Sample records for primary productivity

  1. Global Patterns in Human Consumption of Net Primary Production

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  2. 40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You must... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  4. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  5. 24 CFR 3282.362 - Production Inspection Primary Inspection Agencies (IPIAs).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in production which fails to conform to the design or where the design is not specific, to the... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Production Inspection Primary... REGULATIONS Primary Inspection Agencies § 3282.362 Production Inspection Primary Inspection Agencies (IPIAs...

  6. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  7. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake.

    PubMed

    Matsuzaki, Shin-Ichiro S; Suzuki, Kenta; Kadoya, Taku; Nakagawa, Megumi; Takamura, Noriko

    2018-06-09

    Nutrient supply is a key bottom-up control of phytoplankton primary production in lake ecosystems. Top-down control via grazing pressure by zooplankton also constrains primary production, and primary production may simultaneously affect zooplankton. Few studies have addressed these bidirectional interactions. We used convergent cross-mapping (CCM), a numerical test of causal associations, to quantify the presence and direction of the causal relationships among environmental variables (light availability, surface water temperature, NO 3 -N, and PO 4 -P), phytoplankton community composition, primary production, and the abundances of five functional zooplankton groups (large-cladocerans, small-cladocerans, rotifers, calanoids, and cyclopoids) in Lake Kasumigaura, a shallow, hypereutrophic lake in Japan. CCM suggested that primary production was causally influenced by NO 3 -N and phytoplankton community composition; there was no detectable evidence of a causal effect of zooplankton on primary production. Our results also suggest that rotifers and cyclopoids were forced by primary production, and cyclopoids were further influenced by rotifers. However, our CCM suggested that primary production was weakly influenced by rotifers (i.e., bidirectional interaction). These findings may suggest complex linkages between nutrients, primary production, and rotifers and cyclopoids, a pattern that has not been previously detected or has been neglected. We used linear regression analysis to examine the relationships between the zooplankton community and pond smelt (Hypomesus nipponensis), the most abundant planktivore and the most important commercial fish species in Lake Kasumigaura. The relative abundance of pond smelt was significantly and positively correlated with the abundances of rotifers and cyclopoids, which were causally influenced by primary production. This finding suggests that bottom-up linkages between nutrient, primary production, and zooplankton abundance might be a key mechanism supporting high planktivore abundance in eutrophic lakes. Because increases in primary production and cyanobacteria blooms are likely to occur simultaneously in hypereutrophic lakes, our study highlights the need for ecosystem management to resolve the conflict between good water quality and high fishery production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  9. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on group-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  10. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...

  11. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...

  12. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...

  13. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...

  14. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...

  15. Model of a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Atkinson, Marlin J.; Grigg, Richard W.

    1984-08-01

    The ECOPATH model for French Frigate Shoals estimates the benthic plant production (net primary production in kg wet weight) required to support the atoll food chain. In this section we estimate the benthic net primary production and net community production of the atoll based on metabolism studies of reef flat, knolls, and lagoon communities at French Frigate Shoals Hawaii. Community metabolism was measured during winter and summer. The reef communities at French Frigate Shoals exhibited patterns and rates of organic carbon production and calcification similar to other reefs in the world. The estimate of net primary production is 6.1·106 kg wet weight km-2 year-1±50%, a value remarkably close to the estimate by the ECOPATH model of 4.3·106 kg wet weight km-2 year-1. Our estimate of net community production or the amount of carbon not consumed by the benthos was high; approximately 15% of the net primary production. Model results indicate that about 5% of net primary production is passed up the food chain to mobile predators. This suggests about 10% of net primary production (˜6% of gross primary production) may be permanently lost to the system via sediment burial or export offshore.

  16. PRIMARY PRODUCTION ESTIMATES IN CHESAPEAKE BAY USING SEAWIFS

    EPA Science Inventory

    The temporal and spatial variability in primary production along the main stem of Chesapeake Bay was examined from 1997 through 2000. Primary production estimates were determined from the Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski, 1997) using chloro...

  17. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  18. [Phytoplankton productivity and its influencing factors in Dianshan Lake].

    PubMed

    Wang, Yi-pin; Zhang, Wei-yan; Xu, Chun-yan; Hu, Xue-qin; Tong, Yan; You, Wen-hui

    2011-05-01

    To understand the relationship between the spatial-temporal variations of phytoplankton primary productivity and its environmental factors in Dianshan Lake, monthly survey was carried out from April, 2009 to March, 2010, with the method of white and black bottles. The result shows that seasonal variation of primary productivity (calculated according to carbon, following the same) is summer [0.95 g x (m3 x d)(-1)] > winter [0.83 g x (m3 x d)(-1)] > spring [0.77 g x (m3 x d)(-1)] > autumn [0.62 g x (m3 x d)(-1). From the flat distribution, primary productivity is higher in northern and southern parts than that in east and west, with no significant differences in each point (p > 0.05). From the vertical distribution, phytoplankton light availability is an important limiting factor. Primary production of 0. 3 m underwater is higher than that of 0.5 m. However, primary production of 0.3 m level in summer is lower because of light inhibition. Seasonal changes in primary productivity may be due to phytoplankton community structure and replacement of the dominant species. There are significantly positive correlation between Chlorophyll a (Chl-a) and phytoplankton density with primary productivity (p < 0.01), and Chl-a has better correlation with primary productivity. Phytoplankton biomass shows a positive reaction to its productivity and may preliminary provide a reference for the number of phytoplankton.

  19. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    NASA Astrophysics Data System (ADS)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (<2 μm, 2-10 μm and >10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (<2 μm), higher errors for the larger size classes (2-10 μm and >10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells <2 μm and >2 μm to total primary production is approximately equal in the Atlantic Ocean.

  1. [Review of estimation on oceanic primary productivity by using remote sensing methods.

    PubMed

    Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian

    2016-09-01

    Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.

  2. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.

    2013-05-01

    A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.

  3. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); hide

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  4. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    NASA Astrophysics Data System (ADS)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  5. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  6. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.

    Treesearch

    Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua

    2003-01-01

    There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...

  7. Estimating the residency expansion required to avoid projected primary care physician shortages by 2035.

    PubMed

    Petterson, Stephen M; Liaw, Winston R; Tran, Carol; Bazemore, Andrew W

    2015-03-01

    The purpose of this study was to calculate the projected primary care physician shortage, determine the amount and composition of residency growth needed, and estimate the impact of retirement age and panel size changes. We used the 2010 National Ambulatory Medical Care Survey to calculate utilization of ambulatory primary care services and the US Census Bureau to project demographic changes. To determine the baseline number of primary care physicians and the number retiring at 66 years, we used the 2014 American Medical Association Masterfile. Using specialty board and American Osteopathic Association figures, we estimated the annual production of primary care residents. To calculate shortages, we subtracted the accumulated primary care physician production from the accumulated number of primary care physicians needed for each year from 2015 to 2035. More than 44,000 primary care physicians will be needed by 2035. Current primary care production rates will be unable to meet demand, resulting in a shortage in excess of 33,000 primary care physicians. Given current production, an additional 1,700 primary care residency slots will be necessary by 2035. A 10% reduction in the ratio of population per primary care physician would require more than 3,000 additional slots by 2035, whereas changing the expected retirement age from 66 years to 64 years would require more than 2,400 additional slots. To eliminate projected shortages in 2035, primary care residency production must increase by 21% compared with current production. Delivery models that shift toward smaller ratios of population to primary care physicians may substantially increase the shortage. © 2015 Annals of Family Medicine, Inc.

  8. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69), carbon fluxes, and the export fraction remained at low.

  9. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    USGS Publications Warehouse

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  10. Variability in primary productivity determines metapopulation dynamics.

    PubMed

    Fernández, Néstor; Román, Jacinto; Delibes, Miguel

    2016-04-13

    Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity--a major outcome of ecosystem functions--on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. © 2016 The Authors.

  11. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest

    Treesearch

    Christian P. Giardina; Michael G. Ryan; Dan Binkley; Dan Binkley; James H. Fownes

    2003-01-01

    Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA),...

  12. Effects of oligotrophication on primary production in peri-alpine lakes

    NASA Astrophysics Data System (ADS)

    Finger, David; Wüest, Alfred; Bossard, Peter

    2013-08-01

    During the second half of the 20th century untreated sewage released from housing and industry into natural waters led to a degradation of many freshwater lakes and reservoirs worldwide. In order to mitigate eutrophication, wastewater treatment plants, including Fe-induced phosphorus precipitation, were implemented throughout the industrialized world, leading to reoligotrophication in many freshwater lakes. To understand and assess the effects of reoligotrophication on primary productivity, we analyzed 28 years of 14C assimilation rates, as well as other biotic and abiotic parameters, such as global radiation, nutrient concentrations and plankton densities in peri-alpine Lake Lucerne, Switzerland. Using a simple productivity-light relationship, we estimated continuous primary production and discussed the relation between productivity and observed limnological parameters. Furthermore, we assessed the uncertainty of our modeling approach based on monthly 14C assimilation measurements using Monte Carlo simulations. Results confirm that monthly sampling of productivity is sufficient for identifying long-term trends in productivity and that conservation management has successfully improved water quality during the past three decades via reducing nutrients and primary production in the lake. However, even though nutrient concentrations have remained constant in recent years, annual primary production varies significantly from year to year. Despite the fact that nutrient concentrations have decreased by more than an order of magnitude, primary production has decreased only slightly. These results suggest that primary production correlates well to nutrients availability but meteorological conditions lead to interannual variability regardless of the trophic status of the lake. Accordingly, in oligotrophic freshwaters meteorological forcing may reduce productivity impacting on the entire food chain of the ecosystem.

  13. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  14. Productivity vs. training in primary care: analysis of hospitals and health centers in New York City.

    PubMed

    DeLia, Derek; Cantor, Joel C; Duck, Elaine

    2002-01-01

    This paper examines the indirect costs of primary care residency in terms of ambulatory care site productivity and the influence of graduate medical education (GME) subsidies on the employment of primary care residents. Using a sample of hospitals and health centers in New York City (NYC), we find that most facilities employ significantly more primary care residents relative to nonresident primary care physicians than would be dictated by cost-minimizing behavior in the production of primary care. We also find evidence that New York's GME subsidy encourages the "overemployment" of residents, while the Medicare GME subsidy does not. We conclude that the trade-off between productivity and teaching is more serious in primary care than in inpatient settings, and that facilities heavily involved in ambulatory care teaching will be at a competitive disadvantage if GME subsidies are not targeted specifically for primary care.

  15. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  16. Aboveground and belowground net primary production

    Treesearch

    Hal O. Liechty; Mark H. Eisenbies

    2000-01-01

    The relationship among net primary productivity (NPP), hydroperiod, and fertility in forested wetlands is poorly understood (Burke and others 1999), particularly with respect to belowground NPP (Megonigal and others 1997). Although some researchers have studied aboveground and belowground primary production in depressional, forested wetland systems, e.g., Day and...

  17. 50 CFR Table 1c to Part 679 - Product Tyoe Codes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., heads, internal organs, pectoral girdles, or any other product that may be made from the same fish as the primary product. A Primary product.A product, such as fillets, made from each fish, with the...

  18. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    PubMed

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  19. Basin-scale estimates of oceanic primary production by remote sensing - The North Atlantic

    NASA Technical Reports Server (NTRS)

    Platt, Trevor; Caverhill, Carla; Sathyendranath, Shubha

    1991-01-01

    The monthly averaged CZCS data for 1979 are used to estimate annual primary production at ocean basin scales in the North Atlantic. The principal supplementary data used were 873 vertical profiles of chlorophyll and 248 sets of parameters derived from photosynthesis-light experiments. Four different procedures were tested for calculation of primary production. The spectral model with nonuniform biomass was considered as the benchmark for comparison against the other three models. The less complete models gave results that differed by as much as 50 percent from the benchmark. Vertically uniform models tended to underestimate primary production by about 20 percent compared to the nonuniform models. At horizontal scale, the differences between spectral and nonspectral models were negligible. The linear correlation between biomass and estimated production was poor outside the tropics, suggesting caution against the indiscriminate use of biomass as a proxy variable for primary production.

  20. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    USGS Publications Warehouse

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  1. Variability in primary productivity determines metapopulation dynamics

    PubMed Central

    2016-01-01

    Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. PMID:27053739

  2. Seasonal distribution of net primary production by functional groups in Chihuahuan Desert, and the role of seasonal precipitation

    USDA-ARS?s Scientific Manuscript database

    In hot deserts, precipitation is the principal driver for net primary production.  This study tested two hypotheses regarding aboveground net primary production (ANPP) and the effects of precipitation on ANPP in the Chihuahuan Desert, with emphasis on differences among seasons and among functional g...

  3. A review of ocean chlorophyll algorithms and primary production models

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  4. 26 CFR 1.993-3 - Definition of export property.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... deduction for depletion under section 613 or 613A. (3) Primary product from oil, gas, coal, or uranium. A primary product from oil, gas, coal, or uranium is not export property. For purposes of this paragraph— (i... primary products from oil, gas, coal, or uranium described in subdivisions (i) through (iv) of this...

  5. 26 CFR 1.993-3 - Definition of export property.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... deduction for depletion under section 613 or 613A. (3) Primary product from oil, gas, coal, or uranium. A primary product from oil, gas, coal, or uranium is not export property. For purposes of this paragraph— (i... primary products from oil, gas, coal, or uranium described in subdivisions (i) through (iv) of this...

  6. 26 CFR 1.993-3 - Definition of export property.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... deduction for depletion under section 613 or 613A. (3) Primary product from oil, gas, coal, or uranium. A primary product from oil, gas, coal, or uranium is not export property. For purposes of this paragraph— (i... primary products from oil, gas, coal, or uranium described in subdivisions (i) through (iv) of this...

  7. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Wang, Yang; Wu, Shixi

    2017-07-01

    Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.

  8. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Land Surface Models across Three Long-term Grassland Sites

    NASA Astrophysics Data System (ADS)

    Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.

    2017-12-01

    Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models overemphasize the drought effects or underestimate the watering impacts on primary production in the normal-state, with the direct consequence that carbon-water interactions need to be improved in future model generations with improved mechanistic representations.

  9. Pathways between primary production and fisheries yields of large marine ecosystems.

    PubMed

    Friedland, Kevin D; Stock, Charles; Drinkwater, Kenneth F; Link, Jason S; Leaf, Robert T; Shank, Burton V; Rose, Julie M; Pilskaln, Cynthia H; Fogarty, Michael J

    2012-01-01

    The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems.

  10. Pathways between Primary Production and Fisheries Yields of Large Marine Ecosystems

    PubMed Central

    Friedland, Kevin D.; Stock, Charles; Drinkwater, Kenneth F.; Link, Jason S.; Leaf, Robert T.; Shank, Burton V.; Rose, Julie M.; Pilskaln, Cynthia H.; Fogarty, Michael J.

    2012-01-01

    The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems. PMID:22276100

  11. Primary atmospheric oxidation mechanism for toluene.

    PubMed

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-08

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  12. Primary forest products industry and timber use, Kansas, 1980.

    Treesearch

    James E. Blyth; Leonard K. Gould; W. Brad Smith

    1984-01-01

    Highlights recent Kansas forest industry trends, production and receipts of saw logs in 1980, and production of other timber products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  13. Primary forest products industry and timber use, Nebraska, 1980.

    Treesearch

    James E. Blyth; Tom D. Wardle; W. Brad Smith

    1984-01-01

    Highlights recent Nebraska forest industry trends, production and receipts of saw logs in 1980, and production of other timber products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  14. Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O. F.; Figueroa, D.; Kratzer, S.; Legrand, C.

    2018-05-01

    Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered.

  15. Estimation of phytoplankton production from space: current status and future potential of satellite remote sensing.

    PubMed

    Joint; Groom

    2000-07-30

    A new generation of ocean colour satellites is now operational, with frequent observation of the global ocean. This paper reviews the potential to estimate marine primary production from satellite images. The procedures involved in retrieving estimates of phytoplankton biomass, as pigment concentrations, are discussed. Algorithms are applied to SeaWiFS ocean colour data to indicate seasonal variations in phytoplankton biomass in the Celtic Sea, on the continental shelf to the south west of the UK. Algorithms to estimate primary production rates from chlorophyll concentration are compared and the advantages and disadvantage discussed. The simplest algorithms utilise correlations between chlorophyll concentration and production rate and one equation is used to estimate daily primary production rates for the western English Channel and Celtic Sea; these estimates compare favourably with published values. Primary production for the central Celtic Sea in the period April to September inclusive is estimated from SeaWiFS data to be 102 gC m(-2) in 1998 and 93 gC m(-2) in 1999; published estimates, based on in situ incubations, are ca. 80 gC m(-2). The satellite data demonstrate large variations in primary production between 1998 and 1999, with a significant increase in late summer in 1998 which did not occur in 1999. Errors are quantified for the estimation of primary production from simple algorithms based on satellite-derived chlorophyll concentration. These data show the potential to obtain better estimates of marine primary production than are possible with ship-based methods, with the ability to detect short-lived phytoplankton blooms. In addition, the potential to estimate new production from satellite data is discussed.

  16. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Treesearch

    Peggy E. Moore; Jan W. van Wagtendonk; Julie L. Yee; Mitchel P. McClaran; David N. Cole; Neil K. McDougald; Matthew L. Brooks

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate....

  17. Food waste quantification in primary production - The Nordic countries as a case study.

    PubMed

    Hartikainen, Hanna; Mogensen, Lisbeth; Svanes, Erik; Franke, Ulrika

    2018-01-01

    Our understanding of food waste in the food supply chain has increased, but very few studies have been published on food waste in primary production. The overall aims of this study were to quantify the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark, and to create a framework for how to define and quantify food waste in primary production. The quantification of food waste was based on case studies conducted in the present study and estimates published in scientific literature. The chosen scope of the study was to quantify the amount of edible food (excluding inedible parts like peels and bones) produced for human consumption that did not end up as food. As a result, the quantification was different from the existing guidelines. One of the main differences is that food that ends up as animal feed is included in the present study, whereas this is not the case for the recently launched food waste definition of the FUSIONS project. To distinguish the 'food waste' definition of the present study from the existing definitions and to avoid confusion with established usage of the term, a new term 'side flow' (SF) was introduced as a synonym for food waste in primary production. A rough estimate of the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark was made using SF and 'FUSIONS Food Waste' (FFW) definitions. The SFs in primary production in the four Nordic countries were an estimated 800,000 tonnes per year with an additional 100,000 tonnes per year from the rearing phase of animals. The 900,000 tonnes per year of SF corresponds to 3.7% of the total production of 24,000,000 tonnes per year of edible primary products. When using the FFW definition proposed by the FUSIONS project, the FFW amount was estimated at 330,000 tonnes per year, or 1% of the total production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    PubMed

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers. © 2010 Society for Conservation Biology.

  19. Do Offshore Wind Farms Influence Marine Primary Production?

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  20. Primary forest products industry and industrial roundwood production, Michigan, 1969.

    Treesearch

    James E. Blyth; Allen H. Boelter

    1971-01-01

    Michigan loggers cut 173.8 million cubic feet of industrial roundwood products in 1969. Ninety percent was pulpwood and saw logs. Production is shifting from softwoods to hardwoods. The number of active primary wood-using mills declined rapidly from 1954 to 1969, but production per mill has expanded.

  1. Primary forest products industry and timber use, Iowa, 1972.

    Treesearch

    James E. Blyth; William A. Farris

    1975-01-01

    Discusses recent Iowa forest industry trends, and production of saw logs, veneer logs, pulpwood, and other roundwood products. Comments on outlook for Iowa forest industry and production and use of roundwood and primary wood-using plant wood and bark residue.

  2. Cosmogenic-nuclide production by primary cosmic-ray protons

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1985-01-01

    The production rates of cosmogenic nuclides were calculated for the primary protons in the galactic and solar cosmic rays. At 1 AU, the long-term average fluxes of solar protons usually produce many more atoms of cosmogenic nuclide than the primary protons in the galactic cosmic rays (GCR). Because the particle fluxes inside meteorites and other large objects in space include many secondary neutrons, the production rates and ratios inside large objects are often very different from those by just the primary GCR protons. It is possible to determine if a small object, was small in space or broken from a meteorite. Because heliospherical modulation and other interactions change the GCR particle spectrum, the production of cosmogenic nuclides by the GCR particles outside the heliosphere will be different from that by modulated GCR primaries.

  3. Alaska's timber harvest and forest products industry, 2005

    Treesearch

    Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett

    2009-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....

  4. Primary forest products industry and timber use, Wisconsin, 1973.

    Treesearch

    James E. Blyth; Eugene F. Landt; James W. Whipple; Jerold T. Hahn

    1976-01-01

    Discusses recent Wisconsin forest industry trends; timber removals for industrial roundwood in 1973; production and receipts in 1973 of pulpwood, saw logs, veneer logs, and other industrial roundwood products. Shows trends in pulpwood and veneer log production and compares saw log production in 1967 and 1973. Discusses primary wood-using plant residue and its...

