzstan: 0.23-0.26; Kazakhstan: 0.21-0.24; Tajikistan: 0.19-0.21); and resting countries as low NDVI accumulated areas were Turkmenistan and Uzbekistan ranges 0.13-0.16; Comparing datasets of GPP given the response dynamic change structures of NDVI values and explicit carbon uptake (CO2) in arid ecosystems and average GPPyearlyin CA ranges 2.42 kg C/m2; including to Tajikistan, Uzbekistan (3.09 kg C/m2) and

  15. GPP estimates in a biodiesel crop using MERIS products

    NASA Astrophysics Data System (ADS)

    Sánchez, M. L.; Pardo, N.; Pérez, I.; García, M. A.; Paredes, V.

    2012-04-01

    Greenhouse gas emissions in Spain in 2008-2009 were 34.3 % higher than the base-year level, significantly above the burden-sharing target of 15 % for the period 2008-2012. Based on this result, our country will need to make a major effort to meet the committed target on time using domestic measures as well as others foreseen in the Kyoto Protocol, such as LULUFC activities. In this framework, agrofuels, in other words biofuels produced by crops that contain high amounts of vegetable oil such as sorghum, sunflower, rape seed and jatropha, appear to be an interesting mitigation alternative. Bearing in mind the meteorological conditions in Spain, sunflower and rape seed in particular are considered the most viable crops. Sunflower cultivated surface in Spain has remained fairly constant in recent years, in contrast to rapeseed crop surface which, although still scarce, has followed an increasing trend. In order to assess rape seed ability as a CO2 sink as well as to describe GPP dynamic evolution, we installed an eddy correlation station in an agricultural plot of the Spanish plateau. Measurements at the plot consisted of 30-min NEE flux measurements (using a LI-7500 and a METEK USA-1 sonic anemometer) as well as other common meteorological variables. Measurements were performed from March to October. This paper presents the results of the GPP 8-d estimated values using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MERIS, the PAR in situ measurements, and a scalar f varying, between 0 and 1, to take into account the reduction of the maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. The f values were assumed to be dependent on air temperature and the evaporative fraction, EF, which was considered as a proxy of soil moisture. ɛ0, a key parameter, which depends on biome types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites

  16. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis

    Treesearch

    Kevin Schaefer; Christopher R. Schwalm; Chris Williams; M. Altaf Arain; Alan Barr; Jing M. Chen; Kenneth J. Davis; Dimitre Dimitrov; Timothy W. Hilton; David Y. Hollinger; Elyn Humphreys; Benjamin Poulter; Brett M. Raczka; Andrew D. Richardson; Alok Sahoo; Peter Thornton; Rodrigo Vargas; Hans Verbeeck; Ryan Anderson; Ian Baker; T. Andrew Black; Paul Bolstad; Jiquan Chen; Peter S. Curtis; Ankur R. Desai; Michael Dietze; Danilo Dragoni; Christopher Gough; Robert F. Grant; Lianhong Gu; Atul Jain; Chris Kucharik; Beverly Law; Shuguang Liu; Erandathie Lokipitiya; Hank A. Margolis; Roser Matamala; J. Harry McCaughey; Russ Monson; J. William Munger; Walter Oechel; Changhui Peng; David T. Price; Dan Ricciuto; William J. Riley; Nigel Roulet; Hanqin Tian; Christina Tonitto; Margaret Torn; Ensheng Weng; Xiaolu Zhou

    2012-01-01

    Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States...

  17. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  18. Quantifying the Uncertainties of MODIS GPP and ET Products under Different Land Cover Types across North America

    NASA Astrophysics Data System (ADS)

    Yang, J.; Brunsell, N. A.

    2016-12-01

    Satellite remote sensing products play a significant role in studying large scale carbon and hydrological cycle. MOD 17 and MOD 16 with a 1-km resolution has been providing continuous global estimate of terrestrial gross primary production (GPP) and evapotranspiration (ET) respectively. There has been a significant amount of validation of the two products over the globe, most of which focusing on single product or specific sites. However, carbon and water cycle are deeply interconnected; a combined validation is in need to better understand their processes and relationship. We classified available flux towers in North America into six groups according to their land cover types. To reduce the uncertainty originated from the mismatch between MODIS grids and tower measurement, we estimated the footprints of the towers and did a weighted average for the grids corresponding to the flux footprint. The flux towers' measurements being used as ground truth, we quantified the uncertainties of the MODIS products for the typical land covers across the continent. Specifically, we calculated the bias, root mean square error and correlation coefficient. This could be useful reference when using these products in models or for refinement of MODIS products algorithm. We also used Bayesian methodology for uncertainty analysis, and quantified the bias as function of soil moisture content and temperature. Overall speaking, the MODIS products reflect the seasonal variation. Results also indicate that the MOD17 overestimates GPP up to 100 % and MOD16 underestimates ET in growing season and the performance of the products varies with different vegetation. Studying the ability of satellites to monitor carbon and water cycling is important for our understanding and addressing global and regional climate change issues.

  19. Gross Primary Productivity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's new Moderate-resolution Imaging Spectroradiometer (MODIS) allows scientists to gauge our planet's metabolism on an almost daily basis. GPP, gross primary production, is the technical term for plant photosynthesis. This composite image over the continental United States, acquired during the period March 26-April 10, 2000, shows regions where plants were more or less productive-i.e., where they 'inhaled' carbon dioxide and then used the carbon from photosynthesis to build new plant structures. This false-color image provides a map of how much carbon was absorbed out of the atmosphere and fixed within land vegetation. Areas colored blue show where plants used as much as 60 grams of carbon per square meter. Areas colored green and yellow indicate a range of anywhere from 40 to 20 grams of carbon absorbed per square meter. Red pixels show an absorption of less than 10 grams of carbon per square meter and white pixels (often areas covered by snow or masked as urban) show little or no absorption. This is one of a number of new measurements that MODIS provides to help scientists understand how the Earth's landscapes are changing over time. Scientists' goal is use of these GPP measurements to refine computer models to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. The GPP will be an integral part of global carbon cycle source and sink analysis, an important aspect of Kyoto Protocol assessments. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  20. Gross Primary Productivity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's new Moderate-resolution Imaging Spectroradiometer (MODIS) allows scientists to gauge our planet's metabolism on an almost daily basis. GPP, gross primary production, is the technical term for plant photosynthesis. This composite image over the continental United States, acquired during the period March 26-April 10, 2000, shows regions where plants were more or less productive-i.e., where they 'inhaled' carbon dioxide and then used the carbon from photosynthesis to build new plant structures. This false-color image provides a map of how much carbon was absorbed out of the atmosphere and fixed within land vegetation. Areas colored blue show where plants used as much as 60 grams of carbon per square meter. Areas colored green and yellow indicate a range of anywhere from 40 to 20 grams of carbon absorbed per square meter. Red pixels show an absorption of less than 10 grams of carbon per square meter and white pixels (often areas covered by snow or masked as urban) show little or no absorption. This is one of a number of new measurements that MODIS provides to help scientists understand how the Earth's landscapes are changing over time. Scientists' goal is use of these GPP measurements to refine computer models to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. The GPP will be an integral part of global carbon cycle source and sink analysis, an important aspect of Kyoto Protocol assessments. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  1. Linking climate, gross primary productivity, and site index across forests of the western United States

    Treesearch

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  2. Towards 250 m mapping of terrestrial primary productivity over Canada

    NASA Astrophysics Data System (ADS)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  3. The ratio of NPP to GPP: evidence of change over the course of stand development

    Treesearch

    Annikki Makela; Harry T. Valentine

    2001-01-01

    Using Scots pine (Pinus sylvestris L.) in Fenno-Scandia as a case study, we investigate whether net primary production (NPP) and maintenance respiration are constant fractions of gross primary production (GPP) as even-aged mono-specific stands progress from initiation to old age. A model of the ratio of NPP to GPP is developed based on (1) the...

  4. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    PubMed Central

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A.; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D.; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S.; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B.; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M.; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Olesen, Jørgen E.; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E.; Vaccari, Francesco P.; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Yan, Liming; Luo, Yiqi

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. PMID:25730847

  5. Joint control of terrestrial gross primary productivity by plant phenology and physiology.

    PubMed

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J; Olesen, Jørgen E; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E; Urbaniak, Marek; Vaccari, Francesco P; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Wohlfahrt, Georg; Yan, Liming; Luo, Yiqi

    2015-03-03

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.

  6. Retrievals of Chlorophyll Fapar for Improved Crop Gpp Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Cheng, Y. B.; Wang, Y.; Lyapustin, A.; Yao, T.

    2014-12-01

    Accurate estimation of crop gross primary productivity (GPP) is important. We have recently developed an algorithm to derive fAPAR of chlorophyll (fAPARchl), fAPAR of foliage (fAPARfoliage) and chlorophyll LAI (LAIchl) with PROSAIL2. The MODIS surface reflectance produced with MAIAC were utilized to retrieve fAPARchl, fAPARfoliage and LAIchl for three AmeriFlux sites of maize and soybean. MOD15A2 FPAR and the retrieved fAPARchl were compared with field fAPARcanopy and the fraction of PAR absorbed by green leaves of the vegetation (fAPARgreen). MOD15A2 FPAR overestimated field fAPARcanopy in spring and in fall, and underestimated field fAPARcanopy in midsummer whereas fAPARchl correctly captured the seasonal phenology. The retrieved fAPARchl agreed well with field fAPARgreen at early crop growth stage in June, and was less than field fAPARgreen in late July, August and September, which is consistent with crop physiology theory. GPP estimates with fAPARchl and with MOD15A2 FPAR were compared to tower flux GPP. GPP simulated with fAPARchl was corroborated with tower flux GPP. Improvements in crop GPP estimation were achieved by replacing MOD15A2 FPAR with fAPARchl which also reduced uncertainties of crop GPP estimates by 1.12 - 2.37 g C m-2 d-1. NDVI, EVI, WDRVIgreen, and CIgreen have also been employed to estimate GPP by other scientific teams. We investigated the scaling factors and offsets (i.e., regression slopes and offsets) between fAPARchl and the VIs. The results showed that the scaled EVI obtained the best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved across sites, crop types and soil/background wetness conditions, compared to the original un-scaled VIs. The scaled green band indices (WDRVIgreen, CIgreen) did not exhibit superior performance to either the scaled EVI or NDVI in estimating crop daily GPP at these agricultural fields. MOD15A2 LAI and the retrieved LAIchl were implemented into CLM to simulate GPP, respectively

  7. Seasonal and interannual patterns in primary production ...

    EPA Pesticide Factsheets

    Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS, Weeks Bay AL and Apalachicola Bay FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER) and net ecosystem metabolism (NEM) using Odum's open water method. The three systems present a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as 2 orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, gross primary production (GPP) and ecosystem respiration (ER) displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2 m-2 d-1 52 in all three estuaries. To our knowledge, this is the only study examining long term trends in rates of GPP, ER and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was high

  8. Comparing Simulated and Observed Gross Primary Productivity

    NASA Astrophysics Data System (ADS)

    Schaefer, K.

    2009-12-01

    As part of the North American Carbon Program (NACP) Site-level Interim Synthesis, we compare simulated and observed Gross Primary Productivity (GPP) from 21 models at 36 eddy covariance flux towers. Evaluation of terrestrial carbon models typically include comparison of simulated and observed Net Ecosystem Exchange (NEE) at eddy covariance Flux towers, but such comparisons rarely include ecosystem respiration (Re) and GPP because they are not directly measured and must be estimated from observed NEE. All 21 models participating in the NACP Site-Level Interim Synthesis ran simulations at each tower using a standard simulation protocol with gap-filled observed weather. The observed NEE at all 36 towers are partitioned into Re and GPP using a standard procedure. The gap-filled observed NEE, Re, and GPP include estimated uncertainties at multiple time scales due to random variability, gap-filling technique, friction velocity filtering, and flux partitioning. We quantify each model’s performance in reproducing the estimated GPP using uncertainty weighted cost functions, root-mean-square error (bias), correlations, and Taylor diagrams at the diurnal, seasonal, and annual time scales. We relate model performance to model characteristics, such as the type of photosynthesis model (light use efficiency vs. stomatal conductance), phenology (diagnostic vs. prognostic), values of common parameters, and representation of the physical environment (soil temperature, soil moisture, and vapor pressure deficit).

  9. Global GPP based on Plant Functional Types

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank; Balzarolo, Manuela

    2016-04-01

    Vegetation variables like Gross Primary productivity (GPP) and the Normalized Difference Vegetation Index (NDVI) are key variables in vegetation carbon exchange studies. Field measurements of the NDVI are time consuming due to landscape heterogeneity across time. Typically a sampling protocol adopted during field campaigns is based on the VALERI protocol in that case toe estimate LAI. Field campaign GPP or NDVI measurements can be scaled up to using in-situ FLUXNET radiation raster maps. Regression analysis can then be applied to construct transfer functions for the determination of GPP raster maps raster imagery from Normalized Difference Vegetation Index (NDVI) raster maps derived from in-situ FLUXNET radiation raster maps. Subsequently, in the VALERI approach the scaling up of raster maps is performed by aggregation of high resolution in-situ FLUXNET radiation raster maps data into high resolution raster maps and subsequently aggregating these to 1x1 km MODIS NDVI raster maps by calculating average NDVI values for the low resolution data. The up-scaled 1x1 km pixels are then used to validate the MODIS GPP and NVI products. Hence up scaling based on in-situ FLUXNET radiation measurements are not a luxury for large and heterogeneous sites. Therefore this paper tackles the problem of up scaling using in-situ FLUXNET radiation measurements. Key Words: FLUXNET, GPP, Plant Functional Types, Up-scaling

  10. A spatial implementation of the BIOME-BGC to model grassland GPP production and water budgets in the Ecuadorian Andean Region

    NASA Astrophysics Data System (ADS)

    Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Mynett, Arthur

    2016-04-01

    Many terrestrial biogeochemistry process models have been applied around the world at different scales and for a large range of ecosystems. Grasslands, and in particular the ones located in the Andean Region are essential ecosystems that sustain important ecological processes; however, just a few efforts have been made to estimate the gross primary production (GPP) and the hydrological budgets for this specific ecosystem along an altitudinal gradient. A previous study, which is one of the few available in the region, considered the heterogeneity of the main properties of the páramo vegetation and showed significant differences in plant functional types, site/soil parameters and daily meteorology. This study extends the work above mentioned and uses spatio-temporal analysis of the BIOME-BGC model results. This was done to simulate the GPP and the water fluxes in space and time, by applying altitudinal analysis. The catchment located at the southwestern slope of the Antisana volcano in Ecuador was selected as a representative area of the Andean páramos and its hydrological importance as one of the main sources of a water supply reservoir in the region. An accurate estimation of temporal changes in GPP in the region is important for carbon budget assessments, evaluation of the impact of climate change and biomass productivity. This complex and yet interesting problem was integrated by the ecosystem process model BIOME-BGC, the results were evaluated and associated to the land cover map where the growth forms of vegetation were identified. The responses of GPP and the water fluxes were not only dependent on the environmental drivers but also on the ecophysiology and the site specific parameters. The model estimated that the GPP at lower elevations doubles the amount estimated at higher elevations, which might have a large implication during extrapolations at larger spatio-temporal scales. The outcomes of the stand hydrological processes demonstrated a wrong

  11. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis

    NASA Astrophysics Data System (ADS)

    Schaefer, Kevin; Schwalm, Christopher R.; Williams, Chris; Arain, M. Altaf; Barr, Alan; Chen, Jing M.; Davis, Kenneth J.; Dimitrov, Dimitre; Hilton, Timothy W.; Hollinger, David Y.; Humphreys, Elyn; Poulter, Benjamin; Raczka, Brett M.; Richardson, Andrew D.; Sahoo, Alok; Thornton, Peter; Vargas, Rodrigo; Verbeeck, Hans; Anderson, Ryan; Baker, Ian; Black, T. Andrew; Bolstad, Paul; Chen, Jiquan; Curtis, Peter S.; Desai, Ankur R.; Dietze, Michael; Dragoni, Danilo; Gough, Christopher; Grant, Robert F.; Gu, Lianhong; Jain, Atul; Kucharik, Chris; Law, Beverly; Liu, Shuguang; Lokipitiya, Erandathie; Margolis, Hank A.; Matamala, Roser; McCaughey, J. Harry; Monson, Russ; Munger, J. William; Oechel, Walter; Peng, Changhui; Price, David T.; Ricciuto, Dan; Riley, William J.; Roulet, Nigel; Tian, Hanqin; Tonitto, Christina; Torn, Margaret; Weng, Ensheng; Zhou, Xiaolu

    2012-09-01

    Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0°C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low-temperature response to shut down GPP for temperatures below 0°C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf-to-canopy scaling and better values of model parameters that control the maximum potential GPP, such asɛmax (LUE), Vcmax (unstressed Rubisco catalytic capacity) or Jmax (the maximum electron transport rate).

  12. Multiscale analyses of solar-induced florescence and gross primary production

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed solar induced fluorescence (SIF) has shown great promise for probing spatiotemporal variations in terrestrial gross primary production (GPP), the largest component flux of the global carbon cycle. However, scale mismatches between SIF and ground-based GPP have posed challenges toward...

  13. Variability in light-use efficiency for gross primary productivity on Great Plains grasslands

    USDA-ARS?s Scientific Manuscript database

    Gross primary productivity (GPP) often is estimated at regional scales by multiplying the amount of photosynthetically active radiation (PAR) absorbed by the plant canopy (PARa) by light-use efficiency (eg; GPP/PARa). Mass flux techniques are being used to calculate eg. Flux-based estimates of eg ...

  14. Validation and improvement of MODIS Gross Primary Productivity in typical forest ecosystems of East Asia based on eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; He, M.; Ju, W.

    2011-12-01

    Terrestrial carbon cycle plays an important role in global climate change. As a key component of terrestrial carbon cycle, gross primary productivity (GPP) is a major determinant of carbon exchange between the atmosphere and terrestrial ecosystems. Because of the large spatial heterogeneity and temporal dynamics of ecosystems, it is a challenge to estimate GPP at global or regional scales. 8-day MODIS GPP product provides a real time estimate of global GPP. However, many previous studies indicated that MODIS GPP has large uncertainties, which was partly caused by biases in maximum light use efficiency and meteorological data inputs, including VPD, air temperature, and photosynthetically active radiation (PAR). In this study, MODIS GPP of six typical forest ecosystems in East Asia was validated using GPP derived from the eddy covariance flux measurements. The validation indicated that MODIS GPP was significantly underestimated in the forest ecosystems of East Asia. The underestimation is generally more serious in growing seasons than in non-growing seasons and becomes more obvious from the south to the north. By using observed meteorological data, smoothed fPAR and optimized maximum light use efficiency (ɛmax), predicted GPP with MOD17 algorithm consistently matched well with measured GPP. Smoothed fPAR definitely reduced underestimation of annual GPP, and the optimized ɛmax improved annual GPP more significantly, indicating that the errors in MODIS GPP of forest ecosystems in East Asia can be mainly attributed to the uncertainties of ɛmax. Optimized ɛmax are generally higher than that used for producing MODIS GPP product. The optimized ɛmax changes significantly with forest types. It even exhibits distinct seasonal variations for a specific forest. Key words: Gross Primary Productivity, MODIS, Maximum light use efficiency, East Asia, Forest ecosystem Correspondence author:Weimin Ju Email:juweimin@nju.edu.cn

  15. Estimation of gross primary production capacity from global satellite observations

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Thanyapraneedkul, Juthasinee; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa

    2012-10-01

    To estimate gross primary production (GPP), the process of photosynthesis was considered as two separate phases: capacity and reduction. The reduction phase is influenced by environmental conditions such as soil moisture and weather conditions such as vapor pressure differences. For a particular leaf, photosynthetic capacity mainly depends on the amount of chlorophyll and the RuBisCO enzyme. The chlorophyll content can be estimated by the color of the leaf, and leaf color can be detected by optical sensors. We used the chlorophyll content of leaves to estimate the level of GPP. A previously developed framework for GPP capacity estimation employs a chlorophyll index. The index is based on the linear relationship between the chlorophyll content of a leaf and the maximum photosynthesis at PAR =2000 (μmolm -2s-1) on a light-response curve under low stress conditions. As a first step, this study examined the global distribution of the index and found that regions with high chlorophyll index values in winter corresponded to tropical rainforest areas. The seasonal changes in the chlorophyll index differed from those shown by the normalized difference vegetation index. Next, the capacity of GPP was estimated from the light-response curve using the index. Most regions exhibited a higher GPP capacity than that estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, except in areas of tropical rainforest, where the GPP capacity and the MODIS GPP estimates were almost identical.

  16. GPP in Loblolly Pine: A Monthly Comparison of Empirical and Process Models

    Treesearch

    Christopher Gough; John Seiler; Kurt Johnsen; David Arthur Sampson

    2002-01-01

    Monthly and yearly gross primary productivity (GPP) estimates derived from an empirical and two process based models (3PG and BIOMASS) were compared. Spatial and temporal variation in foliar gas photosynthesis was examined and used to develop GPP prediction models for fertilized nine-year-old loblolly pine (Pinus taeda) stands located in the North...

  17. Primary Productivity in Meduxnekeag River, Maine, 2005

    USGS Publications Warehouse

    Goldstein, Robert M.; Schalk, Charles W.; Kempf, Joshua P.

    2009-01-01

    During August and September 2005, dissolved oxygen, temperature, pH, specific conductance, streamflow, and light intensity (LI) were determined continuously at six sites defining five reaches on Meduxnekeag River above and below Houlton, Maine. These data were collected as input for a dual-station whole-stream metabolism model to evaluate primary productivity in the river above and below Houlton. The river receives nutrients and organic matter from tributaries and the Houlton wastewater treatment plant (WWTP). Model output estimated gross and net primary productivity for each reach. Gross primary productivity (GPP) varied in each reach but was similar and positive among the reaches. GPP was correlated to LI in the four reaches above the WWTP but not in the reach below. Net primary productivity (NPP) decreased in each successive downstream reach and was negative in the lowest two reaches. NPP was weakly related to LI in the upper two reaches and either not correlated or negatively correlated in the lower three reaches. Relations among GPP, NPP, and LI indicate that the system is heterotrophic in the downstream reaches. The almost linear decrease in NPP (the increase in metabolism and respiration) indicates a cumulative effect of inputs of nutrients and organic matter from tributaries that drain agricultural land, the town of Houlton, and the discharges from the WWTP.

  18. Effect of changing ice cover on aquatic primary production

    NASA Astrophysics Data System (ADS)

    Hamdan, Mohammed; Hotchkiss, Erin; Ask, Jenny; Haidery, Mohammed; Byström, Pär; Karlsson, Jan

    2017-04-01

    Ice cover is a key feature of many aquatic ecosystems that is expected to change with climate warming. Yet, very little is known about what controls key processes (e.g. gross primary production; GPP) under ice and how that will change with altered ice cover dynamics. Elevated carbon dioxide (CO2) concentrations that build up under ice may stimulate GPP as light conditions and nutrients are sufficient. We tested this prediction in a large scale experimental pond ecosystem in northern Sweden where we measured whole-ecosystem GPP from late winter to spring ice break-up in 8 (130 m3) enclosures. In 4 enclosures we manipulated ice cover to simulate earlier ice break-up by 2 weeks; 4 enclosures experienced ambient ice conditions. The effect of ice cover on CO2 and other environmental variables (light, nutrients, temperature) on GPP was measured throughout the season. During the ice cover period with light levels sufficient for photosynthesis, the temporal variability in GPP was positively correlated to CO2 and negatively correlated to light. Before ice cover manipulation, the highest GPP coincided with peak CO2 concentration and the lowest light intensity. On the other hand, the lowest GPP value and CO2 concentration were in the beginning of ice free season with the highest light intensity. The important role of CO2 availability was confirmed by the experimental manipulation of ice coverage, which decreased CO2 concentrations and GPP relative to control enclosures. The results suggest that aquatic GPP responses to changing ice cover during the spring thaw period and can be relatively high and depends on the accumulated CO2 during winter.

  19. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands

    USGS Publications Warehouse

    Zhang, L.; Wylie, B.; Loveland, T.; Fosnight, E.; Tieszen, L.L.; Ji, L.; Gilmanov, T.

    2007-01-01

    Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results. In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub

  20. Satellite Driven Estimation of Primary Productivity of Agroecosystems in India

    NASA Astrophysics Data System (ADS)

    Patel, N. R.; Dadhwal, V. K.; Agrawal, S.; Saha, S. K.

    2011-08-01

    Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as gross primary productivity (GPP) and net primary production (NPP) over terrestrial ecosystems, including agriculture. The present study therefore evaluate satellite-driven vegetation photosynthesis (VPM) model for GPP estimation over agro-ecosystems in India by using time series of the Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION, cloud cover observation from MODIS, coarse-grid C3/C4 crop fraction and decadal grided databases of maximum and minimum temperatures. Parameterization of VPM parameters e.g. maximum light use efficiency (ɛ*) and Tscalar was done based on eddy-covariance measurements and literature survey. Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper Indo-Gangetic plains had the highest magnitude of GPP with peak GPP during kharif occurs in sugarcane-wheat system (western UP) and it occurs in rice-wheat system (Punjab) during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2) and NPP (> 600 g C m-2) due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859 Pg C year-1, respectively. Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-2). Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat system and validating with eddy-covariance measurements.

  1. Remote sensing evaluation of CLM4 GPP for the period 2000 to 2009

    SciTech Connect

    Mao, Jiafu; Thornton, Peter E; Shi, Xiaoying; Zhao, Maosheng; Post, Wilfred M

    2012-01-01

    The ability of a process-based ecosystem model like Version 4 of the Community Land Model (CLM4) to provide accurate estimates of CO2 flux is a top priority for researchers, modelers and policy makers. Remote sensing can provide long-term and large scale products suitable for ecosystem model evaluation. Global estimations of gross primary production (GPP) at the 1 km spatial resolution from years 2000 to 2009 from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor offer a unique opportunity for evaluating the temporal and spatial patterns of global GPP and its relationship with climate for CLM4. We compare monthly GPP simulated by CLM4 at half-degree resolution with satellite estimates of GPP from the MODIS GPP (MOD17) dataset for the 10-yr period, January 2000 December 2009. The assessment is presented in terms of long-term mean carbon assimilation, seasonal mean distributions, amplitude and phase of the annual cycle, and intra-annual and inter-annual GPP variability and their responses to climate variables. For the long-term annual and seasonal means, major GPP patterns are clearly demonstrated by both products. Compared to the MODIS product, CLM4 overestimates the magnitude of GPP for tropical evergreen forests. CLM4 has longer carbon uptake period than MODIS for most plant functional types (PFTs) with an earlier onset of GPP in spring and later decline of GPP in autumn. Empirical Orthogonal Function (EOF) analysis of the monthly GPP changes indicates that on the intra-annual scale, both CLM4 and MODIS display similar spatial representations and temporal patterns for most terrestrial ecosystems except in northeast Russia and the very dry region in central Australia. For 2000-2009, CLM4 simulates increases in annual averaged GPP over both hemispheres, however estimates from MODIS suggest a reduction in the Southern Hemisphere (-0.2173 PgC/year) balancing the significant increase over the Northern Hemisphere (0.2157 PgC/year).

  2. Dominant role of plant physiology in trend and variability of gross primary productivity in North America

    NASA Astrophysics Data System (ADS)

    Zhou, Sha; Zhang, Yao; Ciais, Philippe; Xiao, Xiangming; Luo, Yiqi; Caylor, Kelly K.; Huang, Yuefei; Wang, Guangqian

    2017-02-01

    Annual gross primary productivity (GPP) varies considerably due to climate-induced changes in plant phenology and physiology. However, the relative importance of plant phenology and physiology on annual GPP variation is not clear. In this study, a Statistical Model of Integrated Phenology and Physiology (SMIPP) was used to evaluate the relative contributions of maximum daily GPP (GPPmax) and the start and end of growing season (GSstart and GSend) to annual GPP variability, using a regional GPP product in North America during 2000-2014 and GPP data from 24 AmeriFlux sites. Climatic sensitivity of the three indicators was assessed to investigate the climate impacts on plant phenology and physiology. The SMIPP can explain 98% of inter-annual variability of GPP over mid- and high latitudes in North America. The long-term trend and inter-annual variability of GPP are dominated by GPPmax both at the ecosystem and regional scales. During warmer spring and autumn, GSstart is advanced and GSend delayed, respectively. GPPmax responds positively to summer temperature over high latitudes (40-80°N), but negatively in mid-latitudes (25-40°N). This study demonstrates that plant physiology, rather than phenology, plays a dominant role in annual GPP variability, indicating more attention should be paid to physiological change under futher climate change.

  3. Dominant role of plant physiology in trend and variability of gross primary productivity in North America

    PubMed Central

    Zhou, Sha; Zhang, Yao; Ciais, Philippe; Xiao, Xiangming; Luo, Yiqi; Caylor, Kelly K.; Huang, Yuefei; Wang, Guangqian

    2017-01-01

    Annual gross primary productivity (GPP) varies considerably due to climate-induced changes in plant phenology and physiology. However, the relative importance of plant phenology and physiology on annual GPP variation is not clear. In this study, a Statistical Model of Integrated Phenology and Physiology (SMIPP) was used to evaluate the relative contributions of maximum daily GPP (GPPmax) and the start and end of growing season (GSstart and GSend) to annual GPP variability, using a regional GPP product in North America during 2000–2014 and GPP data from 24 AmeriFlux sites. Climatic sensitivity of the three indicators was assessed to investigate the climate impacts on plant phenology and physiology. The SMIPP can explain 98% of inter-annual variability of GPP over mid- and high latitudes in North America. The long-term trend and inter-annual variability of GPP are dominated by GPPmax both at the ecosystem and regional scales. During warmer spring and autumn, GSstart is advanced and GSend delayed, respectively. GPPmax responds positively to summer temperature over high latitudes (40–80°N), but negatively in mid-latitudes (25–40°N). This study demonstrates that plant physiology, rather than phenology, plays a dominant role in annual GPP variability, indicating more attention should be paid to physiological change under futher climate change. PMID:28145496

  4. Comparing Temporal Variations in LUE and GPP across Evergreen and Deciduous Forest Types

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hilker, T.; Ju, W.; Coops, N. C.; Black, T. A.; Chen, J.

    2015-12-01

    Estimating gross primary production (GPP) is an important goal of global change research. However, the relationship between GPP and its environmental drivers is highly complex and as a result, accurate modeling of GPP is difficult. One possible technique to help constrain the uncertainties is by using remote sensing data to try and determine the factors driving GPP directly from satellite imagery. In this study, we used GPP from flux data (GPP_EC) and meteorological observations of a deciduous (SOA) and a coniferous evergreen forest (DF-49) to optimize light use efficiency of sunlit (LUEsun) and shaded (LUEshaded) canopies. We based our analysis on the two-leave light use efficiency model (TL-LUE) at daily, 8 day, and 16 day scales by using the Markov chain Monte Carlo (MCMC). The photochemical reflectance index (PRI) of sunlit (PRIsun) and shaded (PRIshaded) leaves was calculated from spectral observations and related to tower based GPP at the three temporal scales. We found that the coefficient of determination (R2) between PRIsun and LUEsun, as well as PRIshaded and LUEshaded at the evergreen forest was lower than that at the deciduous forest. The modeled GPP was closely to the GPP_EC at the three temporal scales. The R2 between the GPP_EC and modeled daily GPP was the highest when using daily measures of LUE, and lowest when uisng16-day LUEsun and LUEshaded. The results indicated that LUE is an important parameter when modeling instantaneous GPP and the short term variations of it. The results help to obtain a better understanding of how many satellite observations are needed to reliably constrain existing GPP models from remote sensing data.

  5. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    Treesearch

    Heather L. Kimball; Paul C. Selmants; Alvaro Moreno; Steve W. Running; Christian P. Giardina; Benjamin Poulter

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the...

  6. Relative Contribution of Major Ecoregions to Inter-annual and Seasonal Variability of Terrestrial Ecosystems Gross Primary Productivity

    NASA Astrophysics Data System (ADS)

    Rafique, R.; Asrar, G.; Zeng, N.; Kalnay, E.; Fang, Z.; West, T. O.

    2016-12-01

    The gross primary productivity (GPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in the global carbon cycle. In this study, we used a combination of MODIS GPP and model-based GPP estimates from eight ISIMIP models for the period of 2001-2010 to study the role of five major ecoregions (China, EU, USA, Amazon and Sahel) in regulating the variability of global GPP. The total global GPP estimated by MODIS (119.1 Pg C y-1) was 14.4 % higher than the total GPP estimated by models ensemble mean (104.1 Pg C yr-1). A moderate consistency between global MODIS and models ensemble mean GPP was observed at inter-annual scale. Among five ecoregions, the Amazon (R = 0.83) and USA (R = 0.80) showed the highest correlation between MODIS and models ensemble mean GPP. At the seasonal scale, consistency between the global MODIS and models ensemble mean GPP was stronger (R=0.99). Among the ecoregions, EU, USA and China showed the highest correlations between MODIS and models ensemble mean GPP, respectively. At inter-annual scale, all five ecoregions contributed, 42.4% based on MODIS and 46.3% based on ensemble, to the global GPP variability. Similarly, at seasonal scale, all five ecoregions contributed, 43.3% based on MODIS and 47.3% based on ensemble, to the global GPP variability. Overall, the Amazon and Sahel contributed the most in controlling the inter-annual and seasonal variability of GPP. Mean seasonal GPP were found to be higher in June, July and August while lower in December, January and February. However, MODIS showed higher GPP than ensemble in all seasons. All models showed discrepancies at various spatiotemporal scales. JULES and DLEM showed much higher GPP values in the tropical areas. The variations among the eight models in simulating GPP are mainly due to the differences in their structures. The model that used Big Leaf process for GPP estimation performed differently than those that used Enzyme Kinetic and Light Use

  7. North American Gross Primary Productivity: Regional Characterization and Interannual Variability

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Denning, A.; Stockli, R.

    2009-12-01

    Seasonality and variability in North American photosynthetic activity are investigated. Using the Simple Biosphere Model (SiB) we simulate 24 years (1983-2006) and evaluate regional and seasonal contribution to annual mean Gross Primary Productivity (GPP) as well as its interannual variability. The largest productivity occurs in tropical Mexico, the southeast U.S. and small areas in the Pacific Northwest. Annual variability is largest in tropical Mexico, the desert Southwest, and the Midwestern corridor that separates the eastern forests from the intermountain west. We find that several areas (Midwest, Northeast, SouthWest, Boreal Canada) have an elevated contribution to interannual variability when compared to other regions, but no single region or season consistently determines continental annual GPP anomaly on an annual basis. GPP variability in NA is highly heterogeneous in space and time. We find that GPP variability is generally dependent upon soil moisture in low- and mid-latitudes, and on temperature in the north. Soil moisture is a better metric than raw precipitation as it integrates precipitation events temporally. EOF analysis shows no significance on an annual basis, but a band from the central plains through New England shows a coherent signal for springtime GPP anomalies. As the springtime anomaly is the largest contributor to the annual GPP variability in almost half of the years simulated (11 of 24), we can posit that this region has significant influence over annual North American GPP variability. However, when regressed against climate modes such as El Nino Southern Oscillation (ENSO), Arctic Oscillation (AO) or Pacific-North America (PNA) patterns, we find that no climate mode can be associated with variability over the entire region highlighted by the EOF analysis. Furthermore, we find that while a general response to temperature is seen (warmer spring implies longer growing season implies anomalous GPP uptake of carbon), in some regions the

  8. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; Qin, Yuanwei; Wang, Jie; Moore, Berrien, III

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  9. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; hide

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  10. Large historical growth in global terrestrial gross primary production.

    PubMed

    Campbell, J E; Berry, J A; Seibt, U; Smith, S J; Montzka, S A; Launois, T; Belviso, S; Bopp, L; Laine, M

    2017-04-05

    Growth in terrestrial gross primary production (GPP)-the amount of carbon dioxide that is 'fixed' into organic material through the photosynthesis of land plants-may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. As a consequence, modelling estimates of terrestrial carbon storage, and of feedbacks between the carbon cycle and climate, remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century that is based on long-term atmospheric carbonyl sulfide (COS) records, derived from ice-core, firn and ambient air samples. We interpret these records using a model that simulates changes in COS concentration according to changes in its sources and sinks-including a large sink that is related to GPP. We find that the observation-based COS record is most consistent with simulations of climate and the carbon cycle that assume large GPP growth during the twentieth century (31% ± 5% growth; mean ± 95% confidence interval). Although this COS analysis does not directly constrain models of future GPP growth, it does provide a global-scale benchmark for historical carbon-cycle simulations.

  11. Large historical growth in global terrestrial gross primary production

    DOE PAGES

    Campbell, J. E.; Berry, J. A.; Seibt, U.; ...

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less

  12. Large historical growth in global terrestrial gross primary production

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-01

    Growth in terrestrial gross primary production (GPP)—the amount of carbon dioxide that is ‘fixed’ into organic material through the photosynthesis of land plants—may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. As a consequence, modelling estimates of terrestrial carbon storage, and of feedbacks between the carbon cycle and climate, remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century that is based on long-term atmospheric carbonyl sulfide (COS) records, derived from ice-core, firn and ambient air samples. We interpret these records using a model that simulates changes in COS concentration according to changes in its sources and sinks—including a large sink that is related to GPP. We find that the observation-based COS record is most consistent with simulations of climate and the carbon cycle that assume large GPP growth during the twentieth century (31% ± 5% growth; mean ± 95% confidence interval). Although this COS analysis does not directly constrain models of future GPP growth, it does provide a global-scale benchmark for historical carbon-cycle simulations.

  13. A global cropland GPP dataset (GCMGPP) with 26 crop types

    NASA Astrophysics Data System (ADS)

    Chen, Tiexi

    2017-04-01

    Croplands cover about 12% of the ice-free terrestrial land surface. Compared with natural ecosystems, croplands have distinct characteristics due to anthropogenic in?uences. Their global gross primary production (GPP) is not well constrained. A dataset known as GCMGPP (Global cropland monthly gross primary production) was built using a light use e?ciency (LUE) model, employing satellite observations and survey data of crop types and distribution. A novel step in our analysis was to assign a maximum light use e?ciency estimate (ɛ*GPP) to each of the 26 di?erent crop types, instead of taking a uniform value as done in the past. These ɛ*GPP values were calculated based on ?ux tower CO2 exchange measurements and a literature survey of ?eld studies, and ranged from 1.20 g C MJ-1 to 2.96 g C MJ-1. Global cropland GPP was estimated to be 11.05 Pg C yr-1 in the year 2000. Maize contributed most to this (1.55 Pg C yr-1), and the continent of Asia contributed most with 38.9% of global cropland GPP. In the continental United States, annual cropland GPP (1.28 Pg C yr-1) was close to values reported previously (1.24 Pg C yr-1) constrained by harvest records, but our estimates of ɛ*GPP values were considerably higher. Our results are sensitive to satellite information and survey data on crop type and extent, but provide a consistent and data-driven approach to generate a look-up table of ɛ*GPP for the 26 crop types for potential use in other vegetation models. The feature of 26 crop types offers a more sophisticated global spatial distribution of GPP than the models using identical crop or C3/C4 crops. Crop GPP based chlorophyll fluorescence and GCMGPP illustrate very consistent spatial patterns and these two datasets are totally independent. GCMGPP also offers an opportunity to quantify the spatial errors of global cropland GPP estimations due to identical value of LUE parameter.

  14. The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2)

    PubMed Central

    Hesketh, Andrew; Chen, Wenqiong Joan; Ryding, Jamie; Chang, Sherman; Bibb, Mervyn

    2007-01-01

    Background Regulation of production of the translational apparatus via the stringent factor ppGpp in response to amino acid starvation is conserved in many bacteria. However, in addition to this core function, it is clear that ppGpp also exhibits genus-specific regulatory effects. In this study we used Affymetrix GeneChips to more fully characterize the regulatory influence of ppGpp synthesis on the biology of Streptomyces coelicolor A3(2), with emphasis on the control of antibiotic biosynthesis and morphological differentiation. Results Induction of ppGpp synthesis repressed transcription of the major sigma factor hrdB, genes with functions associated with active growth, and six of the thirteen conservons present in the S. coelicolor genome. Genes induced following ppGpp synthesis included the alternative sigma factor SCO4005, many for production of the antibiotics CDA and actinorhodin, the regulatory genes SCO4198 and SCO4336, and two alternative ribosomal proteins. Induction of the CDA and actinorhodin clusters was accompanied by an increase in transcription of the pathway regulators cdaR and actII-ORF4, respectively. Comparison of transcriptome profiles of a relA null strain, M570, incapable of ppGpp synthesis with its parent M600 suggested the occurrence of metabolic stress in the mutant. The failure of M570 to sporulate was associated with a stalling between production of the surfactant peptide SapB, and of the hydrophobins: it overproduced SapB but failed to express the chaplin and rodlin genes. Conclusion In S. coelicolor, ppGpp synthesis influences the expression of several genomic elements that are particularly characteristic of streptomycete biology, notably antibiotic gene clusters, conservons, and morphogenetic proteins. PMID:17683547

  15. Change of outlook for the forest productivity estimated with remote sensing using the new Collection 6 GPP/NPP MODIS product

    NASA Astrophysics Data System (ADS)

    Marjanović, Hrvoje; Kern, Anikó; Anić, Mislav; Zorana Ostrogović Sever, Maša; Balenović, Ivan; Alberti, Giorgio; Kovač, Goran; Barcza, Zoltán

    2016-04-01

    Estimates of forest productivity from remote sensing data, such as the MOD17 GPP and NPP values derived from MODIS data, are becoming increasingly important tools for monitoring forest productivity in light of the climate change. Hence, small sensor degradation, like the one in the case of MODIS sensor on-board satellite Terra could lead so significant bias in results and false conclusions of the path that the ecosystem is on. In new Collection 6 (C6) of the MOD17 product, the sensor degradation problem has been addressed compared to the previous version Collection 5.5 (C5.5) products, offering a new outlook on the trends in forest productivity. In our work we compared the C5.5 and C6 for MOD17 GPP and NPP products against estimates from eddy covariance and field measurements ('ground truth') at young Pedunculate oak site in Jastrebarsko forest. In order to assess the outlook of forest productivity at larger scale we intersected in GIS maps of forest areas under management and MODIS pixels with 1km spatial resolution. After selecting only those pixels that have at least 90% forest coverage according to the management plans, we analysed the temporal trends and variability in MODIS derived GPP and NPP both from C5.5 and C6 products. Analysis was performed for four main forests classes according to the dominant tree species (Pedunculate oak, Sessile oak, Common beech and Silver fir).

  16. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years.

    PubMed

    Yao, Yitong; Wang, Xuhui; Li, Yue; Wang, Tao; Shen, Miaogen; Du, Mingyuan; He, Honglin; Li, Yingnian; Luo, Weijun; Ma, Mingguo; Ma, Yaoming; Tang, Yanhong; Wang, Huimin; Zhang, Xianzhou; Zhang, Yiping; Zhao, Liang; Zhou, Guangsheng; Piao, Shilong

    2017-07-20

    The uncertainties of China's gross primary productivity (GPP) estimates by global data-oriented products and ecosystem models justify a development of high-resolution data-oriented GPP dataset over China. We applied a machine learning algorithm developing a new GPP dataset for China with 0.1° spatial resolution and monthly temporal frequency based on eddy flux measurements from 40 sites in China and surrounding countries, most of which have not been explored in previous global GPP datasets. According to our estimates, mean annual GPP over China is 6.62 ± 0.23 PgC/year during 1982-2015 with a clear gradient from southeast to northwest. The trend of GPP estimated by this study (0.020 ± 0.002 PgC/year(2) from 1982 to 2015) is almost two times of that estimated by the previous global dataset. The GPP increment is widely spread with 60% area showing significant increasing trend (p < .05), except for Inner Mongolia. Most ecosystem models overestimated the GPP magnitudes but underestimated the temporal trend of GPP. The monsoon affected eastern China, in particular the area surrounding Qinling Mountain, seems having larger contribution to interannual variability (IAV) of China's GPP than the semiarid northwestern China and Tibetan Plateau. At country scale, temperature is the dominant climatic driver for IAV of GPP. The area where IAV of GPP dominated by temperature is about 42%, while precipitation and solar radiation dominate 31% and 27% respectively over semiarid area and cold-wet area. Such spatial pattern was generally consistent with global GPP dataset, except over the Tibetan Plateau and northeastern forests, but not captured by most ecosystem models, highlighting future research needs to improve the modeling of ecosystem response to climate variations. © 2017 John Wiley & Sons Ltd.

  17. The impact of forest architecture parameterization on GPP simulations

    NASA Astrophysics Data System (ADS)

    Firanj, Ana; Lalic, Branislava; Podrascanin, Zorica

    2015-08-01

    The presence of a forest strongly affects ecosystem fluxes by acting as a source or sink of mass and energy. The objective of this study was to investigate the influence of the vertical forest heterogeneity parameterization on gross primary production (GPP) simulations. To introduce a heterogeneity effect, a new method for the upscaling of the leaf level GPP is proposed. This upscaling method is based on the relationship between the leaf area index ( LAI) and the leaf area density ( LAD) profiles and the standard sun/shade leaf separation method. The effect of the crown shape and foliage distribution parameterization on the simulated GPP is confirmed in a comparison study between the proposed method and the standard sun/shade upscaling method. The observed values used in the comparison study are assimilated during the vegetation period on three distinguished forest eddy-covariance (EC) measurement sites chosen for the diversity of their morphological characteristics. The obtained results show (a) the sensitivity of the simulated GPP to the leaf area density profile, (b) the capability of the proposed scaling method to calculate the contribution of the different canopy layers to the entire canopy GPP, and (c) a better agreement with the observations of the simulated GPP with the proposed upscaling method compared with the standard sun/shade method.

  18. Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Hall, Robert O.; Yackulic, Charles B.; Kennedy, Theodore A.; Yard, Michael D.; Rosi-Marshall, Emma J.; Voichick, Nicholas; Behn, Kathrine E.

    2015-01-01

    Dams and river regulation greatly alter the downstream environment for gross primary production (GPP) because of changes in water clarity, flow, and temperature regimes. We estimated reach-scale GPP in five locations of the regulated Colorado River in Grand Canyon using an open channel model of dissolved oxygen. Benthic GPP dominates in Grand Canyon due to fast transport times and low pelagic algal biomass. In one location, we used a 738 days time series of GPP to identify the relative contribution of different physical controls of GPP. We developed both linear and semimechanistic time series models that account for unmeasured temporal covariance due to factors such as algal biomass dynamics. GPP varied from 0 g O2 m−2 d−1 to 3.0 g O2 m−2 d−1 with a relatively low annual average of 0.8 g O2 m−2d−1. Semimechanistic models fit the data better than linear models and demonstrated that variation in turbidity primarily controlled GPP. Lower solar insolation during winter and from cloud cover lowered GPP much further. Hydropeaking lowered GPP but only during turbid conditions. Using the best model and parameter values, the model accurately predicted seasonal estimates of GPP at 3 of 4 upriver sites and outperformed the linear model at all sites; discrepancies were likely from higher algal biomass at upstream sites. This modeling approach can predict how changes in physical controls will affect relative rates of GPP throughout the 385 km segment of the Colorado River in Grand Canyon and can be easily applied to other streams and rivers.