  5. Primary forest products industry and timber use, Minnesota, 1973.

    Treesearch

    James E. Blyth; Steven Wilhelm; Jerold T. Hahn

    1979-01-01

    Discusses recent Minnesota forest industry trends; timber removals for industrial roundwood in 1973; production and receipts in 1973 of pulpwood, saw logs, and other industrial roundwood products. Shows trends in pulpwood and veneer log production and compares saw log production in 1960 and 1973. Discusses primary wood-using mill residue and its disposition.

  6. Primary forest products industry and timber use, Michigan, 1972.

    Treesearch

    James E. Blyth; Allan H. Boelter; Carl W. Danielson

    1975-01-01

    Discusses recent Michigan forest industry trends; timber removals for industrial roundwood in 1972; production and receipts in 1972 of pulpwood, saw logs, veneer logs ,and other roundwood products. Shows trends in pulpwood and veneer-log production, and compares saw log production in 1969 and 1972. Discusses primary wood-using plant residue and its disposition.

  7. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites

    NASA Astrophysics Data System (ADS)

    Wu, Donghai; Ciais, Philippe; Viovy, Nicolas; Knapp, Alan K.; Wilcox, Kevin; Bahn, Michael; Smith, Melinda D.; Vicca, Sara; Fatichi, Simone; Zscheischler, Jakob; He, Yue; Li, Xiangyi; Ito, Akihiko; Arneth, Almut; Harper, Anna; Ukkola, Anna; Paschalis, Athanasios; Poulter, Benjamin; Peng, Changhui; Ricciuto, Daniel; Reinthaler, David; Chen, Guangsheng; Tian, Hanqin; Genet, Hélène; Mao, Jiafu; Ingrisch, Johannes; Nabel, Julia E. S. M.; Pongratz, Julia; Boysen, Lena R.; Kautz, Markus; Schmitt, Michael; Meir, Patrick; Zhu, Qiuan; Hasibeder, Roland; Sippel, Sebastian; Dangal, Shree R. S.; Sitch, Stephen; Shi, Xiaoying; Wang, Yingping; Luo, Yiqi; Liu, Yongwen; Piao, Shilong

    2018-06-01

    Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon-water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.

  8. A model of regional primary production for use with coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  9. 40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment... Pollutants for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Pt. 63, Subpt. GGGGGG, Table 1 Table 1 to Subpart GGGGGG of Part 63—Applicability of General Provisions to Primary Zinc...

  10. 40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment... Pollutants for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Pt. 63, Subpt. GGGGGG, Table 1 Table 1 to Subpart GGGGGG of Part 63—Applicability of General Provisions to Primary Zinc...

  11. Primary forest products industry and timber use, Iowa, 1980.

    Treesearch

    James E. Blyth; John Tibben; W. Brad Smith

    1984-01-01

    Discusses recent Iowa forest industry trends, timber removals for industrial roundwood in 1980, production and receipts of saw logs in 1980, and production of other industrial roundwood products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  12. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  13. Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Roger W.; Reinot, Tonu; McClelland, John F.

    2010-08-03

    Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500°C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzing cellulose,more » xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less

  14. Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Roger W.; Reinot, Tonu; McClelland, John F.

    2010-08-30

    Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500 C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzingmore » cellulose, xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less

  15. Endocrine and Hypertensive Disorders of Potassium Regulation: Primary Aldosteronism

    PubMed Central

    Weiner, I. David

    2013-01-01

    The identification that primary aldosteronism is a common cause of resistant hypertension is a significant advance in our ability to care for patients with hypertension. Primary aldosteronism is common, and when unrecognized is associated with increased incidence of adverse cardiovascular outcomes. Identification of primary aldosteronism is based upon use of the plasma aldosterone level, plasma renin activity and the aldosterone:renin ratio (ARR). Differentiation between unilateral and bilateral autonomous adrenal aldosterone production then guides further therapy, with use of mineralocorticoid receptor blockers for those with bilateral autonomous adrenal aldosterone production and laparoscopic adrenalectomy for those with unilateral autonomous aldosterone production. In this review, we discuss in detail the pathogenesis of primary aldosteronism-induced hypertension and potassium disorders, the evaluation of the patient with suspected primary aldosteronism and the management of primary aldosteronism, both through medications and through surgery. PMID:23953804

  16. Linking climate, gross primary productivity, and site index across forests of the western United States

    Treesearch

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  17. Development and status of Arkansas' primary forest products industry

    Treesearch

    Dennis M. May

    1990-01-01

    The development of Arkansas' primary forest products industry is presented by following the changes in numbers and types of mills operating through time as well as the State's production of roundwood to supply the changing industry.

  18. Lake states primary forest industry and timber use, 1975.

    Treesearch

    James E. Blyth; James W. Whipple; Allen H. Boelter; Steven Wilhelm

    1980-01-01

    Discusses industrial roundwood production and forest industry trends in Michigan, Minnesota, and Wisconsin. Compares log and bolt production by state for several products and species and discusses primary wood-using mill residue and its use.

  19. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... primary condenser recovering monomer, reaction products, by-products, or solvent from a stripper operated in batch mode, and the primary condenser recovering monomer, reaction products, by-products, or...

  20. Climatological Processing and Product Development for the TRMM Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Marks, D. A.; Kulie, M. S.; Robinson, M.; Silberstein, D. S.; Wolff, D. B.; Ferrier, B. S.; Amitai, E.; Fisher, B.; Wang, J.; Augustine, D.; hide

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November 1997.The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia- and Kwajalein Atoll, RMI As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized rainfall products using quality-controlled ground-based radar data from the four primary GV sites. This presentation will provide an overview of TRMM GV climatological processing and product generation. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps, will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results involving monthly accumulation, Z-R relationship, and gauge statistics for each primary GV site will also be displayed.

  1. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo.

    PubMed

    Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang

    2017-04-01

    Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Summer primary productivity and phytoplankton community composition driven by different hydrographic structures in the East/Japan Sea and the Western Subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Kwak, Jung Hyun; Lee, Sang Heon; Hwang, Jeomshik; Suh, Young-Sang; Je Park, Hyun; Chang, Kyung-Il; Kim, Kyung-Ryul; Kang, Chang-Keun

    2014-07-01

    The East/Japan Sea (EJS) is a highly productive marginal sea in the northwest Pacific, consisting of three basins (Ulleung Basin: UB, Yamato Basin: YB, and Japan Basin: JB). To find causes of the reportedly high primary productivity in summer in the EJS, especially in the UB, we measured primary productivity, phytoplankton composition, and other environmental variables. The water column was strongly stratified in the EJS compared with the Western Subarctic Pacific (WSP). Integrated primary productivity was two times higher in the EJS (612 mg C m-2 d-1) than in the WSP (291 mg C m-2 d-1). The vertical distributions of physicochemical and biological factors confirmed that production in the subsurface chlorophyll maximum layer in the study regions was an important factor regulating primary productivity within the water column. While picoplankton (<2.7 µm) dominated in the WSP, JB, and YB, micro/nanoplankton (≥2.7 µm) dominated in the UB. Contribution by picoplankton to total biomass and primary productivity in the UB was significantly lower than in the other regions. CHEMTAX analysis using marker pigments showed that diverse phytoplankton groups inhabited the study regions. Cluster and canonical correspondence analyses showed high correlation between the spatial variation in phytoplankton assemblages with the water mass properties mainly represented by water temperature and nitrate concentration. Overall, our results suggest that the hydrographic structure of water column in the study region is an important controlling factor of the biomass and productivity of phytoplankton as well as their diversity in size and taxonomic groups.

  3. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    NASA Astrophysics Data System (ADS)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GBioC..24.3016U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GBioC..24.3016U"><span>Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uitz, Julia; Claustre, Hervé; Gentili, Bernard; Stramski, Dariusz</p> <p>2010-09-01</p> <p>We apply an innovative approach to time series data of surface chlorophyll from satellite observations with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) to estimate the primary production associated with three major phytoplankton classes (micro-, nano-, and picophytoplankton) within the world's oceans. Statistical relationships, determined from an extensive in situ database of phytoplankton pigments, are used to infer class-specific vertical profiles of chlorophyll a concentration from satellite-derived surface chlorophyll a. This information is combined with a primary production model and class-specific photophysiological parameters to compute global seasonal fields of class-specific primary production over a 10-year period from January 1998 through December 2007. Microphytoplankton (mostly diatoms) appear as a major contributor to total primary production in coastal upwelling systems (70%) and temperate and subpolar regions (50%) during the spring-summer season. The contribution of picophytoplankton (e.g., prokaryotes) reaches maximum values (45%) in subtropical oligotrophic gyres. Nanophytoplankton (e.g., prymnesiophytes) provide a ubiquitous, substantial contribution (30-60%). Annual global estimates of class-specific primary production amount to 15 Gt C yr-1 (32% of total), 20 Gt C yr-1 (44%) and 11 Gt C yr-1 (24%) for micro-, nano-, and picophytoplankton, respectively. The analysis of interannual variations revealed large anomalies in class-specific primary production as compared to the 10-year mean cycle in both the productive North Atlantic basin and the more stable equatorial Pacific upwelling. Microphytoplankton show the largest range of variability of the three phytoplankton classes on seasonal and interannual time scales. Our results contribute to an understanding and quantification of carbon cycle in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.4099A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.4099A"><span>Diatoms Si uptake capacity drives carbon export in coastal upwelling systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abrantes, Fatima; Cermeno, Pedro; Lopes, Cristina; Romero, Oscar; Matos, Lélia; Van Iperen, Jolanda; Rufino, Marta; Magalhães, Vitor</p> <p>2016-07-01</p> <p>Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California, and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production, and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. On the global scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21436657','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21436657"><span>Accounting for graduate medical education production of primary care physicians and general surgeons: timing of measurement matters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Petterson, Stephen; Burke, Matthew; Phillips, Robert; Teevan, Bridget</p> <p>2011-05-01</p> <p>Legislation proposed in 2009 to expand GME set institutional primary care and general surgery production eligibility thresholds at 25% at entry into training. The authors measured institutions' production of primary care physicians and general surgeons on completion of first residency versus two to four years after graduation to inform debate and explore residency expansion and physician workforce implications. Production of primary care physicians and general surgeons was assessed by retrospective analysis of the 2009 American Medical Association Masterfile, which includes physicians' training institution, residency specialty, and year of completion for up to six training experiences. The authors measured production rates for each institution based on physicians completing their first residency during 2005-2007 in family or internal medicine, pediatrics, or general surgery. They then reassessed rates to account for those who completed additional training. They compared these rates with proposed expansion eligibility thresholds and current workforce needs. Of 116,004 physicians completing their first residency, 54,245 (46.8%) were in primary care and general surgery. Of 683 training institutions, 586 met the 25% threshold for expansion eligibility. At two to four years out, only 29,963 physicians (25.8%) remained in primary care or general surgery, and 135 institutions lost eligibility. A 35% threshold eliminated 314 institutions collectively training 93,774 residents (80.8%). Residency expansion thresholds that do not account for production at least two to four years after completion of first residency overestimate eligibility. The overall primary care production rate from GME will not sustain the current physician workforce composition. Copyright © by the Association of American medical Colleges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27773346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27773346"><span>Clinical productivity of primary care nurse practitioners in ambulatory settings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xue, Ying; Tuttle, Jane</p> <p></p> <p>Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080808','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080808"><span>Decadal Changes in Global Ocean Annual Primary Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)</p> <p>2002-01-01</p> <p>The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47283','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47283"><span>Alaska’s timber harvest and forest products industry, 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Erik C. Berg; Charles B. Gale; Todd A. Morgan; Allen M. Brackley; Charles E. Keegan; Susan J. Alexander; Glenn A. Christensen; Chelsea P. McIver; Micah G. Scudder</p> <p>2014-01-01</p> <p>This report traces the flow of timber harvested in Alaska during calendar year 2011, describes the composition and operations of the state’s primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, export, sales of primary wood products,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51H1928J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51H1928J"><span>Observations-based GPP estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joiner, J.; Yoshida, Y.; Jung, M.; Tucker, C. J.; Pinzon, J. E.</p> <p>2017-12-01</p> <p>We have developed global estimates of gross primary production based on a relatively simple satellite observations-based approach using reflectance data from the MODIS instruments in the form of vegetation indices that provide information about photosynthetic capacity at both high temporal and spatial resolution and combined with information from chlorophyll solar-induced fluorescence from the Global Ozone Monitoring Experiment-2 instrument that is noisier and available only at lower temporal and spatial scales. We compare our gross primary production estimates with those from eddy covariance flux towers and show that they are competitive with more complicated extrapolated machine learning gross primary production products. Our results provide insight into the amount of variance in gross primary production that can be explained with satellite observations data and also show how processing of the satellite reflectance data is key to using it for accurate GPP estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10333','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10333"><span>Primary forest products industry and timber use, Michigan, 1977.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James E. Blyth; Jack Zollner; W. Brad Smith</p> <p>1981-01-01</p> <p>Discusses recent Michigan forest industry trends, timber removals for industrial roundwood in 1977, and production and receipts of pulpwood, saw logs, and other industrial roundwood products. Reports on associated logging and primary mill residues and the disposition of mill residue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=309169','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=309169"><span>Grassland productivity limited by multiple nutrients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Limitation of aboveground net primary productivity (ANPP) by nitrogen (N) is widely accepted, but the roles of phosphorus (P), potassium (K) and their combinations remain unclear. Thus we may underestimate nutrient limitation of primary productivity. We conducted standardized sampling of ANPP and ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9475','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9475"><span>Wyoming's forest products industry and timber harvest, 2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Todd A. Morgan; Timothy P. Spoelma; Charles E. Keegan; Alfred L. Chase; Mike T. Thompson</p> <p>2005-01-01</p> <p>This report traces the flow of Wyoming's 2000 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Wyoming's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39738','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39738"><span>Idaho's forest products industry and timber harvest, 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jason P. Brandt; Todd A. Morgan; Charles E. Keegan; Jon M. Songster; Timothy P. Spoelma; Larry T. DeBlander</p> <p>2012-01-01</p> <p>This report traces the flow of Idaho's 2006 timber harvest through the primary wood-using industries; describes the structure, capacity, and condition of Idaho's primary forest products industry; and quantifies volumes and uses of wood fiber. Wood products industry historical trends and changes in harvest, production, employment, and sales are also examined...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29459','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29459"><span>Montana's forest products industry and timber harvest, 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Timothy P. Spoelma; Todd A. Morgan; Thale Dillon; Alfred L. Chase; Charles E. Keegan; Larry T. DeBlander</p> <p>2008-01-01</p> <p>This report traces the flow of Montana's 2004 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Montana's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026854','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026854"><span>Impact of Chromophoric Dissolved Organic Matter on UV Inhibition of Primary Productivity in the Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arrigo, Kevin R.; Brown, Christopher W.</p> <p>1996-01-01</p> <p>A model was developed to assess the impact of chromophoric dissolved organic matter (CDOM) on phytoplankton production within the euphotic zone. The rate of depth-integrated daily gross primary productivity within the euphotic zone was evaluated as a function of date, latitude, CDONI absorption characteristics, chlorophyll a (chl a) concentration, vertical stratification, and phytoplankton sensitivity to UV radiation (UVR). Results demonstrated that primary production was enhanced in the upper 30 m of the water column by the presence of CDOM, where predicted increases in production due to the removal of damaging UVR more than offset its reduction resulting from the absorption of photosynthetically usable radiation. At greater depths, where little UVR remained, primary production was always reduced due to removal by CDOM of photosynthetically usable radiation. When CDOM was distributed homogeneously within the euphotic zone, the integral over z [(GPP)(sub ez)], was reduced under most bio-optical (i.e. solar zenith angle, and CDOM absorption, and ozone concentration) and photophysiological production at depth was greater than the enhancement of production at the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-03-13/pdf/2013-05705.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-03-13/pdf/2013-05705.pdf"><span>78 FR 15947 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-03-13</p> <p>... Chloride and Copolymer Production, Primary Copper Smelting, Secondary Copper Smelting, and Primary... www.regulations.gov . Title: NESHAP for Area Sources: Polyvinyl Chloride and Copolymer Production.... Respondents/Affected Entities: Owners or operators of polyvinyl chloride and copolymer, primary copper smelter...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGeo...12.2063Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGeo...12.2063Y"><span>Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.</p> <p>2015-04-01</p> <p>The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGD....1114889Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGD....1114889Y"><span>Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.</p> <p>2014-10-01</p> <p>The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16038945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16038945"><span>Effect of an acid mine drainage effluent on phytoplankton biomass and primary production at Britannia Beach, Howe Sound, British Columbia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levings, C D; Varela, D E; Mehlenbacher, N M; Barry, K L; Piercey, G E; Guo, M; Harrison, P J</p> <p>2005-12-01</p> <p>We investigated the effect of acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (Howe Sound, BC, Canada) on primary productivity and chlorophyll a levels in the receiving waters of Howe Sound before, during, and after freshet from the Squamish River. Elevated concentrations of copper (integrated average through the water column >0.050 mgl(-1)) in nearshore waters indicated that under some conditions a small gyre near the mouth of Britannia Creek may have retained the AMD from Britannia Creek and from a 30-m deep water outfall close to shore. Regression and correlation analyses indicated that copper negatively affected primary productivity during April (pre-freshet) and November (post-freshet). Negative effects of copper on primary productivity were not supported statistically for July (freshet), possibly because of additional effects such as turbidity from the Squamish River. Depth-integrated average and surface chlorophyll a were correlated to copper concentrations in April. During this short study we demonstrated that copper concentrations from the AMD discharge can negatively affect both primary productivity and the standing stock of primary producers in Howe Sound.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CSR....31..202M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CSR....31..202M"><span>Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar</p> <p>2011-03-01</p> <p>We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8-59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PrOce..36...77L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PrOce..36...77L"><span>Seasonal cycles of pelagic production and consumption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Longhurst, Alan</p> <p></p> <p>Comprehensive seasonal cycles of production and consumption in the pelagial require the ocean to be partitioned. This can be done rationally at two levels: into four primary ecological domains (three oceanic and one coastal), or about fifty biogeochemical provinces. The domains differ in their characteristic seasonal cycles of stability, nutrient supply and illumination, while provinces are defined by ocean currents, fronts, topography and recurrent features in the sea surface chlorophyll field. For each of these compartments, seasonal cycles of photic depth, primary production and accumulation (or loss) of algal biomass were obtained from the climatological CZCS chlorophyll field and other data and these, together with mixed layer depths, rendered characteristic seasonal cycles of production and consumption, which can be grouped into eight models: i - polar irradiance-mediated production peak; ii - nutrient-limited spring production peak; iii - winter-spring production with nutrient limitation; iv - small amplitude response to trade wind seasonality; v - large amplitude response to monsoon reversal; vi - canonical spring-fall blooms of mid-latitude continental shelves; vii - topography-forced summer production; viii - intermittent production at coastal divergences. For higher latitudes, these models suggest that the observed late-summer ‘blooms’ result not from a renewal of primary production rate, but from a relaxation of grazing pressure; in mid-latitudes, the observed ‘winter’ bloom represents chlorophyll accumulation at a season when loss terms are apparently smaller than during the period of peak primary production rate which occurs later, in spring. Where an episodic seasonal increase in rate of primary production occurs, as in the Arabian Sea, algal biomass accumulation may brief, lasting only until consumption is fully re-established. Only in the low latitude oligotrophic ocean are production and consumption perennially and closely coupled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ECSS...74..471I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ECSS...74..471I"><span>Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5 43° S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iriarte, J. L.; González, H. E.; Liu, K. K.; Rivas, C.; Valenzuela, C.</p> <p>2007-09-01</p> <p>The southern fjord region of Chile is a unique ecosystem characterized by complex marine-terrestrial-atmospheric interactions that result in high biological production. Since organic nitrogen from terrestrial and atmospheric compartments is highly significant in this region (>40%), as is the low NO 3:PO 4 ratio in surface waters, it is suggested that fertilization from inorganic and organic nitrogen sources has a strong influence on both phytoplankton biomass/primary production and harmful algae bloom dynamics. The data presented in this paper provide an opportunity to improve our knowledge of phytoplankton dynamics on temporal and spatial mesoscales. Ocean color data from NASA (SeaWiFS) for chlorophyll and primary production estimates and in situ surface measurement of inorganic nutrients, phytoplankton biomass, and primary productivity revealed that the coastal waters of southern Chile have a classical spring and autumn chlorophyll bloom cycle in which primary production is co-limited by strong seasonal changes in light and nitrate. During spring blooms, autotrophic biomass (such as chlorophyll a, Chl- a) and primary production estimates reached 25 mg Chl- a m -3 and 23 mg C m -3 h -1, respectively, and micro-phytoplankton accounted for a significant portion of the biomass (60%) in spring. The contribution of phytoplankton size classes to total chlorophyll a revealed the dominance of nanoplankton (>50%) in winter and post-bloom periods (<1.0 mg Chl- a m -3).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029624&hterms=productivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dproductivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029624&hterms=productivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dproductivity"><span>The effects of temporal variability of mixed layer depth on primary productivity around Bermuda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.</p> <p>1994-01-01</p> <p>Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=295496','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=295496"><span>Patterns of new versus recycled primary production in the terrestrial biosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10343','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10343"><span>Primary forest products industry and timber use, Indiana, 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James E. Blyth; Donald H. McGuire; W. Brad Smith</p> <p>1982-01-01</p> <p>Discusses recent Indiana forest industry trends; timber removals for industrial roundwood in 1980; and production and receipts of saw logs, pulpwood, veneer logs, and other industrial roundwood products. Reports on associated primary mill wood and bark residue and the disposition of mill residue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029654&hterms=Morel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMorel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029654&hterms=Morel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMorel"><span>Evaluation of bio-optical algorithms to remotely sense marine primary production from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berthelot, Beatrice; Deschamps, Pierre-Yves</p> <p>1994-01-01</p> <p>In situ bio-optical measurements from several oceanographic campaigns were analyzed to derive a direct relationship between water column primary production P (sub t) ocean color as expressed by the ratio of reflectances R (sub 1) at 440 nm and R (sub 3) at 550 nm and photosynthetically available radiation (PAR). The study is restricted to the Morel case I waters for which the following algorithm is proposed: log (P(sub f)) = -4.286 - 1.390 log (R(sub 1)/R(sub3)) + 0.621 log (PAR), with P(sub t) in g C m(exp -2)/d and PAR in J m(exp -2)/d. Using this algorithm the rms accuracy of primary production estimate is 0.17 on a logarithmic scale, i.e., a factor of 1.5. Using spectral reflectance measurements in the entire visible spectral range, the central wavelength, spectral bandwidth, and radiometric noise level requirements are investigated for the channels to be used by an ocean color space mission dedicated to estimating global marine primary production and the associated carbon fluxes. Nearly all the useful information is provided by two channels centered at 440 nm and 550 nm, but the accuracy of primary production estimate appears weakly sensitive to spectral bandwidth, which, consequently, may be enlarged by several tens of nanometers. The sensitivity to radiometric noise, on the contrary, is strong, and a noise equivalent reflectance of 0.005 degraded the accuracy on the primary production estimate by a factor 2 (0.14-0.25 on a logarithmic scale). The results should be applicable to evaluating the primary production of oligotrophic and mesotrophic waters, which constitute most of the open ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940033993&hterms=productivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dproductivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940033993&hterms=productivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dproductivity"><span>Comment on 'The remote sensing of ocean primary productivity - Use of a new data compilation to test satellite algorithms' by William Balch et al</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Platt, Trevor; Sathyendranath, Shubha</p> <p>1993-01-01</p> <p>Various conclusions by Balch et al. (1992) about the current state of modeling primary production in the sea (lack of improvement in primary production models, since 1957, utility of analytical models, and merits or weaknesses of complex models) are commented on. It is argued that since they are based on a false premise, these conclusions are not robust, and that the approach used by Balch et al. (the model of Platt and Sathyendranath, 1988) was inadequate for the question they set out to address. The present criticism is based mainly on the issue of whether implementation was correct with respect to parameter selection. It is concluded that the findings of Balch et al. with respect to the model of Platt and Sathyendranath is unreliable. Balch replies that satellite-derived estimates of primary production should be compared directly to that measured in situ in as many regions as possible. This will provide a first-order estimate of the magnitude of the error involved in estimating primary production from space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMNB33C..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMNB33C..01S"><span>Nitrogenase and Alkaline Phosphatase Activity in Wetland Metaphyton: Implications for Primary Production and CNP Composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, T.; Doyle, R.</p> <p>2005-05-01</p> <p>Longitudinal gradients of nutrient availability often occur along the flow path of water in freshwater wetlands. Differential removal efficiencies of water column nitrogen (N) and phosphorus (P) may increase the severity of nutrient deficiency and possibly change the nutrient that limits primary production. A previous study demonstrated that periphyton in the Lake Waco Wetlands (LWW), near Waco, Texas, USA, are generally more P limited near the inflow and become increasingly N limited as distance from the inflow increases. Therefore, spatial heterogeneity in nutrient availability likely influences both the structure and function of periphyton assemblages within this system. In this ongoing study, we are evaluating the relationships between metaphyton primary production, nitrogenase activity, alkaline phosphatase activity, and CNP stoichiometry in areas of differing nutrient limitation within the LWW. As expected, primary production is generally greatest in areas where nitrogenase and alkaline phosphatase activities are minimal. However, expected increases in C:N ratios in areas of greatest nutrient deficiency have not been frequently observed. Decreased primary production and increased enzyme mediated nutrient uptake appear to balance metaphyton nutrient content in these areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930056974&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930056974&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction"><span>Global climate change and terrestrial net primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.</p> <p>1993-01-01</p> <p>A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5047207','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5047207"><span>Twenty-million-year relationship between mammalian diversity and primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fritz, Susanne A.; Eronen, Jussi T.; Schnitzler, Jan; Hof, Christian; Janis, Christine M.; Mulch, Andreas; Böhning-Gaese, Katrin; Graham, Catherine H.</p> <p>2016-01-01</p> <p>At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity–productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity–productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23–1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity–productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction. PMID:27621451</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PNAS..11310908F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PNAS..11310908F"><span>Twenty-million-year relationship between mammalian diversity and primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritz, Susanne A.; Eronen, Jussi T.; Schnitzler, Jan; Hof, Christian; Janis, Christine M.; Mulch, Andreas; Böhning-Gaese, Katrin; Graham, Catherine H.</p> <p>2016-09-01</p> <p>At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity-productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity-productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23-1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity-productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10347','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10347"><span>Primary forest products industry and timber use, Missouri, 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James E. Blyth; Shelby Jones; W. Brad Smith</p> <p>1983-01-01</p> <p>Discusses recent Missouri forest industry trends; timber removals for industrial roundwood in 1980; and production and receipts of saw logs, pulpwood, cooperage logs, charcoal wood, and other industrial roundwood products. Reports on associated primary mill wood and bark residue and the disposition of mill residue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=88579&keyword=temperature+AND+classes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=88579&keyword=temperature+AND+classes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ESTUARINE PHYTOPLANKTON PRIMARY PRODUCTION AND SIZE AS DETERMINED REMOTELY FROM AIRCRAFT AND COASTAL OBSERVATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We used remotely sensed estimates of chlorophyll a and sea surface temperature, incorporated into the Chesapeake Bay Productivity Model (Harding et al., 2002), to estimate the spatial and temporal variation of phytoplankton net primary production and species size in the Narragans...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=305344','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=305344"><span>Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary productivity (ANPP) in most grasslands. In contrast, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to wa...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-3139.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-3139.pdf"><span>76 FR 7813 - Amended Final Results of the 2008-2009 Antidumping Duty Administrative Review: Pure Magnesium...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-11</p> <p>... magnesium and produced by decomposing raw materials into magnesium metal. Pure primary magnesium is used... products (including, but not limited to, butt ends, stubs, crowns and crystals) with the following primary magnesium contents: (1) Products that contain at least 99.95% primary magnesium, by weight (generally...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-15.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-15.pdf"><span>9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.15 Section 3.15 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-138.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-138.pdf"><span>9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-88.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-88.pdf"><span>9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-62.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-62.pdf"><span>9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-138.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-138.pdf"><span>9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-138.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-138.pdf"><span>9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-62.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-62.pdf"><span>9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-138.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-138.pdf"><span>9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-62.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-62.pdf"><span>9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-15.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-15.pdf"><span>9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.15 Section 3.15 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-88.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-88.pdf"><span>9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-62.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-62.pdf"><span>9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-88.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-88.pdf"><span>9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-15.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-15.pdf"><span>9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.15 Section 3.15 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-62.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-62.pdf"><span>9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-138.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-138.pdf"><span>9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-88.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-88.pdf"><span>9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-88.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-88.pdf"><span>9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910059077&hterms=pacific+ocean+phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpacific%2Bocean%2Bphytoplankton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910059077&hterms=pacific+ocean+phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpacific%2Bocean%2Bphytoplankton"><span>Role of eddy pumping in enhancing primary production in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Falkowski, Paul G.; Kolber, Zbigniew; Ziemann, David; Bienfang, Paul K.