  19. Assessment of CO2 fluxes and forest productivity (NPP/GPP) estimates from eddy covariance measurement and field observations

    NASA Astrophysics Data System (ADS)

    Anić, Mislav; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Večenaj, Željko

    2016-04-01

    Eddy covariance (EC) measurements were carried out at the Jastrebarsko site, Croatia, in lowland forest dominated by pedunculate oak. For validation of CO2 fluxes measured with EC method bi-weekly field measurements of increment of 640 trees in 24 plots set in a 100m x 100m grid, height increment and litterfall have been used. In our work we compared annual productivity (GPP and NPP) assessments from EC measurements with field measurements. The comparison was made on a seven year dataset of measurements, spanning from 2008 to 2014. Also, flux dependence on groundwater level has been investigated. Results are showing that forest productivity estimates with EC method are in good agreement with the estimates from field measurements in the dry years. Agreement is slightly lower for years with high precipitation.

  20. Canopy and physiological controls of GPP during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi

    2016-04-01

    Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.

  1. Ozone vegetation damage effects on gross primary productivity in the United States

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.

    2013-12-01

    We apply an off-line process-based vegetation model to assess the impacts of ozone (O3) vegetation damage on gross primary productivity (GPP) in the United States (US) during the past decade (1998-2007). The model's GPP simulation is evaluated at 40 sites of the North American Carbon Program (NACP) synthesis. The ecosystem-scale model version reproduces interannual variability and seasonality of GPP at most sites, especially in croplands. Inclusion of the O3 damage impact decreases biases of simulated GPP at most of the NACP sites. The simulation with the O3 damage effect reproduces 64% of the observed variance in summer GPP and 45% on the annual average. Based on a regional gridded simulation over the US, summertime average O3-free GPP is 5.9 g C m-2 day-1 (9.1 g C m-2 day-1 in the East of 95° W and 3.7 g C m-2 day-1 in the West). O3 damage decreases GPP by 3-7% on average in the eastern US and leads to significant decreases of 13-17% in east coast hotspots. Sensitivity simulations show that a reduction of 25% in surface O3 concentration alleviates the average GPP damages to 1-3%, suggesting a promising prospect for ecosystem health following the emission control.

  2. Ozone vegetation damage effects on gross primary productivity in the United States

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.

    2014-09-01

    We apply an off-line process-based vegetation model (the Yale Interactive Terrestrial Biosphere model) to assess the impacts of ozone (O3) vegetation damage on gross primary productivity (GPP) in the United States during the past decade (1998-2007). The model's GPP simulation is evaluated at 40 sites of the North American Carbon Program (NACP) synthesis. The ecosystem-scale model version reproduces interannual variability and seasonality of GPP at most sites, especially in croplands. Inclusion of the O3 damage impact decreases biases of simulated GPP at most of the NACP sites. The simulation with the O3 damage effect reproduces 64% of the observed variance in summer GPP and 42% on the annual average. Based on a regional gridded simulation over the US, summertime average O3-free GPP is 6.1 g C m-2 day-1 (9.5 g C m-2 day-1 in the east of 95° W and 3.9 g C m-2 day-1 in the west). O3 damage decreases GPP by 4-8% on average in the eastern US and leads to significant decreases of 11-17% in east coast hot spots. Sensitivity simulations show that a 25% decrease in surface O3 concentration halves the average GPP damage to only 2-4%, suggesting the substantial co-benefits to ecosystem health that may be achieved via O3 air pollution control.

  3. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data.

    PubMed

    Ogutu, Booker O; Dash, Jadunandan; Dawson, Terence P

    2013-09-01

    This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4 ) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps ) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R(2)  > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry-grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R(2)  > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps ) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution.

  4. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V cmax) on global gross primary production [The impact of alternative Vcmax trait-scaling hypotheses on global gross primary production

    DOE PAGES

    Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.; ...

    2017-06-23

    Here, the maximum photosynthetic carboxylation rate (Vcmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr–1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27%more » coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes.« less

  5. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models.

    PubMed

    Parazoo, Nicholas C; Bowman, Kevin; Fisher, Joshua B; Frankenberg, Christian; Jones, Dylan B A; Cescatti, Alessandro; Pérez-Priego, Oscar; Wohlfahrt, Georg; Montagnani, Leonardo

    2014-10-01

    Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr(-1) ) and enhanced GPP in tropical forests (~3.7 Pg C yr(-1) ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. © 2014 John Wiley & Sons Ltd.

  6. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax ) on global gross primary production.

    PubMed

    Walker, Anthony P; Quaife, Tristan; van Bodegom, Peter M; De Kauwe, Martin G; Keenan, Trevor F; Joiner, Joanna; Lomas, Mark R; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan; Woodward, F Ian

    2017-09-01

    The maximum photosynthetic carboxylation rate (Vcmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr(-1) , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  7. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Mo, Xingguo; Chen, Xuejuan; Hu, Shi; Liu, Suxia; Xia, Jun

    2017-01-01

    Attributing changes in evapotranspiration (ET) and gross primary productivity (GPP) is crucial for impact and adaptation assessment of the agro-ecosystems to climate change. Simulations with the VIP model revealed that annual ET and GPP slightly increased from 1981 to 2013 over the North China Plain. The tendencies of both ET and GPP were upward in the spring season, while they were weak and downward in the summer season. A complete factor analysis illustrated that the relative contributions of climatic change, CO2 fertilization, and management to the ET (GPP) trend were 56 (-32) %, -28 (25) %, and 68 (108) %, respectively. The decline of global radiation resulted from deteriorated aerosol and air pollution was the principal cause of GPP decline in summer, while air warming intensified the water cycle and advanced the plant productivity in the spring season. Generally, agronomic improvements were the principal drivers of crop productivity enhancement.

  8. Comparison of multiple models for estimating gross primary production using remote sensing data and fluxnet observations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Mo, X.

    2015-05-01

    In this study, gross primary production (GPP) estimated from a temperature and greenness (TG) model, a greenness and radiation (GR) model, a vegetation photosynthesis model (VPM), and a MODIS product have been compared with eddy covariance measurements in cropland during 2003-2005. Results showed that the determination coefficients (R2) between fluxnet GPP and estimated GPP were all greater than 0.74, indicating that all these models offered reliable estimates of GPP. We also found that the VPM-based GPP estimates performed a bit better (R2 is 0.82, and RMSE is 16.75 gC m-2 (8 day)-1) than other models, mainly due to its comprehensive consideration of the stresses from light, temperature and water. The actual GPP was overestimated in the non-growing season and underestimated in the growing season by MOD_GPP. The validation confirms that the above three models may be used to estimate crop production in the North China Plain, but there are still significant uncertainties.

  9. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; Kato, Etsushi; Jain, Atul K.; Wiltshire, Andy; Stocker, Benjamin D.

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  10. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; hide

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  11. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production

    PubMed Central

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julia; Dong, Jinwei; Kato, Etsushi; Jain, Atul K.; Wiltshire, Andy; Stocker, Benjamin D.

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion. PMID:28008960

  12. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julia; Dong, Jinwei; Kato, Etsushi; Jain, Atul K.; Wiltshire, Andy; Stocker, Benjamin D.

    2016-12-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  13. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest

    Treesearch

    Christian P. Giardina; Michael G. Ryan; Dan Binkley; Dan Binkley; James H. Fownes

    2003-01-01

    Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA),...

  14. Net primary production of forests: a constant fraction of gross primary production?

    PubMed

    Waring, R. H.; Landsberg, J. J.; Williams, M.

    1998-02-01

    Considerable progress has been made in our ability to model and measure annual gross primary production (GPP) by terrestrial vegetation. But challenges remain in estimating maintenance respiration (R(m)) and net primary production (NPP). To search for possible common relationships, we assembled annual carbon budgets from six evergreen and one deciduous forest in Oregon, USA, three pine plantations in New South Wales, Australia, a deciduous forest in Massachusetts, USA, and a Nothofagus forest on the South Island of New Zealand. At all 12 sites, a standard procedure was followed to estimate annual NPP of foliage, branches, stems, and roots, the carbon expended in synthesis of these organs (R(g)), their R(m), and that of previously produced foliage and sapwood in boles, branches, and large roots. In the survey, total NPP ranged from 120 to 1660 g C m(-2) year(-1), whereas the calculated fraction allocated to roots varied from 0.22 to 0.63. Comparative analysis indicated that the total NPP/GPP ratio was conservative (0.47 +/- 0.04 SD). This finding supports the possibility of greatly simplifying forest growth models. The constancy of the NPP/GPP ratio also provides an incentive to renew efforts to understand the environmental factors affecting partitioning of NPP above and belowground.

  15. Investigating the controls on Gross Primary Productivity of a high elevation tropical montane cloud forest

    NASA Astrophysics Data System (ADS)

    van de Weg, M. J.; Meir, P.; Malhi, Y.; Williams, M.; Silva-Espejo, J.; Grace, J.

    2012-04-01

    Tropical montane cloud forests (TMCF) are a unique, but little understood ecosystem that can be found in tropical mountainous areas around the world. In recent years, the interest in the carbon (C) cycle of TMCFs has increased, especially with regard to possibilities for carbon sequestration and storage practices. Compared with tropical lowland rainforests, these forests have a low aboveground net primary productivity (ANPP), a small standing biomass and a small leaf area index (LAI), while the forests are characterized by the stunted growth form of the trees. However, estimates of gross primary productivity (GPP) of TMCFs are scarce, and there are uncertainties in what factors are most important in controlling TMCF productivity. We investigated the controlling factors on GPP in a TMCF in the Andes in south east Peru (13°11'28"S / 71°35'24"W). First, we measured physiological and structural parameters of the vegetation. On a leaf level, the carboxylation efficiency of Rubisco (V cmax) and the electron transport capacity (Jmax) were as high as those found in tropical lowland forests, but as expected the LAI was smaller. Therefore, in terms of the capacity for TMCF C uptake, the total leaf area is more important in explaining the difference between TMCF GPP and tropical lowland forest GPP, than photosynthetic capacity of the leaf tissue. Furthermore, we used the vegetation parameters, together with meteorological data from the site with a process based simulator (the SPA model) to simulate TMCF GPP and to evaluate the relative importance of the environmental controls on GPP. To our knowledge, this is the first estimate of TMCF GPP that uses parameters and drivers that are derived from the site simulated in the model. Simulated annual GPP was 16.2 ± SE 1.6 t C ha-1 yr-1, which is about half of the GPP commonly observed in neotropical lowland rainforests. Temperature and, to a lesser extent photosynthetic active radiation (PAR), were the strongest environmental

  16. Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat

    NASA Astrophysics Data System (ADS)

    Williams, Ian N.; Riley, William J.; Kueppers, Lara M.; Biraud, Sebastien C.; Torn, Margaret S.

    2016-07-01

    Gross primary productivity (GPP) has been reported to increase with the fraction of diffuse solar radiation, for a given total irradiance. The correlation between GPP and diffuse radiation suggests effects of diffuse radiation on canopy light-use efficiency, but potentially confounding effects of vegetation phenology have not been fully explored. We applied several approaches to control for phenology, using 8 years of eddy-covariance measurements of winter wheat in the U.S. Southern Great Plains. The apparent enhancement of daily GPP due to diffuse radiation was reduced from 260% to 75%, after subsampling over the peak growing season or by subtracting a 15 day moving average of GPP, suggesting a role of phenology. The diffuse radiation effect was further reduced to 22% after normalizing GPP by a spectral reflectance index to account for phenological variations in leaf area index LAI and canopy photosynthetic capacity. Canopy photosynthetic capacity covaries with diffuse fraction at a given solar irradiance at this site because both factors are dependent on day of year or solar zenith angle. Using a two-leaf Sun-shaded canopy radiative transfer model, we confirmed that the effects of phenological variations in photosynthetic capacity can appear qualitatively similar to the effects of diffuse radiation on GPP and therefore can be difficult to distinguish using observations. The importance of controlling for phenology when inferring diffuse radiation effects on GPP raises new challenges and opportunities for using radiation measurements to improve carbon cycle models.

  17. Remote Estimation of Gross Primary Production in Crops at Field and Regional Levels

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Vina, A.; Verma, S. B.; Rundquist, D. C.

    2007-12-01

    Accurate estimation of spatially distributed CO2 fluxes is of great importance for regional and global studies of carbon balance. We have found that in irrigated and rainfed crops (maize and soybean), GPP is closely related to total crop chlorophyll content. The finding allowed development of a new technique for remote estimation of crop chlorophyll specifically for assessing gross primary production. The technique is based on reflectance in two spectral channels: the near-infrared and either the green or the red-edge. The technique provided accurate estimations of daily GPP in both crops. Validation using independent datasets for irrigated and rainfed maize and soybean documented the robustness of the technique. We report also about applying the developed technique for GPP retrieval from data acquired by both an airborne imaging spectrometer (AISA-Eagle) and Landsat ETM+. The Chlorophyll Index, retrieved from Landsat ETM+ data, was found to be an accurate surrogate measure for daily crop GPP with a root mean square error of GPP prediction of less than 1.58 g C m-2d-1 in a GPP range of 1.88 g C m-2d-1 to 23.1 g C m-2d-1. These results suggest new possibilities for analyzing the spatio-temporal variation of the GPP of crops using not only the extensive archive of Landsat Thematic Mapper imagery acquired since the early 1980s but also the 500-m/pixel data currently being acquired by MODIS.

  18. Revising estimates of global GPP using new information from eddy covariance and satellite datasets

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jin, Y.; Goulden, M. L.; Randerson, J. T.

    2009-12-01

    Gross Primary Production (GPP) is defined as the sum of photosynthesis by all leaves from all plants per unit of ground area and is typically measured at the scale of an ecosystem over a period of hours to years. Obtaining precise estimates of contemporary GPP at regional and global scales is an important first step towards developing realistic prognostic models that can be used to understand the effects of climate change on terrestrial ecosystems and feedbacks between climate and the carbon cycle. Major technical and theoretical advances have improved our understanding of GPP over the past decade. The proliferation of eddy covariance towers and the systematic organization of these data through Fluxnet provide an important new constraint on the distribution of GPP across ecosystems and the sensitivity GPP to variability to climate and stand age. Concurrently, the availability of high quality remote sensing products has increased significantly as a result of instruments on Terra and Aqua satellites, making it possible to monitor biosphere continuously at a global scale on a time span of a week to 10 days. Here we revise global estimates of GPP using a light-use-efficiency (LUE) model. We used enhanced vegetation index (EVI) measurements from MODIS to estimate the fraction of absorbed photosynthetically active radiation (fAPAR). PAR was derived as a product of surface shortwave radiation measurements from Goddard Earth Observing System (GEOS) version 5 and conversion factor from International Satellite Cloud Climatology Program (ISCCP). LUE was optimized using Ameriflux GPP estimates and other estimates from other published eddy covariance studies. Scalars for temperature and moisture stress were applied locally using reanalysis observations from GEOS 5. In our analysis we tested different model structures, evaluating their success at predicting GPP at an independent set of measurement sites. We find that the global estimates of GPP of 120 Pg C/yr that are widely

  19. Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks

    NASA Astrophysics Data System (ADS)

    Olsson, Per-Ola; Heliasz, Michal; Jin, Hongxiao; Eklundh, Lars

    2017-03-01

    It is projected that forest disturbances, such as insect outbreaks, will have an increasingly negative impact on forests with a warmer climate. These disturbance events can have a substantial impact on forests' ability to absorb atmospheric CO2, and may even turn forests from carbon sinks into carbon sources; hence, it is important to develop methods both to monitor forest disturbances and to quantify the impact of these disturbance events on the carbon balance. In this study we present a method to monitor insect-induced defoliation in a subarctic birch forest in northern Sweden, and to quantify the impact of these outbreaks on gross primary productivity (GPP). Since frequent cloud cover in the study area requires data with high temporal resolution and limits the use of finer spatial resolution sensors such as Landsat, defoliation was mapped with remote sensing data from the MODIS sensor with 250 m × 250 m spatial resolution. The impact on GPP was estimated with a light use efficiency (LUE) model that was calibrated with GPP data obtained from eddy covariance (EC) measurements from 5 years with undisturbed birch forest and 1 year with insect-induced defoliation. Two methods were applied to estimate the impact on GPP: (1) applying a GPP reduction factor derived from EC measured GPP to estimate GPP loss, and (2) running a LUE model for both undisturbed and defoliated forest and deriving the differences in modelled GPP. In the study area of 100 km2 the results suggested a substantial setback to the carbon uptake: an average decrease in regional GPP over the three outbreak years (2004, 2012, and 2013) was estimated to 15 ± 5 Gg C yr-1, compared to the mean regional GPP of 40 ± 12 Gg C yr-1 for the 5 years without defoliation, i.e. 38 %. In the most severe outbreak year (2012), 76 % of the birch forests were defoliated, and annual regional GPP was merely 50 % of GPP for years without disturbances. The study has generated valuable data on GPP reduction, and

  20. Constraining the SIF - GPP relationship via estimation of NPQ

    NASA Astrophysics Data System (ADS)

    Silva, C. E.; Yang, X.; Tang, J.; Lee, J. E.; Cushman, K.; Toh Yuan Kun, L.; Kellner, J. R.

    2016-12-01

    Airborne and satellite measurements of solar-induced fluorescence (SIF) have the potential to improve estimates of gross primary production (GPP). Plants dissipate absorbed photosynthetically active radiation (APAR) among three de-excitation pathways: SIF, photochemical quenching (PQ), which results in electron transport and the production of ATP and NADPH consumed during carbon fixation (i.e., GPP), and heat dissipation via conversion of xanthophyll pigments (non-photochemical quenching: NPQ). As a result, the relationship between SIF and GPP is a function of NPQ and may vary temporally and spatially with environmental conditions (e.g., light and water availability) and plant traits (e.g., leaf N content). Accurate estimates of any one of the de-excitation pathways require measurement of the other two. Here we combine half-hourly measurements of canopy APAR and SIF with eddy covariance estimates of GPP at Harvard Forest to close the canopy radiation budget and infer canopy NPQ throughout the 2013 growing season. We use molecular-level photosynthesis equations to compute PQ (umol photons m-2s-1) from GPP (umol CO2 m-2s-1) and invert an integrated canopy radiative transfer and leaf-level photosynthesis/fluorescence model (SCOPE) to quantify hemispherically and spectrally-integrated SIF emission (umol photons m-2s-1) from single band (760 nm) top-of-canopy SIF measurements. We estimate half-hourly NPQ as the residual required to close the radiation budget (NPQ = APAR - SIF - PQ). Our future work will test estimated NPQ against simultaneously acquired measurements of the photochemical reflectance index (PRI), a spectral index sensitive to xanthopyll pigments. By constraining two of the three de-excitation pathways, simultaneous SIF and PRI measurements are likely to improve GPP estimates, which are crucial to the study of climate - carbon cycle interactions.

  1. Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters

    NASA Astrophysics Data System (ADS)

    Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.

    2013-11-01

    Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.

  2. High sensitivity of gross primary production in the Rocky Mountains to summer rain

    USGS Publications Warehouse

    Berkelhammer, M.; Stefanescu, I.C.; Joiner, J.; Anderson, Lesleigh

    2017-01-01

    In the catchments of the Rocky Mountains, peak snowpack is declining in response to warmer spring temperatures. To understand how this will influence terrestrial gross primary production (GPP), we compared precipitation data across the intermountain west with satellite retrievals of solar-induced fluorescence (SIF), a proxy for GPP. Annual precipitation patterns explained most of the spatial and temporal variability of SIF, but the slope of the response was dependent on site to site differences in the proportion of snowpack to summer rain. We separated the response of SIF to different seasonal precipitation amounts and found that SIF was approximately twice as sensitive to variations in summer rain than snowpack. The response of peak GPP to a secular decline in snowpack will likely be subtle, whereas a change in summer rain amount will have precipitous effects on GPP. The study suggests that the rain use efficiency of Rocky Mountain ecosystems is strongly dependent on precipitation form and timing.

  3. Impacts of climate extremes on gross primary productivity of terrestrial ecosystems in conterminous USA

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Zhang, G.

    2016-12-01

    By offsetting one-third of anthropogenic carbon emissions, terrestrial carbon uptake mitigates atmospheric CO2 concentration and consequent global warming. However, the current global warming trend is inducing more climate extremes, which in turn cause large changes in terrestrial carbon uptake. Here we report the seasonal and regional anomalies of gross primary productivity (GPP) across the conterminous USA (CONUS) in response to two contrasting climate extremes: the cool and wet 2009 versus the warm and dry 2012. We used the Vegetation Photosynthesis Model (VPM, Xiao et al., 2006), MODIS images and NCEP/NARR climate data to estimate GPP from 2009-2014, and evaluated the VPM-predicted GPP with the estimated GPP from the CO2 eddy flux tower sites (24 sites). We analyze the correlation between the anomalies of the continental GPP and the anomalies of temperature and precipitation. The results show a substantial, negative GPP anomaly in 2009, in addition to the positive GPP anomaly in 2012, which was already reported in a previous study (Wolf et al., 2016). We also found that GPP anomalies of different climate regions in four seasons are controlled by either temperature or precipitation. Our study shows the robustness of the VPM to simulate GPP under the condition of climate extremes, and highlights the need of investigating the impacts of cooling events on the terrestrial carbon cycle. Our finding also suggests that there is no uniform pattern for terrestrial ecosystems responding to climate extremes, and that climate extremes should be studied in a case-by-case, location-based approach.

  4. Robustness and Uncertainties of the “Temperature and Greenness” Model for Estimating Terrestrial Gross Primary Production

    NASA Astrophysics Data System (ADS)

    Dong, Jiaqi; Li, Longhui; Shi, Hao; Chen, Xi; Luo, Geping; Yu, Qiang

    2017-03-01

    Terrestrial gross primary production (GPP) plays a vital role in offsetting anthropogenic CO2 emission and regulating global carbon cycle. Various remote sensing approaches for estimating GPP have attracted considerable scientific attentions, yet their robustness and uncertainties remain unclear. Here we evaluate the performance of the “temperature and greenness” (TG) model, a representative remote sensing model in estimating GPP, using the global FLUXNET GPP based on parameter sensitive analysis and optimization strategies. The results show that the minimum (xn) and optimum (xo) temperatures for photosynthesis are sensitive parameters but maximum temperature (xm) not. Optimized xn and xo differ largely from their defaults for more than half of 12 plant functional types (PFTs). Parameter optimization significantly improves the TG’s performance in forest ecosystems where temperature or solar radiation has significant contribution to GPP. For water-limited ecosystems where GPP are strongly dependent of EVI and EVI are sensitive to precipitation, parameter optimization has limited effects. These results imply that the TG model, and most likely for other kind of GPP models using same methodology, can’t be significantly improved for all PFTs through parameter optimization only, and other key climatic variables should be incorporated into the model for better predicting terrestrial ecosystem GPP.

  5. Robustness and Uncertainties of the “Temperature and Greenness” Model for Estimating Terrestrial Gross Primary Production

    PubMed Central

    Dong, Jiaqi; Li, Longhui; Shi, Hao; Chen, Xi; Luo, Geping; Yu, Qiang

    2017-01-01

    Terrestrial gross primary production (GPP) plays a vital role in offsetting anthropogenic CO2 emission and regulating global carbon cycle. Various remote sensing approaches for estimating GPP have attracted considerable scientific attentions, yet their robustness and uncertainties remain unclear. Here we evaluate the performance of the “temperature and greenness” (TG) model, a representative remote sensing model in estimating GPP, using the global FLUXNET GPP based on parameter sensitive analysis and optimization strategies. The results show that the minimum (xn) and optimum (xo) temperatures for photosynthesis are sensitive parameters but maximum temperature (xm) not. Optimized xn and xo differ largely from their defaults for more than half of 12 plant functional types (PFTs). Parameter optimization significantly improves the TG’s performance in forest ecosystems where temperature or solar radiation has significant contribution to GPP. For water-limited ecosystems where GPP are strongly dependent of EVI and EVI are sensitive to precipitation, parameter optimization has limited effects. These results imply that the TG model, and most likely for other kind of GPP models using same methodology, can’t be significantly improved for all PFTs through parameter optimization only, and other key climatic variables should be incorporated into the model for better predicting terrestrial ecosystem GPP. PMID:28272461

  6. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests.

    PubMed

    Proietti, C; Anav, A; De Marco, A; Sicard, P; Vitale, M

    2016-06-15

    Ozone (O3) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O3 can impair CO2 assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O3 on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000-2010. Due to the lack of carbon assimilation data at O3 monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O3 measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O3 concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O3 on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O3 ability to reduce primary productivity of the forests, this study can help in assessing the O3 impacts on ecosystem services, including wood production and carbon sequestration.

  7. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.

    Treesearch

    Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua

    2003-01-01

    There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...

  8. The Impact of Alternative Trait-Scaling Hypotheses for the Maximum Photosynthetic Carboxylation Rate (V (sub cmax)) on Global Gross Primary Production

    NASA Technical Reports Server (NTRS)

    Walker, Anthony P.; Quaife, Tristan; Van Bodegom, Peter M.; De Kauwe, Martin G.; Keenan, Trevor F.; Joiner, Joanna; Lomas, Mark R.; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan; hide

    2017-01-01

    The maximum photosynthetic carboxylation rate (V (sub cmax)) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V(sub cmax) distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 petagrams of Carbon (PgC) per year, 65 percent of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27percent coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r equals 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V(sub cmax) variation in the field, particularly in northern latitudes.

  9. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    NASA Astrophysics Data System (ADS)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  10. Exogenous N addition enhances the responses of gross primary productivity to individual precipitation events in a temperate grassland

    PubMed Central

    Guo, Qun; Hu, Zhong-min; Li, Sheng-gong; Yu, Gui-rui; Sun, Xiao-min; Li, Ling-hao; Liang, Nai-shen; Bai, Wen-ming

    2016-01-01

    Predicted future shifts in the magnitude and frequency (larger but fewer) of precipitation events and enhanced nitrogen (N) deposition may interact to affect grassland productivity, but the effects of N enrichment on the productivity response to individual precipitation events remain unclear. In this study, we quantified the effects of N addition on the response patterns of gross primary productivity (GPP) to individual precipitation events of different sizes (Psize) in a temperate grassland in China. The results showed that N enrichment significantly increased the time-integrated amount of GPP in response to an individual precipitation event (GPPtotal), and the N-induced stimulation of GPP increased with increasing Psize. N enrichment rarely affected the duration of the GPP response, but it significantly stimulated the maximum absolute GPP response. Higher foliar N content might play an important role in the N-induced stimulation of GPP. GPPtotal in both the N-addition and control treatments increased linearly with Psize with similar Psize intercepts (approximately 5 mm, indicating a similar lower Psize threshold to stimulate the GPP response) but had a steeper slope under N addition. Our work indicates that the projected larger precipitation events will stimulate grassland productivity, and this stimulation might be amplified by increasing N deposition. PMID:27264386

  11. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation.

    PubMed Central

    Chakraburtty, R; Bibb, M

    1997-01-01

    Deletion of most of the coding region of the ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) resulted in loss of ppGpp synthesis, both upon entry into stationary phase under conditions of nitrogen limitation and following amino acid starvation during exponential growth, but had no effect on growth rate. The relA mutant, which showed continued rRNA synthesis upon amino acid depletion (the relaxed response), failed to produce the antibiotics undecylprodigiosin (Red) and actinorhodin (Act) under conditions of nitrogen limitation. The latter appears to reflect diminished transcription of pathway-specific regulatory genes for Red and Act production, redD and actII-ORF4, respectively. In addition to the changes in secondary metabolism, the relA mutant showed a marked delay in the onset and extent of morphological differentiation, resulting in a conspicuously altered colony morphology. PMID:9294445

  12. Gross primary production of global forest ecosystems has been overestimated

    PubMed Central

    Ma, Jianyong; Yan, Xiaodong; Dong, Wenjie; Chou, Jieming

    2015-01-01

    Coverage rate, a critical variable for gridded forest area, has been neglected by previous studies in estimating the annual gross primary production (GPP) of global forest ecosystems. In this study, we investigated to what extent the coverage rate could impact forest GPP estimates from 1982 to 2011. Here we show that the traditional calculation without considering the coverage rate globally overestimated the forest gross carbon dioxide uptake by approximately 8.7%, with a value of 5.12 ± 0.23 Pg C yr−1, which is equivalent to 48% of the annual emissions from anthropogenic activities in 2012. Actually, the global annual GPP of forest ecosystems is approximately 53.71 ± 4.83 Pg C yr−1 for the past 30 years by taking the coverage rate into account. Accordingly, we argue that forest annual GPP calculated by previous studies has been overestimated due to the exaggerated forest area, and therefore, coverage rate may be a required factor to further quantify the global carbon cycle. PMID:26027557

  13. Ozone vegetation damage effects on gross primary productivity in the United States

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.

    2013-12-01

    We apply an off-line process-based vegetation model to assess the impacts of ozone vegetation damage on gross primary productivity (GPP) in the contiguous United States during the past decade (1998-2007). The semi-mechanistic parameterization of ozone-induced photosynthesis inhibition from Sitch et al. (2007) is implemented into the vegetation model framework. We first evaluate the model's GPP simulation at 40 sites of the North American Carbon Program (NACP). This ecosystem-scale site-level model is driven with hourly meteorological forcings from the Modern-Era Retrospective Analysis (MERRA) and site-based measurements. The model reproduces interannual variability and seasonality of GPP at most sites, especially in croplands. The annual mean GPP shows a correlation coefficient of 0.68 between simulations and observations. The inclusion of the ozone damage impact improves the simulated GPP at most NACP sites. The simulated annual GPP averaged over all NACP sites changes from 3.8 g C m-2 day-1 to 3.6 g C m-2 day-1, closer to the observations of 3.0 g C m-2 day-1. We then perform a regional gridded simulation at 1.3°×1° resolution over the contiguous U.S. The distributed model is driven with the MERRA meteorology and land cover from the International Satellite Land-Surface Climatology Project (ISLSCP). The simulation shows an average GPP of 5.9 g C m-2 day-1 in summer, with 9.2 g C m-2 day-1 in the East of 95°W and 3.7 g C m-2 day-1 in the West. Hourly surface ozone concentrations are output from simulations representative of the present climatic state performed using the Yale-E2 global carbon-chemistry-climate model. After evaluating the model's surface ozone based on ground observations from ~1200 sites, we probe the response of GPP over the United States to ozone vegetation damage. On average, the summer GPP declines by 2-5% in the contiguous U.S., depending on the sensitivity of GPP to ozone. A larger reduction of 4-7% is estimated in eastern U.S., where both

  14. The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites

    NASA Astrophysics Data System (ADS)

    Blonquist, J. Mark, Jr.

    Seasonal dynamics of atmospheric carbonyl sulfide (OCS) at regional and continental scales and plant OCS exchange at the leaf level have shown a close relationship with those for CO2. CO2 has both sinks and sources within terrestrial ecosystems, but the primary terrestrial exchange for OCS is thought to be leaf uptake, suggesting potential for OCS uptake as a proxy for gross primary production (GPP). The utility of OCS uptake as a GPP proxy in micrometeorological studies of biosphere-atmosphere CO2 exchange was explored by applying theoretical concepts from earlier OCS studies to estimate GPP. Measured net ecosystem exchange (NEE) was partitioned using the ratio of measured vertical mole fraction gradients of OCS and CO2. At the Harvard Forest AmeriFlux site, measured CO2 and OCS vertical gradients were correlated, and were related to NEE and GPP, respectively. Estimates of GPP from OCS-based NEE partitioning were similar to those from established regression techniques, providing evidence that OCS uptake can potentially serve as a GPP proxy. Measured vertical CO 2 mole fraction gradients at five other AmeriFlux sites were used to project anticipated vertical OCS mole fraction gradients to provide indication of potential OCS signal magnitudes at sites where no OCS measurements were made. Projected OCS gradients at sites with short canopies were greater than those in forests, including measured OCS gradients at Harvard Forest, indicating greater potential for OCS uptake as a GPP proxy at these sites. This exploratory study suggests that continued investigation of linkages between OCS and GPP is warranted.

  15. Estimation and Analysis of Gross Primary Production of Soybean Under Various Management Practices and Drought Conditions

    NASA Astrophysics Data System (ADS)

    Wagle, P.; Xiao, X.; Suyker, A.

    2014-12-01

    Gross primary production (GPP) of croplands may be used to quantify crop productivity and evaluate a range of management practices. Eddy flux data from three soybean (Glycine max L.) fields under different management practices (no-till vs till; rainfed vs irrigated) and Moderate Resolution Imaging Spectroradiometer (MODIS) derived vegetation indices (VIs) were used to evaluate the biophysical performance of VIs and crop phenology, and to model GPP using a satellite-based vegetation photosynthesis model (VPM). The VIs tracked soybean phenology well and delineated the growing season length. The results show that the carbon uptake period and seasonal sums of net ecosystem CO2 exchange (NEE) and GPP can be inferred from the length of the vegetation activity period from satellite remote sensing data. Land surface water index (LSWI) tracked drought-impacted vegetation well. On a seasonal scale, NEE of the soybean sites ranged from -37 to -264 g C m-2. The result suggests that rainfed soybean fields needed about 450-500 mm of well-distributed seasonal rainfall to maximize the net carbon sink. During non-drought conditions, VPM accurately estimated seasonal dynamics and interannual variation of GPP of soybean under different management practices. However, some large discrepancies between GPPVPM and GPPEC were observed under drought conditions as the VI did not reflect the corresponding decrease in GPP. Diurnal GPP dynamics showed a bimodal distribution with a pronounced midday depression at the period of higher water vapor pressure deficit (> 1.2 kPa). A modified Wscalar based on LSWI, to account for the water stress, in VPM helped quantify the reduction in GPP during severe drought and the model's performance improved substantially. The results of this study demonstrate the potential use of remotely sensed VIs for better understanding of carbon dynamics and extrapolation of GPP of soybean croplands.

  16. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas

    2012-03-01

    Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.

  17. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, D. D.; Ma, Siyan; Cook, David R.; Oren, Ram; Katul, G. G.; Gu, Lianhong

    2010-03-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000 2004, and was validated using observed GPP over the period 2005 2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these

  18. MODIS-Derived Terrestrial Primary Production

    NASA Astrophysics Data System (ADS)

    Zhao, Maosheng; Running, Steven; Heinsch, Faith Ann; Nemani, Ramakrishna

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14-26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or

  19. Temperature sensitivity of stream gross primary production and respiration from the tropics to the arctic

    NASA Astrophysics Data System (ADS)

    Song, C.; Argerich, A.; Baker, C.; Bowden, W. B.; Dodds, W. K.; Douglas, M.; Farrell, K.; Flinn, M. B.; Garcia, E.; Gido, K. B.; Harms, T.; Jones, J.; Koenig, L.; Kominoski, J. S.; McDonald, K. S.; McDowell, W. H.; McMaster, D.; Parker, S.; Rosemond, A.; Rüegg, J.; Sheehan, K.; Trentman, M. T.; Wollheim, W. M.; Ballantyne, F.

    2015-12-01

    Understanding the temperature dependence of gross primary production (GPP) and ecosystem respiration (ER) in streams is critical to predict the carbon balance in stream ecosystems under global warming. We collected dissolved oxygen (DO) concentration, photosynthetically active radiation (PAR), channel hydrology and geomorphology, and temperature from multiple locations throughout stream networks in seven sites across six biomes, specifically tropical forest, temperate deciduous forest, temperate coniferous forest, tallgrass prairie, boreal forest, and arctic tundra. We estimated the activation energy (Ea) of GPP and ER from diel changes in DO, temperature and PAR for each stream reach. We showed the relationship between Ea and environmental variables, such as temperature, light availability and discharge. In addition, we found that Ea of GPP and ER were highly variable from reach to reach within each biome. The estimated Ea of GPP and ER was generally higher than predicted by metabolic theory. Ea of GPP ranges from 20 to 140 KJ/mol and Ea of ER ranges from 50 to 150 KJ/mol. There was no consistent trend of larger Ea for GPP or ER. This suggests that the changes in carbon balance in streams caused directly by warming is likely to be site specific.

  20. Modeling Gross Primary Production of Savanna Woodlands in Southern Africa Using MODIS Imagery and CO2 Flux Tower Data

    NASA Astrophysics Data System (ADS)

    Jin, C.; Xiao, X.; Merbold, L.; Arneth, A.; Veenendaal, E.; Kutsch, W.

    2012-12-01

    Accurate estimation of gross primary production (GPP) of savanna ecosystem is valuable for evaluating the role of Africa in the global carbon cycle. An eddy flux observation network has been established to continuously measure the net CO2 fluxes (NEE) across various savanna vegetation types in Africa (CarboAfrica). Several publications have reported the seasonal dynamics and interannual variation of GPP for the savanna vegetation through partitioning of the measured NEE data. The satellite-based Production Efficiency Models (PEM), which calculate GPP as the product of absorbed photosynthetically active radiation (PAR) and light use efficiency (LUE), have been developed to scale up in situ GPP estimation from the eddy flux towers to regional scale. In this study, the Vegetation Photosynthesis Model (VPM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data were evaluated for their capacity to model GPP for savanna woodlands at two eddy flux towers in Botswana and Zambia, respectively. These two sites have different woodland types and precipitation pattern (Mopane woodlands vs. Miombo woodlands, semi-arid vs. semi-humid). In the VPM model, GPP is simulated as the product of photosynthetically active radiation (PAR), air temperature, Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI). The results show that the simulated GPP by the VPM track well the temporal dynamic of GPP estimated from the eddy covariance measurements at these two sites. In addition, the land surface phenology of savanna woodlands, described by the satellite vegetation indices, especially the water-sensitive satellite indices-LSWI, are proved to match the phenology based on vegetation physiology activity measured by eddy covariance towers. The information of the timing and duration of vegetation growing season is useful for assisting the VPM modeling. Further evaluation of VPM simulations for and other savanna ecosystems is necessary before the VPM model is applied to

  1. Attributing Changes in Gross Primary Productivity from 1901 to 2010

    NASA Astrophysics Data System (ADS)

    Schwalm, C. R.; Huntzinger, D. N.; Michalak, A. M.; Cook, R. B.; El Masri, B.; Hayes, D. J.; Huang, M.; Jacobson, A. R.; Jain, A. K.; Lei, H.; Lu, C.; Tian, H.; Schaefer, K. M.; Wei, Y.

    2014-12-01

    Model-based studies are foundational to perform diagnosis (has there been a change?) and attribution (what caused this change?) in the context of global environmental change. Here we employ a dual method approach using machine learning and simulation differencing across an ensemble of terrestrial biosphere models (TBM) to attribute changes in gross primary productivity (GPP) from 1901 to 2010. The simulations are taken from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). For each TBM MsTMIP prescribes a semi-factorial set of five runs (globally at 0.5º spatial resolution) where time-varying controls on carbon metabolism are sequentially enabled. MsTMIP has a constrained simulation protocol -driving data, vegetation cover, boundary conditions, and steady-state spin up protocol are all standardized- such that only model structure varies and ensemble spread addresses process uncertainty. Applying this dual method to MsTMIP simulation output we attribute changes in GPP to changes in climate, land cover/land use change, atmospheric CO2, nitrogen deposition, near-surface air temperature, precipitation, and downwelling shortwave radiation as well as climate sigma (irreducible climate noise) and nonlinearity (interactions). Globally, the key factor associated with the Anthropocene, namely the sustained increase in atmospheric CO2, dominates changes in GPP across the full time period. Climate factors are of secondary importance and, along with land cover/land use change, may act to decrease GPP depending on decade and reference period. Despite differences in model structure attribution results across the full ensemble are generally consistent. Spatial morphologies, replicating the same dual approach by grid cell, exhibit high variability but with an atmospheric CO2 fertilization effect dominating the tropical zone. Our results suggest that the modern era of global warming, when viewed through the prism of GPP attribution, reaches back at

  2. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize.

    PubMed

    Wagle, Pradeep; Zhang, Yongguang; Jin, Cui; Xiao, Xiangming

    2016-06-01

    Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson's correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (Vcmax). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to

  3. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity

    NASA Astrophysics Data System (ADS)

    Frankenberg, Christian; Fisher, Joshua B.; Worden, John; Badgley, Grayson; Saatchi, Sassan S.; Lee, Jung-Eun; Toon, Geoffrey C.; Butz, André; Jung, Martin; Kuze, Akihiko; Yokota, Tatsuya

    2011-09-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence - occurring during photosynthesis - exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional climatic or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. In boreal summer the generally strong linear correlation between fluorescence and GPP models weakens, attributable to discrepancies in savannas/croplands (18-48% higher fluorescence-based GPP derived by simple linear scaling), and high-latitude needleleaf forests (28-32% lower fluorescence). Our results demonstrate that retrievals of chlorophyll fluorescence provide direct global observational constraints for GPP and open an entirely new viewpoint on the global carbon cycle. We anticipate that global fluorescence data in combination with consolidated plant physiological fluorescence models will be a step-change in carbon cycle research and enable an unprecedented robustness in the understanding of the current and future carbon cycle.

  4. Modeling GPP in the Nordic Forest Landscape Using MODIS Time Series Data

    NASA Astrophysics Data System (ADS)

    Schubert, P.; Lagergren, F.; Aurela, M.; Christensen, T. R.; Grelle, A.; Heliasz, M.; Klemedtsson, L. K.; Lindroth, A.; Pilegaard, K.; Vesala, T.; Eklundh, L.

    2011-12-01

    Satellite sensor-derived images cover the ground surface continuously throughout the landscapes and are therefore suitable for regional and global estimations of carbon dioxide (CO2) exchange. This study is aimed at developing an empirical model for regional estimations of gross primary productivity (GPP) in Nordic forests by using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled incoming photosynthetic photon flux density (PPFD). Eddy covariance-measured net ecosystem exchange (NEE) from three deciduous and ten coniferous sites was partitioned into GPP. Linear regression analyses were made on 8-day averages of GPP in relation to MODIS 8-day composite data and 8-day averages of PPFD. Time series of the two-band enhanced vegetation index (EVI2) were calculated from MODIS 500 m reflectance data (MOD09A1). In order to reduce noise in data, these times series were smoothed by a curve fitting procedure. For most sites, fairly strong to strong relationships were found between GPP and the product of EVI2 and PPFD (Deciduous: R2 = 0.45-0.86, Coniferous: R2 = 0.49-0.90). Similar relationships were found for GPP versus the product of EVI2 and the MODIS 1 km daytime land surface temperature (LST, MOD11A2) (R2 = 0.55-0.81, 0.57-0.77) and for GPP versus EVI2, PPFD and daytime LST in multiple linear regressions (R2 = 0.73-0.89, 0.65-0.93). The slope coefficient for GPP versus the product of EVI2 and PPFD was used as a proxy variable for the light use efficiency (LUE). An attempt was made to model the between-site variation in slope by linear regressions to other variables, but all relationships were found to be weak or very weak. One year of data was collected from each coniferous site and treated as one sample, in order to derive one general empirical model for GPP versus the product of EVI2 and PPFD (R2 = 0.70). General models were also derived for GPP versus the product of EVI2 and daytime LST (R2 = 0.62) and for GPP versus EVI2, PPFD and

  5. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    USGS Publications Warehouse

    Kimball, Heather L.; Selmants, Paul; Moreno, Alvaro; Running Steve W,; Giardina, Christian P.

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  6. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems.

    PubMed

    Kimball, Heather L; Selmants, Paul C; Moreno, Alvaro; Running, Steve W; Giardina, Christian P

    2017-01-01

    Gross primary production (GPP) is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  7. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    PubMed Central

    Selmants, Paul C.; Moreno, Alvaro; Running, Steve W.; Giardina, Christian P.

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales. PMID:28886187

  8. An Evaluation of the MOD17 Gross Primary Production Algorithm in a Mangrove Forest

    NASA Astrophysics Data System (ADS)

    Wells, H.; Najjar, R.; Herrmann, M.; Fuentes, J. D.; Ruiz-Plancarte, J.

    2015-12-01

    Though coastal wetlands occupy a small fraction of the Earth's surface, they are extremely active ecosystems and play a significant role in the global carbon budget. However, coastal wetlands are still poorly understood, especially when compared to open-ocean and terrestrial ecosystems. This is partly due to the limited in situ observations in these areas. One of the ways around the limited in situ data is to use remote sensing products. Here we present the first evaluation of the MOD17 remote sensing algorithm of gross primary productivity (GPP) in a mangrove forest using data from a flux tower in the Florida Everglades. MOD17 utilizes remote sensing products from the Moderate Resolution Imaging Spectroradiometer and meteorological fields from the NCEP/DOE Reanalysis 2. MOD17 is found to capture the long-term mean and seasonal amplitude of GPP but has significant errors describing the interannual variability, intramonthly variability, and the phasing of the annual cycle in GPP. Regarding the latter, MOD17 overestimates GPP when salinity is high and underestimates it when it is low, consistent with the fact that MOD17 ignores salinity and salinity tends to decrease GPP. Including salinity in the algorithm would then most likely improve its accuracy. MOD17 also assumes that GPP is linear with respect to PAR (photosynthetically active radiation), which does not hold true in the mangroves. Finally, the estimated PAR and air temperature inputs to MOD17 were found to be significantly lower than observed. In summary, while MOD17 captures some aspects of GPP variability at this mangrove site, it appears to be doing so for the wrong reasons.

  9. Evaluation of optical remote sensing parameters to improve modeling of gross primary productivity in a heterogeneous agricultural area

    NASA Astrophysics Data System (ADS)

    Schickling, A.; Damm, A.; Schween, J.; Rascher, U.; Crewell, S.; Wahner, A.

    2011-12-01

    Terrestrial photosynthesis greatly determines plant mediated exchange processes in the vegetation atmosphere system and substantially influences patterns in atmospheric carbon dioxide (CO2) concentrations and water vapor. Therefore, an accurate quantification of photosynthetic CO2 uptake, commonly referred to as gross primary productivity (GPP), is a key parameter to distinguish those atmospheric patterns on various spatio-temporal scales. Remote sensing (RS) offers the unique possibility to determine GPP at different spatial scales ranging from the local to the global scale. Attempts to estimate GPP from RS data focus on the light use efficiency (LUE) concept of Monteith which relates GPP to the absorbed photosynthetically active radiation and the efficiency of plant canopies to utilize the absorbed radiation for photosynthesis. To reliably predict GPP on different spatio-temporal scales LUE has to be linked to optical RS parameters which detect changes in photosynthetic efficiency due to environmental conditions. In this study we evaluated two optical RS parameters, namely the sun-induced fluorescence (Fs) and the photochemical reflectance index (PRI), for their potential to serve as a proxy for LUE. The parameters were derived from two ASD FieldSpec spectrometers which were operated in parallel. During several days one instrument was installed on the ground above the vegetation canopy of either a winter wheat or a sugar beet field. The second instrument was operated from a small research aircraft continuously crossing the observation sites at low altitude (< 300 m). GPP was calculated on a diurnal basis including optical parameters in Monteith's LUE concept. The calculated GPP was compared to simultaneously acquired GPP data from eddy covariance measurements. The diurnal behavior of calculated and measured GPP corresponded well indicating that optical RS parameters are able to track the diurnal response of physiological regulation of photosynthesis to changing

  10. Potentials of satellite derived SIF products to constrain GPP simulated by the new ORCHIDEE-FluOR terrestrial model at the global scale

    NASA Astrophysics Data System (ADS)

    Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.

    2016-12-01

    A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters

  11. The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites

    USDA-ARS?s Scientific Manuscript database

    Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differen...