</p> <p>1991-01-01</p> <p>Eddy pumping is considered to explain the disparity between geochemical estimates and biological measurements of exported production. Episodic nutrient injections from the ocean into the photic zone can be generated by eddy pumping, which biological measurements cannot sample accurately. The enhancement of production is studied with respect to a cyclonic eddy in the subtropical Pacific. A pump-and-probe fluorimeter generates continuous vertical profiles of primary productivity from which the contributions of photochemical and nonphotochemical processes to fluorescence are derived. A significant correlation is observed between the fluorescence measurements and radiocarbon measurements. The results indicate that eddy pumping has an important effect on phytoplankton production and that this production is near the maximum relative specific growth rates. Based on the production enhancement observed in this case, eddy pumping increases total primary production by only 20 percent and does not account for all enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45313','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45313"><span>Wyoming's forest products industry and timber harvest, 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Chelsea P. McIver; Colin B. Sorenson; Charles E. Keegan; Todd A. Morgan; Mike T. Thompson</p> <p>2014-01-01</p> <p>This report traces the flow of Wyoming’s 2010 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Wyoming’s primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45173','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45173"><span>Montana's forest products industry and timber harvest, 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Chelsea P. McIver; Colin B. Sorenson; Charles E. Keegan; Todd A. Morgan; Jim Menlove</p> <p>2013-01-01</p> <p>This report traces the flow of Montana’s 2009 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Montana’s primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/426','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/426"><span>On Tour... Primary Hardwood Processing, Products and Recycling Unit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Philip A. Araman; Daniel L. Schmoldt</p> <p>1995-01-01</p> <p>Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880042060&hterms=primary+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprimary%2Bdata','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880042060&hterms=primary+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprimary%2Bdata"><span>Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choudhury, B. J.</p> <p>1988-01-01</p> <p>Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=245349','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=245349"><span>MODIS EVI as a proxy for net primary production across precipitation regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Above ground net primary production (ANPP) is a measure of the rate of photosynthesis in an ecosystem, and is indicative of its biomass productivity. Prior studies have reported a relationship between ANPP and annual precipitation which converged across biomes in dry years. This deserves further s...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol20/pdf/CFR-2010-title40-vol20-sec98-180.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol20/pdf/CFR-2010-title40-vol20-sec98-180.pdf"><span>40 CFR 98.180 - Definition of the source category.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Lead Production § 98.180 Definition of the source category. The lead production source category consists of primary lead smelters and secondary lead smelters. A primary lead smelter is a facility engaged in the production of lead metal from lead sulfide ore...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B34A0343V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B34A0343V"><span>The effects of light, primary production, and temperature on bacterial production at Station ALOHA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viviani, D. A.; Church, M. J.</p> <p>2016-02-01</p> <p>In the open oceans, bacterial metabolism is responsible for a large fraction of the movement of reduced carbon through these ecosystems. While broad meta-analyses suggest that factors such as temperature or primary production control rates of bacterial production over large geographic scales, to date little is known about how these factors influence variability in bacterial production in the open sea. Here we present two years of measurements of 3H-leucine incorporation, a proxy for bacterial production, at the open ocean field site of the Hawaii Ocean Time-series, Station ALOHA (22° 45'N, 158° 00'W). By examining 3H-leucine incorporation over monthly, daily, and hourly scales, this work provides insight into processes controlling bacterial growth in this persistently oligotrophic habitat. Rates of 3H-leucine incorporation were consistently 60% greater when measured in the light than in the dark, highlighting the importance of sunlight in fueling bacterial metabolism in this ecosystem. Over diel time scales, rates of 3H-leucine incorporation were quasi-sinusoidal, with rates in the light higher near midday, while rates in the dark were greatest after sunset. Depth-integrated (0 -125 m) rates of 3H-leucine incorporation in both light and dark were more variable ( 5- and 4-fold, respectively) than coincident measurements of primary production ( 2-fold). On average, rates of bacterial production averaged 2 and 4% of primary production (in the dark and light, respectively). At near-monthly time scales, rates of 3H-leucine incorporation in both light and dark were significantly related to temperature. Our results suggest that in the subtropical oligotrophic Pacific, bacterial production appears decoupled from primary production as a result of seasonal-scale variations in temperature and light.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890006073','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890006073"><span>A multi-sensor remote sensing approach for measuring primary production from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gautier, Catherine</p> <p>1989-01-01</p> <p>It is proposed to develop a multi-sensor remote sensing method for computing marine primary productivity from space, based on the capability to measure the primary ocean variables which regulate photosynthesis. The three variables and the sensors which measure them are: (1) downwelling photosynthetically available irradiance, measured by the VISSR sensor on the GOES satellite, (2) sea-surface temperature from AVHRR on NOAA series satellites, and (3) chlorophyll-like pigment concentration from the Nimbus-7/CZCS sensor. These and other measured variables would be combined within empirical or analytical models to compute primary productivity. With this proposed capability of mapping primary productivity on a regional scale, we could begin realizing a more precise and accurate global assessment of its magnitude and variability. Applications would include supplementation and expansion on the horizontal scale of ship-acquired biological data, which is more accurate and which supplies the vertical components of the field, monitoring oceanic response to increased atmospheric carbon dioxide levels, correlation with observed sedimentation patterns and processes, and fisheries management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9918M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9918M"><span>Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayot, Nicolas; D'Ortenzio, Fabrizio; Uitz, Julia; Gentili, Bernard; Ras, Joséphine; Vellucci, Vincenzo; Golbol, Melek; Antoine, David; Claustre, Hervé</p> <p>2017-12-01</p> <p>Satellite ocean color observations revealed that unusually deep convection events in 2005, 2006, 2010, and 2013 led to an increased phytoplankton biomass during the spring bloom over a large area of the northwestern Mediterranean Sea (NWM). Here we investigate the effects of these events on the seasonal phytoplankton community structure, we quantify their influence on primary production, and we discuss the potential biogeochemical impact. For this purpose, we compiled in situ phytoplankton pigment data from five ship surveys performed in the NWM and from monthly cruises at a fixed station in the Ligurian Sea. We derived primary production rates from a light photosynthesis model applied to these in situ data. Our results confirm that the maximum phytoplankton biomass during the spring bloom is larger in years associated with intense deep convection events (+51%). During these enhanced spring blooms, the contribution of diatoms to total phytoplankton biomass increased (+33%), as well as the primary production rate (+115%). The occurrence of a highly productive bloom is also related to an increase in the phytoplankton bloom area (+155%) and in the relative contribution of diatoms to primary production (+63%). Therefore, assuming that deep convection in the NWM could be significantly weakened by future climate changes, substantial decreases in the spring production of organic carbon and of its export to deep waters can be expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-09-19/pdf/2013-22739.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-09-19/pdf/2013-22739.pdf"><span>78 FR 57630 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-09-19</p> <p>..., Primary Copper Smelters, Primary Zinc Smelters, Primary Lead Smelters, Primary Aluminum Reduction Plants...), Primary Copper Smelters (40 CFR Part 60, Subpart P), Primary Zinc Smelters (40 CFR Part 60, Subpart Q... zinc smelters, primary lead smelters, primary aluminum reduction plants, and ferroalloy production...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...129...33F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...129...33F"><span>Primary production in the tropical continental shelf seas bordering northern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furnas, Miles J.; Carpenter, Edward J.</p> <p>2016-10-01</p> <p>Pelagic primary production (14C uptake) was measured 81 times between 1990 and 2013 at sites spanning the broad, shallow Northern Australian Shelf (NAS; 120-145°E) which borders the Australian continent. The mean of all areal production measurements was 1048±109 mg C m-2 d-1 (mean±95% CI). Estimates of areal primary production were correlated with integral upper-euphotic zone chlorophyll stocks (above the 50% and 20% light penetration depths) accessible to ocean color remote sensing and total water column chlorophyll standing crop, but not surface (0-2 m) chlorophyll concentrations. While the NAS is subject to a well characterized monsoonal climate regime (austral summer-NW monsoon -wet: austral winter- SE monsoon -dry), most seasonal differences in means of regional-scale chlorophyll standing crop (11-33 mg Chl m-2 for 12 of 15 season-region combinations) and areal primary production (700-1850 mg C m- day-1 for 12 of 15 season-region combinations) fell within a 3-fold range. Apart from the shallow waters of the Torres Strait and northern Great Barrier Reef, picoplankton (<2 μm size fraction) dominated chlorophyll standing crop and primary production with regional means of picoplankton contributions ranging from 45 to >80%. While the range of our post-1990 areal production estimates overlaps the range of production estimates made in NAS waters during 1960-62, the mean of post-1990 estimates is over 2-fold greater. We regard the difference to be due to improvements in production measurement techniques, particularly regarding the reduction of potential metal toxicity and incubations in more realistic light regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29656612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29656612"><span>Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mogollón, Rodrigo; R Calil, Paulo H</p> <p>2018-07-01</p> <p>It has been hypothesized that global warming will strengthen upwelling-favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land-sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical-biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy- and wind-driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m -2 year -1 ), 10% less limited by nutrients and 15% less efficient due to eddy-driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation. © 2018 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090073&hterms=microbiota&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmicrobiota','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090073&hterms=microbiota&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmicrobiota"><span>Primary production of the cryptoendolithic microbiota from the Antarctic Desert</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vestal, J. R.; Friedmann, E. I. (Principal Investigator)</p> <p>1988-01-01</p> <p>Primary production in the Antarctic cryptoendolithic microbiota can be determined from biomass and photosynthetic 14CO2 incorporation measurements. Even though good nanoclimate data are available, it is difficult to determine the amount of time when abiotic conditions permit metabolism. Making appropriate assumptions concerning the metabolism of the cryptoendolithic microbiota during periods of warmth, light and moisture, the primary production of the biota was calculated to be on the order of 0.108 to 4.41 mgC/m2/yr, with a carbon turnover time from 576 to 23,520 years. These production values are the lowest found on planet Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880040789&hterms=primary+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprimary%2Bdata','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880040789&hterms=primary+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprimary%2Bdata"><span>Estimates of primary productivity over the Thar Desert based upon Nimbus-7 37 GHz data - 1979-1985</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choudhury, B. J.</p> <p>1987-01-01</p> <p>An empirical relationship has been determined between the difference of vertically and horizontally polarized brightness temperatures noted at the 37 GHz frequency of the Nimbus-7 SMMR and primary productivity over hot arid and semiarid regions of Africa and Australia. This empirical relationship is applied to estimate the primary productivity over the Thar Desert between 1979 and 1985, giving an average value of 0.271 kg/sq m per yr. The spatial variability of the productivity values is found to be quite significant, with a standard deviation about the mean of 0.08 kg/sq m per yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ECSS...90..142V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ECSS...90..142V"><span>Hot-spots of primary productivity: An Alternative interpretation to Conventional upwelling models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Ruth, Paul D.; Ganf, George G.; Ward, Tim M.</p> <p>2010-12-01</p> <p>The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports a commercial fishery, quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from <100 mg C m -2 day -1 to > 500 mg C m -2 day -1. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. This study examines spatial variations in primary productivity in the EGAB during the upwelling seasons of 2005 and 2006. Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (<800 mg C m -2 day -1) in offshore central and western regions of the EGAB. High productivities (1600-3900 mg C m -2 day -1) were restricted to hotspots in the east that were influenced by the upwelled water mass. There was a strong correlation between the depth of the euphotic zone and the depth of the mixed layer that suggested that ˜50% of the euphotic zone lay below the mixed layer depth. As a result, high rates of primary productivity did not require upwelled water to reach the surface. A significant proportion of total productivity in the euphotic zone (57% in 2005 and 65% in 2006) occurred in the upwelled water mass below the surface mixed layer. This result has implications for daily integral productivities modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro-nutrient concentrations could not be used to explain the difference in the low and high productivities (silica > 1 μmol L -1, nitrate/nitrite > 0.4 μmol L -1, phosphate > 0.1 μmol L -1). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humboldt currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27239','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27239"><span>Evaluation of MODIS NPP and GPP products across multiple biomes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl</p> <p>2006-01-01</p> <p>Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/4559','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/4559"><span>Biomass distribution and productivity of Pinus edulis-Juniperus monosperma woodlands of north-central Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charles C. Grier; Katherine J. Elliott; Deborah G. McCullough</p> <p>1992-01-01</p> <p>Above-ground biomass distribution, leaf area, above-ground net primary productivity and foliage characteristics were determined for 90- and 350-year-old Pinus edulis-Juniperus monosperma ecosystems on the Colorado Plateau of northern Arizona. These ecosystems have low biomass, leaf area and primary productivity compared with forests in wetter...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39324','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39324"><span>MODIS-derived terrestrial primary production [chapter 28</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani</p> <p>2011-01-01</p> <p>Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7611','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7611"><span>Idaho's Forest Products Industry: A Descriptive Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Todd A. Morgan; Charles E. Keegan; Timothy P. Spoelma; Thale Dillon; A. Lorin Hearst; Francis G. Wagner; Larry T. DeBlander</p> <p>2004-01-01</p> <p>This report provides a description of the structure, capacity, and condition of Idaho's primary forest products industry; traces the flow of Idaho's 2001 timber harvest through the primary sectors; and quantifies volumes and uses of wood fiber. The economic contribution of the forest products industry to the State and historical industry changes are discussed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31105','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31105"><span>Forest products harvested in Hawaii-1969</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert E. Burgan; Jr. Wesley H.C. Wong</p> <p>1971-01-01</p> <p>Primary forest products harvested in Hawaii in 1969 were valued at $331,000-a $3,000 drop from the value of the harvest surveyed in 1967. Sawlogs and veneer logs were the most important products. Koa and robusta eucalyptus were the primary sawlog species. Albizia and robusta eucalyptus provided most of the veneer logs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-08-27/pdf/2013-20833.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-08-27/pdf/2013-20833.pdf"><span>78 FR 52897 - Submission for OMB Review; Comment Request</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-08-27</p> <p>... Secretary of Agriculture. The primary objective of the NSIIC is to assist U.S. sheep and goat industries by strengthening and enhancing the production and marketing of sheep, goats, and their products in the United... or goat producers in the United States and (2) have the primary interest of sheep or goat production...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=347955','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=347955"><span>Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010-2016, Oklahoma, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>To accurately estimate carbon cycling and food production, it is essential to understand how gross primary production (GPP) of irrigated and non-irrigated grasslands and croplands respond to drought and pluvial events. Oklahoma experienced extreme drought in 2011 and record-breaking precipitation in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880010441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880010441"><span>Comparison of simulation modeling and satellite techniques for monitoring ecological processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Box, Elgene O.</p> <p>1988-01-01</p> <p>In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033750','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033750"><span>Do non-native plant species affect the shape of productivity-diversity relationships?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.</p> <p>2008-01-01</p> <p>The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=373537','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=373537"><span>Seasonal Bacterial Production in a Dimictic Lake as Measured by Increases in Cell Numbers and Thymidine Incorporation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lovell, Charles R.; Konopka, Allan</p> <p>1985-01-01</p> <p>Rates of primary and bacterial production in Little Crooked Lake were calculated from the rates of incorporation of H14CO3− and [methyl-3H]thymidine, respectively. Growth rates of bacteria in diluted natural samples were determined for epilimnetic and metalimnetic bacterial populations during the summers of 1982 and 1983. Exponential growth was observed in these diluted samples, with increases in cell numbers of 30 to 250%. No lag was observed in bacterial growth in 14 of 16 experiments. Correlation of bacterial growth rates to corresponding rates of thymidine incorporation by natural samples produced a conversion factor of 2.2 × 1018 cells produced per mole of thymidine incorporated. The mass of the average bacterial cell in the lake was 1.40 × 10−14 ± 0.05 × 10−14 g of C cell−1. Doubling times of natural bacteria calculated from thymidine incorporation rates and in situ cell numbers ranged from 0.35 to 12.00 days (median, 1.50 days). Bacterial production amounted to 66.7 g of C m−2 from April through September, accounting for 29.4% of total (primary plus bacterial) production during this period. The vertical and seasonal distribution of bacterial production in Little Crooked Lake was strongly influenced by the distribution of primary production. From April through September 1983, the depth of maximum bacterial production rates in the water column was related to the depth of high rates of primary production. On a seasonal basis, primary production increased steadily from May through September, and bacterial production increased from May through August and then decreased in September. PMID:16346743</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4299185','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4299185"><span>Climate change decouples oceanic primary and export productivity and organic carbon burial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lopes, Cristina; Kucera, Michal; Mix, Alan C.</p> <p>2015-01-01</p> <p>Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity. PMID:25453073</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14587321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14587321"><span>[Distribution features of chlorophyll a and primary productivity in high frequency area of red tide in East China Sea during spring].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Weihua; Huo, Wenyi; Yuan, Xiangcheng; Yin, Kedong</p> <p>2003-07-01</p> <p>The distributions of chlorophyll a and primary productivity were determined during April to May 2002 in the East China Sea. The results showed that the average concentration of chlorophyll a was 1.086 mg.m-3 at surface layer, and that nano- and pico-phytoplankton (< 20 microns) dominated the phytoplankton biomass in this sea region during Spring (up to 64% of total chlorophyll a content). Ultra-phytoplankton (< 5 microns) consisted 27% of total phytoplankton biomass. Nutrients and feeding pressure of zooplankton affected the distribution of chlorophyll a and its size-fractionation. The average primary productivity was 10.091 mg.m-3.h-1, while that of red tide tracking stations R-03, RL-01 and RG-01 was 399.984 mg.m-3.h-1. Light and nutrients were the main factors affecting the distributions of chlorophyll a and primary productivity. The station DC-11 had a high concentration of phytoplankton biomass. The surface layer concentration of chlorophyll a and primary productivity were up to 9,082 mg.m-3 and 128,79 mg.m-3.h-1, respectively, but the color of the seawater was normal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.4487L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.4487L"><span>Potential new production in two upwelling regions of the western Arabian Sea: Estimation and comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Xiaomei; Zhan, Haigang; Du, Yan</p> <p>2016-07-01</p> <p>Using satellite-derived and in situ data, the wind-driven potential new production (nitrate supply) for the 300 km wide coastal band in two upwelling regions of the western Arabian Sea (AS) during the southwest monsoon is estimated. The upward nitrate flux to the euphotic zone is generally based on the physical processes of coastal transport (Ekman transport and geostrophic transport) and offshore Ekman pumping. The coastal geostrophic current in the western AS influences the upwelling intensity and latitudinal distributions of nitrate supply. The Oman and Somalia upwelling regions have similar level of potential new production (nitrate supply) during the summer monsoon, while the satellite estimates of primary production off Oman are 2 times greater than those off Somalia. The much higher potential f-ratio in the Somalia upwelling region indicates that the primary production could be limited by availability of other macronutrients (e.g., silicate). The correlation analysis of the primary production and the aerosol optical thickness shows that the Oman upwelling region displays a stronger coupling between the atmospheric deposition and the phytoplankton abundance. The high summertime dust levels in the atmosphere are suggested to contribute to the high primary production in the Oman upwelling region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1058125','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1058125"><span>Sequential Formation and Accumulation of Primary and Secondary Shunt Metabolic Products in Claviceps purpurea1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taber, W. A.</p> <p>1964-01-01</p> <p>The fungus Claviceps purpurea was grown on a rich and a limited nutrient medium such that alkaloid was produced after 8 days on the former medium and after 3 days on the latter medium. Cultures grown on both were assayed for the primary shunt metabolic products, polyols, trehalose, lipids, ribonucleic acid, and polyphosphate, and the secondary metabolic product, ergot alkaloid. Although differing considerably in composition, the two media nevertheless allowed formation of both primary and secondary shunt products. In both instances, however, the secondary product, ergot alkaloid, did not form until formation and accumulation of the primary products had ceased and the mycelial content of these products was actually decreasing. In both instances, alkaloid formation took place after the total dry weight of the mycelium had begun to decrease but while the dry weight of the residual, or structural portion of the mycelium, was either constant or increasing. The dilution of labeling in mannitol isolated from mycelia grown on rich medium containing 1,6-C14-labeled mannitol was 2.2. Thus, about half of the mycelial mannitol was actually mannitol which had been taken up directly from the medium. PMID:14199021</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850002272','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850002272"><span>The Marine Resources Experiment Program (MAREX)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1982-01-01</p> <p>The Satellite Ocean Color Science Working Group was established to consider the scientific utility of repeated satellite measurements of ocean color, especially for measuring global ocean chlorophyll and for studying the fate of global primary productivity in the sea. Results of the group's deliberations are presented. The scientific requirements are given for ocean color data from a CZCS follow on sensor in order to address global primary productivity, fishery, and carbon storage problems. Some specific experiments, called the marine resource experiment and designed to determine critical nutrient fluxes, photosynthetic rates, and primary productivity and biomass, are outlined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17289995','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17289995"><span>Small phytoplankton and carbon export from the surface ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richardson, Tammi L; Jackson, George A</p> <p>2007-02-09</p> <p>Autotrophic picoplankton dominate primary production over large oceanic regions but are believed to contribute relatively little to carbon export from surface layers. Using analyses of data from the equatorial Pacific Ocean and Arabian Sea, we show that the relative direct and indirect contribution of picoplankton to export is proportional to their total net primary production, despite their small size. We suggest that all primary producers, not just the large cells, can contribute to export from the surface layer of the ocean at rates proportional to their production rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25960765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25960765"><span>Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ardö, Jonas</p> <p>2015-12-01</p> <p>Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OSJ...tmp...23J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OSJ...tmp...23J"><span>Recent Primary Production and Small Phytoplankton Contribution in the Yellow Sea during the Summer in 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jang, Hyo Keun; Kang, Jae Jung; Lee, Jae Hyung; Kim, Myungjoon; Ahn, So Hyun; Jeong, Jin-Yong; Yun, Mi Sun; Han, In-Seong; Lee, Sang Heon</p> <p>2018-05-01</p> <p>The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (< 2 μm) phytoplankton contribution to the total primary production in the Yellow Sea during August, 2016. In this study, we found relatively lower chlorophyll a concentrations in the water column than those previously reported in the central waters of the Yellow Sea. Moreover, the overall contribution of small phytoplankton (53.1%) to the total chlorophyll a concentration was considerably higher in this study than that (10.7%) observed previously. Based on the N/P ratio (67.6 ± 36.6) observed in this study, which is significantly higher than the Redfield ratio (16), we believe that phytoplankton experienced P-limiting conditions during the study period. The average daily carbon uptake rate of total phytoplankton in this study was 291.1 mg C m-2 d-1 (± 165.0 mg C m-2 d-1) and the rate of small phytoplankton was 205.7 mg C m-2 d-1 (± 116.0 mg C m-2 d-1) which is 71.9% (± 8.8%) of the total daily carbon uptake rate. This contribution of small phytoplankton observed in this study appears to be higher than that reported previously. Our recent measured primary production is approximately 50% lower than the previous values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27966534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27966534"><span>Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campioli, M; Malhi, Y; Vicca, S; Luyssaert, S; Papale, D; Peñuelas, J; Reichstein, M; Migliavacca, M; Arain, M A; Janssens, I A</p> <p>2016-12-14</p> <p>The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO 2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...713717C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...713717C"><span>Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.</p> <p>2016-12-01</p> <p>The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5171944','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5171944"><span>Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.</p> <p>2016-01-01</p> <p>The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM. PMID:27966534</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10856212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10856212"><span>Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luz, B; Barkan, E</p> <p>2000-06-16</p> <p>Plant production in the sea is a primary mechanism of global oxygen formation and carbon fixation. For this reason, and also because the ocean is a major sink for fossil fuel carbon dioxide, much attention has been given to estimating marine primary production. Here, we describe an approach for estimating production of photosynthetic oxygen, based on the isotopic composition of dissolved oxygen of seawater. This method allows the estimation of integrated oceanic productivity on a time scale of weeks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10191021','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10191021"><span>Estimated inventory of radionuclides in former Soviet Union naval reactors dumped in the Kara Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mount, M.E.; Sheaffer, M.K.; Abbott, D.T.