  12. Satellite-based modeling of gross primary production in an evergreen needleleaf forest

    Treesearch

    Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III

    2004-01-01

    The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...

  13. Variability in light-use efficiency for gross primary productivity on Great Plains grasslands

    USDA-ARS?s Scientific Manuscript database

    Gross primary productivity (GPP) often is estimated at regional and global scales by multiplying the amount of photosynthetically active radiation (PAR) absorbed by the plant canopy (PARa) by a light-use efficiency (eg) which is modeled as a function of air temperature (Ta) and other environmental c...

  14. A Global Study of GPP focusing on Light Use Efficiency in a Random Forest Regression Model

    NASA Astrophysics Data System (ADS)

    Fang, W.; Wei, S.; Yi, C.; Hendrey, G. R.

    2016-12-01

    Light use efficiency (LUE) is at the core of mechanistic modeling of global gross primary production (GPP). However, most LUE estimates in global models are satellite-based and coarsely measured with emphasis on environmental variables. Others are from eddy covariance towers with much greater spatial and temporal data quality and emphasis on mechanistic processes, but in a limited number of sites. In this paper, we conducted a comprehensive global study of tower-based LUE from 237 FLUXNET towers, and scaled up LUEs from in-situ tower level to global biome level. We integrated key environmental and biological variables into the tower-based LUE estimates, at 0.5o x 0.5o grid-cell resolution, using a random forest regression (RFR) approach. We then developed an RFR-LUE-GPP model using the grid-cell LUE data, and compared it to a tower-LUE-GPP model by the conventional way of treating LUE as a series of biome-specific constants. In order to calibrate the LUE models, we developed a data-driven RFR-GPP model using a random forest regression method. Our results showed that LUE varies largely with latitude. We estimated a global area-weighted average of LUE at 1.21 gC m-2 MJ-1 APAR, which led to an estimated global GPP of 102.9 Gt C /year from 2000 to 2005. The tower-LUE-GPP model tended to overestimate forest GPP in tropical and boreal regions. Large uncertainties exist in GPP estimates over sparsely vegetated areas covered by savannas and woody savannas around the middle to low latitudes (i.g. 20oS to 40oS and 5oN to 15oN) due to lack of available data. Model results were improved by incorporating Köppen climate types to represent climate /meteorological information in machine learning modeling. This shed new light on the recognized issues of climate dependence of spring onset of photosynthesis and the challenges in modeling the biome GPP of evergreen broad leaf forests (EBF) accurately. The divergent responses of GPP to temperature and precipitation at mid

  15. Gross primary production of a semiarid grassland is enhanced by six years of exposure to elevated atmospheric CO2, warming, and irrigation.

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Ogle, K.; Peltier, D.; Williams, D. G.; Pendall, E.

    2014-12-01

    The goal of this study was to quantify interannual variation of gross primary production (GPP) and evaluate potential drivers of GPP with global change using the Prairie Heating and CO2 Enrichment (PHACE) experiment in semiarid grassland in southeastern Wyoming. PHACE consists of the treatments: control, warming only, elevated CO2 (eCO2) only, eCO2 and warming, and irrigation only. We expected that GPP would be most strongly influenced by interannual variability in precipitation under all PHACE treatments, soil water availability under eCO2, and nitrogen availability. GPP data were obtained from paired measurements of net ecosystem exchange (NEE) and ecosystem respiration (Reco; GPP = Reco - NEE) made on 2-4 week intervals over six growing seasons (2007-2012). Soil temperature (T), soil water content (SWC), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR) were continuously recorded at the plot (T, SWC) and site (VPD, PAR) scales. Annual, plot-level aboveground plant nitrogen content (N) was measured during peak biomass. We fit a non-linear light-response model to the GPP data within a Bayesian framework, and modeled the maximum GPP rate (Gmax) and canopy light-use efficiency (Q) as functions of N and current and antecedent SWC, T, and VPD. The model fit the GPP data well (R2 = 0.64), and regardless of the PHACE treatment the most important drivers of GPP were N (for Gmax), VPD (Gmax and Q), antecedent T (Gmax), and antecedent VPD (Q). Model simulations predicted that annual GPP increased on average by about 16% with eCO2, 14% with warming, 12% with eCO2 and warming, and 23% with irrigation. For four of the six years, annual GPP was significantly affected by either eCO2 alone or when combined with warming. The increase in annual GPP under irrigation was similar to the increase under eCO2 during a dry year (2012), but irrigation stimulated GPP to a greater degree than eCO2 during wet years (2008, 2009). Hence, increases in GPP under eCO2

  16. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    PubMed

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  17. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data.

    PubMed

    Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei

    2016-01-01

    Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m(-2) d(-1) and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m(-2) d(-1) and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our

  18. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data

    PubMed Central

    Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei

    2016-01-01

    Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m-2 d-1 and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m-2 d-1 and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling

  19. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    USDA-ARS?s Scientific Manuscript database

    This study investigates the utility of in-situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (Vmax) r...

  20. Modelling spatial and temporal dynamics of gross primary production in the Sahel from earth-observation-based photosynthetic capacity and quantum efficiency

    NASA Astrophysics Data System (ADS)

    Tagesson, Torbern; Ardö, Jonas; Cappelaere, Bernard; Kergoat, Laurent; Abdi, Abdulhakim; Horion, Stéphanie; Fensholt, Rasmus

    2017-03-01

    It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO2 sink, which indicates the strong need for improved understanding and spatially explicit estimates of CO2 uptake (gross primary production; GPP) in semi-arid ecosystems. This study has three aims: (1) to evaluate the MOD17A2H GPP (collection 6) product against GPP based on eddy covariance (EC) for six sites across the Sahel; (2) to characterize relationships between spatial and temporal variability in EC-based photosynthetic capacity (Fopt) and quantum efficiency (α) and vegetation indices based on earth observation (EO) (normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), enhanced vegetation index (EVI) and shortwave infrared water stress index (SIWSI)); and (3) to study the applicability of EO upscaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt were closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. Modelled GPP based on Fopt and α upscaled using EO-based indices reproduced in situ GPP well for all except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001-2014 was 736 ± 39 g C m-2 yr-1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; incorporating EO-based Fopt and α in dynamic global vegetation models could improve estimates of vegetation production and simulations of ecosystem processes and hydro-biochemical cycles.

  1. Global evaluation of gross primary productivity in the JULES land surface model v3.4.1

    NASA Astrophysics Data System (ADS)

    Slevin, Darren; Tett, Simon F. B.; Exbrayat, Jean-François; Bloom, A. Anthony; Williams, Mathew

    2017-07-01

    This study evaluates the ability of the JULES land surface model (LSM) to simulate gross primary productivity (GPP) on regional and global scales for 2001-2010. Model simulations, performed at various spatial resolutions and driven with a variety of meteorological datasets (WFDEI-GPCC, WFDEI-CRU and PRINCETON), were compared to the MODIS GPP product, spatially gridded estimates of upscaled GPP from the FLUXNET network (FLUXNET-MTE) and the CARDAMOM terrestrial carbon cycle analysis. Firstly, when JULES was driven with the WFDEI-GPCC dataset (at 0. 5° × 0. 5° spatial resolution), the annual average global GPP simulated by JULES for 2001-2010 was higher than the observation-based estimates (MODIS and FLUXNET-MTE), by 25 and 8 %, respectively, and CARDAMOM estimates by 23 %. JULES was able to simulate the standard deviation of monthly GPP fluxes compared to CARDAMOM and the observation-based estimates on global scales. Secondly, GPP simulated by JULES for various biomes (forests, grasslands and shrubs) on global and regional scales were compared. Differences among JULES, MODIS, FLUXNET-MTE and CARDAMOM on global scales were due to differences in simulated GPP in the tropics. Thirdly, it was shown that spatial resolution (0. 5° × 0. 5°, 1° × 1° and 2° × 2°) had little impact on simulated GPP on these large scales, with global GPP ranging from 140 to 142 PgC year-1. Finally, the sensitivity of JULES to meteorological driving data, a major source of model uncertainty, was examined. Estimates of annual average global GPP were higher when JULES was driven with the PRINCETON meteorological dataset than when driven with the WFDEI-GPCC dataset by 3 PgC year-1. On regional scales, differences between the two were observed, with the WFDEI-GPCC-driven model simulations estimating higher GPP in the tropics (5° N-5° S) and the PRINCETON-driven model simulations estimating higher GPP in the extratropics (30-60° N).

  2. Seasonality of primary and secondary production in an Arctic river

    NASA Astrophysics Data System (ADS)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  3. Terrestrial ecosystem model performance for net primary productivity and its vulnerability to climate change in permafrost regions

    NASA Astrophysics Data System (ADS)

    Xia, J.; McGuire, A. D.; Lawrence, D. M.; Burke, E.; Chen, X.; Delire, C. L.; Koven, C. D.; MacDougall, A. H.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P. A.; Moore, J. C.; Smith, B.; Sueyoshi, T.; Shi, Z.; Yan, L.; Liang, J.; Jiang, L.; Luo, Y.

    2014-12-01

    A more accurate prediction of future climate-carbon (C) cycle feedbacks requires better understanding and improved representation of the carbon cycle in permafrost regions within current earth system models. Here, we evaluated 10 terrestrial ecosystem models for their estimated net primary productivity (NPP) and its vulnerability to climate change in permafrost regions in the Northern Hemisphere. Those models were run retrospectively between 1960 and 2009. In comparison with MODIS satellite estimates, most models produce higher NPP (310 ± 12 g C m-2 yr-1) than MODIS (240 ± 20 g C m-2 yr-1) over the permafrost regions during 2000‒2009. The modeled NPP was then decomposed into gross primary productivity (GPP) and the NPP/GPP ratio (i.e., C use efficiency; CUE). By comparing the simulated GPP with a flux-tower-based database [Jung et al. Journal of Geophysical Research 116 (2011) G00J07] (JU11), we found although models only produce 10.6% higher mean GPP than JU11 over 1982‒2009, there was a two-fold disparity among models (397 to 830 g C m-2 yr-1). The model-to-model variation in GPP mainly resulted from the seasonal peak GPP and in low-latitudinal permafrost regions such as the Tibetan Plateau. Most models overestimate the CUE in permafrost regions in comparison to calculated CUE from the MODIS NPP and JU11 GPP products and observation-based estimates at 8 forest sites. The models vary in their sensitivities of NPP, GPP and CUE to historical changes in air temperature, atmospheric CO2 concentration and precipitation. For example, climate warming enhanced NPP in four models via increasing GPP but reduced NPP in two other models by decreasing both GPP and CUE. The results indicate that the model predictability of C cycle in permafrost regions can be improved by better representation of those processes controlling the seasonal maximum GPP and the CUE as well as their sensitivity to climate change.

  4. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, Allen H.; Gianelle, D.; Rossi, F.; Suyker, A.E.; Verma, S.B.

    2010-01-01

    The simulation of gross primary production (GPP) at various spatial and temporal scales remains a major challenge for quantifying the global carbon cycle. We developed a light use efficiency model, called EC-LUE, driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux. The EC-LUE model may have the most potential to adequately address the spatial and temporal dynamics of GPP because its parameters (i.e., the potential light use efficiency and optimal plant growth temperature) are invariant across the various land cover types. However, the application of the previous EC-LUE model was hampered by poor prediction of Bowen ratio at the large spatial scale. In this study, we substituted the Bowen ratio with the ratio of evapotranspiration (ET) to net radiation, and revised the RS-PM (Remote Sensing-Penman Monteith) model for quantifying ET. Fifty-four eddy covariance towers, including various ecosystem types, were selected to calibrate and validate the revised RS-PM and EC-LUE models. The revised RS-PM model explained 82% and 68% of the observed variations of ET for all the calibration and validation sites, respectively. Using estimated ET as input, the EC-LUE model performed well in calibration and validation sites, explaining 75% and 61% of the observed GPP variation for calibration and validation sites respectively.Global patterns of ET and GPP at a spatial resolution of 0.5° latitude by 0.6° longitude during the years 2000–2003 were determined using the global MERRA dataset (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate Resolution Imaging Spectroradiometer). The global estimates of ET and GPP agreed well with the other global models from the literature, with the highest ET and GPP over tropical forests and the lowest values in dry and high latitude areas. However, comparisons with observed

  5. The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Blonquist, J.; Montzka, S. A.; Yakir, D.; Desai, A. R.; Dragoni, D.; Griffis, T. J.; Monson, R. K.; Munger, J. W.; Scott, R. L.; Bowling, D. R.

    2010-12-01

    Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differences (mole fraction within canopy minus that above canopy) at a temperate deciduous forest (Harvard Forest AmeriFlux site) were analyzed relative to net ecosystem exchange (NEE) and GPP, respectively. Canopy CO2 and OCS vertical gradients (CO2 and OCS differences divided by within and above canopy measurement height differences) were used to calculate ecosystem relative uptake (ERU; relative canopy OCS gradient divided by relative canopy CO2 gradient, where relative gradients are gradients normalized by above canopy mole fractions), from which GPP was estimated using an equation that assumes OCS follows the same physical pathway as CO2 into plant leaves and where GPP / NEE was proportional to OCS gradient / CO2 gradient. Additionally, canopy CO2 differences from five other AmeriFlux sites were analyzed, and OCS differences were projected from these differences (via an assumed ERU) to further evaluate OCS as a potential GPP tracer. At Harvard Forest, canopy CO2 differences were related to NEE (y = 0.041x + 0.046, r2 = 0.14, P < 0.025) and OCS differences were related to GPP (y = 0.43x - 2.0, r2 = 0.18, P < 0.1), indicating the influence of canopy uptake on canopy differences. Relative canopy OCS and CO2 gradients were linearly correlated (slope = 4.4, intercept = -0.00028, r2 = 0.69, P < 0.025), indicating CO2 and OCS dynamics were likely controlled by similar mechanisms. Estimates of GPP derived from OCS and from temperature-based NEE partitioning showed a strong linear relationship (slope = 1.2, intercept = 3.1, r2 = 0.99, P < 0.0005), indicating the potential of OCS as a GPP tracer. As with Harvard Forest, canopy CO2 differences at the other AmeriFlux sites were related

  6. An algorithm of gross primary production capacity from GCOM-C1/SGLI

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Soyama, Noriko; Furumi, Shinobu; Daigo, Motomasa; Mineshita, Yukiko

    An algorithm of gross primary production (GPP) capacity from GCOM-C1/SGLI is presented. GCOM-C1 satellite will be launched in 2016. The characteristics of this method corresponds to photosynthesis process, and was to use light-response curves. The photosynthesis velocity depends on it's capacity and depression because of weather conditions. The capacity part depends on one of plant physiological parameters of chlorophyll contents of a leaf. In the previous study ( J. Thanyapraneedkul et al., 2013 ), the framework of estimation method was developed how to determine the two parameters, initial slope and maximum of GPP capacity in the light saturation, of light-response curves of GPP capacity using FLUX data and satellite data. The initial slope was used as fixed values for each plant functional types. The maximum of GPP capacity at the light saturation was determined from the linear relationship between GPP capacity at 2000 (mumol/m2/s) and Chlorophyll index (CIgreen) using green band developed by Gitelson et al. (1996). The relationship determined for five plant functional types of needleleaf deciduous trees, broadleaf deciduous trees, needleleaf evergreen trees, C3 grass, and crops were determined. For applying the method, other plant functional types were needed. In this study, additional four plant functional types were studied for open shrub, closed shrub, mixed forest and tropical rain forest, and the initial slopes and the relationship between GPP capacity at 2000 (umol/m2/s) and CIgreen for each plant functional types were determined. From the results, the relationship were divided into three groups. One was grass, and open shrubs, and second one was forest types except for tropical rain forest, and third one was tropical rain forest. For each group, the slope of the relationship was almost same value, and only the intercept was different. Whether the rules were extracted for determination of the intercept was discussed and the estimation results of GPP

  7. Sensitivity of Vegetation Indices and Gross Primary Production of Tallgrass Prairie to Severe Drought

    SciTech Connect

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.; Cook, David R.; Matamala, Roser; Fischer, Marc L.; Jin, Cui; Dong, Jinwei; Biradar, Chandrashekhar

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared with the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.

  8. Improved assessment of gross and net primary productivity of Canada's landmass

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  9. (Uncertain) Carbonyl Sulfide Plant Fluxes Spatially Constrain (Even More Uncertain) CO2 GPP

    NASA Astrophysics Data System (ADS)

    Hilton, T. W.; Whelan, M.; Kulkarni, S.; Zumkehr, A. L.; Berry, J. A.; Campbell, J. E.

    2015-12-01

    With predictions of future terrestrial carbon dioxide (CO2)gross primary productivity (GPP) remaining stubbornly uncertain,ecosystem carbonyl sulfide (COS) fluxes provide an independent source ofinformation that may be able to reduce that uncertainty. Several openquestions must be addressed before COS may be applied widely as a GPPtracer. Here we employ an atmospheric chemistry and transport model(STEM) and airborne atmospheric COS concentration observations todemonstrate that COS plant uptake spatially constrains CO2 GPP even whenaccounting for soil COS flux uncertainty and COS leaf-scale relativeuptake variability and uncertainty.

  10. Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation.

    PubMed

    Navarro, M N V; Jourdan, C; Sileye, T; Braconnier, S; Mialet-Serra, I; Saint-Andre, L; Dauzat, J; Nouvellon, Y; Epron, D; Bonnefond, J M; Berbigier, P; Rouziere, A; Bouillet, J P; Roupsard, O

    2008-11-01

    We monitored seasonal variations in net primary production (NPP), estimated by allometric equations from organ dimensions, gross primary production (GPP), estimated by the eddy covariance method, autotrophic respiration (R(a)), estimated by a model, and fruit production in a coconut (Cocos nucifera L.) plantation located in the sub-tropical South Pacific archipelago of Vanuatu. Net primary production of the vegetative compartments of the trees accumulated steadily throughout the year. Fruits accounted for 46% of tree NPP and showed large seasonal variations. On an annual basis, the sum of estimated NPP (16.1 Mg C ha(-1) year(-1)) and R(a) (24.0 Mg C ha(-1) year(-1)) for the ecosystem (coconut trees and herbaceous understory) closely matched GPP (39.0 Mg C ha(-1) year(-1)), suggesting adequate cross-validation of annual C budget methods. However, seasonal variations in NPP + R(a) were smaller than the seasonal variations in GPP, and maximum tree NPP occurred 6 months after the midsummer peak in GPP and solar radiation. We propose that this discrepancy reflects seasonal variation in the allocation of dry mass to carbon reserves and new plant tissue, thus affecting the allometric relationships used for estimating NPP.

  11. Vegetation canopy and physiological control of GPP decline during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xiao, X.; Zhou, S.; McCarthy, H. R.; Ciais, P.; Luo, Y.

    2015-12-01

    Different vegetation indices derived from satellites were often used as a proxy of vegetation activity to monitor and evaluate the impacts of drought and heat wave on ecosystem carbon fluxes (gross primary production, respiration) through the production efficiency models (PEMs). However, photosynthesis is also regulated by a series of physiological processes which cannot be directly observed through satellites. In this study, we analyzed the response of drought and heat wave induced GPP and climate anomaly from 15 Euroflux sites and the corresponding vegetation indices from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Correlation analysis suggests that the vegetation indices are more responsive to GPP variation in grasslands and open shrublands, but less responsive in forest ecosystems. Physiology control can be up to 20% of the total GPP during the drought period without changing the canopy structure. At temporal scale for each site, VPD and vegetation indices can be used to track the GPP for forest and non-forest, respectively. However, different stand characteristics should be taken into consideration for forest ecosystems. Based on the above findings, a conceptual model is built to illuminate the physiological and canopy control on the GPP during the drought period. Improvement for future PEMs should incorporate better indicators to deal with drought conditions for different ecosystems.

  12. Estimating Daytime Ecosystem Respiration to Improve Estimates of Gross Primary Production of a Temperate Forest

    PubMed Central

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844

  13. Estimating daytime ecosystem respiration to improve estimates of gross primary production of a temperate forest.

    PubMed

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems.

  14. Improving the estimation of terrestrial gross primary productivity by downscaling global sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Duveiller, G.

    2015-12-01

    The synoptic nature of satellite remote sensing makes this technique a key tool to contribute to estimating the amount of Carbon fixed by vegetation at global scale. From the various types of information that can be derived from space, the recent capacity to create global datasets of sun-induced chlorophyll fluorescence (SIF) may prove to be a game-changer. SIF is a signal emitted by the photosynthetic machinery itself that, under the illumination conditions in which it can be estimated by satellite, has been shown to be proportional to gross primary productivity (GPP). However, this relationship is dependent on vegetation types that are typically spatially mixed at the coarse spatial resolution of SIF datasets (at best 0.5°), which in turn is a consequence of the complexity of the SIF retrieval itself. This study demonstrates how 0.5° SIF derived from GOME-2 data can be downscaled to a more adequate spatial resolution of 0.05° by combining 3 explanatory biophysical variables derived from the MODIS sensor (NDVI, land surface temperature and evapotranspiration) under a semi-empirical light-use efficiency framework. The finer spatial resolution results in a cleaner signal when aggregating it per land cover type. The signal is also better correlated in time with GPP estimated from flux towers, reaching the same level of performance than global GPP products calibrated on such flux towers and driven by meteorological and remote sensing variables (other than SIF). Establishing linear relationships between SIF and flux-tower GPP at vegetation type level allows to estimate values of global terrestrial vegetation gross productivity that have different magnitude but similar temporal patterns as other GPP products. Based on downscaled SIF, the mean global GPP values over the period 2007 to 2013 are (for deciduous broadleaf and mixed forests) 13.7, (for evergreen needleleaf forests) 2.5, (for grasslands) 12.5 and (savannahs and woody savannas) 36.8 Pg of Carbon per year.

  15. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated

  16. Modeling the Impacts of Long-Term Warming Trends on Gross Primary Productivity Across North America

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Grant, R. F.

    2014-12-01

    There is evidence of warming over recent decades in most regions of North America (NA) that affects ecosystem productivity and the past decade has been the warmest since instrumental records of global surface temperatures began. In this study, we examined the spatial and temporal variability and trends of warming across NA using climate data from the North America Regional Reanalysis (NARR) from 1979 to 2010 with a 3-hourly time-step and 0.250 x 0.250 spatial resolution as part of the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). A comprehensive mathematical process model, ecosys was used to simulate impacts of this variability in warming on gross primary productivity (GPP). In a test of model results, annual GPP modeled for pixels which corresponded to the locations of 25 eddy covariance towers correlated well (R2=0.76) with annual GPP derived from the flux towers in 2005. At the continental scale long-term (2000 - 2010) annual average modeled GPP for NA correlated well (geographically weighed regression R2 = 0.8) with MODIS GPP, demonstrating close similarities in spatial patterns. Results from the NARR indicated that most areas of NA, particularly high latitude regions, have experienced warming but changes in precipitation vary spatially over the last three decades. GPP modeled in most areas with lower mean annual air temperature (Ta), such as those in boreal climate zones, increased due to early spring and late autumn warming observed in NARR. However modeled GPP declined in most southwestern regions of NA, due to water stress from rising Ta and declining precipitation. Overall, GPP modeled across NA had a positive trend of +0.025 P g C yr-1 with a range of -1.16 to 0.87 P g C yr-1 from the long-term mean. Interannual variability of GPP was the greatest in southwest of US and part of the Great Plains, which could be as a result of frequent El Niño-Southern Oscillation' (ENSO) events that led to major droughts.

  17. Application of MODIS GPP to Forecast Risk of Hantavirus Pulmonary Syndrome Based on Fluctuations in Reservoir Population Density

    NASA Astrophysics Data System (ADS)

    Loehman, R.; Heinsch, F. A.; Mills, J. N.; Wagoner, K.; Running, S.

    2003-12-01

    Recent predictive models for hantavirus pulmonary syndrome (HPS) have used remotely sensed spectral reflectance data to characterize risk areas with limited success. We present an alternative method using gross primary production (GPP) from the MODIS sensor to estimate the effects of biomass accumulation on population density of Peromyscus maniculatus (deer mouse), the principal reservoir species for Sin Nombre virus (SNV). The majority of diagnosed HPS cases in North America are attributed to SNV, which is transmitted to humans through inhalation of excretions and secretions from infected rodents. A logistic model framework is used to evaluate MODIS GPP, temperature, and precipitation as predictors of P. maniculatus density at established trapping sites across the western United States. Rodent populations are estimated using monthly minimum number alive (MNA) data for 2000 through 2002. Both local meteorological data from nearby weather stations and 1.25 degree x 1 degree gridded data from the NASA DAO were used in the regression model to determine the spatial sensitivity of the response. MODIS eight-day GPP data (1-km resolution) were acquired and binned to monthly average and monthly sum GPP for 3km x 3km grids surrounding each rodent trapping site. The use of MODIS GPP to forecast HPS risk may result in a marked improvement over past reflectance-based risk area characterizations. The MODIS GPP product provides a vegetation dynamics estimate that is unique to disease models, and targets the fundamental ecological processes responsible for increased rodent density and amplified disease risk.

  18. Estimation of terrestrial carbon fluxes over East Asia through AsiaFlux and improved MODIS gross primary production data

    NASA Astrophysics Data System (ADS)

    Kim, Miae; Im, Jungho; Lee, Junghee; Shin, Minso; Lee, Sanggyun

    2014-05-01

    The accurate estimation of carbon fluxes over terrestrial ecosystems provides useful information in studying the global carbon cycle. Estimates of carbon fluxes such as gross primary production (GPP) and net ecosystem exchanges (NEE) have been commonly used as indicators of the global carbon budgets. Eddy covariance (EC) flux towers are operating all over the world, networking each other. The towers provide temporally continuous measurements of carbon, water and energy over terrestrial ecosystems as being the best way to estimate ecosystem fluxes up to date. However, the EC flux towers only cover the scale of footprint, having difficulty in representing fluxes at the regional or continental scale. For upscaling flux tower data, satellite products that cover vast areas at high temporal resolution can be used. While many studies were conducted to estimate carbon fluxes from satellite products using process-based modeling and empirical modeling approaches, there are still great uncertainties in carbon flux estimation due to biases and errors associated with in-situ measurements, spatio-temporal discrepancy between satellite products and in-situ measurements, and relatively less accurate satellite products. In this paper, NEE and GPP were estimated using machine learning techniques including random forest, Cubist, and support vector regression. Various satellite products were used as independent variables such as land surface temperature, normalized difference vegetation index, enhanced vegetation index, leaf area index, fraction of photosynthetically active radiation, GPP, evapotranspiration, rainfall, normalized difference water index obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM). However, MODIS GPP based on the light use efficiency (LUE) model has some uncertainties derived from input data used in this model such as coarse spatial resolution of the Data Assimilation Office (DAO) meteorological

  19. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current

    PubMed Central

    Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  20. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current.

    PubMed

    Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  1. Satellite Measurements of Carbonyl Sulfide: A New Constraint on Tropical GPP Seasonality in Global Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Stinecipher, J.; Campbell, J. E.; Kuai, L.

    2016-12-01

    The seasonal cycle of gross primary productivity (GPP) in the Amazon is an open question that profoundly affects the carbon cycle and global climate. Eddy flux towers are sparse and provide only a small footprint, while clouds can confound satellite observations over land. A new approach is necessary to obtain ecosystem-scale estimates of GPP in the tropics. Carbonyl sulfide (COS or OCS) is a trace gas emitted by oceanic sources and taken up by plants concurrently with CO2. The spatial separation of source and sink, and the lack of other major fluxes in the tropics means that COS is a promising tracer for GPP. Recent satellite products from the TES and MIPAS instruments provide independent information about COS concentrations in the upper troposphere. We compare a number of GEOS-Chem model scenarios against these data, attempting to replicate the seasonality of GPP in the tropics. We find that wetter models are more consistent with observations than those which reduce primary productivity in the dry season.

  2. Phenology and gross primary production of maize croplands from chlorophyll light absorption, solar-induced chlorophyll fluorescence and CO2 flux tower approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Wagle, Pradeep; Guanter, Luis; Jin, Cui; Xiao, Xiangming

    2015-04-01

    It is important to accurately quantify cropland gross primary productivity (GPP) for monitoring cropland status and the carbon budgets. Both sattellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBM) have been widely used to quantify cropland GPP at different scales. Space-borne solar-induced chlorophyll fluorescence (SIF) has recently shown the ability to monitor photosynthesis from space. In this presentation, we compared the three approaches for estimating seasonal dynamics and magnitudes of maize cropland GPP during 2007-2011 at a cropland site in Nebraska, USA. Three approaches used were a satellite-based Vegetation Photosynthsis Model (VPM) with the concept of light absorption by chlorophyll, the process-based Soil-Canopy Observation of Photosynthesis and Energy (SCOPE), and space-borne SIF. Validations against flux tower estimates demonstrate that maize GPP can be accurately estimated with the three models. The SCOPE model provides the best simulation of maize GPP by incorporation of satellite SIF measurements. On the other hand, satellite-based VPM model shows the potential for scaling-up GPP estimation of intensified managed croplands with higher spatial resolution data from MODIS. The results show that the space-borne SIF data can be simply and directly used not only to monitor actual photosynthesis of crop without much ancillary information, but also to improve cropland GPP modeling by constraining process-based TBM.

  3. Hot and Cool Spots of Primary Production, Respiration and 15N Nitrate and Ammonium Uptake: Spatial Heterogeneity in Tropical Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Dodds, W. K.; Tromboni, F.; Neres-Lima, V.; Zandoná, E.; Moulton, T. P.

    2016-12-01

    While whole-stream measures of metabolism and uptake have become common methods to characterize biogeochemical transport and processing, less is known about how nitrogen (N) uptake, gross primary production (GPP) and ecosystem respiration (ER) covary among different stream substrata as smaller scales. We measured 15N ammonium and nitrate uptake seperately, and GPP and ER of ecosystem compartments (leaves, epilithon, sand-associated biota and macrophytes) in closed circulating chambers in three streams/ rivers of varied size. The streams drain pristine Brazilian Atlantic Rainforest watersheds and are all within a few km of eachother. The smallest stream had dense forest canopy cover; the largest river was almost completely open. GPP could not be detected in the closed canopy stream. Epilithon (biofilms on rocks) was a dominant compartment for GPP and N uptake in the two open streams, and macrophytes rivaled epilithon GPP and N uptake rates in the most open stream. Even though leaves covered only 1-3% of the stream bottom, they could account for around half of all the ER in the streams but almost no N uptake. Sand had minimal rates of N uptake, GPP and R associated with it in all streams due to relatively low organic material content. The data suggest that N uptake, GPP and ER of different substrata are not closely linked over relatively small spatial (dm) scales, and that different biogeochemical processes may map to different hot and cool spots for ecosystem rates.

  4. Gross primary production variability associated with meteorology, physiology, leaf area, and water supply in contrasting woodland and grassland semiarid riparian ecosystems

    NASA Astrophysics Data System (ADS)

    Jenerette, G. D.; Scott, R. L.; Barron-Gafford, G. A.; Huxman, T. E.

    2009-12-01

    Understanding ecosystem-atmosphere carbon exchanges in dryland environments has been more challenging than in mesic environments, likely due to more pronounced nonlinear responses of ecosystem processes to environmental variation. To better understand diurnal to interannual variation in gross primary productivity (GPP) variability, we coupled continuous eddy-covariance derived whole ecosystem gas exchange measurements with an ecophysiologic model based on fundamental principles of diffusion, mass balance, reaction kinetics, and biochemical regulation of photosynthesis. We evaluated the coupled data-model system to describe and understand the dynamics of 3 years of growing season GPP from a riparian grassland and woodland in southern Arizona. The data-model fusion procedure skillfully reproduced the majority of daily variation GPP throughout three growing seasons. While meteorology was similar between sites, the woodland site had consistently higher GPP rates and lower variability at daily and interannual timescales relative to the grassland site. We examined the causes of this variation using a new state factor model analysis that partitioned GPP variation into four factors: meteorology, physiology, leaf area, and water supply. The largest proportion of GPP variation was associated with physiological differences. The woodland showed a greater sensitivity than the grassland to water supply, while the grassland showed a greater sensitivity to leaf area. These differences are consistent with hypotheses of woody species using resistance mechanisms, stomatal regulation, and grassland species using resilience mechanisms, leaf area regulation, in avoiding water stress and have implications for future GPP sensitivity to climate variability following wood-grass transitions.

  5. Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland

    SciTech Connect

    Ryan, Edmund M.; Ogle, Kiona; Peltier, Drew; Walker, Anthony P.; de Kauwe, Martin G.; Medlyn, Belinda E.; Williams, David G.; Parton, William; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B.; Lu, Xingjie; Luus, Kristina A.; Zaehle, Sönke; Shu, Shijie; Werner, Christian; Xia, Jianyang; Pendall, Elise

    2016-12-19

    Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated six years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a mixed prairie grassland in Wyoming (USA). The GPP data were fitted to a mixed effects model that extended a light response model to include the effects of environmental (soil water content, vegetation greenness, nitrogen) and meteorological data (air temperature, vapor pressure deficit, photosynthetically active radiation) at current and past times. The stimulation of the cumulative six-year GPP by warming (20%, P=0.06) and eCO2 (19%, P=0.14) were primarily driven by enhanced C uptake during spring (96%, P=0.003) and fall (115%, P=0.001), respectively. These enhancements were consistent across each year, suggesting mechanisms for extending the growing season. Vapor pressure deficit from 1-3 days prior was the most significant predictor of temporalvariability in GPP and for explaining treatment differences in GPP, suggesting that atmospheric drought plays an important role for predicting GPP now and under future climate conditions.

  6. Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland

    DOE PAGES

    Ryan, Edmund M.; Ogle, Kiona; Peltier, Drew; ...

    2016-12-19

    Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated six years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a mixed prairie grassland in Wyoming (USA). The GPP data were fitted to a mixed effects model that extended a light response model to include the effects of environmental (soil water content, vegetation greenness, nitrogen) and meteorological datamore » (air temperature, vapor pressure deficit, photosynthetically active radiation) at current and past times. The stimulation of the cumulative six-year GPP by warming (20%, P=0.06) and eCO2 (19%, P=0.14) were primarily driven by enhanced C uptake during spring (96%, P=0.003) and fall (115%, P=0.001), respectively. These enhancements were consistent across each year, suggesting mechanisms for extending the growing season. Vapor pressure deficit from 1-3 days prior was the most significant predictor of temporalvariability in GPP and for explaining treatment differences in GPP, suggesting that atmospheric drought plays an important role for predicting GPP now and under future climate conditions.« less

  7. Mapping cropland GPP in the north temperate region with space measurements of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Huete, A. R.; Zarco-Tejada, P.; Frankenberg, C.; Lee, J.; Berry, J. A.; Moran, S. M.; Ponce-Campos, G.; Beer, C.; Camps-Valls, G.; Buchmann, N. C.; Gianelle, D.; Klumpp, K.; Cescatti, A.; Baker, J. M.; Griffis, T.

    2013-12-01

    Monitoring agricultural productivity is important for optimizing management practices in a world under a continuous increase of food and biofuel demand. We used new space measurements of sun-induced chlorophyll fluorescence (SIF), a vegetation parameter intrinsically linked to photosynthesis, to capture photosynthetic uptake of the crop belts in the north temperate region. The following data streams and procedures have been used in this analysis: (1) SIF retrievals have been derived from measurements of the MetOp-A / GOME-2 instrument in the 2007-2011 time period; (2) ensembles of process-based and data-driven biogeochemistry models have been analyzed in order to assess the capability of global models to represent crop gross primary production (GPP); (3) flux tower-based GPP estimates covering the 2007-2011 time period have been extracted over 18 cropland and grassland sites in the Midwest US and Western Europe from the Ameriflux and the European Fluxes Database networks; (4) large-scale NPP estimates have been derived by the agricultural inventory data sets developed by USDA-NASS and Monfreda et al. The strong linear correlation between the SIF space retrievals and the flux tower-based GPP, found to be significantly higher than that between reflectance-based vegetation indices (EVI, NDVI and MTCI) and GPP, has enabled the direct upscaling of SIF to cropland GPP maps at the synoptic scale. The new crop GPP estimates we derive from the scaling of SIF space retrievals are consistent with both flux tower GPP estimates and agricultural inventory data. These new GPP estimates show that crop productivity in the US Western Corn Belt, and most likely also in the rice production areas in the Indo-Gangetic plain and China, is up to 50-75% higher than estimates by state-of-the-art data-driven and process-oriented biogeochemistry models. From our analysis we conclude that current carbon models have difficulties in reproducing the special conditions of those highly productive

  8. Climate data induced uncertainty in model-based estimations of terrestrial primary productivity

    NASA Astrophysics Data System (ADS)

    Wu, Zhendong; Ahlström, Anders; Smith, Benjamin; Ardö, Jonas; Eklundh, Lars; Fensholt, Rasmus; Lehsten, Veiko

    2017-06-01

    Model-based estimations of historical fluxes and pools of the terrestrial biosphere differ substantially. These differences arise not only from differences between models but also from differences in the environmental and climatic data used as input to the models. Here we investigate the role of uncertainties in historical climate data by performing simulations of terrestrial gross primary productivity (GPP) using a process-based dynamic vegetation model (LPJ-GUESS) forced by six different climate datasets. We find that the climate induced uncertainty, defined as the range among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 11 Pg C yr-1 globally (9% of mean GPP). We also assessed a hypothetical maximum climate data induced uncertainty by combining climate variables from different datasets, which resulted in significantly larger uncertainties of 41 Pg C yr-1 globally or 32% of mean GPP. The uncertainty is partitioned into components associated to the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (climate data range) and the apparent sensitivity of the modeled GPP to the driver (apparent model sensitivity). We find that LPJ-GUESS overestimates GPP compared to empirically based GPP data product in all land cover classes except for tropical forests. Tropical forests emerge as a disproportionate source of uncertainty in GPP estimation both in the simulations and empirical data products. The tropical forest uncertainty is most strongly associated with shortwave radiation and precipitation forcing, of which climate data range contributes higher to overall uncertainty than apparent model sensitivity to forcing. Globally, precipitation dominates the climate induced uncertainty over nearly half of the vegetated land area, which is mainly due

  9. Global gross primary productivity and water use efficiency changes under drought stress

    NASA Astrophysics Data System (ADS)

    Yu, Zhen; Wang, Jingxin; Liu, Shirong; Rentch, James S.; Sun, Pengsen; Lu, Chaoqun

    2017-01-01

    Drought can affect the structure, composition and function of terrestrial ecosystems, yet drought impacts and post-drought recovery potentials of different land cover types have not been extensively studied at a global scale. We evaluated drought impacts on gross primary productivity (GPP), evapotranspiration (ET), and water use efficiency (WUE) of different global terrestrial ecosystems, as well as the drought-resilience of each ecosystem type during the period of 2000 to 2011. Using GPP as biome vitality indicator against drought stress, we developed a model to examine ecosystem resilience represented by the length of recovery days (LRD). LRD presented an evident gradient of high (>60 days) in mid-latitude region and low (<60 days) in low (tropical area) and high (boreal area) latitude regions. As average GPP increased, the LRD showed a significantly decreasing trend, indicating readiness to recover after drought, across various land cover types (R 2 = 0.68, p < 0.0001). Moreover, zonal analysis revealed that the most dramatic reduction of the drought-induced GPP was found in the mid-latitude region of the Northern Hemisphere (48% reduction), followed by the low-latitude region of the Southern Hemisphere (13% reduction). In contrast, a slightly enhanced GPP (10%) was evident in the tropical region under drought impact. Additionally, the highest drought-induced reduction of ET was found in the Mediterranean area, followed by Africa. Water use efficiency, however, showed a pattern of decreasing in the Northern Hemisphere and increasing in the Southern Hemisphere. Drought induced reductions of WUE ranged from 0.96% to 27.67% in most of the land cover types, while the increases of WUE found in Evergreen Broadleaf Forest and savanna were about 7.09% and 9.88%, respectively. These increases of GPP and WUE detected during drought periods could either be due to water-stress induced responses or data uncertainties, which require further investigation.

  10. Estimation of gross primary production over burned black spruce forests in interior Alaska using MODIS data

    NASA Astrophysics Data System (ADS)

    Otsuki, M.; Iwata, H.; Harazono, Y.; Iwata, T.

    2012-12-01

    Black spruce forests, which are distributed widely in Alaska and Canada, have been reported to be sinks of carbon dioxide (CO2) under the current climate. However, an increasing trend of wildfire occurrence, and its magnitude, in interior Alaska, may alter the future CO2 budget in regional scale. The goal of this study is to estimate the gross primary production (GPP) in burned area using the light-use efficiency model with MODerate resolution Imaging Spectroradiometer (MODIS) data. Accuracy of GPP estimation was improved by explicitly treating burned area with a new parameterization of light-use efficiency and fraction of absorbed photosynthetically active radiation (FPAR). To parameterize the model, we started a CO2flux observation at a burned black spruce site (65°07N, 147°26W) in interior Alaska in 2008. At this site, a severe wildfire occurred in late June 2004, and almost all vegetation were burned. The vegetation is recovering and saplings of deciduous tree are currently starting to dominate. In order to parameterize the light-use efficiency for burned area, we observed absorption of photosynthetically active radiation (PAR) along with the CO2flux. The obtained maximum light-use efficiency gradually increased over 2009-2011 with the vegetation recovery. In calculating spatial distribution of GPP with satellite data, we estimated PAR distribution using a model developed by Nishida (2006, SOLA). FPAR and the maximum light-use efficiency were estimated from the relationships with satellite NDVI data. A comparison with GPP calculated using MOD15, total GPP can be over estimated by 7% if the burned areas are not considered. This overestimation will lead to a significant error in regional GPP estimation in severe fire years.

  11. Integrating solar induced flourescence and the photochemical reflectance index for estimating gross primary production in a cornfield

    USDA-ARS?s Scientific Manuscript database

    The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four ...

  12. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    Quantifying global carbon and water balances requires accurate estimation of gross primary production (GPP) and evapotranspiration (ET), respectively, across space and time. Models that are based on the theory of light use efficiency (LUE) and water use efficiency (WUE) have emerged as efficient met...

  13. Disturbance impacts on land surface temperature and gross primary productivity in the western United States

    NASA Astrophysics Data System (ADS)

    Cooper, L. Annie; Ballantyne, Ashley P.; Holden, Zachary A.; Landguth, Erin L.

    2017-04-01

    Forest disturbances influence forest structure, composition, and function and may impact climate through changes in net radiation or through shifts in carbon exchange. Climate impacts vary depending on environmental variables and disturbance characteristics, yet few studies have investigated disturbance impacts over large, environmentally heterogeneous, regions. We used satellite data to objectively determine the impacts of fire, bark beetles, defoliators, and "unidentified disturbances" (UDs) on land surface temperature (LST) and gross primary productivity (GPP) across the western United States (U.S.). We investigated immediate disturbance impacts, the drivers of those impacts, and long-term postdisturbance LST and GPP recovery patterns. All disturbance types caused LST increases (°C; fire: 3.45 ± 3.02, bark beetles: 0.76 ± 3.04, defoliators: 0.49 ± 3.12, and UD: 0.76 ± 3.03). Fire and insects resulted in GPP declines (%; fire: -25.05 ± 21.67, bark beetles: -2.84 ± 21.06, defoliators: -0.23 ± 15.40), while UDs resulted in slightly enhanced GPP (1.89 ± 24.20%). Disturbance responses also varied between ecoregions. Severity and interannual changes in air temperature were the primary drivers of short-term disturbance responses, and severity also had a strong impact on long-term recovery patterns. These results suggest a potential climate feedback due to disturbance-induced biophysical changes that may strengthen as disturbance regimes shift due to climate change.

  14. Improvement of satellite-based gross primary production through incorporation of high resolution input data over east asia

    NASA Astrophysics Data System (ADS)

    Park, Haemi; Im, Jungho; Kim, Miae

    2016-04-01

    Photosynthesis of plants is the main mechanism of carbon absorption from the atmosphere into the terrestrial ecosystem and it contributes to remove greenhouse gases such as carbon dioxide. Annually, 120 Gt of C is supposed to be assimilated through photosynthetic activity of plants as the gross primary production (GPP) over global land area. In terms of climate change, GPP modelling is essential to understand carbon cycle and the balance of carbon budget over various ecosystems. One of the GPP modelling approaches uses light use efficiency that each vegetation type has a specific efficiency for consuming solar radiation related with temperature and humidity. Satellite data can be used to measure various meteorological and biophysical factors over vast areas, which can be used to quantify GPP. NASA Earth Observing System (EOS) program provides Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global GPP product, namely MOD17A2H, on a daily basis. However, significant underestimation of MOD17A2H has been reported in Eastern Asia due to its dense forest distribution and humid condition during monsoon rainy season in summer. The objective of this study was to improve underestimation of MODIS GPP (MOD17A2H) by incorporating meteorological data-temperature, relative humidity, and solar radiation-of higher spatial resolution than data used in MOD17A2H. Landsat-based land cover maps of finer resolution observation and monitoring - global land cover (FROM-GLC) at 30m resolution were used for selection of light use efficiency (LUE). GPP (eq1. GPP = APAR×LUE) is computed by multiplication of APAR (IPAR×fPAR) and LUE (ɛ= ɛmax×T(°C)scalar×VPD(Pa)scalar, where, T is temperature, VPD is vapour pressure deficit) in this study. Meteorological data of Japanese 55-year Reanalysis (JRA-55, 0.56° grid, 3hr) were used for calculation of GPP in East Asia, including Eastern part of China, Korean peninsula, and Japan. Results were validated using flux tower-observed GPP

  15. Increased peak-growing season GPP in a Greenlandic high-Arctic fen 1992-2008

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Mastepanov, M.; Tamstorf, M. P.; Eklundh, L.; Schubert, P.; Ekberg, A.; Sigsgaard, C.; Christensen, T. R.; Strom, L.

    2010-12-01

    Arctic ecosystems play a key role in the terrestrial carbon cycle. Recent studies have shown a greening trend and indicated an increase in CO2 uptake in boreal and sub- to low-Arctic areas. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with ground-based flux measurements of CO2 to investigate possible changes in gross primary production (GPP) for the peak of the growing season between 1992 and 2008 in the high-Arctic. As study area we used a 1.4 km2 rectangle surrounding Rylekaerene, a wet tundra ecosystem situated in the Zackenberg Research Area (74o28 N 20o34 W), North Eastern Greenland. We combined the light use efficiency (LUE) model (GPP= ɛ × PAR × FAPAR, where ɛ is the light use efficiency of the vegetation, PAR is the incoming photosynthetically active radiation and FAPAR the PAR absorbed by the green vegetation) with NDVI data derived from a set of peak growing season satellite images from 1992 to 2008. The LUE-modelled results show a substantial increase in peak-growing season GPP in Rylekaerene during the period. The GPP increase was accompanied by a strong increase in CO2 concentration and air temperature. Possibly, indicating that the increase in GPP was due to the substantial increase in local air temperature, possibly in combination with CO2 fertilization. To model GPP, we first parameterized the LUE-model for the vegetation types dominating the Rylekaerene for the peak of the growing season (peak). Average noon-time PAR measured on the days with satellite images was used as incoming PAR in the model. We found a significant linear relationship between ground-based FAPARpeak and NDVI. The ɛpeak was on average 1.78 g CO2 MJ-1 for this high-Arctic wet tundra ecosystem, which is reasonable for high-Arctic ecosystems. The model was evaluated against field-measured GPP. There were large model uncertainties. This was caused by large natural variation in the field measurements which the model was based upon and

  16. Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production

    NASA Astrophysics Data System (ADS)

    Xin, Qinchuan; Gong, Peng; Suyker, Andrew E.; Si, Yali

    2016-08-01

    Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.