</p> <p>1993-07-01</p> <p>Radionuclide inventories have been estimated for the reactor cores, reactor components, and primary system corrosion products in the former Soviet Union naval reactors dumped at the Abrosimov Inlet, Tsivolka Inlet, Stepovoy Inlet, Techeniye Inlet, and Novaya Zemlya Depression sites in the Kara Sea between 1965 and 1988. For the time of disposal, the inventories are estimated at 69 to 111 kCi of actinides plus daughters and 3,053 to 7,472 kCi of fission products in the reactor cores, 917 to 1,127 kCi of activation products in the reactor components, and 1.4 to 1.6 kCi of activation products in the primary systemmore » corrosion products. At the present time, the inventories are estimated to have decreased to 23 to 38 kCi of actinides plus daughters and 674 to 708 kCi of fission products in the reactor cores, 124 to 126 kCi of activation products in the reactor components, and 0.16 to 0.17 kCi of activation products in the primary system corrosion products. Twenty years from now, the inventories are projected to be 11 to 18 kCi of actinides plus daughters and 415 to 437 kCi of fission products in the reactor cores, 63.5 to 64 kCi of activation products in the reactor components, and 0.014 to 0.015 kCi of activation products in the primary system corrosion products. All actinide activities are estimated to be within a factor of two.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=351440','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=351440"><span>Responses of gross primary production of grasslands and croplands to drought and pluvial events and irrigation during 2010-2016, Oklahoma, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>To accurately estimate carbon cycling and food production, it is essential to understand how gross primary production (GPP) of irrigated and non-irrigated grasslands and croplands respond to drought and pluvial events. Oklahoma experienced extreme drought in 2011 and record-breaking precipitation in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31731','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31731"><span>Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey</p> <p>2008-01-01</p> <p>Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37129','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37129"><span>Estimation of livestock appropriation of net primary productivity in Texas Drylands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell</p> <p>2009-01-01</p> <p>The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34890','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34890"><span>Iowa timber industry--an assessment of timber product output and use, 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David E. Haugen; Dennis D. Michel</p> <p>2010-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in Iowa in 2005 and compares those findings with earlier surveys. Production and receipts of industrial roundwood are reported by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by Iowa's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/11854','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/11854"><span>Michigan timber industry--an assessment of timber product output and use, 1996</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David E. Haugen; John Pilon</p> <p>2002-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in Michigan in 1996 and compares those findings with earlier surveys, Reports production and receipts of industrial roundwood by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by Michigan''s primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10441','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10441"><span>Nebraska timber industry--an assessment of timber product output and use, 1993.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald L. Hackett; Dennis M. Adams</p> <p>1996-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in Nebraska in 1993 and compares those findings with earlier surveys. Reports production and receipts of industrial roundwood by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by Nebraska's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/11836','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/11836"><span>Michigan timber industry--an assessment of timber product output and use, 1998.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David E. Haugen; Anthony Weatherspoon</p> <p>2003-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in Michigan in 1998 and compares those findings with earlier surveys. Production and receipts of industrial roundwood are reported by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by Michigan''s primary wood-using industry.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10428','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10428"><span>Michigan timber industry--an assessment of timber product output and use, 1992.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Dennis M. May; John Pilon</p> <p>1995-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in Michigan in 1992 and compares them with findings from earlier surveys. Production and receipts of industrial roundwood are reported by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by Michigan's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10440','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10440"><span>Kansas timber industry--an assessment of timber product output and use, 1993.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald L. Hackett; John K. Strickler</p> <p>1996-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in Kansas in 1993 and compares those findings with earlier surveys. Reports production and receipts of industrial roundwood by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by Kansas's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JMS....17..245S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JMS....17..245S"><span>Primary productivity of the Palmer Long Term Ecological Research Area and the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, R. C.; Baker, K. S.; Byers, M. L.; Stammerjohn, S. E.</p> <p>1998-11-01</p> <p>A major objective of the Palmer Long Term Ecological Research (Palmer LTER) project is to obtain a comprehensive understanding of the various components of the Antarctic marine ecosystem. Phytoplankton production plays a key role in this so-called high nutrient, low chlorophyll environment, and factors that regulate production include those that control cell growth (light, temperature, and nutrients) and those that control cell accumulation rate and hence population growth (water column stability, grazing, and sinking). Sea ice mediates several of these factors and frequently conditions the water column for a spring bloom which is characterized by a pulse of production restricted in both time and space. This study models the spatial and temporal variability of primary production within the Palmer LTER area west of the Antarctic Peninsula and discusses this production in the context of historical data for the Southern Ocean. Primary production for the Southern Ocean and the Palmer LTER area have been computed using both light-pigment production models [Smith, R.C., Bidigare, R.R., Prézelin, B.B., Baker, K.S., Brooks, J.M., 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. (96), 575-591; Bidigare, R.R., Smith, R.C., Baker, K.S., Marra, J., 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochem. Cycles (1), 171-186; Morel, A., Berthon, J.F., 1989. Surface pigments, algal biomass profiles and potential production of the euphotic layer—relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. (34), 1545-1562] and an ice edge production model [Nelson, D.M., Smith, W.O., 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge: II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. (33), 1389-1412; Wilson, D.L., Smith, W.O., Nelson, D.M., 1986. Phytoplankton bloom dynamics of the Western Ross Sea ice edge: I. primary productivity and species-specific production. Deep-Sea Res., 33, 1375-1387; Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience (36), 251-257]. Chlorophyll concentrations, total photosynthetically available radiation (PAR) and sea ice concentrations were derived from satellite data. These same parameters, in addition to hydrodynamic conditions, have also been determined from shipboard and Palmer Station observations during the LTER program. Model results are compared, sensitivity studies evaluated, and productivity of the Palmer LTER region is discussed in terms of its space time distribution, seasonal and interannual variability, and overall contribution to the marine ecology of the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec145-72.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec145-72.pdf"><span>9 CFR 145.72 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Egg-Type Chicken Breeding Flocks and Products § 145.72 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec145-82.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec145-82.pdf"><span>9 CFR 145.82 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Meat-Type Chicken Breeding Flocks and Products § 145.82 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec145-72.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec145-72.pdf"><span>9 CFR 145.72 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Egg-Type Chicken Breeding Flocks and Products § 145.72 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec145-82.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec145-82.pdf"><span>9 CFR 145.82 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Meat-Type Chicken Breeding Flocks and Products § 145.82 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec145-82.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec145-82.pdf"><span>9 CFR 145.82 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Meat-Type Chicken Breeding Flocks and Products § 145.82 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec145-82.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec145-82.pdf"><span>9 CFR 145.82 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Meat-Type Chicken Breeding Flocks and Products § 145.82 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec145-82.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec145-82.pdf"><span>9 CFR 145.82 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Meat-Type Chicken Breeding Flocks and Products § 145.82 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec145-72.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec145-72.pdf"><span>9 CFR 145.72 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Egg-Type Chicken Breeding Flocks and Products § 145.72 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec145-72.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec145-72.pdf"><span>9 CFR 145.72 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Egg-Type Chicken Breeding Flocks and Products § 145.72 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec145-72.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec145-72.pdf"><span>9 CFR 145.72 - Participation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY Special Provisions for Primary Egg-Type Chicken Breeding Flocks and Products § 145.72 Participation. Participating flocks of primary...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3845S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3845S"><span>A new bio-optical model to estimate phytoplankton primary production: An application in the eastern Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stefanì, Chiara; Bonamano, Simone; Melchiorri, Cristiano; Piermattei, Viviana; Fani, Fabiola; Lazzara, Luigi; Marcelli, Marco</p> <p>2015-04-01</p> <p>The estimation of phytoplankton primary production provides basic input for the quantification of carbon flux in the ocean because of the strong relationship between available photosynthetic energy at the ocean surface and energy storage by algal photosynthesis. We used a new version of PhytoVFP (Variable Fluorescence Phytoplankton Production) bio-optical model to calculate phytoplankton primary production (PP) in the euphotic zone. PhytoVFP is classified as a Wavelength- and Depth-resolved (WRDR) model and is based on the implementation of photosynthetic efficiency (Fv / Fmax), measured in-situ by the PrimProd probe. An innovation of the model is the reproduction of the daily photoacclimation process by varying photosynthetic parameters (Ek, alfa and Pbmax ) along the water column as a function of stratification. The PhytoVFP model is structured into three main modules: (1) "PAR estimation ";- (2) "Photo-acclimation of marine phytoplankton"; - (3) "Phytoplankton primary production estimation". The performance of the PhytoVFP model was evaluated using PAR and 14C primary production measures collected during the SAMCA3 and SAMCA4 oceanographic cruises. The comparison between the measured and calculated radiation showed a good correlation, both in the surface and along the water column (R2 = 0.8992 in the presence, and R2 = 0.8747 in the absence, of clouds) Sensitivity tests, carried out on phie (photosynthetic quantum yield) and beta (photoinhibition parameter), allowed us to identify the best model parametrization which minimized the MAE (Mean Absolute Error). The values assigned to these parameters allowed to have a good correlation between the measured and estimated primary production values (R² = 0.808923). The results of PhytoVFP model have been also compared with its older version and the Morel (1991) model showing that the MAE of the new version is lower than the other models. The PhytoVFP model was applied on Primprod data collected during MedGOOS12 cruise in order to analyse the vertical distribution of phytoplankton primary production in the eastern Mediterranean sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3543332','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3543332"><span>Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23083531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23083531"><span>Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree</p> <p>2012-10-19</p> <p>Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032115','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032115"><span>Habitat connectivity and ecosystem productivity: implications from a simple model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, J.E.</p> <p>2007-01-01</p> <p>The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25631737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25631737"><span>Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang</p> <p>2017-12-01</p> <p>The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2  day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2  day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002DSRII..49.1787S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002DSRII..49.1787S"><span>Primary production processes in ice-free waters of the Ross Sea (Antarctica) during the austral summer 1996</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saggiomo, Vincenzo; Catalano, Giulio; Mangoni, Olga; Budillon, Giorgio; Carrada, Gian Carlo</p> <p></p> <p>During austral summer 1996 (January 11-February 10) oceanographic studies were conducted in the ice-free waters of the Ross Sea within the framework of the Italian National Programme for Antarctic Research (PNRA). Thirty-eight hydrological stations within 72.5°-78.0°S and 164.5°E-175.0°W were sampled. Size-fractionated photosynthetic pigments were measured at all stations, primary production was evaluated at 24 stations, and P vs. E measurements were carried out at 3 or 4 depths at 18 stations. In the open Ross Sea, integrated chlorophyll a (Chl a) concentrations were between 15 and 102 mg m -2 in the 0-100 m layer, and primary production was between 124 and 638 mgC m -2 d -1. Offshore waters were completely ice-free and the water column was only slightly stratified. However, phytoplankton biomass and production were relatively high wherever the Upper Mixed Layer (UML) was <30 m deep. Hydrographic characters and phytoplankton distribution varied remarkably along the coastal waters of Terra Nova Bay; during a late summer bloom, integrated primary production ranged between 620 and 2411 mgC m -2 d -1. The dimensional composition of phytoplankton communities and the Redfield ratio indicate that the Ross Sea was dominated by diatoms. The photosynthetic parameters measured suggest the importance of the depth and dynamics of the UML, where the integrated mean irradiance always exceeded the photosaturation index ( Ek). However, occasionally different PmaxB and Ek were recorded even in apparently well-mixed water columns. The presence of turbulent cells in different layers of the photic zone or a weak wind-driven vertical mixing, which might induce different photosynthetic indexes, can thus be hypothesized. Simulated in situ primary production was well correlated with production calculated with the photosynthetic coefficients obtained from the P vs. E experiments. Our data could be used to construct models aimed at assessing primary production in the area studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3776764','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3776764"><span>Community Level Offset of Rain Use- and Transpiration Efficiency for a Heavily Grazed Ecosystem in Inner Mongolia Grassland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gao, Ying Z.; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X.; Yang, Hai J.</p> <p>2013-01-01</p> <p>Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and “real” WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems. PMID:24058632</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24058632','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24058632"><span>Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J</p> <p>2013-01-01</p> <p>Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10442','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10442"><span>Plains States timber industry--an assessment of timber product output and use, 1993.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Dennis M. May</p> <p>1996-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in the Plains States (Kansas, Nebraska, North Dakota, South Dakota) in 1993 and compares findings with earlier surveys. Production and receipts of industrial roundwood by product, species, and state. The quantity, type, and disposition of wood and bark residues generated by the primary wood-using industry...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10439','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10439"><span>South Dakota timber industry--an assessment of timber product output and use, 1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald Hackett; Raymond A. Sowers</p> <p>1996-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in South Dakota in 1993 and compares those findings with earlier surveys. Reports production and receipts of industrial roundwood by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by South Dakota's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13453','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13453"><span>North Dakota timber industry--an assessment of timber product output and use, 2003.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David E. Haugen; Robert A. Harsel</p> <p>2005-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in North Dakota in 2003 and compares those findings with earlier surveys. Production and receipts of industrial roundwood are reported by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by North Dakota's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10829','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10829"><span>North Dakota timber industry-an assessment of timber product output and use, 1998.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David E. Haugen; Robert A. Harsel</p> <p>2001-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in North Dakota in 1998 and compares those findings with earlier surveys. Reports production and receipts of industrial roundwood by product, species, and county. Also reports the quantity, type and disposition of wood and bark residues generated by North Dakota's primary wood-using industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10427','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10427"><span>North Dakota timber industry--an assessment of timber product output and use, 1993.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Dennis M. May; Robert Harsel</p> <p>1995-01-01</p> <p>Reports findings of a survey of all primary wood-using mills in North Dakota in 1993 and compares those findings with earlier surveys. Production and receipts of industrial roundwood are reported by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by North Dakota's primary wood-using industry....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JMS....82...21C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JMS....82...21C"><span>Assessing the role of benthic filter feeders on phytoplankton production in a shellfish farming site: Mont Saint Michel Bay, France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cugier, Philippe; Struski, Caroline; Blanchard, Michel; Mazurié, Joseph; Pouvreau, Stéphane; Olivier, Frédéric; Trigui, Jihane R.; Thiébaut, Eric</p> <p>2010-07-01</p> <p>The macrobenthic community of Mont Saint Michel Bay (English Channel, France) is mainly dominated by filter feeders, including cultivated species (oysters and mussels). An ecological model of the bay was developed, coupling a 2D hydro-sedimentary model and two biological models for primary production and filter-feeder filtration. The filter-feeder model includes three cultivated species ( Mytilus edulis, Crassostrea gigas and Ostrea edulis), one invasive species ( Crepidula fornicata) and eight wild native species ( Abra alba, Cerastoderma edule, Glycymeris glycymeris, Lanice conchilega, Macoma balthica, Paphia rhomboides, Sabellaria alveolata, andSpisula ovalis). For cultivated and invasive species, the production of biodeposits was computed to assess their role in restimulating primary production. Chlorophyll a concentrations appeared to be strongly controlled by the filter feeders. When the pressure of each benthic compartment on phytoplankton was estimated separately wild species and the invasive slipper limpet C.fornicata were shown to be key elements in the control of primary production. Conversely, the role of cultivated species, particularly oysters, was weaker. Feedback due to the mineralization of biodeposits also appears to be crucial to fully evaluate the role of filter feeders in primary production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990ECSS...30...35R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990ECSS...30...35R"><span>Primary productivity of angiosperm and macroalgae dominated habitats in a New England Salt Marsh: a Comparative analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roman, C. T.; Able, K. W.; Lazzari, M. A.; Heck, K. L.</p> <p>1990-01-01</p> <p>Net primary productivity estimates were made for the major macrophyte dominated habitats of the Nauset Marsh system, Cape Cod, Massachusetts. Above-ground primary productivity of short form Spartina alterniflora, the dominant habitat of the system, was 664 g m -2 y -1. Productivity of the other dominant angiosperm ( Zostera marina) was estimated to range from 444-987 g m -2 y -1. The marsh creekbank habitat was dominated by an intertidal zone of fucoid algae ( Ascophyllum nodosum ecad. scorpioides, 1179 g m -2 y -1; Fucus vesiculosus, 426 g m -2 y -1), mixed intertidal filamentous algae (91 g m -2 y -1), and a subtidal zone of assorted macroalgae (68 g m -2 y -1). Intertidal mudflats were dominated by Cladophora gracilis, with net production ranging from 59-637 g m -2 y -1. These angiosperm and macrophyte and macrophyte dominated habitats produce over 3 × 10 6 kg y -1 of biomass (1·2 × 10 6 kg carbon y -1). Twenty-eight per cent (28%) of this carbon production is derived from the Zostera and macroalgae habitats. Although S. alterniflora is considered the major macrophyte primary producer in Nauset Marsh and other north temperate salt marshes, it is concluded that other habitats also contribute significantly to total system carbon production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/0272-7714(90)90075-3','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/0272-7714(90)90075-3"><span>Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: a comparative analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roman, C.T.; Able, K.W.; Lazzari, M.A.; Heck, K.L.</p> <p>1990-01-01</p> <p>Net primary productivity estimates were made for the major macrophyte dominated habitats of the Nauset Marsh system, Cape Cod, Massachusetts. Above-ground primary productivity of short form Spartina alterniflora, the dominant habitat of the system, was 664 g m-2 y-1. Productivity of the other dominant angiosperm (Zostera marina) was estimated to range from 444?987 g m-2 y-1. The marsh creekbank habitat was dominated by an intertidal zone of fucoid algae (Ascophyllum nodosum ecad. scorpioides, 1179 g m-2 y-1; Fucus vesiculosus, 426 g m-2 y-1), mixed intertidal filamentous algae (91 g m-2 y-1), and a subtidal zone of assorted macroalgae (68 g m-2 y-1). Intertidal mudflats were dominated by Cladophora gracilis, with net production ranging from 59?637 g m-2 y-1. These angiosperm and macrophyte and macrophyte dominated habitats produce over 3 ? 106 kg y-1 of biomass (1?2 ? 106 kg carbon y-1). Twenty-eight per cent (28%) of this carbon production is derived from the Zostera and macroalgae habitats. Although S. alterniflora is considered the major macrophyte primary producer in Nauset Marsh and other north temperate salt marshes, it is concluded that other habitats also contribute significantly to total system carbon production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS31B1731J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS31B1731J"><span>Potential Improvements to Remote Primary Productivity Estimation in the Southern California Current System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacox, M.; Edwards, C. A.; Kahru, M.; Rudnick, D. L.; Kudela, R. M.</p> <p>2012-12-01</p> <p>A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. The ratio of integrated primary productivity to surface chlorophyll correlates strongly to surface chlorophyll concentration (chl0). However, chl0 does not correlate to chlorophyll-specific productivity, and appears to be a proxy for vertical phytoplankton distribution rather than phytoplankton physiology. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by empirical parameterization of photosynthetic efficiency in the Vertically Generalized Production Model. Much larger improvements are enabled by improving accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model, substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 and total log10 root mean squared difference, while inclusion of in situ chlorophyll and light profiles improves these metrics significantly. Autonomous underwater gliders, capable of measuring subsurface fluorescence on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for improved PP estimation in coastal upwelling systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=311750&keyword=water&subject=water%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=12/22/2011&dateendpublishedpresented=12/22/2016&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=311750&keyword=water&subject=water%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=12/22/2011&dateendpublishedpresented=12/22/2016&sortby=pubdateyear"><span>A modeling study examining the impact of nutrient boundaries ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17853427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17853427"><span>Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gieseler, Henning; Kramer, Tony; Pikal, Michael J</p> <p>2007-12-01</p> <p>This report provides, for the first time, a summary of experiments using SMART Freeze Dryer technology during a 9 month testing period. A minimum ice sublimation area of about 300 cm(2) for the laboratory freeze dryer, with a chamber volume 107.5 L, was found consistent with data obtained during previous experiments with a smaller freeze dryer (52 L). Good reproducibility was found for cycle design with different type of excipients, formulations, and vials used. SMART primary drying end point estimates were accurate in the majority of the experiments, but showed an over prediction of primary cycle time when the product did not fully achieve steady state conditions before the first MTM measurement was performed. Product resistance data for 5% sucrose mixtures at varying fill depths were very reproducible. Product temperature determined by SMART was typically in good agreement with thermocouple data through about 50% of primary drying time, with significant deviations occurring near the end of primary drying, as expected, but showing a bias much earlier in primary drying for high solid content formulations (16.6% Pfizer product) and polyvinylpyrrolidone (40 kDa) likely due to water "re-adsorption" by the amorphous product during the MTM test. (c) 2007 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28382683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28382683"><span>Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin</p> <p>2017-08-01</p> <p>In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26602334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26602334"><span>Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marotta, H; Enrich-Prast, A</p> <p>2015-11-01</p> <p>Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5029/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5029/"><span>Primary Productivity in Meduxnekeag River, Maine, 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Goldstein, Robert M.; Schalk, Charles W.; Kempf, Joshua P.</p> <p>2009-01-01</p> <p>During August and September 2005, dissolved oxygen, temperature, pH, specific conductance, streamflow, and light intensity (LI) were determined continuously at six sites defining five reaches on Meduxnekeag River above and below Houlton, Maine. These data were collected as input for a dual-station whole-stream metabolism model to evaluate primary productivity in the river above and below Houlton. The river receives nutrients and organic matter from tributaries and the Houlton wastewater treatment plant (WWTP). Model output estimated gross and net primary productivity for each reach. Gross primary productivity (GPP) varied in each reach but was similar and positive among the reaches. GPP was correlated to LI in the four reaches above the WWTP but not in the reach below. Net primary productivity (NPP) decreased in each successive downstream reach and was negative in the lowest two reaches. NPP was weakly related to LI in the upper two reaches and either not correlated or negatively correlated in the lower three reaches. Relations among GPP, NPP, and LI indicate that the system is heterotrophic in the downstream reaches. The almost linear decrease in NPP (the increase in metabolism and respiration) indicates a cumulative effect of inputs of nutrients and organic matter from tributaries that drain agricultural land, the town of Houlton, and the discharges from the WWTP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRG..116.2013B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRG..116.2013B"><span>Climate-mediated nitrogen and carbon dynamics in a tropical watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballantyne, A. P.; Baker, P. A.; Fritz, S. C.; Poulter, B.</p> <p>2011-06-01</p> <p>Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4-12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1283/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1283/report.pdf"><span>Annual Nutrient Loadings, Primary Productivity, and Trophic State of Lake Koocanusa, Montana and British Columbia, 1972-80</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Woods, Paul F.</p> <p>1982-01-01</p> <p>Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5472714','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5472714"><span>Anthropogenic climate change has altered primary productivity in Lake Superior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>O'Beirne, M. D.; Werne, J. P.; Hecky, R. E.; Johnson, T. C.; Katsev, S.; Reavie, E. D.