  17. Determinants of the spatial covariation of primary productivity and water table depth

    NASA Astrophysics Data System (ADS)

    Koirala, S.; Jung, M.; de Graaf, I. E. M.; Reichstein, M.; Carvalhais, N.

    2015-12-01

    This study explores when, where and how the spatial variations of gross primary productivity (GPP) and water table depth (WTD) are linked at the global scale. Latest observation-based global datasets, at a relatively high resolution of ~10 km (5 arc-minutes), are used to analyse spatial partial correlations between GPP and WTD. Results indicate that strength, direction, and spatial distribution of the partial correlation change with climate, vegetation cover, and seasonal availability of precipitation and radiation. Shallower water table depth is associated with larger GPP (negative correlation) in 14.3-23.9% of the global land area in different seasons. Such negative correlations between GPP and WTD seem to prevail in arid to temperate climatic regions with crop, shrub, or Savanna vegetation covers. These regions often have WTD shallower than 15-20 m. Positive correlations, on the other hand, mostly occur in relatively humid forested regions, suggesting that large water uptake by tree roots decreases groundwater recharge and thus draws the water table down. Gradients of primarily positive to primarily negative correlations are arranged along decreasing tree cover, and increasing coverage of plants with C4-photosynthesis. This possibly indicates that the water use efficiency of ecosystems may also play a critical role in determining productivity-groundwater relationships.

  18. Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan.

    PubMed

    Muraoka, Hiroyuki; Saigusa, Nobuko; Nasahara, Kenlo N; Noda, Hibiki; Yoshino, Jun; Saitoh, Taku M; Nagai, Shin; Murayama, Shohei; Koizumi, Hiroshi

    2010-07-01

    Revealing the seasonal and interannual variations in forest canopy photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and deciduous forests. This study examined the effects of temporal variations of canopy leaf area index (LAI) and leaf photosynthetic capacity [the maximum velocity of carboxylation (V (cmax))] on gross primary production (GPP) of a cool-temperate deciduous broadleaf forest for 5 years in Takayama AsiaFlux site, central Japan. We made two estimations to examine the effects of canopy properties on GPP; one is to incorporate the in situ observation of V (cmax) and LAI throughout the growing season, and another considers seasonality of LAI but constantly high V (cmax). The simulations indicated that variation in V (cmax) and LAI, especially in the leaf expansion period, had remarkable effects on GPP, and if V (cmax) was assumed constant GPP will be overestimated by 15%. Monthly examination of air temperature, radiation, LAI and GPP suggested that spring temperature could affect canopy phenology, and also that GPP in summer was determined mainly by incoming radiation. However, the consequences among these factors responsible for interannual changes of GPP are not straightforward since leaf expansion and senescence patterns and summer meteorological conditions influence GPP independently. This simulation based on in situ ecophysiological research suggests the importance of intensive consideration and understanding of the phenology of leaf photosynthetic capacity and LAI to analyze and predict carbon fixation in forest ecosystems.

  19. Seasonal controls of canopy chlorophyll content on forest carbon uptake: Implications for GPP modeling

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Froelich, N. J.; Chen, B.; Staebler, R. M.

    2015-08-01

    Forested ecosystems represent an important part of the global carbon cycle, with accurate estimates of gross primary productivity (GPP) crucial for understanding ecosystem response to environmental controls and improving global carbon models. This research investigated the relationships between leaf area index (LAI) and leaf chlorophyll content (ChlLeaf) with forest carbon uptake. Ground measurements of LAI and ChlLeaf were taken approximately every 9 days across the 2013 growing season from day of year (DOY) 130 to 290 at Borden Forest, Ontario. These biophysical measurements were supported by on-site eddy covariance flux measurements. Differences in the temporal development of LAI and ChlLeaf were considerable, with LAI reaching maximum values within approximately 10 days of bud burst at DOY 141. In contrast, ChlLeaf accumulation only reached maximum values at DOY 182. This divergence has important implications for GPP models which use LAI to represent the fraction of light absorbed by a canopy (fraction of absorbed photosynthetic active radiation (fAPAR)). Daily GPP values showed the strongest relationship with canopy chlorophyll content (ChlCanopy; R2 = 0.69, p < 0.001), with the LAI and GPP relationship displaying nonlinearity at the start and end of the growing season (R2 = 0.55, p < 0.001). Modeled GPP derived from LAI × PAR and ChlCanopy × PAR was tested against measured GPP, giving R2 = 0.63, p < 0.001 and R2 = 0.82, p < 0.001, respectively. This work demonstrates the importance of considering canopy pigment status in deciduous forests, with models that use fAPARLAI rather than fAPARChl neglecting to account for the importance of leaf photosynthetic potential.

  20. Estimating the Capacity of Gross Primary Production from Global Observation Satellite

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Soyama, Noriko; Thanyaparaneedkul, Juthasinee; Furumi, Shinobu; Daigo, Motomasa

    2012-07-01

    Estimation of Gross Primary Production with high accuracy is important for understanding the carbon cycle. For estimating gross primary production, photosynthesis process was considers into two parts. One is the capacity and another is the reduction which is influenced by environmental conditions such as weather conditions of vapor pressure difference and soil moisture. The capacity estimation part is reported in this conference. For a leaf, it is well known photosynthesis capacity is mainly depend on amount of chlorophyll and enzyme. Chlorophyll contents reflect the color of a leaf. Since we focus on the chlorophyll contents for estimating the capacity of the gross primary production. It was reported by J. Thanyapraneedkul (2012) that vegetation index of the ratio of green band and near infrared was linear relationship with chlorophyll contents of a leaf, and was a linear relationship with the maximum photosynthesis at light saturation of light response curve with less stress conditions using flux data. The index is suitable for global observing satellite, because the spectral bands are available. Using the index and empirical relationship developed by J. Thanyapraneedkul, the light response curve with less stress can be estimated from the vegetation index. In this study, firstly, the global distribution of the index was studied. The regions of high index value in winter time were correspond to tropical rainforest. Next, the capacity of gross primary production was estimated using the light response curve using the index. The GPP capacity of the almost all regions was higher than MODIS GPP. For the tropical rain forest regions, the GPP capacity value was similar with MODIS GPP product.

  1. Sensitivity of Crop Gross Primary Production Simulations to In-situ and Reanalysis Meteorological Data

    NASA Astrophysics Data System (ADS)

    Jin, C.; Xiao, X.; Wagle, P.

    2014-12-01

    Accurate estimation of crop Gross Primary Production (GPP) is important for food securityand terrestrial carbon cycle. Numerous publications have reported the potential of the satellite-based Production Efficiency Models (PEMs) to estimate GPP driven by in-situ climate data. Simulations of the PEMs often require surface reanalysis climate data as inputs, for example, the North America Regional Reanalysis datasets (NARR). These reanalysis datasets showed certain biases from the in-situ climate datasets. Thus, sensitivity analysis of the PEMs to the climate inputs is needed before their application at the regional scale. This study used the satellite-based Vegetation Photosynthesis Model (VPM), which is driven by solar radiation (R), air temperature (T), and the satellite-based vegetation indices, to quantify the causes and degree of uncertainties in crop GPP estimates due to different meteorological inputs at the 8-day interval (in-situ AmeriFlux data and NARR surface reanalysis data). The NARR radiation (RNARR) explained over 95% of the variability in in-situ RAF and TAF measured from AmeriFlux. The bais of TNARR was relatively small. However, RNARR had a systematical positive bias of ~3.5 MJ m-2day-1 from RAF. A simple adjustment based on the spatial statistic between RNARR and RAF produced relatively accurate radiation data for all crop site-years by reducing RMSE from 4 to 1.7 MJ m-2day-1. The VPM-based GPP estimates with three climate datasets (i.e., in-situ, and NARR before and after adjustment, GPPVPM,AF, GPPVPM,NARR, and GPPVPM,adjNARR) showed good agreements with the seasonal dynamics of crop GPP derived from the flux towers (GPPAF). The GPPVPM,AF differed from GPPAF by 2% for maize, and -8% to -12% for soybean on the 8-day interval. The positive bias of RNARR resulted in an overestimation of GPPVPM,NARR at both maize and soybean systems. However, GPPVPM,adjNARR significantly reduced the uncertainties of the maize GPP from 25% to 2%. The results from this

  2. Modeling spatially explicit fire impact on gross primary production in interior Alaska using satellite images coupled with eddy covariance

    USGS Publications Warehouse

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang

    2013-01-01

    In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging

  3. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.

    2007-01-01

    The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.

  4. Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Gerber, Stefan; Huang, Tongyi; Lichstein, Jeremy W.

    2016-12-01

    Realistic representation of vegetation's response to drought is important for understanding terrestrial carbon cycling. We evaluated nine Earth system models from the historical experiment of the Coupled Model Intercomparison Project Phase 5 for the response of gross primary productivity (GPP) and leaf area index (LAI) to hydrological anomalies. Hydrological anomalies were characterized by the standardized precipitation index (SPI) and surface soil moisture anomalies (SMA). GPP and LAI in models were on average more responsive to SPI than in observations revealed through several indicators. First, we find higher mean correlations between global annual anomalies of GPP and SPI in models than observations. Second, the maximum correlation between GPP and SPI across 1-24 month time scales is higher in models than observations. And finally, we found stronger excursions of GPP to extreme dry or wet events. Similar to GPP, LAI responded more to SPI in models than observations. The over-response of models is smaller if evaluated based on SMA instead of SPI. LAI responses to SMA are inconsistent among models, showing both higher and lower LAI when soil moisture is reduced. The time scale of maximum correlation is shorter in models than the observation for GPP, and the markedly different response time scales among models for LAI indicate gaps in understanding how variability of water availability affects foliar cover. The discrepancy of responses derived from SPI and SMA among models, and between models and observations, calls for improvement in understanding the dynamics of plant-available water in addition to how vegetation responds to these anomalies.

  5. Satellites reveal an increase in gross primary production in a greenlandic high arctic fen 1992-2008

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Mastepanov, M.; Tamstorf, M. P.; Eklundh, L.; Schubert, P.; Ekberg, A.; Sigsgaard, C.; Christensen, T. R.; Ström, L.

    2010-02-01

    Arctic wetlands play a key role in the terrestrial carbon cycle. Recent studies have shown a greening trend and indicated an increase in CO2 uptake in boreal and sub- to low-arctic areas. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with ground-based flux measurements of CO2 to investigate a possible greening trend and potential changes in gross primary production (GPP) between 1992 and 2008 in a high arctic fen area. The study took place in Rylekaerene in the Zackenberg Research Area (74°28' N 20°34' W), located in the National park of North Eastern Greenland. We estimated the light use efficiency (ɛ) for the dominant vegetation types from field measured fractions of photosynthetic active radiation (FAPAR) and ground-based flux measurements of GPP. Measured FAPAR were correlated to satellite-based NDVI. The FAPAR-NDVI relationship in combination with ɛ was applied to satellite data to model GPP 1992-2008. The model was evaluated against field measured GPP. The model was a useful tool for up-scaling GPP and all basic requirements for the model were well met, e.g., FAPAR was well correlated to NDVI and modeled GPP was well correlated to field measurements. The studied high arctic fen area has experienced a strong increase in GPP between 1992 and 2008. The area has during this period also experienced a substantial increase in local air temperature. Consequently, the observed greening trend is most likely due to ongoing climatic change possibly in combination with CO2 fertilization, due to increasing atmospheric concentrations of CO2.

  6. Remote estimation of grassland gross primary production during extreme meteorological seasons

    NASA Astrophysics Data System (ADS)

    Rossini, Micol; Migliavacca, Mirco; Galvagno, Marta; Meroni, Michele; Cogliati, Sergio; Cremonese, Edoardo; Fava, Francesco; Gitelson, Anatoly; Julitta, Tommaso; Morra di Cella, Umberto; Siniscalco, Consolata; Colombo, Roberto

    2014-06-01

    Different models driven by remotely sensed vegetation indexes (VIs) and incident photosynthetically active radiation (PAR) were developed to estimate gross primary production (GPP) in a subalpine grassland equipped with an eddy covariance flux tower. Hyperspectral reflectance was collected using an automatic system designed for high temporal frequency acquisitions for three consecutive years, including one (2011) characterized by a strong reduction of the carbon sequestration rate during the vegetative season. Models based on remotely sensed and meteorological data were used to estimate GPP, and a cross-validation approach was used to compare the predictive capabilities of different model formulations. Vegetation indexes designed to be more sensitive to chlorophyll content explained most of the variability in GPP in the ecosystem investigated, characterized by a strong seasonal dynamic. Model performances improved when including also PARpotential defined as the maximal value of incident PAR under clear sky conditions in model formulations. Best performing models are based entirely on remotely sensed data. This finding could contribute to the development of methods for quantifying the temporal variation of GPP also on a broader scale using current and future satellite sensors.

  7. Multiscale analyses of solar-induced florescence and gross primary production

    NASA Astrophysics Data System (ADS)

    Wood, Jeffrey D.; Griffis, Timothy J.; Baker, John M.; Frankenberg, Christian; Verma, Manish; Yuen, Karen

    2017-01-01

    Solar-induced fluorescence (SIF) has shown great promise for probing spatiotemporal variations in terrestrial gross primary production (GPP), the largest component flux of the global carbon cycle. However, scale mismatches between SIF and ground-based GPP have posed challenges toward fully exploiting these data. We used SIF obtained at high spatial sampling rates and resolution by NASA's Orbiting Carbon Observatory-2 satellite to elucidate GPP-SIF relationships across space and time in the U.S. Corn Belt. Strong linear scaling functions (R2 ≥ 0.79) that were consistent across instantaneous to monthly time scales were obtained for corn ecosystems and for a heterogeneous landscape based on tall tower observations. Although the slope of the corn function was 56% higher than for the landscape, SIF was similar for corn (C4) and soybean (C3). Taken together, there is strong observational evidence showing robust linear GPP-SIF scaling that is sensitive to plant physiology but insensitive to the spatial or temporal scale.

  8. Constraining gross primary production and ecosystem respiration estimates for North America using atmospheric observations of carbonyl sulfide (OCS) and CO2

    NASA Astrophysics Data System (ADS)

    He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.

    2016-12-01

    Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with

  9. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    DOE PAGES

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; ...

    2017-04-18

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less

  10. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and

  11. Evaluating post-disaster ecosystem resilience using MODIS GPP data

    NASA Astrophysics Data System (ADS)

    Frazier, Amy E.; Renschler, Chris S.; Miles, Scott B.

    2013-04-01

    An integrated community resilience index (CRI) quantifies the status, exposure, and recovery of the physical, economic, and socio-cultural capital for a specific target community. However, most CRIs do not account for the recovery of ecosystem functioning after extreme events, even though many aspects of a community depend on the services provided by the natural environment. The primary goal of this study was to monitor the recovery of ecosystem functionality (ecological capital) using remote sensing-derived gross primary production (GPP) as an indicator of 'ecosystem-wellness' and assess the effect of resilience of ecological capital on the recovery of a community via an integrated CRI. We developed a measure of ecosystem resilience using remotely sensed GPP data and applied the modeling prototype ResilUS in a pilot study for a four-parish coastal community in southwestern Louisiana, USA that was impacted by Hurricane Rita in 2005. The results illustrate that after such an extreme event, the recovery of ecological capital varies according to land use type and may take many months to return to full functionality. This variable recovery can potentially impact the recovery of certain businesses that rely heavily on ecosystem services such as agriculture, forestry, fisheries, and tourism.

  12. Spatial and temporal variability of canopy GPP within a flux tower footprint

    NASA Astrophysics Data System (ADS)

    Garrity, S. R.; Vierling, L. A.

    2009-12-01

    Gross Primary Productivity (GPP) of plant canopies is strongly related to absorbed photosynthetically active radiation (APAR) and thus canopy structure. Short term canopy GPP responds to variable environmental conditions through alterations in the efficiency with which APAR is used to assimilate carbon and is thus also dependent on accessory pigment ratios and pool sizes. We used spatially distributed measurements of whole canopy transmitted radiation to better understand diurnal and seasonal dynamics of GPP within a flux tower footprint. Our instruments measured transmitted radiation in the Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI) wavelengths. These measurements served as proxies for canopy structure, short term changes in radiation use efficiency (RUE) and longer term changes in pools of photosynthetically important pigments. We found that aggregated measurements of PRI were related to total canopy RUE at both diurnal and seasonal time scales with the highest correlations occurring during periods when light-related stress was greatest. Diurnal and seasonal variability among spatially distributed measurements was in part explained by species composition and canopy structure. At the seasonal time scale we found evidence that suggested the ratios of photosynthetic pigments were related to canopy development and were important for explaining variability in the relationship between APAR and GPP across the growing season.

  13. Assessing soil fluxes of carbonyl sulfide to aid in ecosystem estimates of GPP

    NASA Astrophysics Data System (ADS)

    Whelan, M.; Rhew, R. C.; Campbell, J. E.; Hilton, T. W.; Berkelhammer, M. B.; Zumkehr, A. L.; Berry, J. A.

    2014-12-01

    Measuring the draw down of carbonyl sulfide (chemical formula: COS) over ecosystems can provide a new tool for estimating gross primary production (GPP) at important temporal and spatial scales. COS is a gas ubiquitous in the atmosphere that shares many characteristics with CO2: both are taken up by enzymes in plant leaves at a predictable ratio and in proportion to their ambient concentrations. While CO2 is simultaneously respired by soil and plant roots, the dominant flux of COS is foliar absorption. Previously, ecosystem soil fluxes of COS were thought to be negligible in the application of this COS-GPP proxy. Here we present new data describing controls on soil fluxes as a way to anticipate COS soil exchange over heterogeneous landscapes. Using soil samples from two agricultural sites in the Great Plains and one site in the Colorado Desert, we captured data from the extremes of ecosystem GPP in the United States. We then built a model describing COS soil fluxes with inputs of soil temperature and soil water content based on characterized soil behavior. This study provides an essential refinement in applying COS-GPP estimates over the continents.

  14. Basal Levels of (p)ppGpp in Enterococcus faecalis: the Magic beyond the Stringent Response

    PubMed Central

    Gaca, Anthony O.; Kajfasz, Jessica K.; Miller, James H.; Liu, Kuanqing; Wang, Jue D.; Abranches, Jacqueline; Lemos, José A.

    2013-01-01

    ABSTRACT The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for “Rel SpoT homologue”; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the ∆rsh ∆relQ [(p)ppGpp0] strain, suggesting that a lack of basal (p)ppGpp places the cell in a “transcriptionally relaxed” state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp0 strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. PMID:24065631

  15. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis.

    PubMed

    Barman, Rahul; Jain, Atul K; Liang, Miaoling

    2014-05-01

    We used a land surface model to quantify the causes and extents of biases in terrestrial gross primary production (GPP) due to the use of meteorological reanalysis datasets. We first calibrated the model using meteorology and eddy covariance data from 25 flux tower sites ranging from the tropics to the northern high latitudes and subsequently repeated the site simulations using two reanalysis datasets: NCEP/NCAR and CRUNCEP. The results show that at most sites, the reanalysis-driven GPP bias was significantly positive with respect to the observed meteorology-driven simulations. Notably, the absolute GPP bias was highest at the tropical evergreen tree sites, averaging up to ca. 0.45 kg C m(-2)  yr(-1) across sites (ca. 15% of site level GPP). At the northern mid-/high-latitude broadleaf deciduous and the needleleaf evergreen tree sites, the corresponding annual GPP biases were up to 20%. For the nontree sites, average annual biases of up to ca. 20-30% were simulated within savanna, grassland, and shrubland vegetation types. At the tree sites, the biases in short-wave radiation and humidity strongly influenced the GPP biases, while the nontree sites were more affected by biases in factors controlling water stress (precipitation, humidity, and air temperature). In this study, we also discuss the influence of seasonal patterns of meteorological biases on GPP. Finally, using model simulations for the global land surface, we discuss the potential impacts of site-level reanalysis-driven biases on the global estimates of GPP. In a broader context, our results can have important consequences on other terrestrial ecosystem fluxes (e.g., net primary production, net ecosystem production, energy/water fluxes) and reservoirs (e.g., soil carbon stocks). In a complementary study (Barman et al., ), we extend the present analysis for latent and sensible heat fluxes, thus consistently integrating the analysis of climate-driven uncertainties in carbon, energy, and water fluxes

  16. Evaluating the Potential of Southampton Carbon Flux Model (SCARF) for Monitoring Terrestrial Gross Primary Productivity Across African Ecosystems

    NASA Astrophysics Data System (ADS)

    Chiwara, P.; Dash, J.; Ardö, J.; Ogutu, B. O.; Milton, E. J.; Saunders, M. J.; Nicolini, G.

    2016-12-01

    Accurate knowledge about the amount and dynamics of terrestrial gross primary productivity is an important component for understanding of ecosystem functioning and processes. Recently a new diagnostic model, Southampton Carbon Flux (SCARF), was developed to predict terrestrial gross primary productivity at regional to global scale based on a chlorophyll index derived from MERIS data. The model aims at mitigating some shortcomings in traditional light-use-efficiency based models by (i) using the fraction of photosynthetic active radiation absorbed only by the photosynthetic components of the canopy (FAPARps) and (ii) using the intrinsic quantum yields of C3 and C4 photosynthesis thereby reducing errors from land cover misclassification. Initial evaluation of the model in northern higher latitude ecosystems shows good agreement with in situ measurements. The current study calibrated and validated the model for a diversity of vegetation types across Africa in order to test its performance over a water limiting environment. The validation was based on GPP measurements from seven eddy flux towers across Africa. Sensitivity and uncertainty analyses were also performed to determine the importance of key biophysical and meteorological input parameters.Overall, modelled GPP values show good agreement with in situ measured GPP at most sites except tropical rainforest site. Mean daily GPP varied significantly across sites depending on the vegetation types and climate; from a minimum of -0.12 gC m2 day-1 for the semi-arid savannah to a maximum of 7.30 gC m2 day-1 for tropical rain forest ecosystems at Ankasa (Ghana). The model results have modest to very strong positive agreement with observed GPP at most sites (R2 values ranging from 0.60 for Skukuza in South Africa) and 0.85 for Mongu in Zambia) except tropical rain forest ecosystem (R2=0.34). Overall, the model has a stronger across-site coefficient of determination (R2=0.78) than MOD17 GPP product (R2=0.68). PAR and VPD

  17. Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor

    PubMed Central

    Beljantseva, Jelena; Kudrin, Pavel; Jimmy, Steffi; Ehn, Marcel; Pohl, Radek; Varik, Vallo; Tozawa, Yuzuru; Shingler, Victoria; Tenson, Tanel; Rejman, Dominik; Hauryliuk, Vasili

    2017-01-01

    The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work. PMID:28157202

  18. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles

    NASA Astrophysics Data System (ADS)

    Nicholson, David P.; Wilson, Samuel T.; Doney, Scott C.; Karl, David M.

    2015-05-01

    Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg-1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m-3 d-1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m-2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.

  19. Integrating Chlorophyll fapar and Nadir Photochemical Reflectance Index from EO-1/Hyperion to Predict Cornfield Daily Gross Primary Production

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben; Huemmrich, K. Fred; Cook, Bruce D.; Corp, Lawrence A.; Kustas, William P.; Russ, Andrew L.; Prueger, John H.; Yao, Tian

    2016-01-01

    The concept of light use efficiency (Epsilon) and the concept of fraction of photosynthetically active ration (PAR) absorbed for vegetation photosynthesis (PSN), i.e., fAPAR (sub PSN), have been widely utilized to estimate vegetation gross primary productivity (GPP). It has been demonstrated that the photochemical reflectance index (PRI) is empirically related to e. An experimental US Department of Agriculture (USDA) cornfield in Maryland was selected as our study field. We explored the potential of integrating fAPAR(sub chl) (defined as the fraction of PAR absorbed by chlorophyll) and nadir PRI (PRI(sub nadir)) to predict cornfield daily GPP. We acquired nadir or near-nadir EO-1/Hyperion satellite images that covered the cornfield and took nadir in-situ field spectral measurements. Those data were used to derive the PRI(sub nadir) and fAPAR (sub chl). The fAPAR (sub chl) is retrieved with the advanced radiative transfer model PROSAIL2 and the Metropolis approach, a type of Markov Chain Monte Carlo (MCMC) estimation procedure. We define chlorophyll light use efficiency Epsilon (sub chl) as the ratio of vegetation GPP as measured by eddy covariance techniques to PAR absorbed by chlorophyll (Epsilon(sub chl) = GPP/APAR (sub chl). Daily Epsilon (sub chl) retrieved with the EO-1 Hyperion images was regressed with a linear equation of PRI (sub nadir) Epsilon (sub chl) = Alpha × PRI (sub nadir) + Beta). The satellite Epsilon(sub chl- PRI (sub nadir) linear relationship for the cornfield was implemented to develop an integrated daily GPP model [GPP = (Alpha × PRI(sub nadir) + Beta) × fAPAR (sub chl) × PAR], which was evaluated with fAPAR (sub chl) and PRI (sub nadir) retrieved from field measurements. Daily GPP estimated with this fAPAR (sub chl-) PRI (nadir) integration model was strongly correlated with the observed tower in-situ daily GPP (R(sup 2) = 0.93); with a root mean square error (RMSE) of 1.71 g C mol-(sup -1) PPFD and coefficient of variation (CV) of 16

  20. Integrating Chlorophyll fapar and Nadir Photochemical Reflectance Index from EO-1/Hyperion to Predict Cornfield Daily Gross Primary Production

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben; Huemmrich, K. Fred; Cook, Bruce D.; Corp, Lawrence A.; Kustas, William P.; Russ, Andrew L.; Prueger, John H.; Yao, Tian

    2016-01-01

    The concept of light use efficiency (Epsilon) and the concept of fraction of photosynthetically active ration (PAR) absorbed for vegetation photosynthesis (PSN), i.e., fAPAR (sub PSN), have been widely utilized to estimate vegetation gross primary productivity (GPP). It has been demonstrated that the photochemical reflectance index (PRI) is empirically related to e. An experimental US Department of Agriculture (USDA) cornfield in Maryland was selected as our study field. We explored the potential of integrating fAPAR(sub chl) (defined as the fraction of PAR absorbed by chlorophyll) and nadir PRI (PRI(sub nadir)) to predict cornfield daily GPP. We acquired nadir or near-nadir EO-1/Hyperion satellite images that covered the cornfield and took nadir in-situ field spectral measurements. Those data were used to derive the PRI(sub nadir) and fAPAR (sub chl). The fAPAR (sub chl) is retrieved with the advanced radiative transfer model PROSAIL2 and the Metropolis approach, a type of Markov Chain Monte Carlo (MCMC) estimation procedure. We define chlorophyll light use efficiency Epsilon (sub chl) as the ratio of vegetation GPP as measured by eddy covariance techniques to PAR absorbed by chlorophyll (Epsilon(sub chl) = GPP/APAR (sub chl). Daily Epsilon (sub chl) retrieved with the EO-1 Hyperion images was regressed with a linear equation of PRI (sub nadir) Epsilon (sub chl) = Alpha × PRI (sub nadir) + Beta). The satellite Epsilon(sub chl- PRI (sub nadir) linear relationship for the cornfield was implemented to develop an integrated daily GPP model [GPP = (Alpha × PRI(sub nadir) + Beta) × fAPAR (sub chl) × PAR], which was evaluated with fAPAR (sub chl) and PRI (sub nadir) retrieved from field measurements. Daily GPP estimated with this fAPAR (sub chl-) PRI (nadir) integration model was strongly correlated with the observed tower in-situ daily GPP (R(sup 2) = 0.93); with a root mean square error (RMSE) of 1.71 g C mol-(sup -1) PPFD and coefficient of variation (CV) of 16

  1. The new product fAPARchl is better than fAPARcanopy to describe terrestrial ecosystem photosynthesis (GPP)

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Middleton, E.; Cheng, Y.; Wei, J.

    2011-12-01

    Existing global climate models have been unable to accurately describe the intensity of photosynthetic activity or to discriminate this functionality among terrestrial vegetation canopies/ecosystems. Many satellite-based production efficiency models (PEMs), land-atmosphere interaction models and biogeochemical models (e.g., SiB, CLM and CASA) have used the concept of the fraction of photosynthetically active radiation (PAR) absorbed for vegetation photosynthesis (fAPARPSN) in their modeling work. These models typically use fAPAR for the whole canopy (fAPARcanopy) (usually denoted as FPAR or fAPAR) to represent fAPARPSN. However, this widely used FPAR parameter has proved to be physiologically insufficient to describe or retrieve terrestrial ecosystem photosynthesis. A much better alternative is to utilize the fraction of PAR absorbed by chlorophyll throughout a canopy/ecosystem (i.e., fAPARchl) to replace FPAR in these calculations. In this study, we present examples of fAPARchl, leaf fAPARNPV (the non-photosynthetic canopy fraction, without chlorophyll) and fAPARcanopy at 30 m spatial resolution for deciduous forests, evergreen forests and crops, obtained from Earth Observing One (EO-1) Hyperion satellite imagery. The differences obtained between fAPARchl and fAPARcanopy are significant for all of these vegetation types across the whole growing season. For instance, for the evergreen forests, fAPARchl changes seasonally, whereas the seasonal trend for fAPARcanopy is flat. Consequently, these differences translate into significant differences in estimates of fAPARPSN. We suggest modeling scientists should compare simulation outputs using fAPARcanopy versus fAPARchl, to check whether the differences are significant.

  2. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    PubMed

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  3. The challenges associated with applying global models in heterogeneous landscapes: A case study using MOD17 GPP estimates in Hawaii

    NASA Astrophysics Data System (ADS)

    Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.

    2016-12-01

    In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of

  4. An Ecophysiological Model for Remote Sensing of GPP

    NASA Astrophysics Data System (ADS)

    Tu, K. P.

    2010-12-01

    Remote sensing light use efficiency (LUE) models of terrestrial gross primary productivity (GPP) are currently limited by three main problems: 1) the ability to distinguish light absorption by the photosynthetically-active (FAPAR) and the non-photosynthetically active (FIPAR) portions of the canopy, 2) the spatial and temporal variation of the maximum LUE within and across biomes, and 3) parameterization of temperature and moisture scalars for different vegetation types. We address these three issues by 1) using the Enhanced Vegetation Index (EVI) or Soil-Adjusted Vegetation Index (SAVI) to estimate light absorption by the photosynthetically active fraction of the canopy (FAPAR), as opposed to using NDVI which appears to be sensitive to the non-photosynthetically active fraction and is therefore more indicative of the total canopy light interception (FIPAR), 2) estimating the maximum unstressed LUE based on the maximum quantum yield of photosynthesis, a physiological and well-constrained parameter, and 3) inferring seasonal variation in temperature and moisture stress using the phenological information in FAPAR time series, with a unique temperature optimum (Topt) determined for each pixel and moisture stress estimated from relative changes in FAPAR. In this approach, the model can be applied entirely with remote sensing observations of EVI (or EVI2 or SAVI), air temperature (Tair), and incident photosynthetically-active radiation (PAR). Aside from improved parameterization of stress functions based entirely on remote sensing observations, this approach is similar to previous LUE models based on the quantum yield of photosynthesis. However, it differs in that we incorporate recent evidence indicating that the time-averaged quantum yield is roughly one-half that of the instantaneous maximum quantum yield. This translates to time-averaged rates of GPP being roughly one-half the maximum instantaneous rates or GPPmean=GPPmax/2, consistent with studies showing strong

  5. Relationship of the first step in protein synthesis to ppGpp: formation of A(5')ppp(5')Gpp.

    PubMed Central

    Rapaport, E; Svihovec, S K; Zamecnik, P C

    1975-01-01

    In the presence of purified Escherichia coli lysyl-tRNA synthetase [L-lysine:tRNALys ligase (AMP-forming) EC 6.1.1.6], L-lysine, and ATP, addition of the nucleotide ppGpp results in formation of a unique product-A(5')ppp(5') Gpp. The same compound is also formed very rapidly in a cell-free protein-synthesizing system when ppGpp is added. The possible significance of this reaction in the rapid turnover of ppGpp and as a more general mechanism by which an AMP residue is activated and introduced onto a 5'-diphosphorylated species, including the 5'-end of an RNA, is further discussed. PMID:170611

  6. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Holding, J. M.; Duarte, C. M.; Sanz-Martín, M.; Mesa, E.; Arrieta, J. M.; Chierici, M.; Hendriks, I. E.; García-Corral, L. S.; Regaudie-de-Gioux, A.; Delgado, A.; Reigstad, M.; Wassmann, P.; Agustí, S.

    2015-12-01

    The Arctic Ocean is warming at two to three times the global rate and is perceived to be a bellwether for ocean acidification. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs, and higher temperatures should lead to increased rates of planktonic primary production. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145-2,099 μatm however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  7. Evaluation of MODIS GPP over a complex ecosystem in East Asia: A case study at Gwangneung flux tower in Korea

    NASA Astrophysics Data System (ADS)

    Shim, Changsub; Hong, Jiyoun; Hong, Jinkyu; Kim, Youngwook; Kang, Minseok; Malla Thakuri, Bindu; Kim, Yongwon; Chun, Junghwa

    2014-12-01

    Moderate Resolution Imaging Radiometer (MODIS) gross primary productivity (GPP) has been used widely to study the global carbon cycle associated with terrestrial ecosystems. The retrieval of the current MODIS productivity with a 1 × 1 km2 resolution has limitations when presenting subgrid scale processes in terrestrial ecosystems, specifically when forests are located in mountainous areas, and shows heterogeneity in vegetation type due to intensive land use. Here, we evaluate MODIS GPP (MOD17) at Gwangneung deciduous forest KoFlux tower (deciduous forest; GDK) for 2006-2010 in Korea, where the forests comprise heterogeneous vegetation cover over complex terrain. The monthly MODIS GPP data overestimated the GDK measurements in a range of +15% to +34% and was fairly well correlated (R = 0.88) with the monthly variability at GDK during the growing season. In addition, the MODIS data partly represented the sharp GPP reduction during the Asian summer monsoon (June-September) when intensive precipitation considerably reduces solar radiation and disturbs the forest ecosystem. To examine the influence of subgrid scale heterogeneity on GPP estimates over the MODIS scale, the individual vegetation type and its area within a corresponding MODIS pixel were identified using a national forest type map (∼71-m spatial resolution), and the annual GPP in the same area as the MODIS pixel was estimated. This resulted in a slight reduction in the positive MODIS bias by ∼10%, with a high degree of uncertainty in the estimation. The MODIS discrepancy for GDK suggests further investigation is necessary to determine the MODIS errors associated with the site-specific aerodynamic and hydrological characteristics that are closely related to the mountainous topography. The accuracy of meteorological variables and the impact of the very cloudy conditions in East Asia also need to be assessed.

  8. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area

    NASA Astrophysics Data System (ADS)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Hansen, Birger Ulf; Tamstorf, Mikkel Peter

    2013-12-01

    The Arctic is experiencing disproportionate warming relative to the global average, and the Arctic ecosystems are as a result undergoing considerable changes. Continued monitoring of ecosystem productivity and phenology across temporal and spatial scales is a central part of assessing the magnitude of these changes. This study investigates the ability to use automatic digital camera images (DCIs) as proxy data for gross primary production (GPP) in a complex low Arctic wetland site. Vegetation greenness computed from DCIs was found to correlate significantly (R2 = 0.62, p < 0.001) with a normalized difference vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid functions for each plant community. GPP at light saturation modeled from eddy covariance (EC) flux measurements were found to correlate significantly with vegetation greenness for all plant communities in the studied year (i.e., 2010), and the highest correlation was found between modeled fen greenness and GPP (R2 = 0.85, p < 0.001). Finally, greenness computed within modeled EC footprints were used to evaluate the influence of individual plant communities on the flux measurements. The study concludes that digital cameras may be used as a cost-effective proxy for potential GPP in remote Arctic regions.

  9. Detecting Soil Moisture Related Impacts on Gross Primary Productivity using the MODIS-based Photochemical Reflectance Index

    NASA Astrophysics Data System (ADS)

    He, M.; Kimball, J. S.; Running, S. W.; Ballantyne, A.; Guan, K.; Huemmrich, K. F.

    2016-12-01

    Satellite remote sensing provides continuous observations of vegetation properties that can be used to estimate ecosystem gross primary production (GPP). The Photochemical Reflectance Index (PRI) has been shown to be sensitive to photosynthetic light use efficiency (LUE), GPP and canopy water-stress. The NASA EOS MODIS (Moderate Resolution Imaging Spectroradiometer) sensor provides potential PRI estimation globally at daily time step and 1-km spatial resolution for more than 10 years. Here, we use the MODIS based PRI with eddy covariance CO2 flux measurements and meteorological observations from 20 tower sites representing 5 major plant functional types (PFT) within the continental USA (CONUS) to assess GPP sensitivity to seasonal water supply variability. The sPRI (scaled PRI) derived using MODIS band 13 as a reference band (sPRI13) generally shows higher correspondence with tower GPP observations than other potential MODIS reference bands (MODIS band 1, 4, 10 and 12). The sPRI13 was used to represent soil moisture related water supply constraints to LUE within a terrestrial carbon flux model to estimate GPP (GPPPRI). The GPPPRI calculations show generally strong relationships with tower GPP observations (0.457 ≤ R2 ≤ 0.818), except for lower GPPPRI performance over evergreen needleleaf forest (ENF) sites. A regional model sensitivity analysis using the sPRI13 as a proxy for soil moisture related water supply limits indicated that water restrictions limit GPP over more than 21% of the CONUS domain, particularly in northwest and southwest CONUS subregions, and drier climate areas where atmospheric moisture deficits (VPD) alone are insufficient to represent both atmosphere demand and soil water supply controls affecting productivity. Our results indicate strong potential of the MODIS sPRI13 to represent GPP sensitivity to seasonal soil moisture related water supply variability, with enhanced (1-km resolution) delineation of these processes closer to the scale of

  10. Constraining CO2 GPP with carbonyl sulfide: regional-scale evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Hilton, T. W.; Whelan, M.; Zumkehr, A. L.; Kulkarni, S.; Berry, J. A.; Baker, I. T.; Montzka, S. A.; Sweeney, C.; Miller, B. R.; Campbell, J. E.

    2016-12-01

    We present the first application of airborne carbonyl sulfide (COS or OCS) observations to constrain regional terrestrial carbon dioxide fluxes, introducing a new method to evaluate land surface models. Land surface model diagnoses of regional photosynthetic CO2 surface flux (gross primary production, GPP) report strong disagreement in spatial placement of North American GPP in spite of decades of development. COS may offer a novel and orthogonal information source because, like CO2, it is removed from the atmosphere during photosynthesis, but COS has no widespread co-located source to the atmosphere analogous to ecosystem respiration. We quantitatively consider uncertainties in secondary COS fluxes (soils, anthropogenic, transport model boundaries). Our results show that these observations, coupled with a regional chemical transport model, demonstrate that the North American terrestrial biological CO2 sink is strongest in the Upper Midwestern USA.

  11. Impacts of Light Use Efficiency and fPAR Parameterization on Gross Primary Production Modeling

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Zhang, Qingyuan; Lyapustin, Alexei I.; Wang, Yujie; Middleton, Elizabeth M.

    2014-01-01

    This study examines the impact of parameterization of two variables, light use efficiency (LUE) and the fraction of absorbed photosynthetically active radiation (fPAR or fAPAR), on gross primary production(GPP) modeling. Carbon sequestration by terrestrial plants is a key factor to a comprehensive under-standing of the carbon budget at global scale. In this context, accurate measurements and estimates of GPP will allow us to achieve improved carbon monitoring and to quantitatively assess impacts from cli-mate changes and human activities. Spaceborne remote sensing observations can provide a variety of land surface parameterizations for modeling photosynthetic activities at various spatial and temporal scales. This study utilizes a simple GPP model based on LUE concept and different land surface parameterizations to evaluate the model and monitor GPP. Two maize-soybean rotation fields in Nebraska, USA and the Bartlett Experimental Forest in New Hampshire, USA were selected for study. Tower-based eddy-covariance carbon exchange and PAR measurements were collected from the FLUXNET Synthesis Dataset. For the model parameterization, we utilized different values of LUE and the fPAR derived from various algorithms. We adapted the approach and parameters from the MODIS MOD17 Biome Properties Look-Up Table (BPLUT) to derive LUE. We also used a site-specific analytic approach with tower-based Net Ecosystem Exchange (NEE) and PAR to estimate maximum potential LUE (LUEmax) to derive LUE. For the fPAR parameter, the MODIS MOD15A2 fPAR product was used. We also utilized fAPAR chl, a parameter accounting for the fAPAR linked to the chlorophyll-containing canopy fraction. fAPAR chl was obtained by inversion of a radiative transfer model, which used the MODIS-based reflectances in bands 1-7 produced by Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. fAPAR chl exhibited seasonal dynamics more similar with the flux tower based GPP than MOD15A2 fPAR, especially

  12. A GPP assimilation model for the southeastern Tibetan Plateau based on CO2 eddy covariance flux tower and remote sensing data

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Zhang, JiaHua; Xu, XiangDe; Dong, ZhiXin

    2013-08-01

    The gross primary production (GPP) at individual CO2 eddy covariance flux tower sites (GPPTower) in Dali (DL), Wenjiang (WJ) and Linzhi (LZ) around the southeastern Tibetan Plateau were determined by the net ecosystem exchange of CO2 (NEE) and ecosystem respiration (Re). The satellite remote sensing-VPM model estimates of GPP values (GPPMODIS) used the satellite-derived 8-day surface reflectance product (MOD09A1), including satellite-derived enhanced vegetation index (EVI) and land surface water index (LSWI). In this paper, we assembled a subset of flux tower data at these three sites to calibrate and test satellite-VPM model estimated GPPMODIS, and introduced the satellite data and site-level environmental factors to develop four new assimilation models. The new assimilation models’ estimates of GPP values were compared with GPPMODIS and GPPTower, and the final optimum model among the four assimilation models was determined and used to calibrate GPPMODIS. The results showed that GPPMODIS had similar temporal variations to the GPPTower, but GPPMODlS were commonly higher in absolute magnitude than GPPTower with relative error (RE) about 58.85%. While, the assimilation models’ estimates of GPP values (GPPMODEL) were much more closer to GPPTower with RE approximately 6.98%, indicating that the capacity of the simulation in the new assimilation model was greatly improved, the R2 and root mean square error (RMSE) of the new assimilation model were 0.57-4.90% higher and 0.74-2.47 g C m-2 s-1 lower than those of the GPPMODIS, respectively. The assimilation model was used to predicted GPP dynamics around the Tibetan Plateau and showed a reliable result compared with other researches. This study demonstrated the potential of the new assimilation model for estimating GPP around the Tibetan Plateau and the performances of site-level biophysical parameters in related to satellite-VPM model GPP.

  13. Algorithm developing of gross primary production from its capacity and a canopy conductance index using flux and global observing satellite data

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Furumi, Shinobu; Daigo, Motomasa

    2015-10-01

    We plan to estimate gross primary production (GPP) using the SGLI sensor on-board the GCOM-C1 satellite after it is launched in 2017 by the Japan Aerospace Exploration Agency, as we have developed a GPP estimation algorithm that uses SGLI sensor data. The characteristics of this GPP estimation method correspond to photosynthesis. The rate of plant photosynthesis depends on the plant's photosynthesis capacity and the degree to which photosynthesis is suppressed. The photosynthesis capacity depends on the chlorophyll content of leaves, which is a plant physiological parameter, and the degree of suppression of photosynthesis depends on weather conditions. The framework of the estimation method to determine the light-response curve parameters was developed using ux and satellite data in a previous study[1]. We estimated one of the light-response curve parameters based on the linear relationship between GPP capacity at 2000 (μmolm-2s-1) of photosynthetically active radiation and a chlorophyll index (CIgreen [2;3] ). The relationship was determined for seven plant functional types. Decreases in the photosynthetic rate are controlled by stomatal opening and closing. Leaf stomatal conductance is maximal during the morning and decreases in the afternoon. We focused on daily changes in leaf stomatal conductance. We used open shrub flux data and MODIS reflectance data to develop an algorithm for a canopy. We first evaluated the daily changes in GPP capacity estimated from CIgreen and photosynthesis active radiation using light response curves, and GPP observed during a flux experiment. Next, we estimated the canopy conductance using flux data and a big-leaf model using the Penman-Monteith equation[4]. We estimated GPP by multiplying GPP capacity by the normalized canopy conductance at 10:30, the time of satellite observations. The results showed that the estimated daily change in GPP was almost the same as the observed GPP. From this result, we defined a normalized canopy

  14. In situ spectral measurements improve the efficiency of light use efficiency models to estimate gross primary productivity in Mediterranean cork oak woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, S.; Silva, J. M.; Carvalhais, N.; Correia, A.; Costa e Silva, F.; Pereira, J. S.

    2013-12-01

    The Light Use Efficiency (LUE) concept is usually applied to retrieve Gross Primary Productivity (GPP) estimates in models integrating spectral indexes, namely Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), considered proxies of biophysical properties of vegetation. The integration of spectral measurements into LUE models can increase the robustness of GPP estimates by optimizing particular parameters of the model. NDVI and PRI are frequently obtained by broad band sensors on remote platforms at low spatial resolution (e.g. MODIS). In highly heterogeneous ecosystems such spectral information may not be representative of the dynamic response of the ecosystem to climate variables. In Mediterranean oak woodlands different plant functional types (PFT): trees canopy, shrubs and herbaceous layer, contribute to the overall Gross Primary Productivity (GPP). In situ spectral measurements can provide useful information on each PFT and its temporal variability. The objectives of this study were: i) to analyze the temporal variability of NDVI, PRI and others spectral indices for the three PFT, their response to climate variables and their relationship with biophysical properties of vegetation; ii) to optimize a LUE model integrating selected spectral indexes in which the contribution of each PFT to the overall GPP is estimated individually; iii) to compare the performance of disaggregated GPP estimates and lumped GPP estimates, evaluated against eddy covariance measurements. Ground measurements of vegetation reflectance were performed in a cork oak woodland located in Coruche, Portugal (39°8'N, 8°19'W) where carbon and water fluxes are continuously measured by eddy covariance. Between April 2011 and June 2013 reflectance measurements of the herbaceous layer, shrubs and trees canopy were acquired with a FieldSpec3 spectroradiometer (ASD Inc.) which provided data in the range of 350-2500nm. Measurements were repeated approximately on

  15. Integrating Solar Induced Fluorescence and the Photochemical Reflectance Index for Estimating Gross Primary Production in a Cornfield

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Huemmrich, Karl F.; Campbell, Petya K. E.; Corp, Lawrence A.; Cook, Bruce D.; Kustas, William P.; Daughtry, Criag S.

    2013-01-01

    The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four growing seasons. The Photochemical Reflectance Index (PRI) and solar induced chlorophyll fluorescence (SIF), were derived. SIF retrievals were accomplished in the two telluric atmospheric oxygen absorption features centered at 688 nm (O2-B) and 760 nm (O2-A). The PRI and SIF were examined in conjunction with GPP and LUE determined by flux tower-based measurements. All of these fluxes, environmental variables, and the PRI and SIF exhibited diurnal as well as day-to-day dynamics across the four growing seasons. Consistent with previous studies, the PRI was shown to be related to LUE (r2 = 0.54 with a logarithm fit), but the relationship varied each year. By combining the PRI and SIF in a linear regression model, stronger performances for GPP estimation were obtained. The strongest relationship (r2 = 0.80, RMSE = 0.186 mg CO2/m2/s) was achieved when using the PRI and SIF retrievals at 688 nm. Cross-validation approaches were utilized to demonstrate the robustness and consistency of the performance. This study highlights a GPP retrieval method based entirely on hyperspectral remote sensing observations.