</p> <p>2017-01-01</p> <p>Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems. PMID:28598413</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28598413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28598413"><span>Anthropogenic climate change has altered primary productivity in Lake Superior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D</p> <p>2017-06-09</p> <p>Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1435432-mean-annual-precipitation-predicts-primary-production-resistance-resilience-extreme-drought','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1435432-mean-annual-precipitation-predicts-primary-production-resistance-resilience-extreme-drought"><span>Mean annual precipitation predicts primary production resistance and resilience to extreme drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stuart-Haëntjens, Ellen; De Boeck, Hans J.; Lemoine, Nathan P.; ...</p> <p>2018-09-01</p> <p>Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitationmore » (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought – a vulnerability that is expected to compound as extreme drought frequency increases in the future.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29709853','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29709853"><span>Mean annual precipitation predicts primary production resistance and resilience to extreme drought.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stuart-Haëntjens, Ellen; De Boeck, Hans J; Lemoine, Nathan P; Mänd, Pille; Kröel-Dulay, György; Schmidt, Inger K; Jentsch, Anke; Stampfli, Andreas; Anderegg, William R L; Bahn, Michael; Kreyling, Juergen; Wohlgemuth, Thomas; Lloret, Francisco; Classen, Aimée T; Gough, Christopher M; Smith, Melinda D</p> <p>2018-04-27</p> <p>Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitation (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought - a vulnerability that is expected to compound as extreme drought frequency increases in the future. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1435432-mean-annual-precipitation-predicts-primary-production-resistance-resilience-extreme-drought','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1435432-mean-annual-precipitation-predicts-primary-production-resistance-resilience-extreme-drought"><span>Mean annual precipitation predicts primary production resistance and resilience to extreme drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stuart-Haëntjens, Ellen; De Boeck, Hans J.; Lemoine, Nathan P.</p> <p></p> <p>Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitationmore » (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought – a vulnerability that is expected to compound as extreme drought frequency increases in the future.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PrOce..71..426R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PrOce..71..426R"><span>Carbon cycling in a high-arctic marine ecosystem - Young Sound, NE Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rysgaard, Søren; Nielsen, Torkel Gissel</p> <p>2006-10-01</p> <p>Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of ∼1.5 m topped with 0-40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice-water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August-September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7-11 g C m -2) is similar to phytoplankton production (6-10 g C m -2). Furthermore, the carbon demand of pelagic bacteria amounts to 7-12 g C m -2 yr -1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem. In the shallow parts of the fjord (<40 m) benthic primary producers dominate primary production. As a minimum estimate, a total of 41 g C m -2 yr -1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae <1%, benthic macrophytes 62% and benthic microphytes 22%. A high and diverse benthic infauna dominated by polychaetes and bivalves exists in these shallow-water sediments (<40 m), which are colonized by benthic primary producers and in direct contact with the pelagic phytoplankton bloom. The annual benthic mineralization is 32 g C m -2 yr -1 of which megafauna accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate of 7 g C m -2 yr -1 was determined. A group of walruses (up to 50 adult males) feed in the area in shallow waters (<40 m) during the short, productive, ice-free period, and they have been shown to be able to consume <3% of the standing stock of bivalves ( Hiatella arctica, Mya truncata and Serripes Groenlandicus), or half of the annual bivalve somatic production. Feeding at greater depths is negligible in comparison with their feeding in the bivalve-rich shallow waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://medlineplus.gov/ency/article/000533.htm','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/ency/article/000533.htm"><span>Primary amyloidosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>Amyloidosis - primary; Immunoglobulin light chain amyloidosis ... The cause of primary amyloidosis is not well understood. Genes may play a role. The condition is related to abnormal and excess production of proteins. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23068015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23068015"><span>Dental fluorosis in the primary dentition and intake of manufactured soy-based foods with fluoride.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Carvalho, Cristiane Alves Paz; Zanlorenzi Nicodemo, César Augusto; Ferreira Mercadante, Daniela Cristiane; de Carvalho, Fábio Silva; Buzalaf, Marília Afonso Rabelo; de Carvalho Sales-Peres, Sílvia Helena</p> <p>2013-06-01</p> <p>To identify manufactured soy-based products more recommended by pediatricians and nutritionists; to determine fluoride concentrations in these products; to evaluate children concerning fluorosis in primary teeth and its association with the consumption of soy-based products. Pediatricians and Nutritionists answered a questionnaire about soy-based products they most recommended to children. Fluoride concentrations of the 10 products more cited were analyzed with the ion-specific electrode. Dental fluorosis exams were performed in 315 4-6-year-old children. Dean's Index was used to assess fluorosis. Among the children examined, 26 had lactose intolerance. Their parents answered a questionnaire about children's and family's profile, besides permitting the identification of soy-based products use. Chi-squared and Multivariable Logistic Regression tests were used (p < 0.05). Fluoride content in the analyzed products ranged from 0.03 to 0.50 μg F(-)/mL. Dental fluorosis was detected in 11% of the children, with very mild and mild degrees. Dental fluorosis in primary teeth was associated with lactose intolerance (p < 0.05), but there was no significant association with the use of manufactured soy-based products. Isolated consumption of soy-based products recommended by health professionals to children do not offer risk of dental fluorosis in primary teeth, which had a low prevalence and severity. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015424','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015424"><span>Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cole, B.E.</p> <p>1989-01-01</p> <p>Primary productivity in the water column was measured 14 times between April 1985 and April 1986 at three sites in Tomales Bay, California, USA The conditions at these three stations encompassed the range of hydrographic conditions, phytoplankton biomass, phytoplankton community composition, and turbidity typical of this coastal embayment. Linear regression of the measured daily carbon uptake against the composite parameter B Zp Io (where B is the average phytoplankton biomass in the photic zone; Zp is the photic depth; and Io is the daily surface insolation) indicates that 90% of the variability in primary productivity is explained by variations in phytoplankton biomass and light availability. The linear function derived using Tomales Bay data is essentially the same as that which explains more than 80% of the variation in productivity in four other estuarine systems. Using the linear function and measured values for B, Zp, and Io, the daily photic-zone productivity was estimated for 10 sites at monthly intervals over the annual period. The average daily photic-zone productivity for the 10 sites ranged from 0??2 to 2??2 g C m-2. The bay-wide average annual primary productivity in the water column was 400 g C m-2, with most of the uptake occuring in spring and early summer. Spatial and temporal variations in primary productivity were similar to variations in phytoplankton biomass. Productivity was highest in the seaward and central regions of the bay and lowest in the shallow landward region. ?? 1989.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPP14A0528M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPP14A0528M"><span>Elucidating the Relationship Between Phytoplankton and Primary Production in the Sargasso Sea Using New Observations of Nanoplankton and Picoplankton.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matheson, J.; Johnson, R. J.; Bates, N. R.; Parsons, R. J.</p> <p>2016-02-01</p> <p>Attempts to model primary production in the subsurface of the Sargasso Sea frequently use HPLC marker pigments to infer phytoplankton community structure, which relies upon assumptions about the phytoplankton community typically determined with limited site-specific data. Recent estimates suggest that nano- and picoplankton account for 90% of the phytoplankton community at BATS and factors such as elevated growth rates and high abundances likely allow these two size classes to exert a strong influence on primary production. To help assess the contribution of nano- and picoplankton on primary production at the BATS site we determine abundances and biovolumes through direct measurements with epifluorescence microscopy in conjunction with flow cytometer picoplankton counts. Using this approach we are able to quantify prymnesiophytes, heterotrophic nano- and dinoflagellates, mixotrophic dinoflagellates, ciliates, diatoms, pico- and nano eukaryotes, and Prochlorococcus. Preliminary analysis of summertime distributions show prymnesiophytes are the dominant nanoplankton group (average upper 140 m concentration of 500 cells ml-1) although heterotrophic nano- and dinoflagellates makeup a greater fraction of nanoplankton biovolume. During the summer period, pico-eukaryotes and Prochlorococcus were found to be the dominant picoplankton groups, which both increased with depth down to the deep chlorophyll maximum where they appear to drive variability. Using these direct observations we investigate the seasonal relationship between phytoplankton community and primary production, specifically by contrasting the stratified summer phase with a well-mixed winter system. Finally, we use these community structure observations with HPLC data to develop algorithms for taxonomy models (i.e. CHEMTAX) to assess modes of variability in phytoplankton community and consequential influences on primary production for the past 25 years at the BATS site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPP12A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPP12A..01C"><span>Are Methods for Estimating Primary Production and the Growth Rates of Phytoplankton Approaching Agreement?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cullen, J. J.</p> <p>2016-02-01</p> <p>During the 1980s, estimates of primary productivity and the growth rates of phytoplankton in oligotrophic waters were controversial, in part because rates based on seasonal accumulations of oxygen in the shallow oxygen maximum were reported to be much higher than could be accounted for with measurements of photosynthesis based on incubations with C-14. Since then, much has changed: tested and standardized methods have been employed to collect comprehensive time-series observations of primary production and related oceanographic properties in oligotrophic waters of the North Pacific subtropical gyre and the Sargasso Sea; technical and theoretical advances have led to new tracer-based estimates of photosynthesis (e.g., oxygen/argon and triple isotopes of dissolved oxygen); and biogeochemical sensor systems on ocean gliders and profiling floats can describe with unprecedented resolution the dynamics of phytoplankton, oxygen and nitrate as driven by growth, loss processes including grazing, and vertical migration for nutrient acquisition. Meanwhile, the estimation of primary productivity, phytoplankton biomass and phytoplankton growth rates from remote sensing of ocean color has matured, complementing biogeochemical models that describe and predict these key properties of plankton dynamics. In a selective review focused on well-studied oligotrophic waters, I compare methods for estimating the primary productivity and growth rates of phytoplankton to see if they are converging on agreement, not only in the estimated rates, but also in the underlying assumptions, such as the ratio of gross- to net primary production — and how this relates to the measurement — and the ratio of chlorophyll to carbon in phytoplankton. Examples of agreement are encouraging, but some stark contrasts illustrate the need for improved mechanistic understanding of exactly what each method is measuring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54864','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54864"><span>Louisiana’s timber industry-timber product output and use, 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James A. Gray; James W. Bentley; Jason A. Cooper; David J. Wall</p> <p>2017-01-01</p> <p>In 2013, processing of primary products in Louisiana mills gener-ated 206.7 million cubic feet of wood and bark residues. Coarse residues from all primary products amounted to 76.9 million cubic feet, while bark volume totaled 68.3 million cubic feet. Collective-ly, sawdust and shavings made up 30 percent of total residues, or 61.4 million cubic feet (fig. 7).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27872966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27872966"><span>General Template for the FMEA Applications in Primary Food Processing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Özilgen, Sibel; Özilgen, Mustafa</p> <p></p> <p>Data on the hazards involved in the primary steps of processing cereals, fruit and vegetables, milk and milk products, meat and meat products, and fats and oils are compiled with a wide-ranging literature survey. After determining the common factors from these data, a general FMEA template is offered, and its use is explained with a case study on pasteurized milk production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=331937','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=331937"><span>Multiscale analyses of solar-induced florescence and gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Remotely sensed solar induced fluorescence (SIF) has shown great promise for probing spatiotemporal variations in terrestrial gross primary production (GPP), the largest component flux of the global carbon cycle. However, scale mismatches between SIF and ground-based GPP have posed challenges toward...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70177861','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70177861"><span>A landscape-scale assessment of above- and belowground primary production in coastal wetlands: Implications for climate change-induced community shifts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stagg, Camille L.; Schoolmaster, Donald R.; Piazza, Sarai C.; Snedden, Gregg; Steyer, Gregory D.; Fischenich, Craig J; McComas, Robert W.</p> <p>2017-01-01</p> <p>Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e., how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? This is the first study to measure both above- and belowground production in four wetland types that span an entire coastal gradient from fresh to saline wetlands. We hypothesized that increasing salinity would limit rates of primary production, and saline marshes would have lower rates of above- and belowground production than fresher marshes. However, along the Northern Gulf of Mexico Coast in Louisiana, USA, we found that aboveground production was highest in brackish marshes, compared with fresh, intermediate, and saline marshes, and belowground production was similar among all wetland types along the salinity gradient. Multiple regression analysis indicated that salinity was the only significant predictor of production, and its influence was dependent upon wetland type. We concluded that (1) salinity had a negative effect on production within wetland type, and this relationship was strongest in the fresh marsh (0–2 PSU) and (2) along the overall landscape gradient, production was maintained by mechanisms at the scale of wetland type, which were likely related to plant energetics. Regardless of wetland type, we found that belowground production was significantly greater than aboveground production. Additionally, inter-annual variation, associated with severe drought conditions, was observed exclusively for belowground production, which may be a more sensitive indicator of ecosystem health than aboveground production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17510362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17510362"><span>Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benitez-Nelson, Claudia R; Bidigare, Robert R; Dickey, Tommy D; Landry, Michael R; Leonard, Carrie L; Brown, Susan L; Nencioli, Francesco; Rii, Yoshimi M; Maiti, Kanchan; Becker, Jamie W; Bibby, Thomas S; Black, Wil; Cai, Wei-Jun; Carlson, Craig A; Chen, Feizhou; Kuwahara, Victor S; Mahaffey, Claire; McAndrew, Patricia M; Quay, Paul D; Rappé, Michael S; Selph, Karen E; Simmons, Melinda P; Yang, Eun Jin</p> <p>2007-05-18</p> <p>Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4852901','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4852901"><span>Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.</p> <p>2016-01-01</p> <p>Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR. PMID:27135946</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMOS21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMOS21A..06L"><span>What Controls Seasonal Variation of Phytoplankton Growth in the East China Sea?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, K.; Chao, S.; Lee, H.; Gong, G.; Teng, Y.</p> <p>2009-05-01</p> <p>The seasonal variation of phytoplankton growth in the East China Sea (ECS) is simulated with a three- dimensional coupled physical-biogeochemical model, which includes discharges from Changjiang (aka the Yangtze River). The purpose is to determine the main control on the seasonality of primary productivity in the ECS shelf, which nurtures rich biological resources. The model has a horizontal resolution of 1/6 degree in the domain from 23N to 41N and from 116E to 134E, excluding the Japan/East Sea, and 33 layers in the vertical. The nitrogen-based biogeochemical model has four compartments: dissolved inorganic nitrogen (DIN), phytoplankton, zooplankton and detritus. The chlorophyll to phytoplankton ratio depends on light and DIN availability. The model is driven by monthly climatological winds with the sea surface temperature, salinity and DIN relaxed towards the climatological mean values. It successfully reproduces the observed seasonal variation of phytoplankton growth over the ECS shelf with a strong peak in later spring and summer. The modeled annual mean primary production over the entire ECS shelf is 439 mg C m-2 d-1, which falls within the reported range of 390-529 mg C m-2 d-1. It also reproduces the marked gradient of DIN across the shelf decreasing away from the Changjiang River plume. An alternative model run, Free-N, which deviates from the standard run by essentially removing nudging on DIN, generates the same seasonal pattern of primary productivity but somewhat reduced productivity. In yet another alternative run, Fix-PAR, which deviates from Free-N by removing the seasonal cycle of photosynthetically active radiation, the seasonality of primary productivity almost vanishes. These model results demonstrate that light availability is the major control on the seasonality of primary productivity. However, nutrient supply from vertical nutrient pumping and from Changjiang discharges is still important. It is the insufficient nutrient pumping that leads to the lowered primary production predicted by the Free-N experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol28/pdf/CFR-2010-title40-vol28-sec421-20.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol28/pdf/CFR-2010-title40-vol28-sec421-20.pdf"><span>40 CFR 421.20 - Applicability: description of the primary aluminum smelting subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... primary aluminum smelting subcategory. 421.20 Section 421.20 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Aluminum Smelting Subcategory § 421.20 Applicability: description of the primary aluminum... production of aluminum from alumina in the Hall-Heroult process. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title15-vol3/pdf/CFR-2012-title15-vol3-sec917-21.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title15-vol3/pdf/CFR-2012-title15-vol3-sec917-21.pdf"><span>15 CFR 917.21 - National needs and problems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title15-vol3/pdf/CFR-2014-title15-vol3-sec917-21.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title15-vol3/pdf/CFR-2014-title15-vol3-sec917-21.pdf"><span>15 CFR 917.21 - National needs and problems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title15-vol3/pdf/CFR-2013-title15-vol3-sec917-21.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title15-vol3/pdf/CFR-2013-title15-vol3-sec917-21.pdf"><span>15 CFR 917.21 - National needs and problems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/18873','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/18873"><span>Primary wood-product industries of southern New England - 1971</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James T. Bones</p> <p>1973-01-01</p> <p>The results of a complete canvass of the primary wood manufacturers in southern New England. The report contains data about wood production and receipts for the states of the region. Comparisons are made with a similar 1952 survey and trends in industrial wood output are noted.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=268571','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=268571"><span>Forecasting annual aboveground net primary production in the intermountain west</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title15-vol3/pdf/CFR-2010-title15-vol3-sec917-21.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title15-vol3/pdf/CFR-2010-title15-vol3-sec917-21.pdf"><span>15 CFR 917.21 - National needs and problems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-171.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-171.pdf"><span>40 CFR 60.171 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Zinc Smelters § 60.171 Definitions... and in subpart A of this part. (a) Primary zinc smelter means any installation engaged in the production, or any intermediate process in the production, of zinc or zinc oxide from zinc sulfide ore...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol6/pdf/CFR-2011-title40-vol6-sec60-171.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol6/pdf/CFR-2011-title40-vol6-sec60-171.pdf"><span>40 CFR 60.171 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... and in subpart A of this part. (a) Primary zinc smelter means any installation engaged in the production, or any intermediate process in the production, of zinc or zinc oxide from zinc sulfide ore... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Zinc Smelters § 60.171 Definitions...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A53O0385P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A53O0385P"><span>Brown Carbon Production in Aldehyde + Ammonium Sulfate Mixtures: Effects of Formaldehyde and Amines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powelson, M.; De Haan, D. O.</p> <p>2012-12-01</p> <p>The formation of light-absorbing 'brown carbon,' or HULIS (humic- like substances), in atmospheric aerosol has an important impact on climate. However, the precursors responsible for brown carbon formation have not been identified. Several aldehydes present in clouds (methylglyoxal, glycolaldehyde, hydroxyacetone, glyoxal, and acetaldehyde) have the potential to create brown products when reacted with ammonium sulfate or primary amines such as methylamine or glycine. The formation of light-absorbing products from these reactions was characterized as a function of cloud-relevant pH (from 3- 6) using UV-Visible spectroscopy. Of the different aldehydes teste, the largest production rates of light-absorbing compounds were observed in reactions of glycolaldehyde and methylglyoxal. Primary amines produced more light- absorbing products than ammonium sulfate at lower concentrations. The addition of formaldehyde to any reaction with other aldehydes decreased the formation of light-absorbing products, while the addition of a small amount (1:5 mole ratio) of glycine to aldehyde + ammonium sulfate reactions can increase the production of light-absorbing products. These results suggest that the presence of primary amines significantly influence atmospheric brown carbon production by aldehydes even when much greater quantities of ammonium sulfate are present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10189184','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10189184"><span>Estimated inventory of radionuclides in Former Soviet Union Naval Reactors dumped in the Kara Sea and their associated health risk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mount, M.E.; Layton, D.W.; Schwertz, N.L.</p> <p>1993-05-01</p> <p>Radionuclide inventories have bin estimated for the reactor cores, reactor components, and primary system corrosion products in the former Soviet Union naval reactors dumped at the Abrosimov Inlet, Tsivolka Inlet, Stepovoy Inlet, Techeniye Inlet, and Novaya Zemlya Depression sites in the Kara Sea between 1965 and 1988. For the time of disposal, the inventories are estimated at 17 to 66 kCi of actinides plus daughters and 1695 to 4782 kCi of fission products in the reactor cores, 917 to 1127 kCi of activation products in the reactor components, and 1.4 to 1.6 kCi of activation products in the primary systemmore » corrosion products. At the present time, the inventories are estimated to have decreased to 6 to 24 kCi of actinides plus daughters and 492 to 540 kCi of fission products in the reactor cores, 124 to 126 kCi of activation products in the reactor components, and 0.16 to 0.17 kCi of activation products in the primary system corrosion products. All actinide activities are estimated to be within a factor of two.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10161670','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10161670"><span>Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wright, A.L.</p> <p></p> <p>This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena andmore » presents major conclusions on the state of the art.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B43C0310K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B43C0310K"><span>Seasonality of primary and secondary production in an Arctic river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, M.; Huryn, A.; Deegan, L.</p> <p>2011-12-01</p> <p>Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3272425','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3272425"><span>Relationships between climate, productivity and vegetation in southern Mongolian drylands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>von Wehrden, H.; Wesche, K.</p> <p>2011-01-01</p> <p>We assessed the relationship between open-source data on net primary production and precipitation for the southern Mongolian Gobi, and related this information to data obtained from a set of 1418 vegetation relevés sampled in the region. Gradients determining plant community diversity and composition were examined, and the relation between α-diversity and key environmental parameters was tested. The correlation between net primary production and precipitation within our working area was fairly high (r2 = 0.66). The variance of the net primary production was related to the average annual precipitation; at sites with more than ~220 mm/a precipitation the median coefficient of variation in productivity data decreased, indicating a rather gradual shift from a non-equilibrium ecosystem towards an equilibrium ecosystem with increasing moisture. A DCA-ordination showed that the main gradient in plant community composition was closely correlated to environmental variables for altitude, precipitation and net primary production. All three parameters were also significant predictors of the species diversity. The final model, which included an additional quadratic term for longitude, predicted local plant biodiversity at r2 = 0.57. The results can be directly applied to both resource management and nature conservation within the area. For future studies a closer focus on the characterisation of non-equilibrium rangelands based on modelled productivity layers is suggested. PMID:22318349</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Ocgy...50..759S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Ocgy...50..759S"><span>Bacterial and primary production in the pelagic zone of the Kara Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sazhin, A. F.; Romanova, N. D.; Mosharov, S. A.</p> <p>2010-10-01</p> <p>Data on the bacterial and primary production, which were obtained simultaneously for the same water samples, are presented for three regions of the Kara Sea. The samples were collected for the transect westwards of the Yamal Peninsula, along the St. Anna Trough, and the transect in Ob Bay. Direct counts of the DAPI-stained bacterial cells were performed. The bacterial production and grazing rates were determined using a direct method when metabolic inhibitors vancomycin and penicillin were added. The primary production rates were estimated using the 14C method. The average primary production was 112.6, 58.5, and 28.7 mg C m-2 day-1, and the bacterial production was 12.8, 48.9, and 81.6 mg C m-2 day-1 along the Yamal Peninsula, the St. Anna Trough, and Ob Bay, respectively. The average bacterial carbon demand was 34.6, 134.5, and 220.4 mg C m-2 day-1 for these regions, respectively. The data obtained lead us to conclude that the phytoplankton-synthesized organic matter is generally insufficient to satisfy the bacterial carbon demand and may be completely assimilated via the heterotrophic processes in the marine ecosystems. Therefore, the bacterial activity and, consequently, the amount of the synthesized biomass (i.e., the production) both depend directly on the phytoplankton’s condition and activity. We consider these relationships to be characteristics of the Kara Sea’s biota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GBioC..26.2024U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GBioC..26.2024U"><span>Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uitz, Julia; Stramski, Dariusz; Gentili, Bernard; D'Ortenzio, Fabrizio; Claustre, Hervé</p> <p>2012-06-01</p> <p>An approach that combines a recently developed procedure for improved estimation of surface chlorophyll a concentration (Chlsurf) from ocean color and a phytoplankton class-specific bio-optical model was used to examine primary production in the Mediterranean Sea. Specifically, this approach was applied to the 10 year time series of satellite Chlsurfdata from the Sea-viewing Wide Field-of-view Sensor. We estimated the primary production associated with three major phytoplankton classes (micro, nano, and picophytoplankton), which also yielded new estimates of the total primary production (Ptot). These estimates of Ptot (e.g., 68 g C m-2 yr-1for the entire Mediterranean basin) are lower by a factor of ˜2 and show a different seasonal cycle when compared with results from conventional approaches based on standard ocean color chlorophyll algorithm and a non-class-specific primary production model. Nanophytoplankton are found to be dominant contributors to Ptot (43-50%) throughout the year and entire basin. Micro and picophytoplankton exhibit variable contributions to Ptot depending on the season and ecological regime. In the most oligotrophic regime, these contributions are relatively stable all year long with picophytoplankton (˜32%) playing a larger role than microphytoplankton (˜22%). In the blooming regime, picophytoplankton dominate over microphytoplankton most of the year, except during the spring bloom when microphytoplankton (27-38%) are considerably more important than picophytoplankton (20-27%).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55193','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55193"><span>Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Heather L. Kimball; Paul C. Selmants; Alvaro Moreno; Steve W. Running; Christian P. Giardina; Benjamin Poulter</p> <p>2017-01-01</p> <p>Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ERL....10e4005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ERL....10e4005M"><span>Tracing Primary PM2.5 emissions via Chinese supply chains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, Jing; Liu, Junfeng; Xu, Yuan; Tao, Shu</p> <p>2015-05-01</p> <p>In this study, we examine a supply-chain approach to more effectively mitigate primary PM2.5 emissions in China from the perspectives of production, consumption and their linkages using structural path analysis. We identify the pattern of all supply chain paths using principal component analysis. To address the severe haze problems in China, it is important to understand how final demand purchase initiates production processes and ultimately leads to primary PM2.5 emission. We found that consumers’ demands on power and transportation mainly induce direct emissions, quite different from the demands on construction, industry and service products which largely drive emissions in upstream activities. We also found that nearly 80% of the economic sectors in China follow a similar pattern in generating primary PM2.5 emissions in electricity, cement and the ferrous metal industries; but only the construction sector increases the release of PM2.5 due to the production of non-metallic mineral products. These findings indicate that further reduction of end-of-pipe emissions in the power and transportation sectors will facilitate cleaner production in almost all the economic sectors. However, for urbanization induced emissions, China should mitigate PM2.5 emissions through the supply chain of construction, either severely reducing its life-cycle intensity or carefully planning to avoid extensive, unnecessary building activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1983/4255/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1983/4255/report.pdf"><span>Primary productivity by phytoplankton in the tidal, fresh Potomac River, Maryland, May 1980 to August 1981</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cohen, R.R.; Pollock, S.O.</p> <p>1983-01-01</p> <p>Primary productivity by phytoplankton was measured on samples collected from the Potomac Tidal River, Maryland. The studies were performed monthly from May 1980 to September 1981. Additional studies were done once a week in August 1980, twice a week from August 4 to 8, 1980 and twice in September 1980. Depth-integrated samples were collected at five stations and incubated in boxes that were exposed to natural sunlight. The boxes were covered with neutral density filters transmitting 100 , 65, 32, 16, and 6 percent surface light. River water was pumped continuously over the samples. The extinction of light in the water column by phytoplankton was measured when samples were collected. Experiments were performed to select a method for routine productivity analysis. No difference was found between productivity: (1) determined in situ and in boxes; (2) measured in 300 ml and (4) calculated from short term (4 hours) and long term (10-24 hours) incubations. There were higher productivity differences in samples that were rotated among different light intensities every 15 minutes (simulating mixing) than those remaining stationary. Respiration was significantly less in samples pumped through a hose from those collected using a depth-integrating sampler. Depth-integrated primary productivity was determined from the productivity data using an equation modified from one reported in the literature. Depth-integrated gross primary productivity was highest in August 1980 and 1981 and lowest in January 1980. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP13C..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP13C..08S"><span>Fish like it Hot? The response of ichthyolith accumulation to changing climates of the Paleogene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sibert, E. C.; Zill, M. E.; Bryant, R. M.; Graves, L. G.; Norris, R. D.</p> <p>2014-12-01</p> <p>It has been hypothesized that the production of fish in the water column is related to the amount of primary production in the surface waters. Most future Earth scenarios suggest that as the climate warms, increased surface ocean stratification will decrease nutrient availability and therefore net primary productivity and fish production. Here we calculate accumulation rates of ichthyoliths (microfossil fish teeth and shark dermal scales) throughout the Paleogene and find that ichthyolith accumulation is inversely related to hypothesized changes in primary productivity, but is positively related to ocean temperature. At DSDP Site 596 in the South Pacific, and ODP Site 1258 from the equatorial Atlantic, accumulation of fish fossils increase 6-10 fold from the relatively cool Paleocene into the warm Early Eocene Climate Optimum. In contrast, cooling and increased biosilica deposition at the Eocene/Oligocene (E/O) Boundary suggests that the marine ecosystem switched to a highly productive diatom-dominated ocean, which should favor short, efficient food chains and increased fish production. However, we find that at both Pacific DSDP Site 596 and Atlantic DSDP Site 522, fish accumulation drops by about 50% across the E/O. Indeed, this relation between ichthyolith accumulation and δ18O-estimated paleotemperature is also seen in the Oligocene, at North Pacific ODP Site 886, where warming in the middle Oligocene is mirrored by an increase in ichthyolith accumulation. It appears that ichthyolith accumulation rate may not be purely an effect of total primary production in the water column but rather, may reflect a fundamental response in fish physiology or ecosystem efficiency to warmer water. It has been documented that respiration is faster and more efficient in warm waters, and this may help generate more efficient food web links that compensate for any decrease in primary productivity caused by global warming. Indeed, it appears that fish seem to thrive as the temperature goes up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..315B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..315B"><span>Comparing the impact of the 2003 and 2010 heatwaves on Net Primary Production in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bastos, Ana; Gouveia, Célia M.; Trigo, Ricardo M.; Running, Steve W.</p> <p>2013-04-01</p> <p>Climate variability is known to influence primary productivity on land ecosystems (Nemani et al., 2003). In particular, extreme climatic events such as major droughts and heatwaves are known to have severe impact on primary productivity and, therefore, to affect significantly the carbon dioxide uptake by land ecosystems at regional (Ciais et al., 2005) or even global scale (Zhao and Running, 2010). In the last decade, Europe was struck by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Eastern Europe. Both were characterised by record breaking temperatures at the daily, weekly, monthly and seasonal scales, although the amplitude and spatial extent of the 2010 mega-heatwave surpassed the 2003 event (Barriopedro et al., 2011). This work aims to assess the influence of both mega-heatwaves on yearly Net Primary Production (NPP) and seasonal Net Photosynthesis (NP), which corresponds to the difference between Gross Primary Production and maintenance respiration. The work relies on yearly NPP and monthly NP data derived from satellite imagery obtained from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor at 1km spatial resolution. Data were selected for the period between 2000 and 2011 over a region extending from 34.6N to 73.5N and 12.1W to 46.8E, covering Eurasia. In 2010 very low primary production anomalies are observed over a very large area in Eastern Europe, at the monthly, seasonal and yearly scale. In western Russia, yearly NPP anomalies fall below 50% of average. These widespread negative anomalous values of NP fields over the western Russia region match the patterns of very high temperature values combined with below-average precipitation, at the seasonal (summer) scale. Moreover, the impact of the heatwave is not only evident at the regional level but also at the wider continental (European) scale and is significantly more extensive and intense than the corresponding heatwave of 2003 in Western Europe (Ciais et al., 2005). References Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. Garcia-Herrera (2011), The hot summer of 2010: Redrawing the temperature record map of Europe, Science, 332 (6026), 220224, doi:10.1126/science.1201224. Ciais, P., et al. (2005), Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437 (7058), 529-533. Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running (2003), Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300 (5625), 156-1563, doi:10.1126/science.1082750. Zhao, M., and S. W. Running (2010), Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science, 329 (5994), 940-943, doi:10.1126/science.1192666.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70142354','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70142354"><span>Relative importance of phosphorus, invasive mussels and climate for patterns in chlorophyll a and primary production in Lakes Michigan and Huron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warner, David M.; Lesht, Barry M.</p> <p>2015-01-01</p> <p>1. Lakes Michigan and Huron, which are undergoing oligotrophication after reduction of phosphorus loading, invasion by dreissenid mussels and variation in climate, provide an opportunity to conduct large-scale evaluation of the relative importance of these changes for lake productivity. We used remote sensing, field data and an information-theoretic approach to identify factors that showed statistical relationships with observed changes in chlorophyll a (chla) and primary production (PP). 2. Spring phosphorus (TP), annual mean chla and PP have all declined significantly in both lakes since the late 1990s. Additionally, monthly mean values of chla have decreased in many but not all months, indicating altered seasonal patterns. The most striking change has been the decrease in chla concentration during the spring bloom. 3. Mean chlorophyll a concentration was 17% higher in Lake Michigan than in Lake Huron, and total production for 2008 in Lake Michigan (9.5 tg year 1 ) was 10% greater than in Lake Huron (7.8 tg year 1 ), even though Lake Michigan is slightly smaller (by 3%) than Lake Huron. Differences between the lakes in the early 1970s evidently persisted to 2008. 4. Invasive mussels influenced temporal trends in spring chla and annual primary production. However, TP had a greater effect on chla and primary production than did the mussels, and TP varied independently from them. Two climatic variables (precipitation and air temperature in the basins) influenced annual chla and annual PP, while the extent of ice cover influenced TP but not chla or primary production. Our results demonstrate that observed temporal patterns in chla and PP are the result of complex interactions of P, climate and invasive mussels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025661','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025661"><span>Primary gamma-rays with E gamma or = to 10(15) eV: Evidence for ultrahigh energy particle acceleration in galactic sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aharonian, F. A.; Mamidjanian, E. A.; Nikolsky, S. I.; Tukish, E. I.</p> <p>1985-01-01</p> <p>The recently observed primary ultra high energy gamma-rays (UHEGR) testify to the cosmic ray (CR) acceleration in the Galaxy. The available data may be interpreted as gamma-ray production due to photomeson production in CR sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=340275&Lab=NHEERL&keyword=Time+AND+Series+AND+Design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=340275&Lab=NHEERL&keyword=Time+AND+Series+AND+Design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Seasonal Oxygen Dynamics in a Warm Temperate Estuary: Effects of Hydrologic Variability on Measurements of Primary Production, Respiration, and Net Metabolism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/14746','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/14746"><span>Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiangming Xiao; Qingyuan Zhang; David Hollinger; John Aber; Berrien, III Moore</p> <p>2005-01-01</p> <p>Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241473&keyword=photosynthesis&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241473&keyword=photosynthesis&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Modeling the Sensitivity of Primary Production in Lake Michigan to Nutrient Loads with and without Dreissenid Mussels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Dreissenid (quagga) mussels became established in large numbers in Lake Michigan beginning around 2004. Since then, significant changes have been observed in Lake Michigan open-water chlorophyll and nutrient concentrations, and in primary production. We updated the LM3-Eutro mode...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=267471&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=267471&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Seasonal and interannual patterns in primary production, respiration and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=153783&keyword=biomass+AND+forest&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=153783&keyword=biomass+AND+forest&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43010','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43010"><span>Use of a BOD oxygen probe for estimating primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Raymond L. Czaplewski; Michael Parker</p> <p>1973-01-01</p> <p>The accuracy of a BOD oxygen probe for field measurements of primary production by the light and dark bottle oxygen technique is analyzed. A figure is presented with which to estimate the number of replicate bottles needed to obtain a given accuracy in estimating photosynthetic rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=298575','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=298575"><span>Critical soil water period for primary production in Chihuahuan Desert ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In desert ecosystems where water is the main limiting factor, it is expected that net primary production (NPP) is largely determined by precipitation. However, precipitation alone often explains only a small portion of the variation in NPP, and the critical precipitation period for NPP varies by pla...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=255621','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=255621"><span>Aboveground net primary production responses to water availability in the Chihuhuan Desert: importance of legacy effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In arid ecosystems, current year precipitation explains a small proportion of annual aboveground net primary production (ANPP). Precipitation that occurred in previous years may be responsible for the observed difference between actual and expected ANPP, a concept that we called legacy. Thus, previo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=314890','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=314890"><span>Preliminary response of primary production and community composition to precipitation variation in a temperate grassland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>a) Background/Questions/Methods Grassland ecosystems are water-limited and show the highest interannual ANPP variability across biomes. Changes in annual amounts or seasonality of rainfall may interact with soil texture to impact grassland ecosystem functions including net primary productivity (NPP...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=282527','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=282527"><span>Legacies of precipitation fluctuations on primary production: Theory and data synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Variability of aboveground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space, based on multiyear averages for different locations, than through time, based on year to year change at single locations. Here, we p...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=295384','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=295384"><span>Legacies of precipitation fluctuations on primary production: theory and data synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=14601&keyword=Dark+AND+net&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=14601&keyword=Dark+AND+net&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE EFFECTS OF ELEVATED METALS ON BENTHIC COMMUNITY METABOLISM IN A ROCKY MOUNTAIN STREAM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The effects of elevated metals (dissolved Zn, Mn and/or Fe) in a Rocky Mountain stream were assessed using measures of primary productivity, community respiration and water-column toxicity. Primary productivity was measured as rates of O2 evolution from natural substrates incubat...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50251','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50251"><span>Estimating herbaceous biomass of grassland vegetation using the reference unit method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Eric D. Boyda; Jack L. Butler; Lan Xu</p> <p>2015-01-01</p> <p>Aboveground net primary production provides valuable information on wildlife habitat, fire fuel loads, and forage availability. Aboveground net primary production in herbaceous plant communities is typically measured by clipping aboveground biomass. However, the high costs associated with physically harvesting plant biomass may prevent collecting sufficient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65281&keyword=calculate+AND+productivity&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65281&keyword=calculate+AND+productivity&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CARBON BUDGET FOR A SUB-TROPICAL SEAGRASS DOMINATED COASTAL LAGOON: HOW IMPORTANT ARE SEAGRASSES TO TOTAL ECOSYSTEM NET PRIMARY PRODUCTION?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Seagrasses dominate macrophyte biomass in many estuaries. Historically, it has been assumed that because of the large standing stock seagrasses also dominate primary production. We tested this assumption by developing 3 carbon budgets to examine the contribution of autotrophic ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=347342','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=347342"><span>Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet, understanding of the relationship between GPP and remote sensing observations and how it changes as a function of factors such as scale, biophysical constraint, and vegetation ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=298029','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=298029"><span>Integrating solar induced flourescence and the photochemical reflectance index for estimating gross primary production in a cornfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/154','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/154"><span>Automation for Primary Processing of Hardwoods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Daniel L. Schmoldt</p> <p>1992-01-01</p> <p>Hardwood sawmills critically need to incorporate automation and computer technology into their operations. Social constraints, forest biology constraints, forest product market changes, and financial necessity are forcing primary processors to boost their productivity and efficiency to higher levels. The locations, extent, and types of defects found in logs and on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-137.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-137.pdf"><span>9 CFR 3.137 - Primary enclosures used to transport live animals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary enclosures used to transport live animals. 3.137 Section 3.137 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-137.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-137.pdf"><span>9 CFR 3.137 - Primary enclosures used to transport live animals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary enclosures used to transport live animals. 3.137 Section 3.137 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-137.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-137.pdf"><span>9 CFR 3.137 - Primary enclosures used to transport live animals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary enclosures used to transport live animals. 3.137 Section 3.137 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-137.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-137.pdf"><span>9 CFR 3.137 - Primary enclosures used to transport live animals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary enclosures used to transport live animals. 3.137 Section 3.137 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-137.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-137.pdf"><span>9 CFR 3.137 - Primary enclosures used to transport live animals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary enclosures used to transport live animals. 3.137 Section 3.137 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7807P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7807P"><span>Holocene dinoflagellate cyst record of climate and marine primary productivity change in the Santa Barbara Basin, southern California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pospelova, Vera; Mertens, Kenneth N.; Hendy, Ingrid, L.; Pedersen, Thomas F.</p> <p>2015-04-01</p> <p>High-resolution sedimentary records of dinoflagellate cysts and other marine palynomorphs from the Santa Barbara Basin (Ocean Drilling Program Hole 893A) demonstrate large variability of primary productivity during the Holocene, as the California Current System responded to climate change. Throughout the sequence, dinoflagellate cyst assemblages are characterized by the dominance of cysts produced by heterotrophic dinoflagellates, and particularly by Brigantedinium, accompanied by other upwelling-related taxa such as Echinidinium and cysts of Protoperidinium americanum. During the early Holocene (~12-7 ka), the species richness is relatively low (16 taxa) and genius Brigantedinium reaches the highest relative abundance, thus indicating nutrient-rich and highly productive waters. The middle Holocene (~7-3.5 ka) is characterized by relatively constant cyst concentrations, and dinoflagellate cyst assemblages are indicative of a slight decrease in sea-surface temperature. A noticeable increase and greater range of fluctuations in the cyst concentrations during the late Holocene (~3.5-1 ka) indicate enhanced marine primary productivity and increased climatic variability, most likely related to the intensification of El Niño-like conditions. Keywords: dinoflagellate cysts, Holocene, North Pacific, climate, primary productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997ECSS...45..579H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997ECSS...45..579H"><span>Primary Productivity Regime and Nutrient Removal in the Danube Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humborg, C.</p> <p>1997-11-01</p> <p>The primary productivity regime, as well as the distribution of dissolved inorganic nutrients and particulate organic matter in the Danube estuary, were investigated during several cruises at different discharge regimes of the Danube River. The shallowness of the upper surface layer due to insignificant tidal mixing and strong stratification of the Danube estuary, as well as the high nutrient concentrations, are favourable for elevated primary production. The incident light levels at the bottom of the upper surface layer of the water column (0·5-3·0 m) were generally higher than 20% of the surface irradiance. Elevated chlorophyll (Chl) aconcentrations with maxima at mid salinities were found during each survey. Within the upper mixed layer estimated primary production of 0·2-4·4 g m-2day-1is very high compared with estuaries of other major world rivers. Mixing diagrams of dissolved inorganic nutrients reveal removal of significant quantities of nutrients during estuarine mixing. These observations were consistent with the distribution of particular organic matter, which was negatively correlated to the nutrient distribution during each survey. C:Chl aratios, as well as the elevated estimated production, indicate that biological transformation processes govern the nutrient distribution in this estuary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B24A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B24A..01H"><span>Microbes in a bottle: Where model organisms and analog systems meet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, T. L.; Weber, M.; Lott, C.; Havig, J. R.; Clark, C.; Bird, L. R.; de Beer, D.; Dron, A.; Freeman, K. H.; Macalady, J. L.</p> <p>2015-12-01</p> <p>Understanding the evolution of the Earth's surface chemistry is one of the most exciting challenges in modern geoscience. The Great Oxidation Event occurred ~2.5 Ga, when the concentration of oxygen in the atmosphere increased from <0.001% of the present atmospheric level (PAL) to within 1-10%. Following the initial rise, concentrations of O2 in the atmosphere and oceans remained well below present-day atmospheric levels through the Proterozoic until a second rise ~0.6 Ga to levels around those observed today. Thus, for much of Earth's history, deep oceans probably remained oxygen-poor until the most recent increase in atmospheric O2. In addition to low levels of O2, at least portions of the oceans were euxinic (sulfide-rich) with H2S often reaching the photic zone. Oxygenic photosynthesis is the largest source of O2 in the atmosphere. Primary productivity and the remineralization of organic matter are intimately linked to planetary redox and thus to levels of O2. As a result, biologic carbon isotope fractionation and other biomarkers (i.e. hopanoids) facilitate our interpretation of biogeochemical cycling during the Proterozoic Eon. Here, we describe the isolation and characterization of two photoautotrophs—the dominant primary producers—from a Proterozoic Ocean analog. We examined the 13C fractionation in the microbial mat and employed in situ microcosms to estimate primary productivity. In addition, we deployed diver-operated microsensors to determine oxygen production and sulfide consumption over a 24-hour cycle and sequenced total RNA from 4 time points. Using these data, we examined primary production in pure cultures of the dominant Cyanobacteria and green sulfur bacteria from the mat under conditions that mimic those observed in situ. We use this information to begin to build a model of oxygen production and organic carbon burial in a Proterozoic-like environment where Cyanobacteria can contribute to primary productivity in the absence of oxygen production. Furthermore, we examined the differences between 13C fractionation in cultures maintained under "ideal" conditions compared to those observed in situ. Collectively, the RNA sequencing data, the in situ primary productivity data and pure culture information were necessary to interpret the 13C signal from the mats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002DSRII..49.2345B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002DSRII..49.2345B"><span>Microbial community dynamics and taxon-specific phytoplankton production in the Arabian Sea during the 1995 monsoon seasons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, S. L.; Landry, M. R.; Christensen, S.; Garrison, D.; Gowing, M. M.; Bidigare, R. R.; Campbell, L.</p> <p></p> <p>As part of the US JGOFS Arabian Sea Process Study in 1995, we investigated temporal and spatial patterns in microbial dynamics and production during the late Southwest (SW) Monsoon (August-September 1995) and the early Northeast (NE) Monsoon (November-December 1995) seasons using the seawater-dilution technique. Experiments were coupled with population assessments from high-performance liquid chromatography, flow cytometry, and microscopy to estimate further taxon-specific phytoplankton growth, grazing and production. Dilution estimates of total primary production varied substantially, from 7 to 423 μg C l -1 d -1, and were generally in good agreement with rate estimates from 14C-uptake incubations. Both primary production and secondary bacterial production were, on average, 2.5× higher during the SW Monsoon than the NE Monsoon. Relative to the total community, photosynthetic prokaryotes contributed 23% and 53% of production during the SW and NE Monsoons, respectively. Prochlorococcus spp. production was well balanced by grazing losses, while >50% of Synechococcus spp. production during the SW Monsoon appeared to escape grazing by protists. Diatoms comprised >30% of primary production at a high biomass station during the SW Monsoon but <30% at all stations during the NE Monsoon. Growth rates of Synechococcus spp. and diatoms appeared to be limited by inorganic nitrogen concentrations, while Prochlorococcus spp., dinoflagellates and Phaeocystis spp. were not. Losses to protistan grazing were strongly correlated with phytoplankton biomass and production. Despite sufficient prey levels, protistan biomass was modest and constant across the region during both seasons. Of the larger taxa, diatoms were grazed the least effectively with only 50% of daily production accounted for by protistan grazing. Combined estimates of protistan and mesozooplankton grazing at upwelling stations during the SW Monsoon leave ˜10% of primary production unaccounted for and available for sinking and/or lateral advection. Similarly high rates of net production at northern coastal stations during the NE Monsoon suggest that this area also may contribute to regional export flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178591','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178591"><span>Primary production in the Delta: Then and now</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, James E.; Robinson, April; Richey, Amy; Grenier, Letitia; Grossinger, Robin; Boyer, Katharyn E.; Burau, Jon; Canuel, Elizabeth A.; DeGeorge, John F.; Drexler, Judith Z.; Enright, Chris; Howe, Emily R.; Kneib, Ronald; Mueller-Solger, Anke; Naiman, Robert J.; Pinckney, James L.; Safran, Samuel M.; Schoellhamer, David H.; Simenstad, Charles A.</p> <p>2016-01-01</p> <p>To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34754','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34754"><span>Model estimates of net primary productivity, evaportranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Hanqin Tian; Guangsheng Chen; Mingliang Liu; Chi Zhang; Ge Sun; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Shufen Pan; Arthur Chappelka</p> <p>2010-01-01</p> <p>The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187418','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187418"><span>Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra L.; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.</p> <p>2014-01-01</p> <p>The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187–207 g C m−2 y−1, which are consistent with observed values (47–351 g C m−2 y−1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PrOce.122...10B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PrOce.122...10B"><span>Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.</p> <p>2014-03-01</p> <p>The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187-207 g C m-2 y-1, which are consistent with observed values (47-351 g C m-2 y-1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACPD...1132601P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACPD...1132601P"><span>Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parrish, D. D.; Ryerson, T. B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J. G.; Washenfelder, R. A.; de Gouw, J. A.; Peischl, J.; Aikin, K. C.; McKeen, S. A.; Frost, G. J.; Fehsenfeld, F. C.; Herndon, S. C.