  16. Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations

    NASA Astrophysics Data System (ADS)

    Lei, Huimin; Huang, Maoyi; Leung, L. Ruby; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, Christopher R.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    Soil moisture plays an important role in the coupled water, energy, and carbon cycles. In addition to surface processes such as evapotranspiration, the boundary fluxes that influence soil moisture are closely related to surface or subsurface runoff. To elucidate how uncertainties in representing surface and subsurface hydrology may influence simulations of the carbon cycle, numerical experiments were performed using version 4 of the Community Land Model with two widely adopted runoff generation parameterizations from the TOPMODEL and Variable Infiltration Capacity (VIC) model under the same protocol. The results showed that differences in the runoff generation schemes caused a relative difference of 36% and 34% in global mean total runoff and soil moisture, respectively, with substantial differences in their spatial distribution and seasonal variability. Changes in the simulated gross primary production (GPP) were found to correlate well with changes in soil moisture through its effects on leaf photosynthesis (An) and leaf area index (LAI), which are the two dominant components determining GPP. Soil temperature, which is influenced by soil moisture, also affects LAI and GPP for the seasonal-deciduous and stress-deciduous plant functional types that dominate in cold regions. Consequently, the simulated global mean GPP differs by 20.4% as a result of differences in soil moisture and soil temperature simulated between the two models. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  17. Investigating the Role of Tropical Cyclone Precipitation in the Gross Primary Productivity of the Southeast US using an Ecohydrological Model

    NASA Astrophysics Data System (ADS)

    Brun, J.; Barros, A. P.

    2012-12-01

    A Land surface Eco-Hydrological Model (LEHM), combining water and energy budgets with photosynthesis activity, is used to estimate Gross Primary Production (GPP) over the SE US using NCEP Stage IV as precipitation forcing, NLDAS/NARR for the atmospheric forcing and MODIS LAI/FPAR for phenology representation. First, an evaluation against AmeriFlux and MODIS GPP data over the SE United States in order to establish the model's ability to capture vegetation dynamics for the different biomes of the SE US over several years depending on data availability. Second, a suite of numerical experiments is conducted to evaluate the impact of Tropical Cyclones (TCs) precipitation over the SE US. The numerical experiments consist of with and without simulations by replacing the signature of TC forcing by NARR-derived climatology of atmospheric forcing ahead of landfall during the TC terrestrial path. By comparing these GPP estimates with those obtained with the normal forcing, the areas of discrepancies where the GPP was significantly modulated by TC activity will be determined with a focus on the series of TCs in the 2004 and 2005 hurricane seasons. Finally, the interannual variability of the impact of hurricane activity on the carbon cycle of the SE US in the MODIS era will be evaluated.

  18. Spatial Estimates of GPP Using LiDAR- and Quickbird-Derived fPAR

    NASA Astrophysics Data System (ADS)

    Cook, B. D.; Bolstad, P. V.; Naesset, E.; Heinsch, F. A.; Anderson, R. S.; Garrigues, S.; Morisette, J. T.; Nickeson, J. E.; Hilton, T. W.; Davis, K. J.; Roman, M. O.

    2007-12-01

    Regional- to global-scale gross primary production (GPP) is commonly estimated with light-use efficiency models, which are largely dependent on remotely sensed estimates of the fraction of photosynthetically active radiation absorbed by vegetation (fPAR). Methodologies to quantify spatial variability of fPAR and improve GPP estimates have not been established for mixed forests and heterogeneous landscapes in the Great Lakes Region, and are needed to estimate photosynthetic sinks for the Mid-Continent Regional Intensive Campaign. In this study, hemispheric photos were collected during the 2006 growing season to estimate fPAR, plant area index (PAI), leaf inclination angle, and clumping factors in >130 lowland and upland stands within the footprint of a 400 m eddy covariance flux tower near Park Falls, Wisconsin, USA. Airborne LiDAR and Quickbird imagery were acquired during leaf-on and leaf-off periods to make predictions of canopy structure, and resulting PAI/fPAR estimates were compared with litterfall measurements and products derived from the Moderate Resolution Spectroradiometer (MODIS). GPP was modeled with the MODIS MOD17A2 algorithm, using fine-resolution land cover and fPAR inputs that were spatially aggregated into units ranging from 30 m to 1 km square. Uncertainties and errors associated with fPAR methods and spatial resolutions are discussed based on agreement with flux tower observations.

  19. Microbial production of primary metabolites

    NASA Astrophysics Data System (ADS)

    Demain, Arnold L.

    1980-12-01

    Microbial production of primary metabolites contributes significantly to the quality of life. Through fermentation, microorganisms growing on inexpensive carbon sources can produce valuable products such as amino acids, nucleotides, organic acids, and vitamins which can be added to food to enhance its flavor or increase its nutritive value. The contribution of microorganisms will go well beyond the food industry with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. The role of primary metabolites and the microbes which produce them will certainly increase in importance.

  20. Atmospheric COS measurements and satellite-derived vegetation fluorescence data to evaluate the terrestrial gross primary productivity of CMIP5 model

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; MacBean, Natasha; Launois, Thomas; Belviso, Sauveur; Cadule, Patricia; Maignan, Fabienne

    2016-04-01

    Predicting the fate of the ecosystem carbon stocks and their sensitivity to climate change strongly relies on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. The Gross Primary Productivity (GPP) simulated by the different terrestrial models used in CMIP5 show large differences however, not only in terms of mean value but also in terms of phase and amplitude, thus hampering accurate investigations into carbon-climate feedbacks. While the net C flux of an ecosystem (NEE) can be measured in situ with the eddy covariance technique, the GPP is not directly accessible at larger scales and usually estimates are based on indirect measurements combining different tracers. Recent measurements of a new atmospheric tracer, the Carbonyl sulphide (COS), as well as the global measurement of Solar Induced Fluorescence (SIF) from satellite instruments (GOSAT, GOME2) open a new window for evaluating the GPP of earth system models. The use of COS relies on the fact that it is absorbed by the leaves in a similar manner to CO2, while there seems to be nothing equivalent to respiration for COS. Following recent work by Launois et al. (ACP, 2015), there is a potential to evaluate model GPP from atmospheric COS and CO2 measurements, using a transport model and recent parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of COS. Vegetation uptake of COS is modeled as a linear function of GPP and the ratio of COS to CO2 rate of uptake by plants. For the fluorescence, recent measurements of SIF from space appear to be highly correlated with monthly variations of data-driven GPP estimates (Guanter et al., 2012), following a strong dependence of vegetation SIF on photosynthetic activity. These global measurements thus provide new indications on the timing of canopy carbon uptake. In this work, we propose a dual approach that combines the strength of both COS and SIF

  1. Modeling climate change impacts on primary production by the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Prentice, I. C.; Evans, B. J.; Gilbert, X.

    2013-12-01

    A modelling system is under development for the global hindcasting and analysis of spatial and temporal patterns in terrestrial gross primary production (GPP). The aim is to produce the simplest possible model that makes good use of observational data (from flux towers, meteorological stations, and remote-sensing satellites) while defensibly representing the principal ecophysiological processes that govern GPP. The first modelling step consists of partitioning high time-resolution carbon dioxide flux data, using in situ photosynthetically active radiation (PAR) measurements. The second step estimates monthly light-use efficiency (LUE) from monthly aggregated GPP and gap-filled, monthly aggregated PAR, and analyses the empirical dependencies of LUE on vegetational and environmental factors in order to yield a simple predictive model for LUE. The third and final stage generates spatial fields of monthly GPP based on remotely sensed reflectances and predicted LUE. The basis of the system is an efficient database structure, which is the "tool chest" for modelling. The tool chest is designed to hold the variety of observational data necessary to complete each stage of the model including point measurements of CO2 fluxes and PAR, and gridded measurements of surface reflectances and downwelling radiation. The Python programming language is used to upload, retrieve and process data. Although the model as currently developed is a data-driven, 'diagnostic' model, the intention is to use its basic elements in the construction of a next-generation vegetation and land-surface model based on a new theoretical approach to predict the light use efficiency of ecosystems. The model will strive for clarity and uniformity so that it may be used by researchers across disciplines. The use of an open-source programming language allows for portability and transparency. The model will invite a range of applications to the analysis of climate and CO2 change impacts on ecosystem processes.

  2. Primary productivity in the sea

    SciTech Connect

    Falkowski, P.G.

    1980-01-01

    Recent progress in primary productivity is discussed in the book based on 27 symposia texts and 19 poster abstracts. Most papers deal with particular cellular processes in pelagic phytoplankton and their relationship to whole plant photosynthesis and growth. In addition, presentations on the productivity of the seaweed, Laminaria, zooxanthellae and whole corals are included. Other articles discuss predictive modeling, new developments in remote sensing, nutrient regeneration within the sea, grazing effects, and carbon cycling. (JMT)

  3. Evaluating the potential of Southampton Carbon flux (SCARF) model to predict terrestrial gross primary productivity over Africa.

    NASA Astrophysics Data System (ADS)

    Dash, Jadunandan; Chiwara, Phibion; Milton, Edward; Ardo, Jonas; Saunders, Matthew; Nicolini, Giacomo

    The amount of carbon uptake by vegetation is an important component to understand the functioning of ecosystem processes and their response/feedback to climate. Recently a new diagnostic model called the Southampton Carbon flux (SCARF) model was develop to predict terrestrial gross primary productivity at regional to global scale using satellite data. The model based on the quantum yield of vegetation improves on the previous diagnostic model by (i) using the fraction of photosynthetic active radiation absorbed by the photosynthetic pigment (FAPAR _{ps}) and (ii) using direct quantum yield by classifying the vegetation into C3 or C4 classes. Initial results suggest a very good agreement with expected results for ecosystems where the growth is controlled by temperature (e.g. Northern higher latitude). In this paper we calibrated and validated the model for a range of vegetation types across Africa, in order to test the performance of vegetation over a water limiting ecosystem. The vapour pressure deficit term (VPD) was modified to quantify the water loss and in turn reduced carbon assimilation through Evapotranspiration. The performance of the model was evaluated with GPP measured at eight eddy covariance flux tower data across Africa. Overall, the modelled GPP values show good agreement with observed GPP at most sites (except tropical rainforest site) in terms of their seasonality and absolute values. Mean daily GPP across the investigated period varied significantly across sites depending on the vegetation types from a minimum of 0.64 gC m (2) day (-1) for the dry savannah grassland at Demokeya to a maximum of 7.83 gC m (2) day (-1) for tropical rain forest at Ankasa. The model results have modest to very strong positive agreement with observed GPP at most sites (r (2) values ranging from 0.58 for Kruger and 0.84 for Mongu). Generally, strong correlation is observed in woodlands and grasslands where vegetation follows a prescribed seasonal cycle as determined by

  4. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  5. Gross primary production responses to warming, elevated CO2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland.

    PubMed

    Ryan, Edmund M; Ogle, Kiona; Peltier, Drew; Walker, Anthony P; De Kauwe, Martin G; Medlyn, Belinda E; Williams, David G; Parton, William; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Lu, Xingjie; Luus, Kristina A; Zaehle, Sönke; Shu, Shijie; Werner, Christian; Xia, Jianyang; Pendall, Elise

    2017-08-01

    Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R(2)  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data

  6. Tree-grass phenology information improves light use efficiency modelling of gross primary productivity for an Australian tropical savanna

    NASA Astrophysics Data System (ADS)

    Moore, Caitlin E.; Beringer, Jason; Evans, Bradley; Hutley, Lindsay B.; Tapper, Nigel J.

    2017-01-01

    The coexistence of trees and grasses in savanna ecosystems results in marked phenological dynamics that vary spatially and temporally with climate. Australian savannas comprise a complex variety of life forms and phenologies, from evergreen trees to annual/perennial grasses, producing a boom-bust seasonal pattern of productivity that follows the wet-dry seasonal rainfall cycle. As the climate changes into the 21st century, modification to rainfall and temperature regimes in savannas is highly likely. There is a need to link phenology cycles of different species with productivity to understand how the tree-grass relationship may shift in response to climate change. This study investigated the relationship between productivity and phenology for trees and grasses in an Australian tropical savanna. Productivity, estimated from overstory (tree) and understory (grass) eddy covariance flux tower estimates of gross primary productivity (GPP), was compared against 2 years of repeat time-lapse digital photography (phenocams). We explored the phenology-productivity relationship at the ecosystem scale using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and flux tower GPP. These data were obtained from the Howard Springs OzFlux/Fluxnet site (AU-How) in northern Australia. Two greenness indices were calculated from the phenocam images: the green chromatic coordinate (GCC) and excess green index (ExG). These indices captured the temporal dynamics of the understory (grass) and overstory (trees) phenology and were correlated well with tower GPP for understory (r2 = 0.65 to 0.72) but less so for the overstory (r2 = 0.14 to 0.23). The MODIS enhanced vegetation index (EVI) correlated well with GPP at the ecosystem scale (r2 = 0.70). Lastly, we used GCC and EVI to parameterise a light use efficiency (LUE) model and found it to improve the estimates of GPP for the overstory, understory and ecosystem. We conclude that phenology is an important parameter to

  7. A statistical light use efficiency model explains 85% variations in global GPP

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ryu, Y.

    2016-12-01

    Photosynthesis is a complicated process whose modeling requires different levels of assumptions, simplification, and parameterization. Among models, light use efficiency (LUE) model is highly compact but powerful in monitoring gross primary production (GPP) from satellite data. Most of LUE models adopt a multiplicative from of maximum LUE, absorbed photosynthetically active radiation (APAR), and temperature and water stress functions. However, maximum LUE is a fitting parameter with large spatial variations, but most studies only use several biome dependent constants. In addition, stress functions are empirical and arbitrary in literatures. Moreover, meteorological data used are usually coarse-resolution, e.g., 1°, which could cause large errors. Finally, sunlit and shade canopy have completely different light responses but little considered. Targeting these issues, we derived a new statistical LUE model from a process-based and satellite-driven model, the Breathing Earth System Simulator (BESS). We have already derived a set of global radiation (5-km resolution), carbon and water fluxes (1-km resolution) products from 2000 to 2015 from BESS. By exploring these datasets, we found strong correlation between APAR and GPP for sunlit (R2=0.84) and shade (R2=0.96) canopy, respectively. A simple model, only driven by sunlit and shade APAR, was thus built based on linear relationships. The slopes of the linear function act as effective LUE of global ecosystem, with values of 0.0232 and 0.0128 umol C/umol quanta for sunlit and shade canopy, respectively. When compared with MPI-BGC GPP products, a global proxy of FLUXNET data, BESS-LUE achieved an overall accuracy of R2 = 0.85, whereas original BESS was R2 = 0.83 and MODIS GPP product was R2 = 0.76. We investigated spatiotemporal variations of the effective LUE. Spatially, the ratio of sunlit to shade values ranged from 0.1 (wet tropic) to 4.5 (dry inland). By using maps of sunlit and shade effective LUE the accuracy of

  8. [Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model].

    PubMed

    Zhang, Fang-Min; Ju, Wei-Min; Chen, Jing-Ming; Wang, Shao-Qiang; Yu, Gui-Rui; Han, Shi-Jie

    2012-02-01

    Based on the bi-linearly interpolated meteorological reanalysis data from National Centers for Environmental Prediction, USA and by using the leaf area index data derived from the GIMMS NDVI to run the process-based Boreal Ecosystems Productivity Simulator (BEPS) model, this paper simulated and analyzed the spatiotemporal characteristics of the terrestrial ecosystem gross primary productivity (GPP) and net primary productivity (NPP) in East Asia in 2000-2005. Before regional simulating and calculating, the observation GPP data of different terrestrial ecosystem in 15 experimental stations of AsiaFlux network and the inventory measurements of NPP at 1300 sampling sites were applied to validate the BEPS GPP and NPP. The results showed that BEPS could well simulate the changes in GPP and NPP of different terrestrial ecosystems, with the R2 ranging from 0.86 to 0.99 and the root mean square error (RMSE) from 0.2 to 1.2 g C x m(-2) x d(-1). The simulated values by BEPS could explain 78% of the changes in annual NPP, and the RMSE was 118 g C x m(-2) x a(-1). In 2000-2005, the averaged total GPP and total NPP of the terrestrial ecosystems in East Asia were 21.7 and 10.5 Pg C x a(-1), respectively, and the GPP and NPP exhibited similar spatial and temporal variation patterns. During the six years, the total NPP of the terrestrial ecosystems varied from 10.2 to 10.7 Pg C x a(-1), with a coefficient of variation being 2. 2%. High NPP (above 1000 g C x m(-2) x a(-1)) occurred in the southeast island countries, while low NPP (below 30 g C x m(-2) x a(-1)) occurred in the desert area of Northwest China. The spatial patterns of NPP were mainly attributed to the differences in the climatic variables across East Asia. The NPP per capita also varied greatly among different countries, which was the highest (70217 kg C x a(-1)) in Mongolia, far higher than that (1921 kg C x a(-1)) in China, and the lowest (757 kg C x a(-1)) in India.

  9. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions

    NASA Astrophysics Data System (ADS)

    Wagle, Pradeep; Xiao, Xiangming; Suyker, Andrew E.

    2015-01-01

    Gross primary production (GPP) of croplands may be used to quantify crop productivity and evaluate a range of management practices. Eddy flux data from three soybean (Glycine max L.) fields under different management practices (no-till vs. till; rainfed vs. irrigated) and Moderate Resolution Imaging Spectroradiometer (MODIS) derived vegetation indices (VIs) were used to test the capabilities of remotely sensed VIs and soybean phenology to estimate the seasonal dynamics of carbon fluxes. The modeled GPP (GPPVPM) using vegetation photosynthesis model (VPM) was compared with the GPP (GPPEC) estimated from eddy covariance measurements. The VIs tracked soybean phenology well and delineated the growing season length (GSL), which was closely related to carbon uptake period (CUP, R2 = 0.84), seasonal sums of net ecosystem CO2 exchange (NEE, R2 = 0.78), and GPPEC (R2 = 0.54). Land surface water index (LSWI) tracked drought-impacted vegetation well, as the LSWI values were positive during non-drought periods and negative during severe droughts within the soybean growing season. On a seasonal scale, NEE of the soybean sites ranged from -37 to -264 g C m-2. The result suggests that rainfed soybean fields needed about 450-500 mm of well-distributed seasonal rainfall to maximize the net carbon sink. During non-drought conditions, VPM accurately estimated seasonal dynamics and interannual variation of GPP of soybean under different management practices. However, some large discrepancies between GPPVPM and GPPEC were observed under drought conditions as the VI did not reflect the corresponding decrease in GPPEC. Diurnal GPPEC dynamics showed a bimodal distribution with a pronounced midday depression at the period of higher water vapor pressure deficit (>1.2 kPa). A modified Wscalar based on LSWI to account for the water stress in VPM helped quantify the reduction in GPP during severe drought and the model's performance improved substantially. In conclusion, this study demonstrates

  10. An Essential Role for (p)ppGpp in the Integration of Stress Tolerance, Peptide Signaling, and Competence Development in Streptococcus mutans

    PubMed Central

    Kaspar, Justin; Kim, Jeong N.; Ahn, Sang-Joon; Burne, Robert A.

    2016-01-01

    The microbes that inhabit the human oral cavity are subjected to constant fluctuations in their environment. To overcome these challenges and gain a competitive advantage, oral streptococci employ numerous adaptive strategies, many of which appear to be intertwined with the development of genetic competence. Here, we demonstrate that the regulatory circuits that control development of competence in Streptococcus mutans, a primary etiological agent of human dental caries, are integrated with key stress tolerance pathways by the molecular alarmone (p)ppGpp. We first observed that the growth of a strain that does not produce (p)ppGpp (ΔrelAPQ, (p)ppGpp0) is not sensitive to growth inhibition by comX inducing peptide (XIP), unlike the wild-type strain UA159, even though XIP-dependent activation of the alternative sigma factor comX by the ComRS pathway is not impaired in the (p)ppGpp0 strain. Overexpression of a (p)ppGpp synthase gene (relP) in the (p)ppGpp0 mutant restored growth inhibition by XIP. We also demonstrate that exposure to micromolar concentrations of XIP elicited changes in (p)ppGpp accumulation in UA159. Loss of the RelA/SpoT homolog (RSH) enzyme, RelA, lead to higher basal levels of (p)ppGpp accumulation, but to decreased sensitivity to XIP and to decreases in comR promoter activity and ComX protein levels. By introducing single amino acid substitutions into the RelA enzyme, the hydrolase activity of the enzyme was shown to be crucial for full com gene induction and transformation by XIP. Finally, loss of relA resulted in phenotypic changes to ΔrcrR mutants, highlighted by restoration of transformation and ComX protein production in the otherwise non-transformable ΔrcrR-NP mutant. Thus, RelA activity and its influence on (p)ppGpp pools appears to modulate competence signaling and development through RcrRPQ and the peptide effectors encoded within rcrQ. Collectively, this study provides new insights into the molecular mechanisms that integrate

  11. Interplay of drought and tropical cyclone activity in SE U.S. gross primary productivity

    NASA Astrophysics Data System (ADS)

    Lowman, Lauren E. L.; Barros, Ana P.

    2016-06-01

    Tropical cyclones (TCs), often associated with massive flooding and landslides in the Southeast U.S. (SE U.S.), provide a significant input of freshwater to the hydrologic system, and their timing and trajectory significantly impact drought severity and persistence. This manuscript investigates the sensitivity of gross primary productivity (GPP) in the SE U.S. to TC activity using the 1-D column implementation of the Duke Coupled Hydrology Model with Vegetation (DCHM-V) including coupled water and energy cycles and a biochemical representation of photosynthesis. Decadal-scale simulations of water, energy, and carbon fluxes were conducted at high temporal (30 min) and spatial (4 km) resolution over the period 2002-2012. At local scales, model results without calibration compare well against AmeriFlux tower data. At regional scales, differences between the DCHM-V estimates and the Moderate Resolution Imaging Spectroradiometer GPP product reflect the spatial organization of soil hydraulic properties and soil moisture dynamics by physiographic region, highlighting the links between the water and carbon cycles. To isolate the contribution of TC precipitation to SE U.S. productivity, control forcing simulations are contrasted with simulations where periods of TC activity in the atmospheric forcing data were replaced with climatology. During wet years, TC activity impacts productivity in 40-50% of the SE U.S. domain and explains a regional GPP increase of 3-5 Mg C/m2 that is 9% of the warm season total. In dry years, 23-34% of the domain exhibits a smaller positive response that corresponds to 4-8% of the seasonal carbon uptake, depending on TC timing and trajectory.

  12. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    NASA Astrophysics Data System (ADS)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P < 0.001) and T predictions from an ecosystem model (MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P < 0.001). As an alternative to estimating T, Δ measurements can be used to estimate GPP by combining Ci / Ca estimates with Gs estimates from sapflow data. Estimates of GPP were determined in this fashion and were highly correlated to GPP values derived from EC (y = 0.82 + 0.07; r2 = 0.61; slope P < 0.001) and GPP predictions from MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  13. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites: TL-LUE Parameterization and Validation

    SciTech Connect

    Zhou, Yanlian; Wu, Xiaocui; Ju, Weimin; Chen, Jing M.; Wang, Shaoqiang; Wang, Huimin; Yuan, Wenping; Andrew Black, T.; Jassal, Rachhpal; Ibrom, Andreas; Han, Shijie; Yan, Junhua; Margolis, Hank; Roupsard, Olivier; Li, Yingnian; Zhao, Fenghua; Kiely, Gerard; Starr, Gregory; Pavelka, Marian; Montagnani, Leonardo; Wohlfahrt, Georg; D'Odorico, Petra; Cook, David; Arain, M. Altaf; Bonal, Damien; Beringer, Jason; Blanken, Peter D.; Loubet, Benjamin; Leclerc, Monique Y.; Matteucci, Giorgio; Nagy, Zoltan; Olejnik, Janusz; Paw U, Kyaw Tha; Varlagin, Andrej

    2016-04-06

    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at 6 FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8-day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems and it is more robust with regard to usual biases in input data than existing approaches which neglect the bi-modal within-canopy distribution of PAR.

  14. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlian; Wu, Xiaocui; Ju, Weimin; Chen, Jing M.; Wang, Shaoqiang; Wang, Huimin; Yuan, Wenping; Andrew Black, T.; Jassal, Rachhpal; Ibrom, Andreas; Han, Shijie; Yan, Junhua; Margolis, Hank; Roupsard, Olivier; Li, Yingnian; Zhao, Fenghua; Kiely, Gerard; Starr, Gregory; Pavelka, Marian; Montagnani, Leonardo; Wohlfahrt, Georg; D'Odorico, Petra; Cook, David; Arain, M. Altaf; Bonal, Damien; Beringer, Jason; Blanken, Peter D.; Loubet, Benjamin; Leclerc, Monique Y.; Matteucci, Giorgio; Nagy, Zoltan; Olejnik, Janusz; Paw U, Kyaw Tha; Varlagin, Andrej

    2016-04-01

    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (ɛmsh) was 2.63 to 4.59 times that of sunlit leaves (ɛmsu). Generally, the relationships of ɛmsh and ɛmsu with ɛmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR.

  15. GPP user`s guide - a general-purpose postprocessor for wind turbine data analysis

    SciTech Connect

    Buhl, Jr, M L

    1995-01-01

    GPP (pronounced {open_quotes}jeep{close_quotes}) is a General-Purpose Postprocessor for wind turbine data analysis. The author, a member of the Wind Technology Division (WTD) of the National Renewable Energy Laboratory (NREL), developed GPP to postprocess test data and simulation predictions. GPP reads data into large arrays and allows the user to run many types of analyses on the data stored in memory. It runs on inexpensive computers common in the wind industry. One can even use it on a laptop in the field. The author wrote the program in such a way as to make it easy to add new types of analyses and to port it to many types of computers. Although GPP is very powerful and feature-rich, it is still very easy to learn and to use. Exhaustive error trapping prevents one from losing valuable work due to input errors. GPP will, hopefully, make a significant impact on engineering productivity in the wind industry.

  16. Integrating fAPARchl and PRInadir from EO-1/Hyperion to predict cornfield daily gross primary production (GPP)

    USDA-ARS?s Scientific Manuscript database

    Accurate estimates of terrestrial carbon sequestration is essential for evaluating changes in the carbon cycle due to global climate change. In a recent assessment of 26 carbon assimilation models at 39 FLUXNET tower sites across the United States and Canada, all models failed to adequately compute...

  17. Model-based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow

    SciTech Connect

    Fan, Zhaosheng; Neff, Jason C.; Wieder, William R.

    2016-02-10

    We investigated several key limiting factors that control alpine tundra productivity by developing an ecosystem biogeochemistry model. The model simulates the coupled cycling of carbon (C), nitrogen (N), and phosphorus (P) and their interactions with gross primary production (GPP). It was parameterized with field observations from an alpine dry meadow ecosystem using a global optimization strategy to estimate the unknown parameters. The model, along with the estimated parameters, was first validated against independent data and then used to examine the environmental controls over plant productivity. Our results show that air temperature is the strongest limiting factor to GPP in the early growing season, N availability becomes important during the middle portion of the growing season, and soil moisture is the strongest limiting factors by late in the growing season. Overall, the controls over GPP during the growing season, from strongest to weakest, are soil moisture content, air temperature, N availability, and P availability. This simulation provides testable predictions of the shifting nature of physical and nutrient limitations on plant growth. The model also indicates that changing environmental conditions in the alpine will likely lead to changes in productivity. For example, warming eliminates the control of P availability on GPP and makes N availability surpass air temperature to become the second strongest limiting factor. In contrast, an increase in atmospheric nutrient deposition eliminates the control of N availability and enhances the importance of P availability. Furthermore, these analyses provide a quantitative and conceptual framework that can be used to test predictions and refine ecological analyses at this long-term ecological research site.

  18. Model-based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow

    DOE PAGES

    Fan, Zhaosheng; Neff, Jason C.; Wieder, William R.

    2016-02-10

    We investigated several key limiting factors that control alpine tundra productivity by developing an ecosystem biogeochemistry model. The model simulates the coupled cycling of carbon (C), nitrogen (N), and phosphorus (P) and their interactions with gross primary production (GPP). It was parameterized with field observations from an alpine dry meadow ecosystem using a global optimization strategy to estimate the unknown parameters. The model, along with the estimated parameters, was first validated against independent data and then used to examine the environmental controls over plant productivity. Our results show that air temperature is the strongest limiting factor to GPP in themore » early growing season, N availability becomes important during the middle portion of the growing season, and soil moisture is the strongest limiting factors by late in the growing season. Overall, the controls over GPP during the growing season, from strongest to weakest, are soil moisture content, air temperature, N availability, and P availability. This simulation provides testable predictions of the shifting nature of physical and nutrient limitations on plant growth. The model also indicates that changing environmental conditions in the alpine will likely lead to changes in productivity. For example, warming eliminates the control of P availability on GPP and makes N availability surpass air temperature to become the second strongest limiting factor. In contrast, an increase in atmospheric nutrient deposition eliminates the control of N availability and enhances the importance of P availability. Furthermore, these analyses provide a quantitative and conceptual framework that can be used to test predictions and refine ecological analyses at this long-term ecological research site.« less

  19. Contributions of algae to GPP and DOC production in an Alaskan fen: effects of historical water table manipulations on ecosystem responses to a natural flood.

    PubMed

    Wyatt, Kevin H; Turetsky, Merritt R; Rober, Allison R; Giroldo, Danilo; Kane, Evan S; Stevenson, R Jan

    2012-07-01

    The role of algae in the metabolism of northern peatlands is largely unknown, as is how algae will respond to the rapid climate change being experienced in this region. In this study, we examined patterns in algal productivity, nutrients, and dissolved organic carbon (DOC) during an uncharacteristically wet summer in an Alaskan rich fen. Our sampling was conducted in three large-scale experimental plots where water table position had been manipulated (including both drying and wetting plots and a control) for the previous 4 years. This study allowed us to explore how much ecosystem memory of the antecedent water table manipulations governed algal responses to natural flooding. Despite no differences in water table position between the manipulated plots at the time of sampling, algal primary productivity was consistently higher in the lowered water table plot compared to the control or raised water table plots. In all plots, algal productivity peaked immediately following seasonal maxima in nutrient concentrations. We found a positive relationship between algal productivity and water-column DOC concentrations (r (2) = 0.85, P < 0.001). Using these data, we estimate that algae released approximately 19% of fixed carbon into the water column. Algal exudates were extremely labile in biodegradability assays, decreasing by more than 55% within the first 24 h of incubation. We suggest that algae can be an important component of the photosynthetic community in boreal peatlands and may become increasingly important for energy flow in a more variable climate with more intense droughts and flooding.

  20. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  1. Many Means to a Common End: the Intricacies of (p)ppGpp Metabolism and Its Control of Bacterial Homeostasis

    PubMed Central

    Gaca, Anthony O.; Colomer-Winter, Cristina

    2015-01-01

    In nearly all bacterial species examined so far, amino acid starvation triggers the rapid accumulation of the nucleotide second messenger (p)ppGpp, the effector of the stringent response. While for years the enzymes involved in (p)ppGpp metabolism and the significance of (p)ppGpp accumulation to stress survival were considered well defined, a recent surge of interest in the field has uncovered an unanticipated level of diversity in how bacteria metabolize and utilize (p)ppGpp to rapidly synchronize a variety of biological processes important for growth and stress survival. In addition to the classic activation of the stringent response, it has become evident that (p)ppGpp exerts differential effects on cell physiology in an incremental manner rather than simply acting as a biphasic switch that controls growth or stasis. Of particular interest is the intimate relationship of (p)ppGpp with persister cell formation and virulence, which has spurred the pursuit of (p)ppGpp inhibitors as a means to control recalcitrant infections. Here, we present an overview of the enzymes responsible for (p)ppGpp metabolism, elaborate on the intricacies that link basal production of (p)ppGpp to bacterial homeostasis, and discuss the implications of targeting (p)ppGpp synthesis as a means to disrupt long-term bacterial survival strategies. PMID:25605304

  2. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  3. Analysis of light use efficiency and gross primary productivity based on remote sensing data over a phragmites-dominated wetland in Zhangye, China

    NASA Astrophysics Data System (ADS)

    Jiang, Guoqing; Sun, Rui; Zhang, Lei; Liu, Shaomin; Xu, Ziwei; Qiao, Chen

    2014-11-01

    Light use efficiency (LUE) is a critical parameter for estimating carbon exchange in many ecosystem models, especially those models based on remote sensing algorithms. Estimation and monitoring of LUE and gross primary productivity (GPP) over wetland is very important for the global carbon cycle research and modelling, since the wetland plays a vital role in the ecosystem balance. In this paper, carbon flux data observed with an eddy covariance tower over a reedsdominated wetland in Zhangye, northwest of China, was used to calculate LUE. Through the postprocessing of carbon flux data and estimation of ecosystem respiration, daily GPP was calculated firstly. Combining with fraction of absorbed photosynthetically active radiation (FPAR) inversed from HJ-1 satellite, LUE was determined. The maximum value of LUE was 1.03 g C·MJ-1 occurred in summer. Furthermore, a regional vegetation productivity model based on meteorological data and remote sensing data was used to estimate the wetland GPP. The results show that the modeled GPP results were consistent with in situ data.

  4. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response.

    PubMed

    Gaca, Anthony O; Kajfasz, Jessica K; Miller, James H; Liu, Kuanqing; Wang, Jue D; Abranches, Jacqueline; Lemos, José A

    2013-09-24

    The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for "Rel SpoT homologue"; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the rsh relQ [(p)ppGpp(0)] strain, suggesting that a lack of basal (p)ppGpp places the cell in a "transcriptionally relaxed" state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp(0) strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic options available to care providers. The stringent response (SR), mediated by the accumulation of

  5. Assessment of SMAP soil moisture for global simulation of gross primary production

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong

    2017-07-01

    In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (p < 0.05). Significant improvement in r appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.

  6. The relationship between Gross Primary Productivity and Sun-Induced Fluorescence in a nutrient manipulated Mediterranean grassland is controlled primarily by canopy structure

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induces variation in structural and functional changes of vegetation under different nutrient availability. Among those, sun-induced fluorescence in the far-red region provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and photosynthetic carbon dioxide uptake (Gross Primary Production, GPP). However, the mechanistic link between GPP and sun-induced fluorescence under different environmental conditions is not completely understood. In this contribution we investigated the structural and functional factors controlling the emission of SIF at 760 nm in a Mediterranean grassland with different levels of nutrient availability (Nitrogen (N), Phosphorous (P), and Nitrogen and Phosphorous (NP)). We showed how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. nitrogen content per dry mass of leaves, N%, Chlorophyll ab concentration - Cab, and maximum carboxylation capacity, Vcmax) affected the observed relationship between SIF and GPP. Simultaneous measurements of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and narrow-band spectrometers, respectively. To disentangle the main drivers of the GPP-SIF relationship we performed a factorial modeling exercise with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy. This lead to changes in canopy structure (leaf area index, leaf inclinaton distribution function LIDF parameters) and functional traits (N%, P%, Cab and Vcmax

  7. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  8. Sun-induced Chlorophyll fluorescence and PRI improve remote sensing GPP estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-07-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses

  9. Gross primary production controls the subsequent winter CO2 exchange in a boreal peatland.

    PubMed

    Zhao, Junbin; Peichl, Matthias; Öquist, Mats; Nilsson, Mats B

    2016-12-01

    In high-latitude regions, carbon dioxide (CO2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change. © 2016 John Wiley & Sons Ltd.

  10. Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: Insights from leaf to ecosystem

    NASA Astrophysics Data System (ADS)

    Ge, Zhen-Ming; Guo, Hai-Qiang; Zhao, Bin; Zhang, Li-Quan

    2015-01-01

    The exotic Spartina alterniflora from North America has been rapidly invading the entire Chinese coast, while the impacts of plant invasion on the gross (GPP) and net primary production (NPP) of the coastal salt marshes were less known. In this study, we investigated the photosynthetic performance, leaf characteristics, and primary production of the exotic C4 grass and the dominant native C3 grass (Phragmites australis) in two marsh mixtures (equipped with eddy covariance systems) in the Yangtze Estuary. The light-saturated photosynthetic rate and annual peak leaf area index (LAI) of S. alterniflora was higher than that of P. australis throughout the growing season. The leaf nitrogen content of P. australis declined sharper during the latter growing season than that of S. alterniflora. The leaf-to-canopy production model with species-specific (C3 and C4 types) parameterizations could reasonably simulate the daily trends and annual GPP amount against the 3 year flux measurements from 2005 to 2007, and the modeled NPP agreed with biomass measurements from the two species during 2012. The percentage contributions of GPP between S. alterniflora and P. australis were on average 5.82:1 and 2.91:1 in the two mixtures, respectively. The annual NPP amounts from S. alterniflora were higher by approximately 1.6 times than that from P. australis. Our results suggested that higher photosynthesis efficiency, higher LAI, and longer growing season resulted in greater GPP and NPP in the exotic species relative to the native species. The rapid expansion rate of S. alterniflora further made it the leading contributor of primary production in the salt marsh.

  11. Evaluation of the impact of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir

    NASA Astrophysics Data System (ADS)

    Samal, N. R.; Pierson, D. C.; Staehr, P. A.; Pradhanang, S. M.; Smith, D. G.

    2013-12-01

    Episodic inputs of dissolved and particulate material during storm events can have important effects on lake and reservoir ecosystem function and also impact reservoir drinking water quality. We evaluate the impacts of storm events using vertical profiles of temperature, dissolved oxygen, turbidity, conductivity and chlorophyll automatically collected at 6 hour intervals in Ashokan Reservoir, which is a part of the New York City drinking water supply. Storm driven inputs to the reservoir periodically result in large input of suspended sediments that result in reservoir turbidity levels exceeding 25 NTU, and substantial reductions in the euphotic depth. Dissolved materials associated with these same storms would be expected to stimulate bacterial production. This study involves the use of a conceptual model to calculate depth specific estimates of gross primary production (GPP) and ecosystem respiration (R) using three years of data that included 777 events that increased reservoir turbidity levels to over 25 NTU. Using data from before, during and after storm events, we examine how the balance between GPP and R is influenced by storm related increases in turbidity and dissolved organic matter, which would in turn influence light attenuation and bacterial production. Key words: metabolism, primary production, GPP, respiration, euphotic depth, storm event, reservoir

  12. Understanding COS Fluxes in a Boreal Forest: Towards COS-Based GPP Estimates.

    NASA Astrophysics Data System (ADS)

    Chen, H.; Kooijmans, L.; Franchin, A.; Keskinen, H.; Levula, J.; Mammarella, I.; Maseyk, K. S.; Pihlatie, M.; Praplan, A. P.; Seibt, U.; Sun, W.; Vesala, T.

    2015-12-01

    Carbonyl Sulfide (COS) is a promising new tracer that can be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. COS and CO2 vegetation fluxes are closely related as these gases share the same diffusion pathway into stomata, which makes COS a potentially powerful tracer for GPP. While vegetative uptake is the largest sink of COS, the environmental drivers are poorly understood, and soil fluxes represent an important but relatively unconstrained component. Therefore, the realization of the COS tracer method requires proper characterization of both soil and ecosystem fluxes. A campaign to provide better constrained soil and ecosystem COS flux data for boreal forests took place in the summer of 2015 at the SMEAR II site in Hyytiälä, Finland. Eddy covariance flux measurements were made above the forest canopy on an Aerodyne continuous-wave quantum cascade laser (QCL) system that is capable of measuring COS, CO2, CO and H2O. Soil COS fluxes were obtained using modified LI-COR LI-8100 chambers together with high accuracy concentration measurements from another Aerodyne QCL instrument. The same instrument alternately measured concentrations in and above the canopy on a cycle through 4 heights, which will be used to calculate ecosystem fluxes using the Radon-tracer method, providing ecosystem fluxes under low-turbulent conditions. We will compare ecosystem fluxes from both eddy covariance and profile measurements and show estimates of the fraction of ecosystem fluxes attributed to the soil component. With the better understanding of ecosystem and soil COS fluxes, as obtained with this dataset, we will be able to derive COS-based GPP estimates for the Hyytiälä site.

  13. Testing the EOS MODIS Gross Primary Production algorithm for 2001 at flux tower sites

    NASA Astrophysics Data System (ADS)

    Running, S. W.

    2002-05-01

    The MODIS dataset for vegetation variables has been analyzed for all of 2001 over 29 fluxtower sites in North and South America, Africa and Australia. Seven by seven pixel arrays centered over each fluxtower were extracted from the global MODIS dataset for each 8-day period of the year. These sites represent an array of biome types including temperate and boreal evergreen needleleaf forests, tropical and temperate broadleaf deciduous forests, grasslands, savannah and croplands The Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Fraction Absorbed Photosynthetically Active Radiation (FPAR). And Gross Primary Production (GPP) were simultaneously evaluated for accurate characterization of the growing season dynamics for each site, and magnitude of the computed biophysical variables. Results show that spring-time phenological timing is well defined by all of these variables. Leaf area index and FPAR appear to be correct in most biomes, but look to be overestimated in some biomes. GPP is underestimated in croplands, but appears accurate in grasslands and forests. Continuation of field validation plans, and improvements in these algorithms for next generation of MODIS processing will be discussed.

  14. Daily GPP estimates in Mediterranean ecosystems by combining remote sensing and meteorological data

    NASA Astrophysics Data System (ADS)

    Gilabert, M. A.; Moreno, A.; Maselli, F.; Martínez, B.; Chiesi, M.; Sánchez-Ruiz, S.; García-Haro, F. J.; Pérez-Hoyos, A.; Campos-Taberner, M.; Pérez-Priego, O.; Serrano-Ortiz, P.; Carrara, A.

    2015-04-01

    The accurate representation of terrestrial CO2 uptake (GPP) using Monteith's approach requires a frequent and site-specific parameterization of the model inputs. In this work, an optimization of this approach has been carried out by adjusting the inputs (fAPAR, PAR and ε) for the study area, peninsular Spain, a typical Mediterranean region. The daily GPP images have been calculated for 2008 and 2011 with a 1-km spatial resolution and validated by comparison with in situ GPP estimates from the eddy covariance data (direct validation) and by inter-comparison with the MODIS GPP product. The direct validation has evidenced an excellent agreement with correlations up to 0.98 in 2008 and 0.92 in 2011 in some sites. The inter-comparison has shown that the two GPP products are consistent temporally. However, a slightly decrease of the correlation has been observed in some areas. The validation has also shown that our optimized GPP product accounts better for the water stress than the MODIS product. The analysis of the explanatory power of the model in terms of its inputs shows, as expected, that PAR and fAPAR are the most relevant inputs. The fAPAR plays a major role on GPP estimation when the vegetation phenology maximum is not reached during solar solstice. Finally, it has been shown that the influence of the water stress, associated with the water shortage typical of Mediterranean landscapes, has to be evaluated accurately in order to explain the GPP inter-annual variability.

  15. Gross primary production dynamics assessment of a mediterranean holm oak forest by remote sensing time series analysis

    NASA Astrophysics Data System (ADS)

    Cicuéndez, Víctor; Huesca, Margarita; Rodriguez-Rastrero, Manuel; Litago, Javier; Recuero, Laura; Merino de Miguel, Silvia; Palacios Orueta, Alicia

    2014-05-01

    Agroforestry ecosystems have a significant social, economic and environmental impact on the development of many regions of the world. In the Iberian Peninsula the agroforestry oak forest called "Dehesa" or "Montado" is considered as the extreme case of transformation of a Mediterranean forest by the management of human to provide a wide range of natural resources. The high variability of the Mediterranean climate and the different extensive management practices which human realized on the Dehesa result in a high spatial and temporal dynamics of the ecosystem. This leads to a complex pattern in CO2 exchange between the atmosphere and the ecosystem, i.e. in ecosystem's production. Thus, it is essential to assess Dehesa's carbon cycle to reach maximum economic benefits ensuring environmental sustainability. In this sense, the availability of high frequency Remote Sensing (RS) time series allows the assessment of ecosystem evolution at different temporal and spatial scales. Extensive research has been conducted to estimate production from RS data in different ecosystems. However, there are few studies on the Dehesa type ecosystems, probably due to their complexity in terms of spatial arrangement and temporal dynamics. In this study our overall objective is to assess the Gross Primary Production (GPP) dynamics of a Dehesa ecosystem situated in Central Spain by analyzing time series (2004-2008) of two models: (1) GPP provided by Remote Sensing Images of sensor MODIS (MOD17A2 product) and (2) GPP estimated by the implementation of a Site Specific Light Use Efficiency model based as MODIS model on Monteith equation (1972), but taking into account local ecological and meteorological parameters. Both models have been compared with the Production provided by an Eddy Covariance (EC) flux Tower that is located in our study area. In addition, dynamic relationships between models of GPP with Precipitation and Soil Water Content have been investigated by means of cross

  16. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants

    PubMed Central

    Chatnaparat, Tiyakhon; Li, Zhong; Korban, Schuyler S.; Zhao, Youfu

    2016-01-01

    Summary The stringent response, mediated by second messenger (p)ppGpp, results in swift and massive transcriptional reprogramming under nutrient limited conditions. In this study, the role of (p)ppGpp on virulence of P. syringae pv. syringae B728a (PssB728a) was investigated. The virulence of the relA/spoT (ppGpp0) double mutant was completely impaired on bean, and bacterial growth was significantly reduced, suggesting that (p)ppGpp is required for full virulence of P. syringae. Expression of T3SS and other virulence genes was reduced in ppGpp0 mutants. In addition, ppGpp deficiency resulted in loss of swarming motility, reduction of pyoverdine production, increased sensitivity to oxidative stress and antibiotic tolerance, as well as reduced ability to utilize γ-amino butyric acid. Increased levels of ppGpp resulted in reduced cell size of PssB728a when grown in a minimal medium and on plant surfaces, while most ppGpp0 mutant cells were not viable on plant surfaces 24 h after spray inoculation, suggesting that ppGpp-mediated stringent response temporarily limits cell growth, and might control cell survival on plants by limiting their growth. These results demonstrated that ppGpp-mediated stringent response plays a central role in P. syringae virulence and survival, and indicated that ppGpp serves as a global signal for regulating various virulence traits in PssB728a. PMID:25626964

  17. Impact of Chromophoric Dissolved Organic Matter on UV Inhibition of Primary Productivity in the Sea

    NASA Technical Reports Server (NTRS)

    Arrigo, Kevin R.; Brown, Christopher W.

    1996-01-01

    A model was developed to assess the impact of chromophoric dissolved organic matter (CDOM) on phytoplankton production within the euphotic zone. The rate of depth-integrated daily gross primary productivity within the euphotic zone was evaluated as a function of date, latitude, CDONI absorption characteristics, chlorophyll a (chl a) concentration, vertical stratification, and phytoplankton sensitivity to UV radiation (UVR). Results demonstrated that primary production was enhanced in the upper 30 m of the water column by the presence of CDOM, where predicted increases in production due to the removal of damaging UVR more than offset its reduction resulting from the absorption of photosynthetically usable radiation. At greater depths, where little UVR remained, primary production was always reduced due to removal by CDOM of photosynthetically usable radiation. When CDOM was distributed homogeneously within the euphotic zone, the integral over z [(GPP)(sub ez)], was reduced under most bio-optical (i.e. solar zenith angle, and CDOM absorption, and ozone concentration) and photophysiological production at depth was greater than the enhancement of production at the surface.

  18. Observing and modeling dynamics in terrestrial gross primary productivity and phenology from remote sensing: An assessment using in-situ measurements

    NASA Astrophysics Data System (ADS)

    Verma, Manish K.

    Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in

  19. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    USGS Publications Warehouse

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  20. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model

    SciTech Connect

    Jin, Cui; Xiao, Xiangming; Wagle, Pradeep; Griffis, Timothy; Dong, Jinwei; Wu, Chaoyang; Qin, Yuanwei; Cook, David R.

    2015-11-01

    Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ~25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.

  1. Aboveground and belowground net primary production

    Treesearch

    Marianne K. Burke; Hal O. Liechty; Mark H. Eisenbies

    2000-01-01

    The relationship among net primary productivity (NPP), hydroperiod, and fertility in forested wetlands is poorly understood (Burke and others 1999), particularly with respect to belowground NPP (Megonigal and others 1997). Although some researchers have studied aboveground and belowground primary production in depressional, forested wetland systems, e.g., Day and...

  2. Modelling black spruce primary production and carbon allocation in the Quebec boreal forest

    NASA Astrophysics Data System (ADS)

    Gennaretti, Fabio; Guiot, Joel; Berninger, Frank; Boucher, Etienne; Gea-Izquierdo, Guillermo

    2017-04-01

    Boreal ecosystems are crucial carbon stores that must be urgently quantified and preserved. Their future evolution is extremely important for the global carbon budget. Here, we will show the progresses achieved with the MAIDEN forest ecophysiological model in simulating carbon fluxes of black spruce (Picea mariana (Mill.) B.S.P.) forests, the most representative ecosystem of the North American boreal biome. Starting from daily minimum-maximum air temperature, precipitation and CO2 atmospheric concentration, MAIDEN models the phenological (5 phenological phases are simulated each year) and meteorological controls on gross primary production (GPP) and carbon allocation to stem. The model is being calibrated on eddy covariance and tree-ring data. We will discuss the model's performance and the modifications introduced in MAIDEN to adapt the model to temperature sensitive forests of the boreal region.

  3. How tropical cyclone inter-annual timing and trajectory control gross primary productivity in the SE US at seasonal and annual timescales and impacts on mountain forest eco-hydrology

    NASA Astrophysics Data System (ADS)

    Lowman, L.; Barros, A.

    2015-12-01

    Tropical cyclones (TCs) are an important source of freshwater input to the SE US eco-hydrologic function. Soil moisture, a temporal integral of precipitation, is critical to plant photosynthesis and carbon assimilation. In this study, we investigate the impact TCs have on gross primary productivity (GPP) in the SE US using the physically-based Duke Coupled Hydrology Model with Vegetation (DCHM-V) which includes coupled water and energy cycles and a biochemical representation of photosynthesis. A parsimonious evaluation of model-estimated GPP against all available AmeriFlux data in the SE US is presented. We characterize the seasonality of vegetation activity in the SE US by simulating water, energy, and carbon fluxes using the DCHM-V at high spatial (4 km) and temporal (30-min) resolution over the period 2002 - 2012. The model is run offline using atmospheric forcing data from NLDAS-2, precipitation from StageIV, and phenology indices from MODIS FPAR/LAI. Analysis of model results show the tendency for low GPP to occur in the Appalachian Mountains during peak summer months when water stress limits stomatal function. We contrast these simulations with model runs where periods of TC activity are replaced with the monthly climatological diurnal cycle from NARR. Results show that the timing and trajectory of TCs are key to understanding their impact on GPP across the SE US. Specifically: 1) Timing of moisture input from TCs greatly influences the vegetation response. TCs during peak summer months increase GPP and years with TCs falling in peak summer months see much higher annual GPP averages; 2) Years of drought and low plant productivity (2006-2007, 2011-2012) in the SE US tend to have TCs that fall later in the year when the additional moisture input does not have a significant impact on vegetation activity; and 3) TC path impacts regional GPP averages. The mountain region shows large inter- and intra-annual variability in plant productivity and high sensitivity to

  4. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of vegetation fluorescence with gross primary productivity

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; Fisher, J. B.; Lee, J.; Guanter, L.; Van der Tol, C.; Toon, G. C.; kuze, A.; Yokota, T.; Badgley, G. M.; Butz, A.; Jung, M.; Saatchi, S. S.; Worden, J.

    2011-12-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Solar-induced chlorophyll fluorescence is a powerful proxy for assessing biomass photosynthetic activity since photosynthesis and fluorescence are directly coupled processes. This gives rise to re-emission of light between approximately 670 and 780 nm. Passive methods to quantify the fluorescence signal are mainly based on the filling-in of highly saturated O2 absorption structures. This method, however, was mostly applied in field-based measurements and is not directly applicable to space-borne retrievals. We show that variability of aerosols in the atmosphere load and surface pressure cannot be unequivocally disentangled from fluorescence since all these factor impact the absorption depths of O2 lines. This gives rise to biases in the retrieved scattering properties in typical multi-spectral XCO2 retrievals when using the O2 A band but not when focussing solely of solar Fraunhofer lines. We will a) present our retrieval method based on an iterative, non-linear least-squares fitting of Fraunhofer lines, b) discuss the potential impact on XCO2 retrievals and c) show recent fluorescence results from more than one year of GOSAT data. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional meteorological, vegetation type or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. Our results

  5. Interpretation of tree-ring data with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, H.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    We present a simple, generic model of annual tree growth, called ';T'. This model accepts input from a generic light-use efficiency model which is known to provide good simulations of terrestrial carbon exchange. The light-use efficiency model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine-root production and respiration, in such a way as to satisfy well-understood dimensional relationships. The result is a model that can represent both ontogenetic effects and the effects of environmental variations and trends on growth. The model has been applied to simulate ring-width series from multiple individual trees in temperature- and drought-limited contexts. Each tree is initialized at its actual diameter at the time when local climate records started. These records are used to drive the trees' subsequent growth. Realistic simulations of the pattern of interannual variability of ring-width are generated, and shown to relate statistically to climate. An upward trend in ring-width during 1958-2007 is shown to be present in the primary observations, and in the simulations; but not in the standard, detrended ring-width series. This approach combines two modelling approaches previously developed in the global carbon cycle and forest science literature respectively. Neither has been widely applied in the context of tree-ring based climate reconstruction. This combination of methods offers promise, however, because it could provide a way to sidestep several known problems. These include: reliance on correlations for the interpretation of ring-width variations in terms of climate; the necessity of detrending using empirical functions (which can remove trends caused by variations in the environment as well as those that are ontogenetic); and the difficulty of assessing effects of extrinsic, non

  6. The effects of nutrient additions on particulate and dissolved primary production and metabolic state in surface waters of three Mediterranean eddies

    NASA Astrophysics Data System (ADS)

    Lagaria, A.; Psarra, S.; Lefèvre, D.; van Wambeke, F.; Courties, C.; Pujo-Pay, M.; Oriol, L.; Tanaka, T.; Christaki, U.

    2011-09-01

    We examined the effects of nutrient additions on rates of 14C-based particulate and dissolved primary production as well as O2-based metabolic rates in surface waters (8 m) of three anticyclonic eddies, located in the Western, Central and Eastern Mediterranean. Ship-board microcosm experiments employing additions of inorganic nitrogen (+N) and phosphorus (+P), alone and in combination (+NP), were conducted in June/July 2008 during the BOUM (Biogeochemistry from the Oligotrophic to the Ultra-oligotrophic Mediterranean) cruise. In all three experiments, particulate primary production was significantly stimulated by the additions of nitrogen (+N, +NP) while no effect was observed with the addition of phosphorus alone (+P). Percent extracellular release of photosynthate (PER) displayed the lowest values (4-8 %) in the +NP treatment. Among the three treatments (+N, +P, +NP), the +NP had the strongest effect on oxygen metabolic rates, leading to positive values of net community production (NCP > 0). These changes of NCP were mainly due to enhanced gross primary production (GPP) rather than reduced dark community respiration rates (DCR). In all three sites, in +NP treatment autotrophic production (whether expressed as GPP or PPtotal) was sufficient to fulfil the estimated carbon requirements of heterotrophic prokaryotes, while addition of nitrogen alone (+N) had a weaker effect on GPP, resulting in metabolically balanced systems. At the three sites, in treatments with N (+N, +NP), phytoplankton and heterotrophic prokaryote production were positively correlated. Heterotrophic conditions were observed in the Control and +P treatment at the central and eastern sites, and autotrophic production was not sufficient to supply estimated bacterial carbon demand, evidence of a decoupling of phytoplankton production and consumption by heterotrophic prokaryotes.

  7. Primary production and implications for metabolic balance in Hawaiian lee eddies

    NASA Astrophysics Data System (ADS)

    McAndrew, Patricia M.; Bidigare, Robert R.; Karl, David M.

    2008-05-01

    Recent discrepancies between geochemical and biological approaches for determining whether ocean ecosystems are net heterotrophic or net autotrophic have led to uncertainty in the net metabolic state of open ocean ecosystems. Geochemical approaches indicate that the oceans are net positive autotrophic, but direct observations based on short-term incubation techniques suggest that the ocean is in a state of net heterotrophy. One hypothesis for the apparent discrepancy is that net autotrophic production occurs in aperiodic "bursts," which are superimposed on a more constant background state of net heterotrophy. Mixing events, which introduce new nutrients to the surface ocean, provide one mechanism for fueling such aperiodic bursts of net production. In conjunction with the Eddy Flux (E-Flux) program in the lee of the Hawaiian Islands during winter 2004-2005, we examined the relationship between photosynthesis and irradiance ( P vs. E) in surface waters inside and outside of two cold-core, cyclonic eddies, and conducted five incubation experiments to examine the metabolic response of mixed-layer plankton communities to nutrient-rich deep-sea water additions. Our results showed that in the mixed layer, maximum rates of light-saturated photosynthesis, derived from photosynthesis-irradiance experiments were not significantly different inside vs. outside the eddies ( p=0.35 and 0.44 for E-Flux I and E-Flux III, respectively). Addition of nutrients to mixed-layer water showed that (1) gross primary production (GPP) became decoupled from a more constant rate of respiration and (2) net system metabolism shifted from approximate balance, or slight net heterotrophy, to a demonstrably net autotrophic system. From these results, we determined that the threshold GPP for net autotrophic production for the mixed layer of the study region was 1.65 mmol O 2 m -3 d -1, which is consistent with previous estimates for the oligotrophic open ocean.

  8. (p)ppGpp, a Small Nucleotide Regulator, Directs the Metabolic Fate of Glucose in Vibrio cholerae*

    PubMed Central

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Raskin, David M.; Yoon, Sang Sun

    2015-01-01

    When V. cholerae encounters nutritional stress, it activates (p)ppGpp-mediated stringent response. The genes relA and relV are involved in the production of (p)ppGpp, whereas the spoT gene encodes an enzyme that hydrolyzes it. Herein, we show that the bacterial capability to produce (p)ppGpp plays an essential role in glucose metabolism. The V. cholerae mutants defective in (p)ppGpp production (i.e. ΔrelAΔrelV and ΔrelAΔrelVΔspoT mutants) lost their viability because of uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ΔrelAΔspoT mutant, a (p)ppGpp overproducer strain, exhibited better growth in the presence of the same glucose concentration. An RNA sequencing analysis demonstrated that transcriptions of genes consisting of an operon for acetoin biosynthesis were markedly elevated in N16961, a seventh pandemic O1 strain, but not in its (p)ppGpp0 mutant during glucose-stimulated growth. Transposon insertion in acetoin biosynthesis gene cluster resulted in glucose-induced loss of viability of the ΔrelAΔspoT mutant, further suggesting the crucial role of acetoin production in balanced growth under glucose-rich environments. Additional deletion of the aphA gene, encoding a negative regulator for acetoin production, failed to rescue the (p)ppGpp0 mutant from the defective glucose-mediated growth, suggesting that (p)ppGpp-mediated acetoin production occurs independent of the presence of AphA. Overall, our results reveal that (p)ppGpp, in addition to its well known role as a stringent response mediator, positively regulates acetoin production that contributes to the successful glucose metabolism and consequently the proliferation of V. cholerae cells under a glucose-rich environment, a condition that may mimic the human intestine. PMID:25882848

  9. Quantification and attribution of errors in the simulated annual gross primary production and latent heat fluxes by two global land surface models

    NASA Astrophysics Data System (ADS)

    Li, Jianduo; Wang, Ying-Ping; Duan, Qingyun; Lu, Xingjie; Pak, Bernard; Wiltshire, Andy; Robertson, Eddy; Ziehn, Tilo

    2016-09-01

    Differences in the predicted carbon and water fluxes by different global land models have been quite large and have not decreased over the last two decades. Quantification and attribution of the uncertainties of global land surface models are important for improving the performance of global land surface models, and are the foci of this study. Here we quantified the model errors by comparing the simulated monthly global gross primary productivity (GPP) and latent heat flux (LE) by two global land surface models with the model-data products of global GPP and LE from 1982 to 2005. By analyzing model parameter sensitivities within their ranges, we identified about 2-11 most sensitive model parameters that have strong influences on the simulated GPP or LE by two global land models, and found that the sensitivities of the same parameters are different among the plant functional types (PFT). Using parameter ensemble simulations, we found that 15%-60% of the model errors were reduced by tuning only a few (<4) most sensitive parameters for most PFTs, and that the reduction in model errors varied spatially within a PFT or among different PFTs. Our study shows that future model improvement should optimize key model parameters, particularly those parameters relating to leaf area index, maximum carboxylation rate, and stomatal conductance.

  10. Green light: gross primary production influences seasonal stream N export by controlling fine-scale N dynamics.

    PubMed

    Lupon, Anna; Martí, Eugènia; Sabater, Francesc; Bernal, Susana

    2016-01-01

    Monitoring nutrient concentrations at fine-scale temporal resolution contributes to a better understanding of nutrient cycling in stream ecosystems. However, the mechanisms underlying fine-scale nutrient dynamics and its implications for budget catchent fluxes are still poorly understood. To gain understanding of patterns and controls of fine-scale stream nitrogen (N) dynamics and to assess how they affect hydrological N fluxes, we explored diel variation in stream nitrate (NO3-) concentration along a headwater stream with increasing riparian area and channel width. At the downstream site, the highest day-night variations occurred in early spring, when stream NO3- concentrations were 13% higher at night than at daytime. Such day-night variations were strongly related to daily light inputs (R2 = 0.74) and gross primary production (GPP; R2 = 0.74), and they showed an excellent fit with day-night NO- variations predicted from GPP (R2 = 0.85). These results suggest that diel fluctuations in stream NO3- concentration were mainly driven by photoautotrophic N uptake. Terrestrial influences were discarded because no simultaneous diel variations in stream discharge, riparian groundwater level, or riparian solute concentration were observed. In contrast to the downstream site, no diel variations in NO3- concentration occurred at the upstream site, likely because water temperature was colder (10 degrees C vs. 12 degrees C) and light availability was lower (4 vs. 9 mol x m(-2) x d(-1)). Although daily GPP was between 10- and 100-fold lower than daily respiration, photoautotrophic N uptake contributed to a 10% reduction in spring NO3- loads at the downstream site. Our study clearly shows that the activity of photoautotrophs can substantially change over time and along the stream continuum in response to key environmental drivers such as light and temperature, and further, that its capacity to regulate diel and seasonal N fluxes can be important even in low-productivity streams.

  11. A continuous hyperspatial monitoring system of evapotranspiration and gross primary productivity from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Bandini, Filippo; Jakobsen, Jakob; Zarco-Tejada, Pablo J.; Köppl, Christian Josef; Haugård Olesen, Daniel; Ibrom, Andreas; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Unmanned Aerial Systems (UAS) can collect optical and thermal hyperspatial (<1m) imagery with low cost and flexible revisit times regardless of cloudy conditions. The reflectance and radiometric temperature signatures of the land surface, closely linked with the vegetation structure and functioning, are already part of models to predict Evapotranspiration (ET) and Gross Primary Productivity (GPP) from satellites. However, there remain challenges for an operational monitoring using UAS compared to satellites: the payload capacity of most commercial UAS is less than 2 kg, but miniaturized sensors have low signal to noise ratios and small field of view requires mosaicking hundreds of images and accurate orthorectification. In addition, wind gusts and lower platform stability require appropriate geometric and radiometric corrections. Finally, modeling fluxes on days without images is still an issue for both satellite and UAS applications. This study focuses on designing an operational UAS-based monitoring system including payload design, sensor calibration, based on routine collection of optical and thermal images in a Danish willow field to perform a joint monitoring of ET and GPP dynamics over continuous time at daily time steps. The payload (<2 kg) consists of a multispectral camera (Tetra Mini-MCA6), a thermal infrared camera (FLIR Tau 2), a digital camera (Sony RX-100) used to retrieve accurate digital elevation models (DEMs) for multispectral and thermal image orthorectification, and a standard GNSS single frequency receiver (UBlox) or a real time kinematic double frequency system (Novatel Inc. flexpack6+OEM628). Geometric calibration of the digital and multispectral cameras was conducted to recover intrinsic camera parameters. After geometric calibration, accurate DEMs with vertical errors about 10cm could be retrieved. Radiometric calibration for the multispectral camera was conducted with an integrating sphere (Labsphere CSTM-USS-2000C) and the laboratory

  12. Influence of New Zealand cockles (Austrovenus stutchburyi) on primary productivity in sandflat-seagrass (Zostera muelleri) ecotones

    NASA Astrophysics Data System (ADS)

    Lohrer, Andrew M.; Townsend, Michael; Hailes, Sarah F.; Rodil, Iván F.; Cartner, Katie; Pratt, Daniel R.; Hewitt, Judi E.

    2016-11-01

    New Zealand cockles (Austrovenus stutchburyi) are ecologically important, intertidal bivalves that have been shown to influence nutrient cycles and the productivity of microphytobenthos on sandflats. Here, we investigated the potential for cockles to impact the productivity of seagrass, Zostera muelleri, and examined interactions between these habitat-defining species where they co-occur. We sampled bivalve densities and sizes, sediment properties, and seagrass shoot densities across the boundaries of two seagrass patches on an intertidal sandflat in northern New Zealand, and measured dissolved oxygen and nutrient fluxes in light and dark benthic incubation chambers in conjunction with a 0-97% gradient in seagrass cover. Although gross primary production (GPP, μmol O2 m-2 h-1) increased predictably with the cover of live seagrass, the density of cockles and sediment properties also contributed directly and indirectly. Seagrass cover was positively correlated with cockle density (ranging from 225 to 1350 individuals per m2), sediment mud percentage (0.5-9.5%), and organic matter content (0.5-2.2%), all of which can affect the efflux of ammonium (readily utilisable inorganic nitrogen) from sediments. Moreover, the cover of green seagrass blades plateaued (never exceeded 70%) in the areas of highest total seagrass cover, adding complexity to cockle-seagrass interactions and contributing to a unimodal cockle-GPP relationship.

  13. Landscape-scale GPP and carbon density inform patterns and impacts of an invasive tree across wet forests of Hawaii.

    PubMed

    Barbosa, Jomar M; Asner, Gregory P; Hughes, R Flint; Johnson, M Tracy

    2017-03-01

    Plant invasion typically occurs within a landscape-scale framework of abiotic and biotic conditions, often resulting in emergent feedbacks among environment, ecosystem functions, and the dominance of invasive species. Understanding the mechanisms underlying successful invasions is an important component of conservation and management efforts, but this has been poorly investigated in a spatially explicit manner. Knowing where and why invasion patterns change throughout the landscape enables managers to use context-specific controls on the spread of invasive species. Using high-resolution airborne imaging spectroscopy, we studied plant performance in growth within and across landscapes to examine the dominance and spatial distribution of an invasive tree, Psidium cattleianum (strawberry guava), in heterogeneous environmental conditions of a submontane Hawaiian tropical forest. We assessed invader performance using the GPP ratio index, which is the relative difference in remotely sensed estimates of gross primary productivity between canopies of guava and canopies of the invaded plant community. In addition, we used airborne LiDAR data to evaluate the impacts of guava invasion on the forest aboveground carbon density in different environments. Structural equation modeling revealed that substrate type and elevation above sea level interact and amplify landscape-scale differences in productivity between the invasive species and the host plant community (GPP ratio); differences that ultimately control levels of dominance of guava. We found shifts in patterns of forest carbon storage based on both gradual increase of invader dominance and changes in environmental conditions. Overall, our results demonstrate that the remotely sensed index defined as the GPP ratio provided an innovative spatially explicit approach to track and predict the success of invasive plants based in their canopy productivity, particularly within a landscape-scale framework of varying environmental

  14. Measuring Bi-Directional Reflectance for Gross Primary Productivity with a Constellation of SmallSats

    NASA Astrophysics Data System (ADS)

    Nag, S.; Gatebe, C. K.; Hilker, T.; Hall, F. G.; de Weck, O. L.

    2014-12-01

    The "missing carbon" problem has plagued the carbon cycle field for over 30 years. A newly proposed constellation of satellites promises to finally close the gap and find the missing carbon. This constellation would measure vegetation from multiple angles at solar wavelengths, essentially measuring the bidirectional reflectance (BRDF), and from this retrieve the Gross Primary Productivity (GPP), something that has eluded space remote sensing community up until now, showing up to 40% uncertainty. The science value of such a BRDF retrieval approach has been demonstrated using multi-angle, multi-spectral measurements from various deployments of the Cloud Absorption Radiometer (CAR) as the "gold standard" data for BRDF estimation. CAR is an airborne instrument operated by NASA Goddard Space Flight Center. Initial observing system simulations (OSSE) with four satellites launched as secondary payloads and operating in different imaging modes show BRDF error estimates of less than 12% when compared to CAR measurements, a 50% improvement to the worst case BRDF error produced by corresponding monoliths. However, GPP products require estimating the BRDF of photochemical reflectance index (PRI), which needs angular measurements at the xanthophyll sensitive band (533nm) - unavailable in CAR. The satellite OSSEs will be repeated using AMPSEC tower measurements. AMPSEC is a Unispec-DC (PP Systems, Amesbury,MA, USA) spectroradiometer with 256 contiguous bands with a nominal band spacing of 3 nm and a nominal range of operation between 350 and 1200 nm. The data will be used to estimate parameters of the widely-used Rahman-Pinty-Verstraete (RPV) and RossThin-LiSparseReciprocal (RTnLS) BRDF models. Since AMPSEC reflectance data is obtained at 360 view-azimuth directions and 90 view-zenith directions, satellite clusters will be able to sample only a part of this angular space. To make best use of the satellite-cluster BRDF data, a heuristic optimization method is used to find the

  15. Estimation of gross primary production and light use efficiency by the tower-based sun-induced fluorescence measurement in the Japanese evergreen coniferous forest

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Kato, T.; Hirano, T.; Saitoh, T. M.; Nagai, S.; Akitsu, T.; Nasahara, K. N.

    2015-12-01

    Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to release the excess sun-light energy. Recently, ChlF has been utilized to represent the ecosystem photosynthetic activity, i.e. gross primary production (GPP), by the satellite remote-sensing studies (e.g. Frankenberg et al., 2011). Despite its high expectation, small number of ecosystem-level ChlF observation at the ground reduces its availability. The aim of this study is to clarify the relationships between ChlF, and photosynthesis and light use efficiency (LUE) by the ground based measurement in the forest. The observations were carried out in the evergreen coniferous forest in Takayama, Japan, from March 2008 to February 2009. Downward and upward spectral radiances were measured with hemispherical spectroradiometer (MS-700, Eko Instruments, Japan) mounted at 30m-high above the ground surface. We calculated Sun-Induced fluorescence (FS) around the O2-A band (760 nm) from the spectral data with the Fraunhofer Line Depth method. The GPP was calculated from the carbon fluxes measured with eddy covariance at the top of the tower. FS showed the strong correlation to GPP linearly in the diurnal course (sunny day (8 August, 2008): r2 = 0.81, cloudy day (28 July, 2008): r2 = 0.87). In addition, GPP was fitted against FS by rectangular hyperbolic curve. (r2 = 0.87 (daily)). We also investigated the relationship between FS and LUE in daily averages. The FS-LUE relationship could be regressed by logarithm curve for each month (r2 = 0.46 ˜0.95). The seasonal changes in the regression coefficients for FS-GPP and FS-LUE curves were thought to be induced by the seasonal variation in the temperature-dependency of photosynthesis and the phenology. We conclude that FS can be utilized to estimate GPP and LUE in evergreen forest, and that relationship between FS and GPP is influenced by environmental factors such as PAR and air temperature.Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to

  16. Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations.

    PubMed

    Christina, Mathias; Le Maire, Guerric; Battie-Laclau, Patricia; Nouvellon, Yann; Bouillet, Jean-Pierre; Jourdan, Christophe; de Moraes Gonçalves, José Leonardo; Laclau, Jean-Paul

    2015-05-01

    Global climate change is expected to increase the length of drought periods in many tropical regions. Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water deficit on the physiological mechanisms governing plant growth. A process-based model (MAESPA) parameterized in a split-plot experiment in Brazil was used to gain insight into the combined effects of K deficiency and water deficit on absorbed radiation (aPAR), gross primary productivity (GPP), and light-use efficiency for carbon assimilation and stem biomass production (LUEC and LUEs ) in Eucalyptus grandis plantations. The main-plot factor was the water supply (undisturbed rainfall vs. 37% of throughfall excluded) and the subplot factor was the K supply (with or without 0.45 mol K m(-2 ) K addition). Mean GPP was 28% lower without K addition over the first 3 years after planting whether throughfall was partly excluded or not. K deficiency reduced aPAR by 20% and LUEC by 10% over the whole period of growth. With K addition, throughfall exclusion decreased GPP by 25%, resulting from a 21% decrease in LUEC at the end of the study period. The effect of the combination of K deficiency and water deficit was less severe than the sum of the effects of K deficiency and water deficit individually, leading to a reduction in stem biomass production, gross primary productivity and LUE similar to K deficiency on its own. The modeling approach showed that K nutrition and water deficit influenced absorbed radiation essentially through changes in leaf area index and tree height. The changes in gross primary productivity and light-use efficiency were, however, driven by a more complex set of tree parameters, especially those controlling water uptake by roots and leaf photosynthetic capacities. © 2014 John Wiley & Sons Ltd.

  17. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-12-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

  18. Simulation of tree ring-widths with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-07-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the P model). The P model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine root production and respiration, in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountain, northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilization over the past 50 years is too small to be distinguished in the ring-width data given ontogenetic trends and interannual variability in climate.

  19. Grazer Effects on Stream Primary Production and Nitrate Utilization: Estimating Feedbacks Under Reduced Nitrate Levels at High-Temporal Resolutions from the Patch to Reach-Scale

    NASA Astrophysics Data System (ADS)

    Reijo, C. J.; Cohen, M. J.

    2015-12-01

    While nutrient enrichment is often identified as the leading cause for changes in stream gross primary production (GPP) and shifts in vegetative communities, other factors such as grazers influence overall stream structure and function. Evidence shows that grazers are a top-down control on algae in streams; however, the specific feedbacks between overall stream metabolism, grazer effects, and nutrient cycling have been variable and little is known about these interactions at nutrient levels below ambient. To further our understanding of these linkages, a nutrient depletion chamber was created and paired with high-resolution in situ sensors to estimate stream metabolism and characterize nitrate uptake (UNO3) pathways (i.e. plant uptake and denitrification). The Plexiglas chamber blocks flow and nutrient supply, inserts into upper sediments, allows light in and sediment-water-air interactions to occur. At Gum Slough Springs, FL, nitrate was reduced from ambient levels (1.40 mg N/L) to below regulatory thresholds (ca. 0.20 mg N/L) within one week. Paired chambers with and without the presence of snails (Elimia floridensis) were deployed across submerged aquatic vegetation (SAV; Vallisneria americana) and algae (Lyngbya) substrates. Results show that GPP and UNO3 were higher under SAV (70 g O2/m2/d and 300 mg NO3/m2/d, respectively) and a general lack of nutrient limitation even at low [NO3]. Grazer effects differed by vegetation type as it alleviated the reduction of NO3 levels and GPP under SAV but enhanced the decrease of algal GPP and NO3 levels over time. Continued work includes estimating grazer effects on denitrification, quantifying snail nutrient excretion contributions, and scaling up all estimates from the patch to reach level. Overall, this study will further our understanding of grazer-production-nutrient interactions within stream systems, making it possible to predict changes in feedbacks when one part of the biotic or abiotic ecosystem is altered.

  20. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    PubMed

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  1. Variability in primary productivity determines metapopulation dynamics

    PubMed Central

    2016-01-01

    Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. PMID:27053739

  2. Primary Production in Antarctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Arrigo, Kevin R.; Worthen, Denise L.; Lizotte, Michael P.; Dixon, Paul; Dieckmann, Gerhard

    1997-01-01

    A numerical model shows that in Antarctic sea ice, increased flooding in regions with thick snow cover enhances primary production in the infiltration (surface) layer. Productivity in the freeboard (sea level) layer is also determined by sea ice porosity, which varies with temperature. Spatial and temporal variation in snow thickness and the proportion of first-year ice thus determine regional differences in sea ice primary production. Model results show that of the 40 tera-grams of carbon produced annually in the Antarctic ice pack, 75 percent was associated with first-year ice and nearly 50 percent was produced in the Weddell Sea.

  3. Primary Production in Antarctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Arrigo, Kevin R.; Worthen, Denise L.; Lizotte, Michael P.; Dixon, Paul; Dieckmann, Gerhard

    1997-01-01

    A numerical model shows that in Antarctic sea ice, increased flooding in regions with thick snow cover enhances primary production in the infiltration (surface) layer. Productivity in the freeboard (sea level) layer is also determined by sea ice porosity, which varies with temperature. Spatial and temporal variation in snow thickness and the proportion of first-year ice thus determine regional differences in sea ice primary production. Model results show that of the 40 tera-grams of carbon produced annually in the Antarctic ice pack, 75 percent was associated with first-year ice and nearly 50 percent was produced in the Weddell Sea.

  4. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    NASA Astrophysics Data System (ADS)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of

  5. Net ecosystem exchange, gross primary production, and ecosystem respiration of carbon dioxide during barley growing season in rice-barley paddy field of Korea

    NASA Astrophysics Data System (ADS)

    Jung, M.; Shim, K.; Min, S.; Kim, Y.; Kim, S.; So, K.

    2013-12-01

    This study was conducted to measure carbon dioxide exchange between customarily cultivated rice-barley double cropping paddy field and the atmosphere during barley growing season (October 2012 and June 2013) and to estimate carbon dioxide fluxes using agro-meteorological factors (temperature, net radiation etc. ) and barley biomass. The carbon dioxide fluxes were quantified by eddy covariance technique in paddy fields with rice-barley double cropping system, located at the Gimje flux site in the southwestern coast of Korea. The total values of net ecosystem carbon dioxide exchange (NEE), gross primary production (GPP), and ecosystem respiration (Re) were -100.6, 782.7, and 682.5 g C m-2 during barley growing season, respectively. The NEE was tended to keep between 0 and 5 g C m-2 d-1 from sowing date (Oct. 21, 2012) to winter rest stage (Dec. 3, 2012 to Feb. 22, 2013), and gradually decreased in tillering stage (Feb. 23, 2013 to May 5, 2013) with its maximum around heading date, and then started to increase in ripening stage (May 6, 2013 to Jun. 8, 2013). The soil temperature was strongly correlated with the Re (r2=0.86), while the net radiation showed the weak relationship with the GPP during the emergence, seedling, and winter rest stage. The aboveground biomass of barley was significantly correlated with the values of NEE (r2=0.79), GPP (r2=0.83), and Re (r2=0.77), respectively.

  6. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.; Ahmad, F. A.

    2015-04-01

    In semi-arid areas within the MENA region, food security problems are the main problematic imposed. Remote sensing can be a promising too early diagnose food shortages and further prevent the population from famine risks. This study is aimed at examining the possibility of forecasting yield before harvest from remotely sensed MODIS-derived Enhanced Vegetation Index (EVI), Net photosynthesis (net PSN), and Gross Primary Production (GPP) in semi-arid and arid irrigated agro-ecosystems within the conflict affected country of Syria. Relationships between summer yield and remotely sensed indices were derived and analyzed. Simple regression spatially-based models were developed to predict summer crop production. The validation of these models was tested during conflict years. A significant correlation (p<0.05) was found between summer crop yield and EVI, GPP and net PSN. Results indicate the efficiency of remotely sensed-based models in predicting summer yield, mostly for cotton yields and vegetables. Cumulative summer EVI-based model can predict summer crop yield during crisis period, with deviation less than 20% where vegetables are the major yield. This approach prompts to an early assessment of food shortages and lead to a real time management and decision making, especially in periods of crisis such as wars and drought.

  7. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Cescatti, Alessandro; Gitelson, Anatoly A.

    2015-12-01

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between Vmax25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between Vmax25, Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific Vmax25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35-55 μg cm-2 for maize and 20-35 μg cm-2 for soybean) are observed. While

  8. Primary forest products industry and industrial roundwood production, Michigan, 1969.

    Treesearch

    James E. Blyth; Allen H. Boelter

    1971-01-01

    Michigan loggers cut 173.8 million cubic feet of industrial roundwood products in 1969. Ninety percent was pulpwood and saw logs. Production is shifting from softwoods to hardwoods. The number of active primary wood-using mills declined rapidly from 1954 to 1969, but production per mill has expanded.

  9. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  10. A Transcriptional Regulator and ABC Transporters Link Stress Tolerance, (p)ppGpp, and Genetic Competence in Streptococcus mutans▿ †

    PubMed Central

    Seaton, Kinda; Ahn, Sang-Joon; Sagstetter, Ann M.; Burne, Robert A.

    2011-01-01

    Streptococcus mutans, a primary agent of dental caries, has three (p)ppGpp synthases: RelA, which is required for a mupirocin-induced stringent response; RelP, which produces (p)ppGpp during exponential growth and is regulated by the RelRS two-component system; and RelQ. Transcription of relPRS and a gene cluster (SMu0835 to SMu0837) located immediately upstream was activated in cells grown with aeration and during a stringent response, respectively. Bioinformatic analysis predicted that SMu0836 and SMu0837 encode ABC exporters, which we designated rcrPQ (rel competence-related) genes, respectively. SMu0835 (rcrR) encodes a MarR family transcriptional regulator. Reverse transcriptase PCR (RT-PCR) and quantitative RT-PCR analysis showed that RcrR functions as an autogenous negative regulator of the expression of the rcrRPQ operon. A mutant in which a polar insertion replaced the SMu836 gene (Δ836polar) grew more slowly and had final yields that were lower than those of the wild-type strain. Likewise, the Δ836polar strain had an impaired capacity to form biofilms, grew poorly at pH 5.5, and was more sensitive to oxidative stressors. Optimal expression of rcrPQ required RelP and vice versa. Replacement of rcrR with a nonpolar antibiotic resistance marker (Δ835np), which leads to overexpression of rcrPQ, yielded a strain that was not transformable with exogenous DNA. Transcriptional analysis revealed that the expression of comYA and comX was dramatically altered in the Δ835np and Δ836polar mutants. Collectively, the data support the suggestion that the rcrRPQ gene products play a critical role in physiologic homeostasis and stress tolerance by linking (p)ppGpp metabolism, acid and oxidative stress tolerance, and genetic competence. PMID:21148727

  11. Stomata-controlled nighttime COS fluxes in a boreal forest: implications for the use of COS as a GPP tracer

    NASA Astrophysics Data System (ADS)

    Kooijmans, Linda M. J.; Maseyk, Kadmiel; Seibt, Ulli; Vesala, Timo; Mammarella, Ivan; Baker, Ian T.; Franchin, Alessandro; Kolari, Pasi; Sun, Wu; Keskinen, Helmi; Levula, Janne; Chen, Huilin

    2016-04-01

    Carbonyl Sulfide (COS) is a promising new tracer that can be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. COS and CO2 vegetation fluxes are closely related as these gases share the same diffusion pathway into stomata. This close coupling is the fundamental principle for the use of COS as tracer for GPP. Nonetheless, in contrast to CO2 , the uptake of COS by vegetation is not light-dependent, and therefore the vegetative uptake of COS can continue during the night as long as stomata are open. Nighttime stomatal conductance is observed in a variety of studies, and also nighttime depletion of COS concentrations is reported several times but it is not confirmed with field measurements that the depletion of COS in the night is indeed driven by stomatal opening. In the summer of 2015 a campaign took place at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests using a combination of COS measurements, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes, and collocated measurements of stomatal conductance and 222Radon. A high correlation between concentrations of 222Radon and COS implies that the radon-tracer method is a valuable tool to derive nighttime ecosystem COS fluxes. We find that soils contribute to 17% of the total ecosystem COS flux during nighttime in the peak growing season. Nighttime ecosystem COS fluxes show a correlation with stomatal conductance (R2 = 0.3), indicating that nighttime COS fluxes are primarily driven by vegetation. The COS vegetation fluxes will be compared with calculated fluxes from the Simple Biosphere model. Furthermore, the nighttime vegetative COS uptake covers a substantial fraction (25%) of the daily maximum COS uptake by vegetation. Accurate quantification of nighttime COS uptake is required to be able to use COS as a useful tracer for GPP.

  12. Reconciling estimates of regional gross primary productivity among top-down and bottom-up approaches for a tall-tower CO2 concentration footprint area in central Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang

    2013-04-01

    Quantifying regional (~103 - 105 km^2) CO2 fluxes is a key to improve our understanding of the terrestrial carbon cycle. Four independent techniques were used to estimate daily regional gross primary productivity (GPP) for a tall-tower CO2 concentration footprint area (~103 - 105 km^2) in central Saskatchewan, Canada, which is characterized as a spatially heterogeneous boreal forest-agriculture transition region. These techniques include three bottom-up methods (a processed based ecosystem modeling approach using Dynamic Land Model (DLM), a flux-tower based upscaling approach, a "two-leaf" light use efficiency modeling approach based on remote sensing, and MODIS GPP products (MOD17A3)) and one simply top-down approach based on tall tower equilibrium boundary layer (EBL) budget analysis that allows the estimation of regional GPP at daily time steps from hourly CO2 concentration measurements. The top-down EBL method was applied to two CO2 concentration towers (the East Trout Lake 106-m tall tower (54°21'N, 104°59'W) with 4-height measurements (95, 55, 33, 22 m) and the Candle Lake 28-m high tower (53°59'N, 105°07'W).The daily concentration footprints were estimated using the authors previously developed footprint model (SAFE-C) based on Eulerian similarity theory. The estimated monthly and annual footprints for each height were similar in orientation and shapes but apparently different in size. The areas of footprints were significantly increased with heights. The 90% accumulative footprint areas for the heights of 22 m to 95 m varied from ~150 - 500 km2 and ~104 - 105 km2 at daily and annual time scales, respectively. The spatial representativeness of the GPP values extracted from CO2 mixing ratio data using the EBL method for each measured heights is theoretically associated with each-level's footprints. These bottom-up estimated GPP values weighted with concentration footprints were highly correlated with tower-based atmospheric top-down estimates for the

  13. Influence of nutrients and mixing on the primary production and community respiration in the Gulf of Riga

    NASA Astrophysics Data System (ADS)

    Olesen, Michael; Lundsgaard, Claus; Andrushaitis, Andris

    1999-12-01

    Rates of plankton community production and respiration in relation to wind, solar radiation, biomass and nutrients were measured in the mixed layer during a late spring, a mid-summer and an early autumn situation in the Gulf of Riga. System metabolism was estimated by the in vitro oxygen method and from oxygen mass balance directly in the water. Gross production (GPP) remained fairly stable throughout the investigation periods with a mean of 1.8 g C m -2 day -1 (range: 0.5-3.9 g C m -2 day -1). Community respiration varied from 0.5 to 6.4 g C m -2 day -1 during the two summer studies (the high respiration rates ranging from 3.0 to 10.4 g C m -2 day -1 found during the autumn cruise were probably overestimates). Respiration rates generally exceeded GPP indicating that the system was apparently net-heterotrophic during the three investigation periods. The predominant limiting factor for phytoplankton growth were nutrients during spring and summer. In autumn the combination of low light levels and high vertical mixing due to wind lead to conditions of light limitation. However, growth conditions were affected by the stabilizing (solar heating) and destabilizing (wind) forces acting on the water column in all three situations. Depending on the relative strength of these forces, day-to-day primary production could vary considerably. Under conditions of nutrient limitation mixing may increase photosynthesis; this is a consequence of improved exploitation of incident light and of available nutrients in the mixed layer. The strong dependency of mixing on primary production implies that measurements based on in vitro incubations may underestimate "real" production.

  14. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    NASA Astrophysics Data System (ADS)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  15. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  16. Ecosystem Disturbance Effects on Land Surface Temperature, Forest Carbon Stocks, and Primary Productivity in the Western United States

    NASA Astrophysics Data System (ADS)

    Cooper, L. A.; Ballantyne, A.; Holden, Z. A.; Landguth, E.

    2015-12-01

    Disturbance plays an important role in the structure, composition, and nutrient cycling of forest ecosystems. Climate change is resulting in an increase in disturbance frequency and intensity, making it critical that we quantify the physical and chemical impacts of disturbances on forests. The impacts of disturbance are thought to vary widely depending on disturbance type, location, and climate. More specifically, fires, insect infestations, and other types of disturbances differ in their timing, extent, and intensity making it difficult to assess the true impact of disturbances on local energy budgets and carbon cycling. Here, we provide a regional analysis of the impacts of fire, insect attack, and other disturbances on land surface temperature (LST), carbon stocks, and gross primary productivity (GPP). Using disturbances detected with MODIS Enhanced Vegetation Index (EVI) time series between 2002 and 2012, we find that the impacts of disturbance on LST, carbon stocks, and GPP vary widely according to local climate, vegetation, and disturbance type and intensity. Fires resulted in the most distinct impacts on all response variables. Forest responses to insect epidemics were more varied in their magnitude and timing. The results of this study provide an important estimation of the variability of climate and ecosystem responses to disturbance across a large and heterogeneous landscape. With disturbance projected to increase in both frequency and intensity around the globe in the coming years, this information is vitally important to effectively manage forests into the future.

  17. Modelling the Gross Primary Productivity of West Africa with the Regional Biomass Model RBM+, using optimized 250 m MODIS FPAR and fractional vegetation cover information

    NASA Astrophysics Data System (ADS)

    Machwitz, Miriam; Gessner, Ursula; Conrad, Christopher; Falk, Ulrike; Richters, Jochen; Dech, Stefan

    2015-12-01

    Global warming associated with climate change is one of the greatest challenges of today's world. Increasing emissions of the greenhouse gas CO2 are considered as a major contributing factor to global warming. One regulating factor of CO2 exchange between atmosphere and land surface is vegetation. Measurements of land cover changes in combination with modelling the Gross Primary Productivity (GPP) can contribute to determine important sources and sinks of CO2. The aim of this study is to accurately model the GPP for a region in West Africa with a spatial resolution of 250 m, and the differentiation of GPP based on woody and herbaceous vegetation. For this purpose, the Regional Biomass Model (RBM) was applied, which is based on a Light Use Efficiency (LUE) approach. The focus was on the spatial enhancement of the RBM from the original 1000-250 m spatial resolution (RBM+). The adaptation to the 250 m scale included the modification of two main input parameters: (1) the fraction of absorbed Photosynthetically Active Radiation (FPAR) based on the 1000 m MODIS MOD15A2 FPAR product which was downscaled to 250 m using MODIS NDVI time series; (2) the fractional cover of woody and herbaceous vegetation, which was improved by using a multi-scale approach. For validation and regional adjustments of GPP and the input parameters, in situ data from a climate station and eddy covariance measurements were integrated. The results of this approach show that the input parameters could be improved significantly: downscaling considerably reduces data gaps of the original FPAR product and the improved dataset differed less than 5.0% from the original data for cloud free regions. The RMSE of the fractional vegetation cover varied between 5.1 and 12.7%. Modelled GPP showed a slight overestimation in comparison to eddy covariance measurements. The in situ data was exceeded by 8.8% for 2005 and by 2.0% for 2006. The model results were converted to NPP and also agreed well with previous NPP

  18. QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS

    EPA Science Inventory

    Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...

  19. QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS

    EPA Science Inventory

    Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...

  20. Impacts of Temperature on Primary Productivity and Respiration in Naturally Structured Macroalgal Assemblages

    PubMed Central

    Tait, Leigh W.; Schiel, David R.

    2013-01-01

    Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP). The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C) averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP) Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in sub-canopy NPP

  1. Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data

    NASA Astrophysics Data System (ADS)

    Liu, Yibo; Ju, Weimin; He, Honglin; Wang, Shaoqiang; Sun, Rui; Zhang, Yuandong

    2013-03-01

    Net primary productivity (NPP) is an important component of the terrestrial carbon cycle. Accurately mapping the spatial-temporal variations of NPP in China is crucial for global carbon cycling study. In this study the process-based Boreal Ecosystem Productivity Simulator (BEPS) was employed to study the changes of NPP in China's ecosystems for the period from 2000 to 2010. The BEPS model was first validated using gross primary productivity (GPP) measured at typical flux sites and forest NPP measured at different regions. Then it was driven with leaf area index (LAI) inversed from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and land cover products and meteorological data interpolated from observations at 753 national basic meteorological stations to simulate NPP at daily time steps and a spatial resolution of 500 m from January 1, 2000 to December 31, 2010. Validations show that BEPS is able to capture the seasonal variations of tower-based GPP and the spatial variability of forest NPP in different regions of China. Estimated national total of annual NPP varied from 2.63 to 2.84Pg C·yr-1, averaging 2.74 Pg C·yr-1 during the study period. Simulated terrestrial NPP shows spatial patterns decreasing from the east to the west and from the south to the north, in association with land cover types and climate. South-west China makes the largest contribution to the national total of NPP while NPP in the North-west account for only 3.97% of the national total. During the recent 11 years, the temporal changes of NPP were heterogamous. NPP increased in 63.8% of China's landmass, mainly in areas north of the Yangtze River and decreased in most areas of southern China, owing to the low temperature freezing in early 2008 and the severe drought in late 2009.

  2. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Wang, J.; Dong, J.; Yi, Y.; Lu, G.; Oyler, J.; Smith, W. K.; Zhao, M.; Liu, J.; Running, S.

    2017-01-01

    Terrestrial ecosystems have continued to provide the critical service of slowing the atmospheric CO2 growth rate. Terrestrial net primary productivity (NPP) is thought to be a major contributing factor to this trend. Yet our ability to estimate NPP at the regional scale remains limited due to large uncertainties in the response of NPP to multiple interacting climate factors and uncertainties in the driver data sets needed to estimate NPP. In this study, we introduced an improved NPP algorithm that used local driver data sets and parameters in China. We found that bias decreased by 30% for gross primary production (GPP) and 17% for NPP compared with the widely used global GPP and NPP products, respectively. From 2000 to 2012, a pixel-level analysis of our improved NPP for the region of China showed an overall decreasing NPP trend of 4.65 Tg C a-1. Reductions in NPP were largest for the southern forests of China (-5.38 Tg C a-1), whereas minor increases in NPP were found for North China (0.65 Tg C a-1). Surprisingly, reductions in NPP were largely due to decreases in solar radiation (82%), rather than the more commonly expected effects of drought (18%). This was because for southern China, the interannual variability of NPP was more sensitive to solar radiation (R2 in 0.29-0.59) relative to precipitation (R2 < 0.13). These findings update our previous knowledge of carbon uptake responses to climate change in terrestrial ecosystems of China and highlight the importance of shortwave radiation in driving vegetation productivity for the region, especially for tropical forests.

  3. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies

    NASA Astrophysics Data System (ADS)

    Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P. O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang

    2017-08-01

    Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr-1 (1981-2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.

  4. Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency

    NASA Astrophysics Data System (ADS)

    Yebra, Marta; van Dijk, Albert

    2015-04-01

    Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically

  5. Chemolithotrophic Primary Production in a Subglacial Ecosystem

    PubMed Central

    Hamilton, Trinity L.; Havig, Jeff R.; Skidmore, Mark L.; Shock, Everett L.

    2014-01-01

    Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles. PMID:25085483

  6. Chemolithotrophic primary production in a subglacial ecosystem.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Havig, Jeff R; Skidmore, Mark L; Shock, Everett L

    2014-10-01

    Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles.

  7. A Model-Data Fusion Approach for Constraining Modeled GPP at Global Scales Using GOME2 SIF Data

    NASA Astrophysics Data System (ADS)

    MacBean, N.; Maignan, F.; Lewis, P.; Guanter, L.; Koehler, P.; Bacour, C.; Peylin, P.; Gomez-Dans, J.; Disney, M.; Chevallier, F.

    2015-12-01

    Predicting the fate of the ecosystem carbon, C, stocks and their sensitivity to climate change relies heavily on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. However, there are large differences in the Gross Primary Productivity (GPP) simulated by different land surface models (LSMs), not only in terms of mean value, but also in terms of phase and amplitude when compared to independent data-based estimates. This strongly limits our ability to provide accurate predictions of carbon-climate feedbacks. One possible source of this uncertainty is from inaccurate parameter values resulting from incomplete model calibration. Solar Induced Fluorescence (SIF) has been shown to have a linear relationship with GPP at the typical spatio-temporal scales used in LSMs (Guanter et al., 2011). New satellite-derived SIF datasets have the potential to constrain LSM parameters related to C uptake at global scales due to their coverage. Here we use SIF data derived from the GOME2 instrument (Köhler et al., 2014) to optimize parameters related to photosynthesis and leaf phenology of the ORCHIDEE LSM, as well as the linear relationship between SIF and GPP. We use a multi-site approach that combines many model grid cells covering a wide spatial distribution within the same optimization (e.g. Kuppel et al., 2014). The parameters are constrained per Plant Functional type as the linear relationship described above varies depending on vegetation structural properties. The relative skill of the optimization is compared to a case where only satellite-derived vegetation index data are used to constrain the model, and to a case where both data streams are used. We evaluate the results using an independent data-driven estimate derived from FLUXNET data (Jung et al., 2011) and with a new atmospheric tracer, Carbonyl sulphide (OCS) following the approach of Launois et al. (ACPD, in review). We show that the optimization reduces the strong positive

  8. On the relationship between leaf photosynthetic capacity and leaf chlorophyll and implications for simulating GPP in space and time

    NASA Astrophysics Data System (ADS)

    Houborg, R.; Cescatti, A.; Migliavacca, M.

    2012-12-01

    Advancing the use of remote sensing data for retrieving key vegetation physiological controls is of critical importance for modeling spatio-temporal variations in gross primary productivity (GPP) with high fidelity. Key land-surface model controls on GPP, such as the maximum rate of carboxylation (Vcmax) that governs leaf photosynthetic efficiency, are typically assigned fixed literature-based values for broad categories of vegetation types although in reality temporal and spatial variability can be significant in response to differences in plant phenology and physiological condition, nutrient availability and climate. Vcmax defines the biochemical capacity of leaves to assimilate CO2 and is related to the nitrogen content of leaves, which is indirectly related to leaf reflectance and transmittance spectra. However, the fact that Vcmax is a leaf level parameter complicates larger scale parameterizations based on remote sensing observations due to confounding influences from the canopy and soil. Thus a key challenge is to separate the leaf contribution associated with changes in Vcmax from the total remote sensing signal. Chlorophylls are vital pigments for photosynthesis and directly controls leaf absorption in the visible waveband region. Here we report on the utility of satellite-based leaf chlorophyll (Chl) retrievals for quantifying Vcmax variability in space and time, and look into a mechanistic methodology for exploiting Chl information within the Community Land Model (CLM4) for improved predictability of GPP. Chl is retrieved from Landsat imagery by inversion of leaf optics and canopy reflectance models within the framework of REGFLEC (REGularized canopy reFLECtance tool). The potential of Chl retrievals for constraining model simulations of GPP is evaluated at multiple flux tower sites.ig. 1 Benefit of using satellite-based leaf chlorophyll (Chl) for parameterizing Vcmax and constraining modeled carbon fluxes over the growing season at a corn site in

  9. Global relation between microwave satellite vegetation products and vegetation productivity

    NASA Astrophysics Data System (ADS)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Miralles, Diego G.; Dorigo, Wouter A.

    2017-04-01

    The occurrence of unfavourable environmental conditions like droughts commonly reduces the photosynthetic activity of ecosystems and, hence, their potential to take up carbon from the atmosphere. Ecosystem photosynthetic activity is commonly determined using remote sensing observations in the optical domain, which however have limitations particularly in regions of frequent cloud cover, e.g. the tropics. In this study, we explore the potential of vegetation optical depth (VOD) from microwave satellite observations as an alternative source for assessing vegetation productivity. VOD serves as an estimate for vegetation density and water content, which has an impact on plant physiological processes and hence should potentially provide a link to gross primary production (GPP). However, to date, it is unclear how microwave-retrieved VOD data and GPP data are related. We compare seasonal dynamics and anomalies of VOD retrievals from different satellite sensors and microwave frequencies with site level and global GPP estimates. We use VOD observations from active (ASCAT) and passive microwave sensors (AMSR-E, SMOS). We include eddy covariance measurements from the FLUXNET2015 dataset to assess the VOD products at site level. For a global scale analysis, we use the solar-induced chlorophyll fluorescence (SIF) observations from GOME-2 as a proxy for GPP and the FLUXCOM GPP product, which presents an upscaling of site measurements based on remote sensing data. Our results demonstrate that in general a good agreement between VOD and GPP or SIF exists. However, the strength of these relations depends on the microwave frequency, land cover type, and the time within the growing season. Correlations between anomalies of VOD and GPP or SIF support the assumption that microwave-derived VOD can be used to monitor vegetation productivity dynamics. The study is performed as part of the EOWAVE project funded by the Vienna University of Technology (http://eowave.geo.tuwien.ac.at/) and

  10. Understanding the output of a Smith-Root GPP electrofisher

    USGS Publications Warehouse

    Miranda, L.E.; Spencer, A.B.

    2005-01-01

    There is confusion among biologists about the use of the percent of range control in the GPP series of Smith-Root electrofishers. We evaluated the output of a GPP 7.5 electrofisher to examine how adjustments to the percent of range control affect voltage, pulse width, duty cycle, and waveform. We found that contrary to how most users interpret the labels on the GPP unit, adjustments to the percent of range control are linked only indirectly to changes in peak voltage. Suggestions for dealing with the restrictions of the GPP units are offered. ?? Copyright by the American Fisheries Society 2005.

  11. Leaf demography and physiology of the Tapajós National Forest: could phenology cause a forest-level increase in gross primary productivity during the dry season?

    NASA Astrophysics Data System (ADS)

    Albert, L.; Wu, J.; Prohaska, N.; Camargo, P. B. D.; Cosme, R., Jr.; Huxman, T. E.; Saleska, S. R.

    2014-12-01

    Tropical forests such as the forests of the Amazon basin are a significant component of the earth's carbon budget, yet how these forests respond to seasonal changes in weather, along with the extent to which tree biology synchronizes with seasonal cycles, are poorly understood. For evergreen forests in equatorial Amazon that experience dry seasons, most global vegetation models project a dry-season decrease in gross primary productivity (GPP). However, eddy covariance observations and remote sensing assessments suggest a late-dry season increase in GPP. Most global vegetation models assume that there is no seasonal variation in leaf phenology (cycles of leaf flush and senescence), or in leaf physiology. We conducted a case study in the Tapajos National Forest KM67 site, near Santarém, Brazil, to investigate whether leaf aging and seasonal shifts in leaf demography could cause an increase in GPP during the dry season. In a series of fieldwork campaigns beginning in August 2012, we monitored leaf demographic composition (leaf age categories) from 1-m branches collected from 20 trees representing abundant species, and we assessed how photosynthesis varies with leaf age for a subset of these trees. Our results show that photosynthetic capacity (e.g. Vcmax) is higher for leaves that matured during the most recent dry season than for older leaves from previous periods of growth. For many trees, leaf demography shifted during the dry season such that recently matured leaves replaced old leaves. For instance, leaf demography of an Erisma uncinatum, the most abundant canopy tree species at our site, had significantly more recently matured leaves, and significantly fewer old leaves, during surveys late in the dry season (after mid-October) than early in the dry season (prior to mid-September). These results suggest that shifts in leaf demography together with the effects of leaf age on leaf physiology can increase GPP during the dry season at the KM67 site. Thus, leaf

  12. PRIMARY PRODUCTION ESTIMATES IN CHESAPEAKE BAY USING SEAWIFS

    EPA Science Inventory

    The temporal and spatial variability in primary production along the main stem of Chesapeake Bay was examined from 1997 through 2000. Primary production estimates were determined from the Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski, 1997) using chloro...

  13. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp.

    PubMed

    Bowden, Steven D; Eyres, Alison; Chung, Jade C S; Monson, Rita E; Thompson, Arthur; Salmond, George P C; Spring, David R; Welch, Martin

    2013-11-01

    Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.

  14. Observations of Ocean Primary Productivity Using MODIS

    NASA Technical Reports Server (NTRS)

    Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP

  15. Observations of Ocean Primary Productivity Using MODIS

    NASA Technical Reports Server (NTRS)

    Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP

  16. Estimating crop net primary production using inventory data and MODIS-derived parameters

    SciTech Connect

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  17. Winter primary production supported by convection beats production in summer

    NASA Astrophysics Data System (ADS)

    Janout, M. A.; Backhaus, J. O.; Wehde, H.

    2003-04-01

    Winter observations in the northern North-Atlantic (Backhaus et al. 2000) have shown the existence of living phytoplankton, though in low concentrations (~ 0.1 mg/m**3), within the entire convective mixed layer (CML) which covered depths in the order of several hundreds of meters. It was concluded that orbital motions of convection allows plankton from all depth within the CML to return to the euphotic zone which implies that all plankta in the CML have the same chance for production. This concept was implemented in a coupled differential primary production mixed-layer model. In the new model all plankta in the CML receive the same (low) amount of light in contrast to a conventional primary production model where light is only available in the euphotic layer. Data from both models were compared with observations from OWS M. The conventional model underestimated winter production. Surprisingly the integrated winter biomass in the new model, which agreed well with the observations at OWS M, was higher than values observed during spring and summer which suggests the conclusion that present conventional primary production models are missing out a substantial biomass which is produced by a convective incubator in winter.

  18. Time variation of radiation use efficiency of a semiarid grassland: consequences for remotely sensed estimation of primary production

    NASA Astrophysics Data System (ADS)

    Nouvellon, Yann; Seen, Danny L.; Rambal, S.; Begue, Agnes; Moran, M. Susan; Kerr, Yann H.; Qi, Jiaguo

    1998-12-01

    A reliable estimation of primary production of terrestrial ecosystems is often a prerequisite for carrying out land management, while being important also in ecological and climatological studies. At a regional scale, grassland primary production estimates are increasingly being made using satellite data. In a currently used approach, regional Gross, Net and Above-ground Net Primary Productivity (GPP, NPP and ANPP) are derived from the parametric model of Monteith and are calculated as the product of the fraction of incident photosynthetically active radiation absorbed by the canopy (fAPAR) and gross, net and above-ground net production (radiation-use) efficiencies ((epsilon) g, (epsilon) n, (epsilon) an); fAPAR being derived from indices calculated from satellite measured reflectances in the red and near infrared. The accuracy and realism of the primary production values estimated by this approach therefore largely depend on an accurate estimation of (epsilon) g, (epsilon) n and (epsilon) an. However, data are scarce for production efficiencies of semi-arid grasslands, and their time and spatial variations are poorly documented, leading to often large errors on the estimates. In this paper a modeling approach taking into account relevant ecosystem processes and based on extensive field data, is used to estimate sub- seasonal and inter-annual variations of (epsilon) g, (epsilon) n and (epsilon) an of a shortgrass site of Arizona, and to quantitatively explain these variations by these of plant water stress, temperature, leaf aging, and processes such as respiration and changes in allocation pattern. For example, over the 3 study years, the mean (epsilon) g, (epsilon) n, and (epsilon) an were found to be 1.92, 0.74 and 0.29 g DM (MJ APAR)-1 respectively. (epsilon) g and epsilonn exhibited very important inter- annual and seasonal variations mainly due to different water stress conditions during the growing season. Inter-annual variations of (epsilon) an were much

  19. The productivity of primary care research networks.

    PubMed Central

    Griffiths, F; Wild, A; Harvey, J; Fenton, E

    2000-01-01

    Primary care research networks are being publicly funded in the United Kingdom to promote a culture of research and development in primary care. This paper discusses the organisational form of these networks and how their productivity can be evaluated, drawing on evidence from management science. An evaluation of a research network has to take account of the complexity of the organisation, the influence of its local context, and its stage of development. Output measures, such as number of research papers, and process measures, such as number of research meetings, may contribute to an evaluation. However, as networking relies on the development of informal, trust-based relationships, the quality of interactions within a network is of paramount importance for its success. Networks can audit and reflect on their success in promoting such relationships and a more formal qualitative evaluation by an independent observer can document their success to those responsible for funding. PMID:11141879

  20. Structural basis for transcription regulation by alarmone ppGpp.

    PubMed

    Artsimovitch, Irina; Patlan, Vsevolod; Sekine, Shun-ichi; Vassylyeva, Marina N; Hosaka, Takeshi; Ochi, Kozo; Yokoyama, Shigeyuki; Vassylyev, Dmitry G

    2004-04-30

    Guanosine-tetraphosphate (ppGpp) is a major regulator of stringent control, an adaptive response of bacteria to amino acid starvation. The 2.7 A resolution structure of the Thermus thermophilus RNA polymerase (RNAP) holoenzyme in complex with ppGpp reveals that ppGpp binds to the same site near the active center in both independent RNAP molecules in the crystal but in strikingly distinct orientations. Binding is symmetrical with respect to the two diphosphates of ppGpp and is relaxed with respect to the orientation of the nucleotide base. Different modes of ppGpp binding are coupled with asymmetry of the active site configurations. The results suggest that base pairing of ppGpp with cytosines in the nontemplate DNA strand might be an essential component of transcription control by ppGpp. We present experimental evidence highlighting the importance of base-specific contacts between ppGpp and specific cytosine residues during both transcription initiation and elongation.

  1. A Simulation of the Importance of Length of Growing Season and Canopy Functional Properties on the Seasonal Gross Primary Production of Temperate Alpine Meadows

    PubMed Central

    Baptist, Florence; Choler, Philippe

    2008-01-01

    Background and Aims Along snowmelt gradients, the canopies of temperate alpine meadows differ strongly in their structural and biochemical properties. Here, a study is made of the effects of these canopy dissimilarities combined with the snow-induced changes in length of growing season on seasonal gross primary production (GPP). Methods Leaf area index (LAI) and community-aggregated values of leaf angle and leaf nitrogen content were estimated for seven alpine plant canopies distributed along a marked snowmelt gradient, and these were used as input variables in a sun–shade canopy bulk-photosynthesis model. The model was validated for plant communities of early and late snowmelt sites by measuring the instantaneous CO2 fluxes with a canopy closed-chamber technique. A sensitivity analysis was conducted to estimate the relative impact of canopy properties and environmental factors on the daily and seasonal GPP. Key Results Carbon uptake was primarily related to the LAI and total canopy nitrogen content, but not to the leaf angle. For a given level of photosynthetically active radiation, CO2 assimilation was higher under overcast conditions. Sensitivity analysis revealed that increase of the length of the growing season had a higher effect on the seasonal GPP than a similar increase of any other factor. It was also found that the observed greater nitrogen content and larger LAI of canopies in late-snowmelt sites largely compensated for the negative impact of the reduced growing season. Conclusions The results emphasize the primary importance of snow-induced changes in length of growing season on carbon uptake in alpine temperate meadows. It was also demonstrated how using leaf-trait values of the dominants is a useful approach for modelling ecosystem carbon-cycle-related processes, particularly when continuous measurements of CO2 fluxes are technically difficult. The study thus represents an important step in addressing the challenge of using a plant functional

  2. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows.

    PubMed

    Baptist, Florence; Choler, Philippe

    2008-03-01

    Along snowmelt gradients, the canopies of temperate alpine meadows differ strongly in their structural and biochemical properties. Here, a study is made of the effects of these canopy dissimilarities combined with the snow-induced changes in length of growing season on seasonal gross primary production (GPP). Leaf area index (LAI) and community-aggregated values of leaf angle and leaf nitrogen content were estimated for seven alpine plant canopies distributed along a marked snowmelt gradient, and these were used as input variables in a sun-shade canopy bulk-photosynthesis model. The model was validated for plant communities of early and late snowmelt sites by measuring the instantaneous CO(2) fluxes with a canopy closed-chamber technique. A sensitivity analysis was conducted to estimate the relative impact of canopy properties and environmental factors on the daily and seasonal GPP. Carbon uptake was primarily related to the LAI and total canopy nitrogen content, but not to the leaf angle. For a given level of photosynthetically active radiation, CO(2) assimilation was higher under overcast conditions. Sensitivity analysis revealed that increase of the length of the growing season had a higher effect on the seasonal GPP than a similar increase of any other factor. It was also found that the observed greater nitrogen content and larger LAI of canopies in late-snowmelt sites largely compensated for the negative impact of the reduced growing season. The results emphasize the primary importance of snow-induced changes in length of growing season on carbon uptake in alpine temperate meadows. It was also demonstrated how using leaf-trait values of the dominants is a useful approach for modelling ecosystem carbon-cycle-related processes, particularly when continuous measurements of CO(2) fluxes are technically difficult. The study thus represents an important step in addressing the challenge of using a plant functional-trait approach for biogeochemical modelling.

  3. (p)ppGpp, a Small Nucleotide Regulator, Directs the Metabolic Fate of Glucose in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Raskin, David M; Yoon, Sang Sun

    2015-05-22

    When V. cholerae encounters nutritional stress, it activates (p)ppGpp-mediated stringent response. The genes relA and relV are involved in the production of (p)ppGpp, whereas the spoT gene encodes an enzyme that hydrolyzes it. Herein, we show that the bacterial capability to produce (p)ppGpp plays an essential role in glucose metabolism. The V. cholerae mutants defective in (p)ppGpp production (i.e. ΔrelAΔrelV and ΔrelAΔrelVΔspoT mutants) lost their viability because of uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ΔrelAΔspoT mutant, a (p)ppGpp overproducer strain, exhibited better growth in the presence of the same glucose concentration. An RNA sequencing analysis demonstrated that transcriptions of genes consisting of an operon for acetoin biosynthesis were markedly elevated in N16961, a seventh pandemic O1 strain, but not in its (p)ppGpp(0) mutant during glucose-stimulated growth. Transposon insertion in acetoin biosynthesis gene cluster resulted in glucose-induced loss of viability of the ΔrelAΔspoT mutant, further suggesting the crucial role of acetoin production in balanced growth under glucose-rich environments. Additional deletion of the aphA gene, encoding a negative regulator for acetoin production, failed to rescue the (p)ppGpp(0) mutant from the defective glucose-mediated growth, suggesting that (p)ppGpp-mediated acetoin production occurs independent of the presence of AphA. Overall, our results reveal that (p)ppGpp, in addition to its well known role as a stringent response mediator, positively regulates acetoin production that contributes to the successful glucose metabolism and consequently the proliferation of V. cholerae cells under a glucose-rich environment, a condition that may mimic the human intestine. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    PubMed Central

    Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.

    2016-01-01

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time

  5. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    SciTech Connect

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.; Bond-Lamberty, Ben

    2016-10-20

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time

  6. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    DOE PAGES

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; ...

    2016-10-20

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological

  7. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers.

    PubMed

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A

    2016-01-01

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time

  8. Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in East China.

    PubMed

    Wu, Mingquan; Muhammad, Shakir; Chen, Fang; Niu, Zheng; Wang, Changyao

    2015-04-01

    Wetland ecosystems are very important for ecological diversity and have a strong ability to sequester carbon. Through comparisons with field measured eddy covariance data, we evaluated the relationships between the light use efficiency (LUE) index and the enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and land surface temperature (LST). Consequently, we have proposed a new model for the estimation of gross primary production (GPP) for wetland ecosystems using Moderate Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation indices, LST and the fraction of photosynthetically active radiation (FAPAR) absorbed by the active vegetation. This model was developed and validated for a study site on Chongming Island, Shanghai, China. Our results show that photosynthetically active radiation (PAR) was highly correlated with the LST, with a coefficient of determination (R(2)) of 0.59 (p < 0.001). Vegetation indices, such as EVI, NDVI and LST, were highly correlated with LUE. We found that the product of vegetation indices (VIs) and a modified form of LST (Te) can be used to estimate LUE, with an R(2) of 0.82 (P < 0.0001) and an RMSE of 0.054 kg C per mol PAR. This new model can provide reliable estimates of GPP (R(2) of 0.87 and RMSE of 0.009 kg C m(-2) 8 d(-1) (P < 0.0001)).

  9. Validation, Mapping and Application of MODIS fAPARchl for GPP Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Yao, T.

    2015-12-01

    The climate is affected by the land surface through regulating the exchange of mass and energy with the atmosphere. The energy that reaches the land surface has three pathways: (1) reflected into atmosphere; (2) absorbed for photosynthesis; and (3) discarded as latent and sensible heat or emitted as fluorescence. Vegetation removes CO2 from the atmosphere during the process of photosynthesis, but also releases CO2 back into the atmosphere through the process of respiration. The complex set of vegetation-soil-atmosphere interactions requires that a realistic land-surface parameterization be included in any climate model or general circulation model (GCM) to accurately simulate canopy photosynthesis and stomatal conductance. In this paper, we present a new MODIS product, fraction of PAR absorbed by chlorophyll throughout a canopy (fAPARchl), in three aspects: validation, mapping and application. The fAPARchl is retrieved through the coupled canopy-leaf radiative transfer model PROSPECT2 with surface reflectance of MODIS bands 1-7 at spatial resolution of 500 m. In order to validate the fAPARchl product, we design a new gridding approach that define the center of a selected site or field as the center of the grid and the MODIS observations of the grid is weighted by all overlapped observations from each orbit, respectively. Selected sites include evergreen needleleaf forests, deciduous broadleaf forests, mixed forests, crops, shrublands, and grasslands under various climate conditions. The fAPARchl product is mapped at site/pixel, local and regional scales across the United States and Canada. The fAPARchl is utilized to estimate GPP, and compared to tower flux GPP for validation. The GPP estimation performance with fAPARchl is also compared with the GPP estimation performance with MOD15A2 FPAR. The fAPARchl product is further implemented into ecological models and land-surface models to simulate vegetation GPP. This study shows the importance of the new gridding

  10. Primary and Bacterial Production in Two Dimictic Indiana Lakes

    PubMed Central

    Lovell, Charles R.; Konopka, Allan

    1985-01-01

    The relationship between primary and bacterial production in two dimictic Indiana lakes with different primary productivities was examined during the summer stratification period in 1982. Primary production rates were calculated from rates of H14CO3− incorporation by natural samples, and bacterial production was calculated from rates of [3H-methyl]thymidine incorporation by natural samples. Both vertical and seasonal distributions of bacterial production in the more productive lake (Little Crooked Lake) were strongly influenced by primary production. A lag of about 2 weeks between a burst in primary production and the subsequent response in bacterial production was observed. The vertical distribution of bacterial production in the water column of the less productive lake (Crooked Lake) was determined by the vertical distribution of primary production, but no clear relationship between seasonal maxima of primary and bacterial production in this lake was observed. High rates of bacterial production in Crooked Lake during May indicate the importance of allochthonous carbon washed in by spring rains. Bacterial production accounted for 30.6 and 31.8% of total (primary plus bacterial) production in Crooked Lake and Little Crooked Lake, respectively, from April through October. High rates of bacterial production during late September and October were observed in both lakes. Calculation of the fraction of bacterial production supported by phytoplankton excretion implies an important role for other mechanisms of supplying carbon, such as phytoplankton autolysis. Several factors affecting the calculation of bacterial production from the thymidine incorporation rates in these lakes were examined. PMID:16346742

  11. Biospheric primary production during an ENSO transition.

    PubMed

    Behrenfeld, M J; Randerson, J T; McClain, C R; Feldman, G C; Los, S O; Tucker, C J; Falkowski, P G; Field, C B; Frouin, R; Esaias, W E; Kolber, D D; Pollack, N H

    2001-03-30

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides global monthly measurements of both oceanic phytoplankton chlorophyll biomass and light harvesting by land plants. These measurements allowed the comparison of simultaneous ocean and land net primary production (NPP) responses to a major El Niño to La Niña transition. Between September 1997 and August 2000, biospheric NPP varied by 6 petagrams of carbon per year (from 111 to 117 petagrams of carbon per year). Increases in ocean NPP were pronounced in tropical regions where El Niño-Southern Oscillation (ENSO) impacts on upwelling and nutrient availability were greatest. Globally, land NPP did not exhibit a clear ENSO response, although regional changes were substantial.

  12. Continued increases in Arctic Ocean primary production

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.; van Dijken, Gert L.

    2015-08-01

    Dramatic declines in sea-ice cover in the Arctic Ocean in recent decades have the potential to fundamentally alter marine ecosystems. Here we investigate changes in sea ice between the years 1998 and 2012 at regional and basin scales and how these have impacted rates of phytoplankton net primary production (NPP). Annual NPP increased 30% over the Arctic Ocean during our study period, with the largest increases on the interior shelves and smaller increases on inflow shelves. Increased annual NPP was often, but not always, associated with reduced sea-ice extent and a longer phytoplankton growing season (fewer days of ice cover). Spatial patterns of increased annual NPP suggest that increased nutrient fluxes may also play an important role. Outflow shelves either exhibited no change in annual NPP during our study period or a significant decline, perhaps indicating that nutrients had been consumed by increased NPP farther upstream.

  13. Herbivory and Stoichiometric Feedbacks to Primary Production.

    PubMed

    Krumins, Jennifer Adams; Krumins, Valdis; Forgoston, Eric; Billings, Lora; van der Putten, Wim H

    2015-01-01

    Established theory addresses the idea that herbivory can have positive feedbacks on nutrient flow to plants. Positive feedbacks likely emerge from a greater availability of organic carbon that primes the soil by supporting nutrient turnover through consumer and especially microbially-mediated metabolism in the detrital pool. We developed an entirely novel stoichiometric model that demonstrates the mechanism of a positive feedback. In particular, we show that sloppy or partial feeding by herbivores increases detrital carbon and nitrogen allowing for greater nitrogen mineralization and nutritive feedback to plants. The model consists of differential equations coupling flows among pools of: plants, herbivores, detrital carbon and nitrogen, and inorganic nitrogen. We test the effects of different levels of herbivore grazing completion and of the stoichiometric quality (carbon to nitrogen ratio, C:N) of the host plant. Our model analyses show that partial feeding and plant C:N interact because when herbivores are sloppy and plant biomass is diverted to the detrital pool, more mineral nitrogen is available to plants because of the stoichiometric difference between the organisms in the detrital pool and the herbivore. This model helps to identify how herbivory may feedback positively on primary production, and it mechanistically connects direct and indirect feedbacks from soil to plant production.

  14. Herbivory and Stoichiometric Feedbacks to Primary Production

    PubMed Central

    Krumins, Jennifer Adams; Krumins, Valdis; Forgoston, Eric; Billings, Lora; van der Putten, Wim H.

    2015-01-01

    Established theory addresses the idea that herbivory can have positive feedbacks on nutrient flow to plants. Positive feedbacks likely emerge from a greater availability of organic carbon that primes the soil by supporting nutrient turnover through consumer and especially microbially-mediated metabolism in the detrital pool. We developed an entirely novel stoichiometric model that demonstrates the mechanism of a positive feedback. In particular, we show that sloppy or partial feeding by herbivores increases detrital carbon and nitrogen allowing for greater nitrogen mineralization and nutritive feedback to plants. The model consists of differential equations coupling flows among pools of: plants, herbivores, detrital carbon and nitrogen, and inorganic nitrogen. We test the effects of different levels of herbivore grazing completion and of the stoichiometric quality (carbon to nitrogen ratio, C:N) of the host plant. Our model analyses show that partial feeding and plant C:N interact because when herbivores are sloppy and plant biomass is diverted to the detrital pool, more mineral nitrogen is available to plants because of the stoichiometric difference between the organisms in the detrital pool and the herbivore. This model helps to identify how herbivory may feedback positively on primary production, and it mechanistically connects direct and indirect feedbacks from soil to plant production. PMID:26098841

  15. A simplified gross primary production and evapotranspiration model for boreal coniferous forests - is a generic calibration sufficient?

    NASA Astrophysics Data System (ADS)

    Minunno, F.; Peltoniemi, M.; Launiainen, S.; Aurela, M.; Lindroth, A.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Mäkelä, A.

    2015-07-01

    The problem of model complexity has been lively debated in environmental sciences as well as in the forest modelling community. Simple models are less input demanding and their calibration involves a lower number of parameters, but they might be suitable only at local scale. In this work we calibrated a simplified ecosystem process model (PRELES) to data from multiple sites and we tested if PRELES can be used at regional scale to estimate the carbon and water fluxes of Boreal conifer forests. We compared a multi-site (M-S) with site-specific (S-S) calibrations. Model calibrations and evaluations were carried out by the means of the Bayesian method; Bayesian calibration (BC) and Bayesian model comparison (BMC) were used to quantify the uncertainty in model parameters and model structure. To evaluate model performances BMC results were combined with more classical analysis of model-data mismatch (M-DM). Evapotranspiration (ET) and gross primary production (GPP) measurements collected in 10 sites of Finland and Sweden were used in the study. Calibration results showed that similar estimates were obtained for the parameters at which model outputs are most sensitive. No significant differences were encountered in the predictions of the multi-site and site-specific versions of PRELES with exception of a site with agricultural history (Alkkia). Although PRELES predicted GPP better than evapotranspiration, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. Our analyses underlined also the importance of using long and carefully collected flux datasets in model calibration. In fact, even a single site can provide model calibrations that can be applied at a wider spatial scale, since it covers a wide range of variability in climatic conditions.

  16. The 'overflow tap' theory: linking GPP to forest soil carbon dynamics and the mycorrhizal component

    NASA Astrophysics Data System (ADS)

    Heinemeyer, Andreas; Willkinson, Matthew; Subke, Jens-Arne; Casella, Eric; Vargas, Rodrigo; Morison, James; Ineson, Phil

    2010-05-01

    productivity. The work presented here focuses on three critical areas: (1) We present annual fluxes at hourly intervals for the three soil CO2 efflux components (R, F and H) from a 75 year-old deciduous oak forest in SE England. We investigate the individual environmental responses of the three flux components, and compare them to soil decomposition modelled by CENTURY and its latest version (i.e. DAYCENT), which separately models root-derived respiration in addition to the soil decomposition output. (2) Using estimates of gross primary productivity (GPP) based on eddy covariance measurements from the same site, we explore linkages between GPP and soil respiration component fluxes using basic regression and wavelet analyses. We show a distinctly different time lag signal between GPP and root vs. mycorrhizal fungal respiration. We then discuss how models might need to be improved to accurately predict total soil CO2 efflux, including root-derived respiration. (3) We finally discuss the ‘overflow tap' theory, that during periods of high assimilation (e.g. optimum environmental conditions or elevated CO2) surplus non-structural C is allocated belowground to the mycorrhizal network; this additional C could then be used and released by the associated fungal partners, causing soil priming through stimulating decomposition.

  17. Primary production in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammed Ali; Balala, Arvin C.; Kumar, Sanjeev; Bhavya, P. S.; Wafar, Mohideen

    2014-04-01

    Rates of uptake of carbon and nitrogen (ammonium, nitrate and urea) by phytoplankton, along with concentrations of nutrients and chlorophyll a, in the Saudi Arabian waters of the northern Red Sea (23 °N-28 °N) were measured in autumn, 2012. Concentrations of nitrate, nitrite and phosphate within the euphotic zone were in trace amounts while those of silicon were in excess of 0.5 μmol L- 1. Concentrations of chlorophyll (Chl a) were very low within the euphotic zone (0.01-0.6 μg L- 1 at discrete depths and 1.53-21.5 mg m- 2 as column-integrated values). A deep chlorophyll maximum and a nitrite maximum were present between 60 and 80 m at almost all of the stations occupied. Rates of carbon uptake at discrete depths ranged from 0.02 to 3 μg C L- 1 h- 1. Chl-normalized carbon uptake rates related with ambient light in a Michaelis-Menten kinetic pattern. About 80% of the carbon uptake was attributable to the < 20 μm fraction. Ammonium and urea were the nitrogen compounds taken up in preference by phytoplankton and accounted for close to 90% of the total N uptake. Considered together, these results indicate that the waters of the northern Red Sea are oligotrophic and that the primary production is strongly N-controlled. Analyses of the data and interpretation of the results led to the following speculations: (1) the perceived north-south gradient in Chl a (and possibly in primary production) in the Red Sea is maintained by circulation of Chl- and nutrient-rich waters through a series of gyres, (2) there is a greater role for heterotrophy and microbial loop in the trophic dynamics, and (3) in situ nitrification in the euphotic zone is an important source of N for phytoplankton and consequently export of carbon to deep sea could be lesser than that indicated by f-ratios.

  18. Primary forest products industry and timber use, Nebraska, 1980.

    Treesearch

    James E. Blyth; Tom D. Wardle; W. Brad Smith

    1984-01-01

    Highlights recent Nebraska forest industry trends, production and receipts of saw logs in 1980, and production of other timber products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  19. Primary forest products industry and timber use, Kansas, 1980.

    Treesearch

    James E. Blyth; Leonard K. Gould; W. Brad Smith

    1984-01-01

    Highlights recent Kansas forest industry trends, production and receipts of saw logs in 1980, and production of other timber products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  20. Parameterization of Oceanic Convection In Primary Production

    NASA Astrophysics Data System (ADS)

    Wehde, Henning

    The influence of Oceanic Convection in Primary Production was investigated in a numerical model study. Lagrangian tracers were introduced to a 2.5 dimensional non- hydrostatic convection model. Model domain is a vertical ocean slice with an isotropic grid size of 5 meters, vanishing gradients normal to the plane and cyclic lateral bound- ary conditions. The horizontal dimension is chosen according to the expected convec- tive aspect ratios that vary between 1 and 3. For each tracer a simple phytoplankton model predicts growth dependent on light conditions. The mean amount of light avail- able for growth for a plankton cell depends on the thickness of the mixed layer and the convective activity. The model was applied to several shelf and open ocean strat- ifications and forced with varying atmospheric conditions to study the sensitivity and to quantify the contact duration and return frequency of plankton into the euphotic zone. The phytoplankton concentration is closely related to the depth of the convec- tively mixed layer. The oceanic convection forms the actual mixed layer depth and was found to heavily influence the contact duration and return frequency of a plank- ton cell into the euphotic zone. Phytoplankton is dispersed by convection in vertical orbit cells. The vertical motion allow for the frequent return of plankton cells to the euphotic zone.

  1. Primary productivity in the Golden Horn.

    PubMed

    Gönüllü, M Talha; Avşar, Yaşar; Bayhan, Hürrem; Sakar, Süeyman; Arslankaya, Ertan; Apaydin, Omer; Kurt, Uĝur

    2005-10-01

    The shores of the Golden Horn--once most important seaport of the region--represented throughout history a romantic and recreational venue. This tributary to the Bosphorus, however, became seriously polluted with the extensive industrialization and rapid population growth in Istanbul over the past century. Two main tributaries, the Alibeykoy and the Kagithane, dumped both liquid and solid waste from residential areas and industry (small and large-scale) into the Golden Horn. As a result of this pollution, the landward three to four kilometers of the estuary became swamped with sediment. The dominance of anaerobic activity resulted in a highly unpleasant smell, and the shallow depth as one progressed up the bay restricted navigation. In early 1997 The Istanbul Metropolitan Municipality began a dredging operation and gradually diverted all domestic and industrial wastewater discharge from the Golden Horn. Since then there have been remarkable improvements in water quality. This paper presents the state of eutrophication through the water body of the Golden Horn; parameters such as DO, TKN, NH(3)-N, NO(3)-N, the total phosphorus (TP) and dissolved phosphorus (PO(4)-P), phytoplankton and chlorophyll-a have been were analyzed in samples of water taken from various points in the Golden Horn. The presence of DO and the phytoplankton, both indicators of primary productivity in an aquatic body, has been evaluated in relation to former conditions.

  2. Towards a universal trait-based model of terrestrial primary production

    NASA Astrophysics Data System (ADS)

    Wang, H.; Prentice, I. C.; Cornwell, W.; Keenan, T. F.; Davis, T.; Wright, I. J.; Evans, B. J.; Peng, C.

    2015-12-01

    Systematic variations of plant traits along environmental gradients have been observed for decades. For example, the tendencies of leaf nitrogen per unit area to increase, and of the leaf-internal to ambient CO2 concentration ratio (ci:ca) to decrease, with aridity are well established. But ecosystem models typically represent trait variation based purely on empirical relationships, or on untested conjectures, or not at all. Neglect of quantitative trait variation and its adapative significance probably contributes to the persistent large uncertainties among models in predicting the response of the carbon cycle to environmental change. However, advances in ecological theory and the accumulation of extensive data sets during recent decades suggest that theoretically based and testable predictions of trait variation could be achieved. Based on well-established ecophysiological principles and consideration of the adaptive significance of traits, we propose universal relationships between photosynthetic traits (ci:ca, carbon fixation capacity, and the ratio of electron transport capacity to carbon fixation capacity) and primary environmental variables, which capture observed trait variations both within and between plant functional types. Moreover, incorporating these traits into the standard model of C3photosynthesis allows gross primary production (GPP) of natural vegetation to be predicted by a single equation with just two free parameters, which can be estimated from independent observations. The resulting model performs as well as much more complex models. Our results provide a fresh perspective with potentially high reward: the possibility of a deeper understanding of the relationships between plant traits and environment, simpler and more robust and reliable representation of land processes in Earth system models, and thus improved predictability for biosphere-atmosphere interactions and climate feedbacks.

  3. How drought severity constrains GPP and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-06-01

    The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP). Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous experimental

  4. Catchment disturbance and stream metabolism: Patterns in ecosystem respiration and gross primary production along a gradient of upland soil and vegetation disturbance

    USGS Publications Warehouse

    Houser, J.N.; Mulholland, P.J.; Maloney, K.O.

    2005-01-01

    Catchment characteristics determine the inputs of sediments and nutrients to streams. As a result, natural or anthropogenic disturbance of upland soil and vegetation can affect instream processes. The Fort Benning Military Installation (near Columbus, Georgia) exhibits a wide range of upland disturbance levels because of spatial variability in the intensity of military training. This gradient of disturbance was used to investigate the effect of upland soil and vegetation disturbance on rates of stream metabolism (ecosystem respiration rate [ER] and gross primary production rate [GPP]). Stream metabolism was measured using an open-system, single-station approach. All streams were net heterotrophic during all seasons. ER was highest in winter and spring and lowest in summer and autumn. ER was negatively correlated with catchment disturbance level in winter, spring, and summer, but not in autumn. ER was positively correlated with abundance of coarse woody debris, but not significantly related to % benthic organic matter. GPP was low in all streams and generally not significantly correlated with disturbance level. Our results suggest that the generally intact riparian zones of these streams were not sufficient to protect them from the effect of upland disturbance, and they emphasize the role of the entire catchment in determining stream structure and function. ?? 2005 by The North American Benthological Society.

  5. Seasonal trends of spectral indexes for monitoring GPP in a Mediterranean cork oak savanna

    NASA Astrophysics Data System (ADS)

    Cerasoli, S.; Silva, J. M. N.; Carvalhais, N.; Silva, F.; López, G.; Pereira, J. M. C.; Pereira, J. S.

    2012-04-01

    It is nowadays clear that the inclusion of spectral indexes into biogeochemical models can greatly improve actual estimates of gross primary productivity (GPP) at local and global scale. Several vegetation indexes can be obtained by the reflectance of light at specific wavelengths. Among them, the Normalized Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Photochemical Reflectance Index (PRI) were found suitable to represent different characteristics of ecosystems strictly related with GPP, such as biomass and photosynthetic capacity (NDVI, EVI) or radiation use efficiency (PRI). In Mediterranean cork oak savannas, characterized by high heterogeneity, the application of spectral indexes derived from coarse spatial resolution remotely sensed data (e.g. MODIS imagery) to represent the performance of the whole ecosystem is complex. A better knowledge of the variability of vegetation indexes for specific vegetation types, assessed in fieldwork, is fundamental to the interpretation of the same indexes obtained with satellite data and a key step through the integration of such indexes into biogeochemical models. We consider three different vegetation types: trees, grasses and shrubs, concurring to the overall ecosystem carbon budget in Mediterranean cork oak savannas. Since April 2011, reflectance measurements were performed in the range of 300-2500nm by the use of a handheld hyperspectral spectroradiometer (FieldSpec3, ASD Inc. CO, USA) in several species of the three vegetation types in a cork oak savanna eddy covariance site located in central Portugal. Measurements were always performed around solar noon and repeated approximately every two weeks. Several vegetation indexes were calculated. All indexes showed clear differences among vegetation types and among species. Marked seasonal trends were identified for grasses and shrubs, clearly related with the onset of dry summer conditions. Both NDVI and EVI decreased in grasses from April to the

  6. A (p)ppGpp-Null Mutant of Haemophilus ducreyi Is Partially Attenuated in Humans Due to Multiple Conflicting Phenotypes

    PubMed Central

    Holley, Concerta; Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R.; Janowicz, Diane M.; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P.

    2014-01-01

    (p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes. PMID:24914217

  7. A (p)ppGpp-null mutant of Haemophilus ducreyi is partially attenuated in humans due to multiple conflicting phenotypes.

    PubMed

    Holley, Concerta; Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2014-08-01

    (p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.

  8. Global Patterns in Human Consumption of Net Primary Production

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  9. Global Patterns in Human Consumption of Net Primary Production

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  10. Global patterns in human consumption of net primary production

    NASA Astrophysics Data System (ADS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  11. Global patterns in human consumption of net primary production.

    PubMed

    Imhoff, Marc L; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T

    2004-06-24

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production--the net amount of solar energy converted to plant organic matter through photosynthesis--can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production 'supply' and 'demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production 'imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  12. Modeling GPP in Semi-arid Inner Mongolia using MODIS Imagery and Tower-based Fluxes

    NASA Astrophysics Data System (ADS)

    John, R.; Chen, J.; Noormets, A.; Xu, J.

    2011-12-01

    Semi-arid Inner Mongolia is experiencing climate change with associated land cover/use change that includes an increase in irrigated agriculture and population growth. We evaluate temporal scaling up of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land cover/use and biome types. The Vegetation Photosynthesis model (VPM) and modified VPM (MVPM), driven by Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) for 2006-2007 that were derived from MODIS surface reflectance product (MOD09A1) was used to scale up and validate temporal changes in GPP from the EC towers during 2006 & 2007 growing seasons. The VPM model predicted the annual GPP (GPPvpm) reasonably well at the Duolun cropland (R2 = 0.67 & 0.71) and Xilinhaote typical steppe (R2 = 0.80 & 0.73). The predictive power of VPM varied in the desert steppe, at an irrigated poplar stand (R2 = 0.74 & 0.68) and nearby shrubland in Kubuqi (R2 = 0.31 & 0.49). The comparison between GPPtower and GPPmvpm predicted GPP showed good agreement for the Xilinhaote typical steppe (R2 = 0.84 & 0.70) in 2006-2007, Duolun typical steppe (R2 = 0.63), and cropland (R2 = 0.63) in 2007. The predictive power of MVPM decreased slightly in the desert steppe, at the irrigated poplar stand (R2 = 0.55 & .47) and the shrubland (R2 = 0.20 & 0.41). The results of this study demonstrate the feasibility of scaling up GPP from EC towers to the regional scale. The inter & intra-annual changes in dynamics of GPP in Inner Mongolia are especially relevant given the extreme climate events on the Mongolian Plateau. We seek to study the effects of drought in the Mongolian plateau through the mapping of anomalies in different vegetation indices (EVI, NDVI, SAVI) as well as functional variables (GPP, ET) during the MODIS decade (2001-2010). Our research question is: What is the biome response to the severe dzuds (extreme winters) and summer droughts? We then compared the MODIS data to spatially

  13. Importance of coastal primary production in the northern Baltic Sea.

    PubMed

    Ask, Jenny; Rowe, Owen; Brugel, Sonia; Strömgren, Mårten; Byström, Pär; Andersson, Agneta

    2016-10-01

    In this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %. This estimated benthic share (31 %) is three times higher compared to past estimates of 10 %. The main reason for this discrepancy is the lack of data regarding benthic primary production in the northern Baltic Sea, but also that past studies overestimated the importance of pelagic primary production by not correcting for system-specific bathymetric variation. Our study thus highlights the importance of benthic communities for the northern Baltic Sea ecosystem in general and for future management strategies and ecosystem studies in particular.

  14. Global Regulation by (p)ppGpp and CodY in Streptococcus mutans▿ †

    PubMed Central

    Lemos, José A.; Nascimento, Marcelle M.; Lin, Vanessa K.; Abranches, Jacqueline; Burne, Robert A.

    2008-01-01

    The RelA, RelP, and RelQ enzymes are responsible for the production of the alarmone (p)ppGpp in Streptococcus mutans. A strain lacking all three synthetases (ΔrelAPQ) does not grow in minimal medium lacking the branched-chain amino acids (BCAA) leucine or valine but grows well if isoleucine is also omitted. Here, we investigated whether there was a correlation between growth in the absence of leucine and valine with (p)ppGpp pools and the activation of CodY. By using a combination of single, double, and triple mutants lacking the (p)ppGpp synthetase enzymes, we demonstrated that the ability to grow in the absence of leucine or valine required basal levels of (p)ppGpp production by RelP and RelQ. The introduction of a codY mutation into the ΔrelAPQ strain fully restored growth in medium lacking leucine or valine, revealing that the growth-defective phenotype of ΔrelAPQ was directly linked to CodY. Lowering GTP levels through the addition of decoyinine did not alleviate CodY repression or affect the expression of genes involved in BCAA biosynthesis, suggesting that S. mutans CodY is not activated by GTP. The results of phenotypic studies revealed that the codY mutant had a reduced capacity to form biofilms and that its growth was more sensitive to low pH, showing a role for CodY in two key virulence properties of S. mutans. Microarray results revealed the extent of the CodY regulon. Notably, the identification of putative CodY-binding boxes upstream of genes that were downregulated in the codY mutant indicates that CodY may also function as a transcriptional activator in S. mutans. PMID:18539745

  15. Primary forest products industry and timber use, Michigan, 1977.

    Treesearch

    James E. Blyth; Jack Zollner; W. Brad Smith

    1981-01-01

    Discusses recent Michigan forest industry trends, timber removals for industrial roundwood in 1977, and production and receipts of pulpwood, saw logs, and other industrial roundwood products. Reports on associated logging and primary mill residues and the disposition of mill residue.

  16. Development and status of Arkansas' primary forest products industry

    Treesearch

    Dennis M. May

    1990-01-01

    The development of Arkansas' primary forest products industry is presented by following the changes in numbers and types of mills operating through time as well as the State's production of roundwood to supply the changing industry.

  17. (p)ppGpp-dependent and -independent pathways for salt tolerance in Escherichia coli.

    PubMed

    Tarusawa, Takefusa; Ito, Shion; Goto, Simon; Ushida, Chisato; Muto, Akira; Himeno, Hyouta

    2016-07-01

    Addition of some kinds of translation inhibitors targeting the ribosome such as kasugamycin to the culture medium as well as removal of a ribosome maturation factor or a ribosomal protein provides Escherichia coli cells with tolerance to high salt stress. Here, we found that another kind of translation inhibitor, serine hydroxamate (SHX), which induces amino acid starvation leading to (p)ppGpp production, also has a similar effect, but via a different pathway. Unlike kasugamycin, SHX was not effective in (p)ppGpp-null mutant cells. SHX and depletion of RsgA, a ribosome maturation factor, had an additive effect on salt tolerance, while kasugamycin or depletion of RsgA did not. These results indicate the presence of two distinct pathways, (p)ppGpp-dependent and -independent pathways, for salt tolerance of E. coli cell. Both pathways operate even in the absence of σ(S), an alternative sigma factor involved in the stationary phase or stress response. Hastened activation of the exocytoplasmic stress-specific sigma factor, σ(E), after salt shock was observed in the cells treated with SHX, as has been observed in the cells treated with a translation inhibitor or depleted of a ribosome maturation factor.

  18. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations

    Treesearch

    Jose Luiz Stape; Dan Binkley; Michael G. Ryan

    2008-01-01

    We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...

  19. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem

    Treesearch

    Mark E. Harmon; Ken Bible; Michael G. Ryan; David C. Shaw; H. Chen; Jeffrey Klopatek; Xia Li

    2004-01-01

    Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington. These measurements were used to estimate: Gross (GPP) and Net Primary Production (NPP); autotrophic (Ra) and heterotrophic (Rh) respiration; and Net Ecosystem Production (NEP). Monte...

  20. Primary forest products industry and timber use, Minnesota, 1973.

    Treesearch

    James E. Blyth; Steven Wilhelm; Jerold T. Hahn

    1979-01-01

    Discusses recent Minnesota forest industry trends; timber removals for industrial roundwood in 1973; production and receipts in 1973 of pulpwood, saw logs, and other industrial roundwood products. Shows trends in pulpwood and veneer log production and compares saw log production in 1960 and 1973. Discusses primary wood-using mill residue and its disposition.

  1. Primary forest products industry and timber use, Michigan, 1972.

    Treesearch

    James E. Blyth; Allan H. Boelter; Carl W. Danielson

    1975-01-01

    Discusses recent Michigan forest industry trends; timber removals for industrial roundwood in 1972; production and receipts in 1972 of pulpwood, saw logs, veneer logs ,and other roundwood products. Shows trends in pulpwood and veneer-log production, and compares saw log production in 1969 and 1972. Discusses primary wood-using plant residue and its disposition.

  2. Primary forest products industry and timber use, Wisconsin, 1973.

    Treesearch

    James E. Blyth; Eugene F. Landt; James W. Whipple; Jerold T. Hahn

    1976-01-01

    Discusses recent Wisconsin forest industry trends; timber removals for industrial roundwood in 1973; production and receipts in 1973 of pulpwood, saw logs, veneer logs, and other industrial roundwood products. Shows trends in pulpwood and veneer log production and compares saw log production in 1967 and 1973. Discusses primary wood-using plant residue and its...

  3. Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model.

    PubMed

    Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther

    2009-01-01

    In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.

  4. Modelling Lake Primary Production Based on Satellite Data

    NASA Astrophysics Data System (ADS)

    Soomets, Tuuli; Kutser, Tiit; Danckaert, Thomas

    2015-12-01

    The productivity of the lakes has a marked importance in the estimation of their ecological state and for predicting their development in the future. Combining modelling with Earth Observation data facilitates a new perspective for lake primary production studies. In this study the primary production was modelled for a 3 different large lakes (Geneva, Peipsi and Võrtsjärv) using MERIS images. We used a semi-empirical model that estimates primary production as a function of photosynthetically absorbed radiation and quantum yield of carbon fixation. The necessary input parameters of the model (concentration of chlorophyll a, downwelling irradiance, and the diffuse attenuation coefficient) were obtained from MERIS products. The primary production maps allow us to study temporal and spatial changes in those lakes.

  5. Evaluation of the new MODIS fAPARchl product

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Cheng, Y.; Lyapustin, A.; Wang, Y.; Suyker, A.; Middleton, E.

    2013-12-01

    Accurately simulating the absorbed photosynthetically active radiation (PAR) for vegetation photosynthesis (APARPSN) and gross primary production (GPP) in terrestrial ecosystem models and land surface models is critical because errors in simulated APARPSN and GPP propagate through the models to introduce additional errors in simulated biomass and other fluxes. For the last three decades, fraction of PAR absorbed by a whole canopy (fAPARcanopy) and the normalized difference of vegetation index (NDVI) have been widely used to eatimate APARPSN and GPP. For the last decade, the enhanced vegetation index (EVI), the wide dynamic range vegetation index (WDRVI), the clorophyll index (CI), and the MOD15A2 FPAR have also been extensively utilized in estimating GPP. However, only the PAR absorbed by photosynthetic pigments (mainly chlorophyll, chl), not by the whole canopy, is used for vegetation photosynthesis. The MAIAC produced MODIS surface reflectance data were used in our study to calculate the vegetation indices and fAPARchl. This study explores the empirical relationships between fAPARchl vs. the four VIs (NDVI, EVI, WDRVI, and CI), and investigate how much uncertainty of the estimation of APARPSN and GPP will be reduced by using fAPARchl instead of fAPARcanopy. Our results show that using the site-specific empirical relationships between fAPARchl vs. the VIs can improve estimates of GPP. But the coefficients vary with locations/sites. Compared to MOD15A2 FPAR, the fAPARchl product significantly improves the accuracy and reduce the uncertainty of estimates of GPP

  6. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  7. Intertidal invertebrates locally enhance primary production.

    PubMed

    Pfister, Catherine A

    2007-07-01

    The contribution of autochthonous vs. allochthonous inputs to productivity is an important determinant of ecosystem function across multiple habitats. In coastal marine systems, nutrients are thought to come primarily from the upwelling of deep, nutrient-rich water. Using experimental manipulations of a dominant tide pool animal, the mussel Mytilus californianus, I show that the presence of mussels greatly increases the supply of inorganic nitrogen and phosphorus. Mussels further had a direct effect on productivity: benthic microalgal abundance increased by a factor of 4-8, while the growth of a red alga was four times greater in the presence of mussels. The increase in nitrite and nitrate associated with mussels further suggests nitrifying activity by microbes. These findings have broad implications for coastal marine systems, including that regenerated nutrients may contribute more to productivity than previously recognized and that the presence of animal-generated nutrients sets the stage for numerous positive interactions.

  8. Primary forest products industry and timber use, Iowa, 1980.

    Treesearch

    James E. Blyth; John Tibben; W. Brad Smith

    1984-01-01

    Discusses recent Iowa forest industry trends, timber removals for industrial roundwood in 1980, production and receipts of saw logs in 1980, and production of other industrial roundwood products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  9. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Treesearch

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  10. Primary forest products industry and timber use, Iowa, 1972.

    Treesearch

    James E. Blyth; William A. Farris

    1975-01-01

    Discusses recent Iowa forest industry trends, and production of saw logs, veneer logs, pulpwood, and other roundwood products. Comments on outlook for Iowa forest industry and production and use of roundwood and primary wood-using plant wood and bark residue.

  11. Multi-objective assessment of three remote sensing vegetation products for streamflow prediction in a conceptual ecohydrological model

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Ajami, Hoori; Liu, Yi; Cordery, Ian; Sharma, Ashish

    2016-12-01

    This study assesses the implications of using three alternate remote sensing vegetation products in the simulation of streamflow using a conceptual ecohydrologic model. Vegetation is represented as a dynamic component in this model which simulates two response variables, streamflow and one of the following three vegetation attributes: Gross Primary Productivity (GPP), Leaf Area Index (LAI) or Vegetation Optical Depth (VOD). Model simulations are performed across 50 catchments with areas ranging between 50 and 1600 km2 in the Murray-Darling Basin in Australia. Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and GPP products, passive microwave observations of VOD and streamflow are used for model calibration and/or validation. Single-objective model calibration based on one of the vegetation products (GPP, LAI and VOD) shows that GPP is the best vegetation simulating product. On the contrary, LAI produces the best streamflow during validation when the optimized parameters are applied for streamflow estimation. To obtain the best compromise solution for simultaneous simulation of streamflow and a vegetation product, a multi-objective optimization is applied on GPP and streamflow, VOD and streamflow and LAI and streamflow. Results show that LAI and then VOD are the two best products in simulating streamflow across these catchments. Improved simulation of VOD and LAI in a multi-objective setting is partly related to the higher temporal resolution of these datasets and inclusion of processes for converting GPP to net primary productivity and biomass. It is suggested that further development of these remote sensing products at finer spatial and temporal resolutions may lead to improved streamflow prediction, as well as a better simulation capability of the ecohydrological system being modeled.

  12. Scaling from Flux Towers to Ecosystem Models: Regional Constraints on GPP from Atmospheric Carbonyl Sulfide

    NASA Astrophysics Data System (ADS)

    Abu-Naser, M.; Campbell, J.; Berry, J. A.; Seibt, U.; Maseyk, K. S.; Torn, M. S.; Biraud, S. C.; Fischer, M. L.; Billesbach, D. P.; Baker, I. T.; Collatz, G. J.; Chen, H.; Montzka, S. A.; Sweeney, C.

    2012-12-01

    Process-level information on terrestrial carbon fluxes are typically observed at small spatial scales (e.g. eddy flux towers) but critical applications exist at much larger spatial scales (e.g. global ecosystem models). New methodologies are needed to fill this spatial gap. Recent work suggests that analysis of atmospheric carbonyl sulfide (COS) could fill this gap by providing constraints on GPP fluxes at large scales. This proposal is based on evidence that COS plant uptake is quantitatively related to photosynthesis and that COS plant uptake is the dominant COS budget flux influencing atmospheric concentrations over northern extratropical continents. Previous atmospheric analysis of COS has focused on continental or larger scales and only one ecosystem model. Here we explore the spatial and temporal COS variation within North America and their relationship to a range of ecosystem models using regional and global atmospheric transport models. Airborne COS observations are examined from the NOAA-ESRL network including 13 North American airborne sites and a total of 1,447 vertical profiles from years 2004 to 2012. In addition to COS plant uptake, we examined the influence of atmospheric transport treatments, boundary conditions, soil fluxes (mechanistic and empirical), and anthropogenic emissions. The atmospheric COS simulations were consistent with the primary observed spatial and temporal variations in the US mid-continent. This consistency is supportive of ecosystem models because the dominant input for these atmospheric COS simulations is ecosystem model GPP data. However, only the COS simulations driven by a subset of the ecosystem models were able to reproduce the observed COS seasonality in a semiarid cultivated region (ARM/SGP). This subset of ecosystem models produced GPP seasonality that was similar to eddy flux estimates, suggesting a role for COS observations in extending flux tower data to regional spatial scales.

  13. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    NASA Astrophysics Data System (ADS)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher

  14. Comparisons of MODIS vegetation index products with biophysical and flux tower measurements

    NASA Astrophysics Data System (ADS)

    Sirikul, Natthanich

    Vegetation indices (VI) play an important role in studies of global climate and biogeochemical cycles, and are also positively related to many biophysical parameters and satellite products, such as leaf area index (LAI), gross primary production (GPP), land surface water index (LSWI) and land surface temperature (LST). In this study we found that VI's had strong relationships with some biophysical products, such as gross primary production, yet were less well correlated with biophysical structural parameters, such as leaf area index. The relationships between MODIS VI's and biophysical field measured LAI showed poor correlation at semi-arid land and broadleaf forest land cover type whereas cropland showed stronger correlations than the other vegetation types. In addition, the relationship between the enhanced vegetation index (EVI)-LAI and normalized difference vegetation index (NDVI)-LAI did not show significant differences. Comparisons of the relationships between the EVI and NDVI with tower-measured GPP from 11 flux towers in North America, showed that MODIS EVI had much stronger relationships with tower-GPP than did NDVI, and EVI was better correlated with the seasonal dynamics of GPP than was NDVI. In addition, there were no significant differences among the 1x1, 3x3 and 7x7 pixel sample sizes. The comparisons of VIs from the 3 MODIS products from which VI's are generated (Standard VI (MOD13)), Nadir Adjusted Surface Reflectance (NBAR (MOD43)), and Surface Reflectance (MOD09)), showed that MODIS NBAR-EVI (MOD43) was best correlated with GPP compared with the other VI products. In addition, the MODIS VI - tower GPP relationships were significantly improved using NBAR-EVI over the more complex canopy structures, such as the broadleaf and needleleaf forests. The relationship of tower-GPP with other MODIS products would be useful in more thorough characterization of some land cover types in which the VI's have encountered problems. The land surface temperature

  15. Assessment of regional-scale primary production in terrestrial ecosystems to estimate the possible influence of future climate change on biodiversity

    NASA Astrophysics Data System (ADS)

    Noda, Hibiki; Nishina, Kazuya; Ito, Akihiko

    2015-04-01

    biodiversity. Photosynthetic carbon fixation, namely gross primary production (GPP), is a fundamental process of ecosystems and known to be highly sensitive to meteorological changes including radiation, temperature, precipitation and CO2 concentration. Thus analysis of the effect of future climate change on ecosystem GPP in a biogeographical region, which is important from the viewpoint of the biodiversity conservation, such as "biodiversity hotspot" and "Global 200 Ecoregion", might enable us to discuss the relevance between climate change and biodiversity. In ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) phase 1, we have estimated GPP by seven global biome models under future climate based on four RCPs (Representative Concentration Pathways for 2.6, 4.5, 6.0, and 8.5 W/m2 stabilization targets) and five global climate models. In present study, we analyzed these outputs to reveal the effect of future climate change on the ecosystem GPP in several biodiversity hotspots and will discuss the relevance between the climate change and biodiversity.

  16. Do Offshore Wind Farms Influence Marine Primary Production?

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  17. MODIS-derived terrestrial primary production [chapter 28

    Treesearch

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  18. Primary forest products industry and timber use, Missouri, 1980.

    Treesearch

    James E. Blyth; Shelby Jones; W. Brad Smith

    1983-01-01

    Discusses recent Missouri forest industry trends; timber removals for industrial roundwood in 1980; and production and receipts of saw logs, pulpwood, cooperage logs, charcoal wood, and other industrial roundwood products. Reports on associated primary mill wood and bark residue and the disposition of mill residue.

  19. Primary forest products industry and timber use, Indiana, 1980.

    Treesearch

    James E. Blyth; Donald H. McGuire; W. Brad Smith

    1982-01-01

    Discusses recent Indiana forest industry trends; timber removals for industrial roundwood in 1980; and production and receipts of saw logs, pulpwood, veneer logs, and other industrial roundwood products. Reports on associated primary mill wood and bark residue and the disposition of mill residue.

  20. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  1. Primary production of the cryptoendolithic microbiota from the Antarctic Desert.

    PubMed

    Vestal, J R

    1988-01-01

    Primary production in the Antarctic cryptoendolithic microbiota can be determined from biomass and photosynthetic 14CO2 incorporation measurements. Even though good nanoclimate data are available, it is difficult to determine the amount of time when abiotic conditions permit metabolism. Making appropriate assumptions concerning the metabolism of the cryptoendolithic microbiota during periods of warmth, light and moisture, the primary production of the biota was calculated to be on the order of 0.108 to 4.41 mgC/m2/yr, with a carbon turnover time from 576 to 23,520 years. These production values are the lowest found on planet Earth.

  2. Primary production of the cryptoendolithic microbiota from the Antarctic Desert

    NASA Technical Reports Server (NTRS)

    Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Primary production in the Antarctic cryptoendolithic microbiota can be determined from biomass and photosynthetic 14CO2 incorporation measurements. Even though good nanoclimate data are available, it is difficult to determine the amount of time when abiotic conditions permit metabolism. Making appropriate assumptions concerning the metabolism of the cryptoendolithic microbiota during periods of warmth, light and moisture, the primary production of the biota was calculated to be on the order of 0.108 to 4.41 mgC/m2/yr, with a carbon turnover time from 576 to 23,520 years. These production values are the lowest found on planet Earth.

  3. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  4. Primary production of the cryptoendolithic microbiota from the Antarctic Desert

    NASA Technical Reports Server (NTRS)

    Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Primary production in the Antarctic cryptoendolithic microbiota can be determined from biomass and photosynthetic 14CO2 incorporation measurements. Even though good nanoclimate data are available, it is difficult to determine the amount of time when abiotic conditions permit metabolism. Making appropriate assumptions concerning the metabolism of the cryptoendolithic microbiota during periods of warmth, light and moisture, the primary production of the biota was calculated to be on the order of 0.108 to 4.41 mgC/m2/yr, with a carbon turnover time from 576 to 23,520 years. These production values are the lowest found on planet Earth.

  5. Cytosolic ppGpp accumulation induces retarded plant growth and development.

    PubMed

    Ihara, Yuta; Masuda, Shinji

    2016-01-01

    In bacteria a second messenger, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), synthesized upon nutrient starvation, controls many gene expressions and enzyme activities, which is necessary for growth under changeable environments. Recent studies have shown that ppGpp synthase and hydrolase are also conserved in eukaryotes, although their functions are not well understood. We recently showed that ppGpp-overaccumulation in Arabidopsis chloroplasts results in robust growth under nutrient-limited conditions, demonstrating that the bacterial-like stringent response at least functions in plastids. To test if ppGpp also functions in the cytosol, we constructed the transgenic Arabidopsis expressing Bacillus subtilis ppGpp synthase gene yjbM. Upon induction of the gene, the mutant synthesizes ∼10-20-fold higher levels of ppGpp, and its fresh weight was reduced to ˜80% that of the wild type. These results indicate that cytosolic ppGpp negatively regulates plant growth and development.

  6. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  7. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  8. Nuclide production by primary cosmic-ray protons

    SciTech Connect

    Reedy, R.C.

    1986-01-01

    The production rates of cosmogenic nuclides in the solar system and in interstellar space were calculated for the primary protons in the galactic and solar cosmic rays. At 1 AU, the long-term average fluxes of solar protons usually produce many more atoms of a cosmogenic nuclide than the primary protons in the galactic cosmic rays (GCR), the exceptions being nuclides made only by high-energy reactions (like /sup 10/Be). Because the particle fluxes inside meteorites and other large objects in space include many secondary neutrons, the production rates are much higher and ratios inside large objects are often very different from those by just the primary GCR protons in small objects. The production rates of cosmogenic nuclides are calculated to vary by about factors of 2.5 during at typical 11-year solar cycle, in agreement with measurements of short-lived radionuclides in recently fallen meteorites. The production of cosmogenic nuclides by the GCR particles outside the heliosphere is higher than that by the modulated GCR primaries normally in the solar system. However, there is considerable uncertainty in the fluxes of interstellar protons and, therefore, in the production rates of cosmogenic nuclides in interstellar space. Production rates and ratios for cosmogenic nuclides would be able to identify particles that were small in space or that were exposed to an unmodulated spectrum of GCR particles. 25 refs., 2 figs., 2 tabs.

  9. Phytoplankton Species Richness Increases Marine Primary Productivity through Selection Effect

    NASA Astrophysics Data System (ADS)

    Cermeno, P.

    2016-02-01

    Despite half of global primary production being mediated by the activity of microscopic algae called phytoplankton, the effect of phytoplankton species richness on marine primary productivity lacks a mechanistic understanding. We show that phytoplankton species richness increases the productivity of marine ecosystems through selection effect. Using concurrent measurements of phytoplankton community structure, nitrate fluxes into the euphotic zone and productivity (measured with the 14C-uptake technique) from a temperate coastal ecosystem, we failed to predict observed productivities from monoculture growth models based on extracellular nitrate concentrations, nitrate stores uniquely assigned to rare species or random physiological parameterizations. Observed productivities were best described by a model in which the dominant species of the community approached their maximum productivities at the expense of intracellular nitrate stores. We interpret these results as evidence of species' selection in communities containing a vast repertory. This differs from the positive effect of species richness in terrestrial plants, which is mainly driven by complementarity in resource use among species. The prevalence of selection effect was supported by open ocean data that show an increase in community dominance across a gradient of nutrient availability. These results highlight fundamental differences in the way terrestrial plant communities and marine phytoplankton control resource use and sustain world food stocks. We suggest that the maintenance of phytoplankton species richness is essential to sustain marine primary productivity.

  10. Clinical productivity of primary care nurse practitioners in ambulatory settings.

    PubMed

    Xue, Ying; Tuttle, Jane

    Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. NEE and GPP dynamic evolution at two biomes in the upper Spanish plateau

    NASA Astrophysics Data System (ADS)

    Sánchez, María Luisa; Pardo, Nuria; Pérez, Isidro Alberto; García, Maria de los Angeles

    2014-05-01

    In order to assess the ability of dominant biomes to act as a CO2 sink, two eddy correlation stations close to each other in central Spain have been concurrently operational since March 2008 until the present. The land use of the first station, AC, is a rapeseed rotating crop consisting of annual rotation of non-irrigated rapeseed, barley, peas, rye, and sunflower, respectively. The land use of the second, CIBA, is a mixture of open shrubs/crops, with open shrubs being markedly dominant. The period of measurements covered variable general meteorological conditions. 2009 and 2012 were dominated by drought, whereas 2010 was the rainiest year. Annual rainfall during 2008 and 2009 was close to the historical averaged annual means. This paper presents the dynamic evolution of NEE-8d and GPP-8d observed at the AC station over five years and compares the results with those concurrently observed at the CIBA station. GGP 8-d estimates at both stations were determined using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MODIS, PAR in situ measurements, and a scalar f, varying between 0 and 1, to take account of the reduction in maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. f values were assumed to be dependent on air temperature and evaporative fraction, EF, which was considered a proxy of soil moisture. ɛ0, a key parameter, which depends on land use types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites observed and the LUE concurrent 8-d model estimates. Over the five-year study period, both biomes behaved as CO2 sinks. However, the ratio of the NEE-8d total accumulated at AC and CIBA, respectively, was close to a factor two, revealing the effectiveness of the studied crops as CO2 sinks. On an annual basis, accumulated NEE-8d exhibited major variability in both biomes. At CIBA, the results were largely dominated by the

  12. Carbon Use Efficiency, and Net Primary Productivity of Terrestrial Vegetation

    NASA Astrophysics Data System (ADS)

    Choudhury, Bhaskar J.

    The carbon use efficiency (CUE), defined as the ratio of net carbon gain to gross carbon assimilation during a period, is a highly significant determinant of primary production of terrestrial plant communities. Available data for CUE is summarized. Then, a model for gross assimilation has been run using satellite and ancillary data to calculate annual net carbon gain or net primary productivity for the global land surface during four year period (1987-1990). The results are compared with other estimates. Interannual variability of 30-50% is found in some of the latitude bands

  13. Primary production control of methane emission from wetlands

    NASA Technical Reports Server (NTRS)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  14. Primary production control of methane emission from wetlands

    NASA Technical Reports Server (NTRS)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  15. Anthropogenic climate change has altered primary productivity in Lake Superior.

    PubMed

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  16. Anthropogenic climate change has altered primary productivity in Lake Superior

    NASA Astrophysics Data System (ADS)

    O'Beirne, M. D.; Werne, J. P.; Hecky, R. E.; Johnson, T. C.; Katsev, S.; Reavie, E. D.

    2017-06-01

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  17. Evaluation of primary production in Lake Erie by multiple proxies.

    PubMed

    Ostrom, Nathaniel E; Carrick, Hunter J; Twiss, Michael R; Piwinski, Leah

    2005-06-01

    Direct measurements of rates of primary production in Lake Erie are few and uncertainties surround rate measurements based on radiocarbon and the light-dark bottle incubation methods. For these reasons, we conducted a series of simultaneous primary productivity measurements in Lake Erie in July and August of 2003, based on incubation with [14C]-NaHCO3, the light-dark bottle method, and incubation with (18)O enriched water. Significant differences in the rates of primary production obtained by incubations with [(18)O]-H2O (0.19-34.60 mmol-O2 m(-3) h(-1)), [14C]-NaHCO3 (0.03-90.50 mmol-C m(-3) h(-1)), and light-dark bottles (0.06-60.78 mmol-O2 m(-3) h(-1)) were evident in six out of nine comparisons. Within the epilimnion, [(18)O]-H2O rates of primary production were significantly different from rates based on [14C]-NaHCO3 and light-dark bottles in all four comparisons and lower rates were obtained in three out of four comparisons. Eutrophic conditions in Sandusky Bay, Lake Erie were evident from the high primary production rates of 20.50-34.60 mmol-O2 m(-3) h(-1) ([(18)O]-H2O), 34.39-90.50 mmol-C m(-3) h(-1) ([14C]-NaHCO3), and 46.66-60.78 mmol-O2 m(-3) h(-1) (light-dark bottle). The photosynthetic quotient (PQ), or ratio of O2 production to CO2 consumption during photosynthesis, averaged 0.64+/-0.33 and 1.93+/-1.93, respectively, based on a comparison of [(18)O]-H2O to [14C]-NaHCO3 rates or light-dark bottle to [14C]-NaHCO3 production rates, respectively, demonstrating that photosynthesis in Lake Erie communities primarily follows expected stochiometric trends. The average of the ratio of production rates based on incubation with [(18)O]-H2O relative to those obtained by the light-dark incubation method was 0.66+/-0.33, indicating a tendency for the [(18)O]-H2O method to provide slightly lower estimates of production in Lake Erie. Lower estimates of primary production based on [(18)O]-H2O incubation relative to the other two approaches is most likely a consequence

  18. Magnesium for automotive applications: Primary production cost assessment

    NASA Astrophysics Data System (ADS)

    Das, Sujit

    2003-11-01

    Production technologies must be cost effective for primary magnesium to become an economically viable alternative material for wide spread automotive applications. In this article, the prices at which magnesium becomes competitive with aluminum and steel are examined, including magnesium production cost estimates for current and future scenarios using electrolytic and thermal processes. The economic viability of the industry for automotive applications is also examined in the context of magnesium market price, taking into consideration the dynamics of its supply and demand as well.

  19. A mechanistic description of the global COS cycle consistent with atmospheric measurements and its potential to evaluate gross primary production of vegetation models

    NASA Astrophysics Data System (ADS)

    Launois, Thomas; Peylin, Philippe; Belviso, Sauveur; Bopp, Laurent; Ogée, Jérôme; Wingate, Lisa; Cuntz, Matthias

    2016-04-01

    Accurate estimates of the gross carbon fluxes - photosynthesis and respiration - are essential to predict the ecosystem carbon fluxes and stocks and their evolution in a changing climate. The gross primary productivity (GPP) in the current dynamic global vegetation models (DGVMs), however, shows large differences in terms of mean values, phase and amplitude. As large scale measurements of the GPP are not possible, their estimates are usually based on indirect tracers. Carbonyl sulfide (COS) has been proposed as a tracer of GPP since COS and CO2 are dominantly taken up by plants via the same enzyme during photosynthesis. Thus leaf uptakes of COS and CO2 are often found to be proportional, with a coefficient of proportionality (LRU) that is species-dependant according to laboratory measurements. However contrarily to CO2, atmospheric records of COS over the last decades show a strong seasonal cycle but with no significant trend, which implies roughly equilibrated sources and sinks of COS at the global scale. Most recent estimates of COS uptake by plants using this LRU concept led to larger sinks over land than initially estimated. In order to maintain a closed atmospheric budget, a compensatory COS source had to be found, with the ocean being suggested as the most likely candidate. In this work, we propose a new mechanistically-based parameterization of the major sources and sinks of COS, allowing to close the global atmospheric budget. For the ocean, we used the ocean general circulation and biogeochemistry model NEMO-PISCES to assess the marine source of COS. Using the simulated organic compounds at the surface, we derived a direct source of COS through the COS photo-production as well as an indirect source through the emissions of sulfur compounds (DMS). The resulting simulated global fluxes correspond to a net source of COS of around 800 GgS yr-1, spatially and temporally consistent with the suggested missing source. For the land, we considered most anoxic soils

  20. Decadal Changes in Global Ocean Annual Primary Production

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  1. Primary wood-product industries of southern New England - 1971

    Treesearch

    James T. Bones

    1973-01-01

    The results of a complete canvass of the primary wood manufacturers in southern New England. The report contains data about wood production and receipts for the states of the region. Comparisons are made with a similar 1952 survey and trends in industrial wood output are noted.

  2. Use of a BOD oxygen probe for estimating primary productivity

    Treesearch

    Raymond L. Czaplewski; Michael Parker

    1973-01-01

    The accuracy of a BOD oxygen probe for field measurements of primary production by the light and dark bottle oxygen technique is analyzed. A figure is presented with which to estimate the number of replicate bottles needed to obtain a given accuracy in estimating photosynthetic rates.

  3. Deep-sea primary production at the Galapagos hydrothermal vents

    SciTech Connect

    Karl, D.M.; Wirsen, C.O.; Jannasch, H.W.

    1980-03-21

    Dense animal populations surrounding recently discovered hydrothermal vents at the Galapagos Rift sea-floor spreading center, 2550 meters deep, are probably sustained by microbial primary production. Energy in the form of geothermically reduced sulfur compounds emitted from the vents is liberated during oxidation and used for the reduction of carbon dioxide to organic matter by chemosynthetic bacteria.

  4. Forecasting annual aboveground net primary production in the intermountain west

    USDA-ARS?s Scientific Manuscript database

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  5. Estimating aboveground net primary productivity in forest-dominated ecosystems

    Treesearch

    Brian D. Kloeppel; Mark E. Harmon; Timothy J. Fahey

    2007-01-01

    The measurement of net primary productivity (NPP) in forest ecosystems presents a variety of challenges because of the large and complex dimensions of trees and the difficulties of quantifying several components of NPP. As summarized by Clark et al. (2001a), these methodological challenges can be overcome, and more reliable spatial and temporal comparisons can be...

  6. Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency

    NASA Astrophysics Data System (ADS)

    Madani, Nima; Kimball, John S.; Affleck, David L. R.; Kattge, Jens; Graham, Jon; van Bodegom, Peter M.; Reich, Peter B.; Running, Steven W.

    2014-09-01

    A common assumption of remote sensing-based light use efficiency (LUE) models for estimating vegetation gross primary productivity (GPP) is that plants in a biome matrix operate at their photosynthetic capacity under optimal climatic conditions. A prescribed constant biome maximum light use efficiency parameter (LUEmax) defines the maximum photosynthetic carbon conversion rate under these conditions and is a large source of model uncertainty. Here we used tower eddy covariance measurement-based carbon (CO2) fluxes for spatial estimation of optimal LUE (LUEopt) across North America. LUEopt was estimated at 62 Flux Network sites using tower daily carbon fluxes and meteorology, and satellite observed fractional photosynthetically active radiation from the Moderate Resolution Imaging Spectroradiometer. A geostatistical model was fitted to 45 flux tower-derived LUEopt data points using independent geospatial environmental variables, including global plant traits, soil moisture, terrain aspect, land cover type, and percent tree cover, and validated at 17 independent tower sites. Estimated LUEopt shows large spatial variability within and among different land cover classes indicated from the sparse tower network. Leaf nitrogen content and soil moisture regime are major factors explaining LUEopt patterns. GPP derived from estimated LUEopt shows significant correlation improvement against tower GPP records (R2 = 76.9%; mean root-mean-square error (RMSE) = 257 g C m-2 yr-1), relative to alternative GPP estimates derived using biome-specific LUEmax constants (R2 = 34.0%; RMSE = 439 g C m-2 yr-1). GPP determined from the LUEopt map also explains a 49.4% greater proportion of tower GPP variability at the independent validation sites and shows promise for improving understanding of LUE patterns and environmental controls and enhancing regional GPP monitoring from satellite remote sensing.

  7. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux.

    PubMed

    Vargas, Rodrigo; Baldocchi, Dennis D; Allen, Michael F; Bahn, Michael; Black, T Andrew; Collins, Scott L; Yuste, Jorge Curiel; Hirano, Takashi; Jassal, Rachhpal S; Pumpanen, Jukka; Tang, Jianwu

    2010-09-01

    We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (theta), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, theta, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, theta, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, theta, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.

  8. Carbon dioxide supersaturation promotes primary production in lakes.

    PubMed

    Jansson, Mats; Karlsson, Jan; Jonsson, Anders

    2012-06-01

    A majority of the world's lakes are supersaturated with respect to carbon dioxide (CO(2) ). By experimental manipulation of the CO(2) concentration in supersaturated boreal lakes, we demonstrate that phytoplankton primary production was up to 10 times higher in supersaturated lake water in comparison with water with CO(2) at equilibrium concentrations and that CO(2) , together with nutrients, explained most of the variation in pelagic primary production and phytoplankton biomass over a wide variety of unproductive lakes. These results suggest that phytoplankton can be co-limited by CO(2) and nutrients in unproductive lakes. As import of terrestrial organic carbon and its subsequent microbial mineralisation in lakes is a driving force of CO(2) -supersaturation our results suggest that lake productivity and carbon cycling may respond to variations in terrestrial organic carbon export, (e.g. caused by land use or climate change) in ways not described before.

  9. ppGpp couples transcription to DNA repair in E. coli.

    PubMed

    Kamarthapu, Venu; Epshtein, Vitaly; Benjamin, Bradley; Proshkin, Sergey; Mironov, Alexander; Cashel, Michael; Nudler, Evgeny

    2016-05-20

    The small molecule alarmone (p)ppGpp mediates bacterial adaptation to nutrient deprivation by altering the initiation properties of RNA polymerase (RNAP). ppGpp is generated in Escherichia coli by two related enzymes, RelA and SpoT. We show that ppGpp is robustly, but transiently, induced in response to DNA damage and is required for efficient nucleotide excision DNA repair (NER). This explains why relA-spoT-deficient cells are sensitive to diverse genotoxic agents and ultraviolet radiation, whereas ppGpp induction renders them more resistant to such challenges. The mechanism of DNA protection by ppGpp involves promotion of UvrD-mediated RNAP backtracking. By rendering RNAP backtracking-prone, ppGpp couples transcription to DNA repair and prompts transitions between repair and recovery states.

  10. Recent functional insights into the role of (p)ppGpp in bacterial physiology

    PubMed Central

    Hauryliuk, Vasili; Atkinson, Gemma C.; Murakami, Katsuhiko S.; Tenson, Tanel; Gerdes, Kenn

    2015-01-01

    The alarmone (p)ppGpp is involved in regulating growth and several different stress responses in bacteria. In recent years, substantial progress has been made in our understanding of the molecular mechanisms of (p)ppGpp metabolism and (p)ppGpp-mediated regulation. In this Review, we summarize these recent insights, with a focus on the molecular mechanisms governing the activity of the RelA/SpoT Homologue (RSH) proteins, which are key players that regulate the cellular leves of (p)ppGpp, the structural basis of transcriptional regulation by (p)ppGpp and the role of (p)ppGpp in GTP metabolism and in the emergence of bacterial persisters. PMID:25853779

  11. Mercury emission to atmosphere from primary Zn production in China.

    PubMed

    Li, Guanghui; Feng, Xinbin; Li, Zhonggen; Qiu, Guangle; Shang, Lihai; Liang, Peng; Wang, Dingyong; Yang, Yongkui

    2010-09-15

    Emissions of mercury (Hg) to air have regional and global impacts through long range transport in the atmosphere. Primary Zn production is regarded as an important anthropogenic Hg source in China, but research on its Hg emission is limited. To gain a better understanding of Hg emissions from Zn production activities in China, field investigations at four industrial-scale Zn production plants using electrostatic process with Hg removal (HP-WR), electrostatic process without Hg removal (HP-WOR), retort Zn production (RZ), imperial smelting process (ISP), and one artisanal Zn smelting process (AZ) were carried out. In the investigation, Hg emission factors are defined as how much Hg was emitted to the atmosphere per ton Zn produced during various Zn production methods and were estimated by using mass balance method. The results showed that the estimated Hg emission factors of Zn production were 5.7+/-4.0 g Hg t(-1) Zn for HP-WR, 31+/-22 g Hg t(-1) Zn for HP-WOR, 34+/-71 g Hg t(-1) Zn for RZ, 122+/-122 g Hg t(-1) Zn g t(-1) for ISP, and 75+/-115 g Hg t(-1) Zn for AZ. Approximately 80.7-104.2 t year(-1) of Hg was emitted to atmosphere from primary Zn production during the period of 2002-2006 in China. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in

  13. Association of Metal Homeostasis and (p)ppGpp Regulation in the Pathophysiology of Enterococcus faecalis.

    PubMed

    Colomer-Winter, C; Gaca, A O; Lemos, J A

    2017-07-01

    In Enterococcus faecalis, the regulatory nucleotides pppGpp and ppGpp, collectively, (p)ppGpp, are required for growth in blood, survival within macrophages, and virulence. However, a clear understanding of how (p)ppGpp promotes virulence in E. faecalis and other bacterial pathogens is still lacking. In the host, the essential transition metals iron (Fe) and manganese (Mn) are not readily available to invading pathogens because of a host-driven process called nutritional immunity. Considering its central role in adaptation to nutritional stresses, we hypothesized that (p)ppGpp mediates E. faecalis virulence through regulation of metal homeostasis. Indeed, supplementation of serum with either Fe or Mn restored growth and survival of the Δrel ΔrelQ [(p)ppGpp(0)] strain to wild-type levels. Using a chemically defined medium, we found that (p)ppGpp accumulates in response to either Fe depletion or Mn depletion and that the (p)ppGpp(0) strain has a strong growth requirement for Mn that is alleviated by Fe supplementation. Although inactivation of the nutrient-sensing regulator codY restored some phenotypes of the (p)ppGpp(0) strain, transcriptional analysis showed that the (p)ppGpp/CodY network does not promote transcription of known metal transporters. Interestingly, physiologic and enzymatic investigations suggest that the (p)ppGpp(0) strain requires higher levels of Mn in order to cope with high levels of endogenously produced reactive oxygen species (ROS). Because (p)ppGpp mediates antibiotic persistence and virulence in several bacteria, our findings have broad implications and provide new leads for the development of novel therapeutic and preventive strategies against E. faecalis and beyond. Copyright © 2017 American Society for Microbiology.

  14. Assessment of the magnesium primary production technology. Final report

    SciTech Connect

    Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

    1981-02-01

    At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

  15. A symbol-by-symbol decoding algorithm of 3GPP MBMS Raptor

    NASA Astrophysics Data System (ADS)

    Shi, Dongxin; Sun, Xiangran; Yang, Zhanxin; Niu, Lipi

    2013-03-01

    This paper presents a symbol-by-symbol decoding algorithm of 3GPP MBMS Raptor. We redefine the initial matrix of 3GPP MBMS Raptor, and add some ancillary information to help make up for destruction of linear relationship in matrix caused by advanced Gauss elimination in 3GPP MBMS Raptor. So we can realize a correct decoding by symbolby- symbol, while 3GPP can not. The proposed algorithm is adapted to an erasure channel with large symbols, low code rate, big time delay or high error probability , and it can greatly improve decoding efficiency.

  16. Primary production in the Delta: Then and now

    USGS Publications Warehouse

    Cloern, James E.; Robinson, April; Richey, Amy; Grenier, Letitia; Grossinger, Robin; Boyer, Katharyn E.; Burau, Jon; Canuel, Elizabeth A.; DeGeorge, John F.; Drexler, Judith Z.; Enright, Chris; Howe, Emily R.; Kneib, Ronald; Mueller-Solger, Anke; Naiman, Robert J.; Pinckney, James L.; Safran, Samuel M.; Schoellhamer, David H.; Simenstad, Charles A.

    2016-01-01

    To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  17. Seasonal regulation of primary production in eastern boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Messié, Monique; Chavez, Francisco P.

    2015-05-01

    The regulation of seasonal satellite-derived primary production (PP) was investigated within a 150 km coastal box in four eastern boundary upwelling systems (EBUS): California, Peru, Northwest Africa and Benguela. The following regulating factors were considered: (1) wind-driven nitrate supply; (2) iron supply inferred from proxies (shelf mud belt width, modeled atmospheric iron deposition, river discharge); (3) temperature; (4) light and (5) physical export consisting of offshore export, eddy-driven and wind-driven subduction. The ratio of potential new production (carbon-equivalent of nitrate supply) to primary production, termed the N-ratio, is shown to be an indicator of PP limitation by nitrate supply (low N-ratios) vs. inhibition by other factors (high N-ratios). The factors regulating PP were assessed by analyzing the N-ratios and computing spatial correlations between PP and each factor each month. The regulation of primary production was found to vary spatially, seasonally and from one EBUS to another. Macronutrient supply is shown to be the dominant regulating factor off Northwest Africa and during some seasons and locations in other systems. Light regulation within the mixed layer occurs in all EBUS in winter but may only inhibit PP (high N-ratios) off Peru and Benguela. Evidence for iron limitation was found in each EBUS (except Northwest Africa) at varying levels and was greatest off Peru during austral winter when iron demand by phytoplankton increases due to low light levels. Rapid offshore advection combined with wind-driven and/or eddy-driven subduction may inhibit PP off California. A simple generalization regarding the regulation of primary production in EBUS is not forthcoming.

  18. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface

  19. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface

  20. Primary production in the eastern tropical Pacific: A review

    NASA Astrophysics Data System (ADS)

    Pennington, J. Timothy; Mahoney, Kevin L.; Kuwahara, Victor S.; Kolber, Dorota D.; Calienes, Ruth; Chavez, Francisco P.

    2006-05-01

    The eastern tropical Pacific includes 28 million km 2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each. Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific. Seasonal

  1. Satellites for the study of ocean primary productivity

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Baker, K. S.

    1983-01-01

    The use of remote sensing techniques for obtaining estimates of global marine primary productivity is examined. It is shown that remote sensing and multiplatform (ship, aircraft, and satellite) sampling strategies can be used to significantly lower the variance in estimates of phytoplankton abundance and of population growth rates from the values obtained using the C-14 method. It is noted that multiplatform sampling strategies are essential to assess the mean and variance of phytoplankton biomass on a regional or on a global basis. The relative errors associated with shipboard and satellite estimates of phytoplankton biomass and primary productivity, as well as the increased statistical accuracy possible from the utilization of contemporaneous data from both sampling platforms, are examined. It is shown to be possible to follow changes in biomass and the distribution patterns of biomass as a function of time with the use of satellite imagery.

  2. The remote sensing of oceanic primary productivity - A review

    NASA Technical Reports Server (NTRS)

    Collins, Donald J.

    1989-01-01

    The ocean is a major sink for atmospheric carbon dioxide. This paper assesses the correctness of the present estimates of the marine primary productivity, obtained by remote sensing techniques, by modeling the physiological mechanisms of carbon assimilation by phytoplankton. The model uses, as the input, measurements of the ocean-surface pigments and data on the incident solar irradiance, and incorporates a description of the photosynthetically available and usable irradiance in the ocean, to describe the light field required for photosynthesis. A comparison of measured and estimated values of the water-column integrated primary marine productivity over large ocean regions yielded favorable results. These estimates do not appear to depend on regional or seasonal factors.

  3. Regulation of primary productivity rate in the equatorial Pacific

    SciTech Connect

    Barber, R.T. ); Chavez, F.P. )

    1991-12-01

    Analysis of the Chl-specific rate of primary productivity (P{sup B}) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific In the western Pacific where there is a gradient in 60-m (NO{sub 3}) from 0 to {approximately}12 {mu}M, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 {mu}M, the productivity rate is independent of nutrient concentration and limited to {approximately}36 mg C(mg Chl){sup {minus}1} d{sup {minus}1}, or a mean euphotic zone C-specific growth rate ({mu}) of 0.47 d{sup {minus}1}. However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl){sup {minus}1} d{sup {minus}1} and {mu} = 0.57 d{sup {minus}1}, very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region.

  4. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2000-01-01

    The amount of metabolic energy available for primary production by chemolithoautotrophic microorganisms in a submarine hydrothermal plume is evaluated using geochemical models. Oxidation of elemental sulfur and metal sulfides precipitated in the hydrothermal plume represent the largest potential sources of metabolic energy in the plume (˜600 cal/kg vent fluid from each source). Among dissolved substrates, oxidation of H 2 potentially provides the greatest amount of energy (˜160 cal/kg). Smaller, but still significant, amounts of energy are also available from sulfate reduction (54 cal/kg), methanogenesis (17 cal/kg), and methanotrophy (13 cal/kg). Only negligible amounts of energy are available from oxidation of Fe(II) or Mn(II) compounds or Fe 3+ reduction (<1 cal/kg vent fluid). The models suggest that most primary production in the plume should occur in the early stages of plume development from sulfur- and H 2-oxidizers entrained in the plume or colonizing the surfaces of minerals settling from the plume. The total primary productivity potential in the plume is estimated to be about 50 mg dry wt biomass/kg vent fluid. This translates to a global annual biomass production in hydrothermal plumes on the order of 10 12 g dry wt/yr, which represents only a small fraction of the total photosynthetic biomass production in the oceans (˜10 17 g dry wt/yr). Nevertheless, biomass generated in hydrothermal plumes may represent a significant fraction of the organic matter in the deep ocean as well as that deposited in sediments in ocean basins.

  5. Patterns of primary production in the Red Sea

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammad Ali; Wafar, Mohideen; Jyothibabu, R.; Manikandan, K. P.

    2017-05-01

    This paper presents data on various parameters of primary production (chlorophyll concentration, carbon uptake, nitrogen uptake, phytoplankton groups) measured in 4 cruises in the Saudi Arabian waters of the Red Sea between 2012 and 2015. The results showed that while there was a tendency for an increase from north to south, the meridional distributions were distinguished by alternating high and low concentrations of chlorophyll, carbon uptake rates and cell densities of various phytoplankton groups, with the higher levels being associated with zonal currents and the lower values lying in between. These patterns of distributions lead us to conclude that the biological production in the Red Sea is influenced more by anticyclonic eddy, and less by meridional, circulations at any time of the year. Synthesizing the present results with earlier ones on the patterns of distributions of nutrients and the flow of Gulf of Aden Intermediate Water (GAIW), we also conclude that entrainment of GAIW in successive eddies is the cause for higher nutrients and biological production in the regions of eddy boundary currents. Data on size-fractionated carbon uptake and nitrogen uptake showed that the eddies in Red Sea favour the proliferation of producers across a range of size classes rather than one class. The amount of nutrients injected into the euphotic zone in the eddy boundary currents is probably not high enough to induce a definite shift in phytoplankton size classes, and the primary production still remains to a significant extent regenerated nutrient-driven.

  6. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  7. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary zinc production facilities? 63.11164 Se