</p> <p>2011-12-01</p> <p>We evaluate the rates of secondary production and primary emission of formaldehyde (CH2O) from petrochemical industrial facilities and on-road vehicles in the Houston Texas region. This evaluation is based upon ambient measurements collected during field studies in 2000, 2006 and 2009. The predominant CH2O source (92 ± 4% of total) is secondary production formed during the atmospheric oxidation of highly reactive volatile organic compounds (HRVOCs) emitted from the petrochemical facilities. Smaller contributions are primary emissions from these facilities (4 ± 2%), and secondary production (~3%) and primary emissions (~1%) from vehicles. The primary emissions from both sectors are well quantified by current emission inventories. Since secondary production dominates, control efforts directed at primary CH2O emissions cannot address the large majority of CH2O sources in the Houston area, although there may still be a role for such efforts. Ongoing efforts to control alkene emissions from the petrochemical facilities, as well as volatile organic compound emissions from the motor vehicle fleet, will effectively reduce the CH2O concentrations in the Houston region. We have not addressed other emission sectors, such as off-road mobile sources or secondary formation from biogenic hydrocarbons. Previous analyses based on correlations between ambient concentrations of CH2O and various marker species have suggested much larger primary emissions of CH2O, but those results neglect confounding effects of dilution and loss processes, and do not demonstrate the causes of the observed correlations. Similar problems must be suspected in any source apportionment analysis of secondary species based upon correlations of ambient concentrations of pollutants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ACP....12.3273P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ACP....12.3273P"><span>Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parrish, D. D.; Ryerson, T. B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J. G.; Washenfelder, R. A.; de Gouw, J. A.; Peischl, J.; Aikin, K. C.; McKeen, S. A.; Frost, G. J.; Fehsenfeld, F. C.; Herndon, S. C.</p> <p>2012-04-01</p> <p>We evaluate the rates of secondary production and primary emission of formaldehyde (CH2O) from petrochemical industrial facilities and on-road vehicles in the Houston Texas region. This evaluation is based upon ambient measurements collected during field studies in 2000, 2006 and 2009. The predominant CH2O source (92 ± 4% of total) is secondary production formed during the atmospheric oxidation of highly reactive volatile organic compounds (HRVOCs) emitted from the petrochemical facilities. Smaller contributions are primary emissions from these facilities (4 ± 2%), and secondary production (~3%) and primary emissions (~1%) from vehicles. The primary emissions from both sectors are well quantified by current emission inventories. Since secondary production dominates, control efforts directed at primary CH2O emissions cannot address the large majority of CH2O sources in the Houston area, although there may still be a role for such efforts. Ongoing efforts to control alkene emissions from the petrochemical facilities, as well as volatile organic compound emissions from the motor vehicle fleet, will effectively reduce the CH2O concentrations in the Houston region. We do not address other emission sectors, such as off-road mobile sources or secondary formation from biogenic hydrocarbons. Previous analyses based on correlations between ambient concentrations of CH2O and various marker species have suggested much larger primary emissions of CH2O, but those results neglect confounding effects of dilution and loss processes, and do not demonstrate the causes of the observed correlations. Similar problems must be suspected in any source apportionment analysis of secondary species based upon correlations of ambient concentrations of pollutants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1131/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1131/"><span>Historical Zinc Smelting in New Jersey, Pennsylvania, Virginia, West Virginia, and Washington, D.C., with Estimates of Atmospheric Zinc Emissions and Other Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bleiwas, Donald I.; DiFrancesco, Carl</p> <p>2010-01-01</p> <p>The metallurgical industry can be broadly divided into metal production from feedstock consisting of primary and secondary sources. Primary production refers to the extraction of metal derived from ores and concentrates. Secondary production refers to the recovery of metal from materials such as alloys, electric arc furnace dust, ingots, and scrap. The foci of this study are the histories of selected pyrometallurgical plants that treated mostly primary zinc feedstock and the atmospheric emissions, primarily zinc, generated by those plants during the course of producing zinc and zinc oxide in New Jersey, Pennsylvania, Virginia, West Virginia, and Washington, D.C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000032808','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000032808"><span>The Use of Multi-Source Satellite and Geospatial Data to Study the Effect of Urbanization of Primary Productivity in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Imhoff, M. L.; Tucker, C. J.; Lawrence, W. T.; Stutzer, D.; Rusin, Robert</p> <p>2000-01-01</p> <p>Data from two different satellites, a digital land cover map, and digital census data were analyzed and combined in a geographic information system to study the effect of urbanization on photosynthetic vegetation productivity in the United States. Results show that urbanization can have a measurable but variable impact on the primary productivity of the land surface. Annual productivity can be reduced by as much as 20 days in some areas, but in resource limited regions, photosynthetic production can be enhanced by human activity. Overall, urban development reduces the productivity of the land surface and those areas with the highest productivity are directly in the path of urban sprawl.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25977554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25977554"><span>Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Bo W; Wang, Wei; Li, Chengjian; Weng, Zhiping; Zamore, Phillip D</p> <p>2015-05-15</p> <p>PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164689','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1164689"><span>Fermentation and chemical treatment of pulp and paper mill sludge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lee, Yoon Y; Wang, Wei; Kang, Li</p> <p>2014-12-02</p> <p>A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol29/pdf/CFR-2011-title40-vol29-sec421-80.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol29/pdf/CFR-2011-title40-vol29-sec421-80.pdf"><span>40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by either...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol28/pdf/CFR-2010-title40-vol28-sec421-80.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol28/pdf/CFR-2010-title40-vol28-sec421-80.pdf"><span>40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by either...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol29/pdf/CFR-2011-title40-vol29-sec421-70.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol29/pdf/CFR-2011-title40-vol29-sec421-70.pdf"><span>40 CFR 421.70 - Applicability: Description of the primary lead subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary lead...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol29/pdf/CFR-2014-title40-vol29-sec421-70.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol29/pdf/CFR-2014-title40-vol29-sec421-70.pdf"><span>40 CFR 421.70 - Applicability: Description of the primary lead subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary lead...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol30/pdf/CFR-2013-title40-vol30-sec421-70.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol30/pdf/CFR-2013-title40-vol30-sec421-70.pdf"><span>40 CFR 421.70 - Applicability: Description of the primary lead subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary lead...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol30/pdf/CFR-2012-title40-vol30-sec421-70.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol30/pdf/CFR-2012-title40-vol30-sec421-70.pdf"><span>40 CFR 421.70 - Applicability: Description of the primary lead subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary lead...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol28/pdf/CFR-2010-title40-vol28-sec421-70.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol28/pdf/CFR-2010-title40-vol28-sec421-70.pdf"><span>40 CFR 421.70 - Applicability: Description of the primary lead subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary lead...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311750&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311750&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A modeling study examining the impact of nutrient boundaries on primary production on the Louisiana Continental Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchan...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=233329&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=233329&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Modeling the Response of Nutrient Concentrations and Primary Productivity in Lake Michigan to Nutrient Loading Scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A water quality model, LM3 Eutro, will be used to estimate the response of nutrient concentrations and primary productivity in Lake Michigan to nutrient loading scenarios. This work is part of a larger effort, the Future Midwestern landscapes study, that will estimate the produc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34766','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34766"><span>Imports and exports of roundwood in the upper Midwestern United States. Chapter 2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charles H. Perry; Mark D. Nelson; Ronald J. Piva</p> <p>2010-01-01</p> <p>Industrial roundwood is the raw material produced from harvested trees that is used to manufacture a wide range of wood products. Roundwood is harvested from the forest and is transported to primary manufacturing facilities to be processed into primary and secondary wood products. Roundwood includes sawlogs that are processed into...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=348571','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=348571"><span>Country-level net primary production distribution and response to drought and land cover change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Carbon sequestration by terrestrial ecosystems can offset emissions and thereby offers an alternative way of achieving the target of reducing the concentration of CO2 in the atmosphere. Net primary production (NPP) is the first step in the sequestration of carbon by terrestrial ecosystems. This stud...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=338768','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=338768"><span>Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/33457','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/33457"><span>Wyoming's forest products industry and timber harvest, 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jason P. Brandt; Todd A. Morgan; Mike T. Thompson</p> <p>2009-01-01</p> <p>This report traces the flow of Wyoming's 2005 timber harvest through the primary timber-processing industry to the wholesale market and residue-using sectors. The structure, capacity, operations, and conditions of Wyoming's primary forest products industry are described; and volumes and uses of wood fiber are quantified. Historical and recent changes in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol15/pdf/CFR-2013-title40-vol15-sec63-11164.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol15/pdf/CFR-2013-title40-vol15-sec63-11164.pdf"><span>40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 40 Protection of Environment 15 2013-07-01 2013-07-01 false What General Provisions apply to primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol15/pdf/CFR-2012-title40-vol15-sec63-11164.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol15/pdf/CFR-2012-title40-vol15-sec63-11164.pdf"><span>40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 40 Protection of Environment 15 2012-07-01 2012-07-01 false What General Provisions apply to primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol15/pdf/CFR-2014-title40-vol15-sec63-11164.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol15/pdf/CFR-2014-title40-vol15-sec63-11164.pdf"><span>40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 40 Protection of Environment 15 2014-07-01 2014-07-01 false What General Provisions apply to primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSCT44B0247F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSCT44B0247F"><span>Response of Southern Ocean Phytoplankton Communities to Trace Metal (including Iron) and Light Availability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fietz, S.; Roychoudhury, A. N.; Thomalla, S.; Mtshali, T. N.; Philibert, R.; Van Horsten, N.; Loock, J. C.; Cloete, R.</p> <p>2016-02-01</p> <p>Phytoplankton primary productivity depends on macro- and micronutrient availability and in turn plays a key role in the marine biogeochemical cycles. The role of iron in regulating phytoplankton primary production and thus biogeochemical cycles in the Southern Ocean has been widely recognized; however, it also became obvious that iron is not the sole factor limiting primary production in the Southern Ocean and that light, for instance, might aggravate or relief trace nutrient limitation. We conducted a suite of ship-board incubation experiments in austral summer 2013/14, 2014/15 and winter 2015 to shed light on the complex interplay between trace metal and light limitation. We observed a strong difference in acclimation and photophysiological response depending on the environmental conditions of the in-situ communities prior to the experiment. The differences in acclimation and photophysiological responses resulted in different growth and macronutrient uptake rates. Revisited stations did, however, not always show the same responses. At at least one station we will link the incubation experiments to the in-situ vertical profiles of trace metals, macronutrients and primary productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1342287-evaluation-primary-production-lower-amazon-river-based-dissolved-oxygen-stable-isotopic-mass-balance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1342287-evaluation-primary-production-lower-amazon-river-based-dissolved-oxygen-stable-isotopic-mass-balance"><span>Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.</p> <p></p> <p>The Amazon River outgasses nearly an equivalent amount of CO 2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO 2 production since the recognition of a persistent state of CO 2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capablemore » of both decomposing high amounts of organic matter at lower trophic levels, driving CO 2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O 2 (δ 18O-O 2) and O 2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m 3 d -1 at high water and 1.02 ± 0.55 g O m 3 d -1 at low water. This translates to 41 ± 24% of the rate of O 2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than past estimates for the Amazon River mainstem. In conclusion, it is possible that at high water much of this productivity signal is the result of legacy advection from floodplains, whereas limited floodplain connectivity during low water implies that most of this signal is the result of in situ primary production in the Amazon River mainstem.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-09-11/pdf/2013-21773.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-09-11/pdf/2013-21773.pdf"><span>78 FR 55993 - Revisions to Reporting and Recordkeeping Requirements, and Proposed Confidentiality...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-09-11</p> <p>... facilities. Adipic Acid Production 325199 Adipic acid manufacturing facilities. Aluminum Production 331312 Primary aluminum production facilities Ammonia Manufacturing 325311 Anhydrous and aqueous ammonia production facilities. Cement Production 327310 Portland Cement manufacturing plants. Ferroalloy Production...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.........3S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.........3S"><span>Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suttidate, Naparat</p> <p></p> <p>Humans are changing the Earth's ecosystems, which has profound consequences for biodiversity. To understand how species respond to these changes, biodiversity science requires accurate assessments of biodiversity. However, biodiversity assessments are still limited in tropical regions. The Dynamic Habitat Indices (DHIs), derived from satellite data, summarize dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity. The DHIs have been successfully used in temperate regions, but not yet in the tropics. My goal was to evaluate the importance of primary productivity measured via the DHIs for assessing patterns of species richness and distributions in Thailand. First, I assessed the relationships between the DHIs and tropical bird species richness. I also evaluated the complementarity of the DHIs and topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining bird species richness. I found that among three DHIs, cumulative annual productivity was the most important factor in explaining bird species richness and that the DHIs outperformed other environmental variables. Second, I developed texture measures derive from DHI cumulative annual productivity, and compared them to habitat composition and fragmentation as predictors of tropical forest bird distributions. I found that adding texture measures to habitat composition and fragmentation models improved the prediction of tropical bird distributions, especially area- and edge-sensitive tropical forest bird species. Third, I predicted the effects of trophic interactions between primary productivity, prey, and predators in relation to habitat connectivity for Indochinese tigers (Panthera tigris). I found that including trophic interactions improved habitat suitability models for tigers. However, tiger habitat is highly fragmented with few dispersal corridors. I also identified potential habitat patches and corridors that could serve as target sites for conservation. In summary, my dissertation reveals the relationship between species diversity and dynamic patterns of primary productivity. The DHIs are effective measures to identify assess broad-scale patterns of biodiversity in tropical ecosystems, and assist conservation planning and resource management. My dissertation research contributes substantially to biodiversity science, and has broad societal relevance, in striving to protect biodiversity and the ecosystem services given rapid environmental changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22676625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22676625"><span>Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hines, Jes; Gessner, Mark O</p> <p>2012-11-01</p> <p>1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174413','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174413"><span>Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jassby, Alan D.; Cloern, James E.; Cole, B.E.</p> <p>2002-01-01</p> <p>Although nutrient supply often underlies long-term changes in aquatic primary production, other regulatory processes can be important. The Sacramento-San Joaquin River Delta, a complex of tidal waterways forming the landward portion of the San Francisco Estuary, has ample nutrient supplies, enabling us to examine alternate regulatory mechanisms over a 21-yr period. Delta-wide primary productivity was reconstructed from historical water quality data for 1975–1995. Annual primary production averaged 70 g C m−2, but it varied by over a factor of five among years. At least four processes contributed to this variability: (1) invasion of the clam Potamocorbula amurensis led to a persistent decrease in phytoplankton biomass (chlorophyll a) after 1986; (2) a long-term decline in total suspended solids—probably at least partly because of upstream dam construction—increased water transparency and phytoplankton growth rate; (3) river inflow, reflecting climate variability, affected biomass through fluctuations in flushing and growth rates through fluctuations in total suspended solids; and (4) an additional pathway manifesting as a long-term decline in winter phytoplankton biomass has been identified, but its genesis is uncertain. Overall, the Delta lost 43% in annual primary production during the period. Given the evidence for food limitation of primary consumers, these findings provide a partial explanation for widespread Delta species declines over the past few decades. Turbid nutrient-rich systems such as the Delta may be inherently more variable than other tidal systems because certain compensatory processes are absent. Comparisons among systems, however, can be tenuous because conclusions about the magnitude and mechanisms of variability are dependent on length of data record.  </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24312365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24312365"><span>Benthic reef primary production in response to large amplitude internal waves at the Similan Islands (Andaman Sea, Thailand).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jantzen, Carin; Schmidt, Gertraud M; Wild, Christian; Roder, Cornelia; Khokiattiwong, Somkiat; Richter, Claudio</p> <p>2013-01-01</p> <p>Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed to differing environmental settings can provide essential information in this context. One prevalent phenomenon regularly introducing alterations in water chemistry into coral reefs are internal waves. This study therefore investigates the effect of large amplitude internal waves (LAIW) on primary productivity in coral reefs at the Similan Islands (Andaman Sea, Thailand). The LAIW-exposed west sides of the islands are subjected to sudden drops in water temperature accompanied by enhanced inorganic nutrient concentrations compared to the sheltered east. At the central island, Ko Miang, east and west reefs are only few hundred meters apart, but feature pronounced differences. On the west lower live coral cover (-38 %) coincides with higher turf algae cover (+64 %) and growth (+54 %) compared to the east side. Turf algae and the reef sand-associated microphytobenthos displayed similar chlorophyll a contents on both island sides, but under LAIW exposure, turf algae exhibited higher net photosynthesis (+23 %), whereas the microphytobenthos displayed reduced net and gross photosynthesis (-19 % and -26 %, respectively) accompanied by lower respiration (-42 %). In contrast, the predominant coral Porites lutea showed higher chlorophyll a tissues contents (+42 %) on the LAIW-exposed west in response to lower light availability and higher inorganic nutrient concentrations, but net photosynthesis was comparable for both sides. Turf algae were the major primary producers on the west side, whereas microphytobenthos dominated on the east. The overall primary production rate (comprising all main benthic primary producers) was similar on both island sides, which indicates high primary production variability under different environmental conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3843706','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3843706"><span>Benthic Reef Primary Production in Response to Large Amplitude Internal Waves at the Similan Islands (Andaman Sea, Thailand)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jantzen, Carin; Schmidt, Gertraud M.; Wild, Christian; Roder, Cornelia; Khokiattiwong, Somkiat; Richter, Claudio</p> <p>2013-01-01</p> <p>Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed to differing environmental settings can provide essential information in this context. One prevalent phenomenon regularly introducing alterations in water chemistry into coral reefs are internal waves. This study therefore investigates the effect of large amplitude internal waves (LAIW) on primary productivity in coral reefs at the Similan Islands (Andaman Sea, Thailand). The LAIW-exposed west sides of the islands are subjected to sudden drops in water temperature accompanied by enhanced inorganic nutrient concentrations compared to the sheltered east. At the central island, Ko Miang, east and west reefs are only few hundred meters apart, but feature pronounced differences. On the west lower live coral cover (-38 %) coincides with higher turf algae cover (+64 %) and growth (+54 %) compared to the east side. Turf algae and the reef sand-associated microphytobenthos displayed similar chlorophyll a contents on both island sides, but under LAIW exposure, turf algae exhibited higher net photosynthesis (+23 %), whereas the microphytobenthos displayed reduced net and gross photosynthesis (-19 % and -26 %, respectively) accompanied by lower respiration (-42 %). In contrast, the predominant coral Porites lutea showed higher chlorophyll a tissues contents (+42 %) on the LAIW-exposed west in response to lower light availability and higher inorganic nutrient concentrations, but net photosynthesis was comparable for both sides. Turf algae were the major primary producers on the west side, whereas microphytobenthos dominated on the east. The overall primary production rate (comprising all main benthic primary producers) was similar on both island sides, which indicates high primary production variability under different environmental conditions. PMID:24312365</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24788513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24788513"><span>Productivity in the barents sea--response to recent climate variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dalpadado, Padmini; Arrigo, Kevin R; Hjøllo, Solfrid S; Rey, Francisco; Ingvaldsen, Randi B; Sperfeld, Erik; van Dijken, Gert L; Stige, Leif C; Olsen, Are; Ottersen, Geir</p> <p>2014-01-01</p> <p>The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4006807','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4006807"><span>Productivity in the Barents Sea - Response to Recent Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dalpadado, Padmini; Arrigo, Kevin R.; Hjøllo, Solfrid S.; Rey, Francisco; Ingvaldsen, Randi B.; Sperfeld, Erik; van Dijken, Gert L.; Stige, Leif C.; Olsen, Are; Ottersen, Geir</p> <p>2014-01-01</p> <p>The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region. PMID:24788513</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17001266','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17001266"><span>Productivity and turnover in PCPs: the role of staff participation in decision-making.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hung, Dorothy Y; Rundall, Thomas G; Cohen, Deborah J; Tallia, Alfred F; Crabtree, Benjamin F</p> <p>2006-10-01</p> <p>Efforts to redesign primary care practices are beginning to address how decisions are made in the practice setting. This study contributes to these efforts by examining associations between staff participation in decision-making, productivity, and turnover in primary care practices. The study is informed by organizational theories of participation that emphasize cognitive and affective influences on employee output and behavior. This research used data collected from primary care practices involved in a national initiative sponsored by the Robert Wood Johnson Foundation. Cross-sectional survey data on organizational structures and attributes among 49 practices were analyzed. Regression analysis was used to examine associations among practice productivity, staff participation in decision-making, and formal structures such as staff meetings. Associations between staff turnover and participative decision-making were also examined. Staff participation in decisions regarding quality improvement, practice change, and clinical operations was positively associated with practice productivity, whereas formal structures such as staff meetings were not. In addition, higher levels of participation in decision-making were associated with reduced turnover among nonclinicians and administrative staff. Examination of organizational features is increasingly recognized as a key to improving primary care performance. Study findings suggest that one important strategy may be implementation of a participative model emphasizing greater staff involvement in practice decisions. This may enhance information-sharing, work satisfaction, and commitment to organizational decisions, all of which can lead to beneficial outcomes such as increased productivity and stability in primary care practices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4872592','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4872592"><span>Primary healthcare provider knowledge, beliefs and clinic-based practices regarding alternative tobacco products and marijuana: a qualitative study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bascombe, Ta Misha S.; Scott, Kimberly N.; Ballard, Denise; Smith, Samantha A.; Thompson, Winifred; Berg, Carla J.</p> <p>2016-01-01</p> <p>Use prevalence of alternative tobacco products and marijuana has increased dramatically. Unfortunately, clinical guidelines have focused on traditional cigarettes with limited attention regarding these emerging public health issues. Thus, it is critical to understand how healthcare professionals view this issue and are responding to it. This qualitative study explored knowledge, beliefs and clinic-based practices regarding traditional and alternative tobacco products (cigar-like products, smokeless tobacco, hookah, e-cigarettes) and marijuana among rural and urban Georgia primary healthcare providers. The sample comprised 20 healthcare providers in primary care settings located in the Atlanta Metropolitan area and rural southern Georgia who participated in semi-structured interviews. Results indicated a lack of knowledge about these products, with some believing that some products were less harmful than traditional cigarettes or that they may be effective in promoting cessation or harm reduction. Few reported explicitly assessing use of these various products in clinic. In addition, healthcare providers reported a need for empirical evidence to inform their clinical practice. Healthcare providers must systematically assess use of the range of tobacco products and marijuana. Evidence-based recommendations or information sources are needed to inform clinical practice and help providers navigate conversations with patients using or inquiring about these products. PMID:26802106</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA096151','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA096151"><span>Handbook for Evaluating Ecological Effects of Pollution at DARCOM Installations. Volume 5. Aquatic Surveys,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-05-01</p> <p>occur in areas of high current and pools in areas of low current. The habitats of greatest invertebrate animal production in streams are riffles. They...feeding and spawning ground for trout, smallmouth bass, and other fish. Dissolved oxygen content is high and primary production (plant material) is...stream forms. In pools, primary production is generally higher than in riffles if siltation and 1-3 organic pollution are not high enough to cause</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PrOce..78..135K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PrOce..78..135K"><span>Modeling ocean primary production: Sensitivity to spectral resolution of attenuation and absorption of light</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kettle, Helen; Merchant, Chris J.</p> <p>2008-08-01</p> <p>Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton ( α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ - as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033-31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403-1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000108861&hterms=validation+information&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvalidation%2Binformation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000108861&hterms=validation+information&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvalidation%2Binformation"><span>Climatological Processing of Radar Data for the TRMM Ground Validation Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kulie, Mark; Marks, David; Robinson, Michael; Silberstein, David; Wolff, David; Ferrier, Brad; Amitai, Eyal; Fisher, Brad; Wang, Jian-Xin; Augustine, David; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20000108861'); toggleEditAbsImage('author_20000108861_show'); toggleEditAbsImage('author_20000108861_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20000108861_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20000108861_hide"></p> <p>2000-01-01</p> <p>The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November, 1997. The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia; and Kwajalein Atoll, RMI. As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized TRMM GV products using quality-controlled ground-based radar data from the four primary GV sites as input. This presentation will provide an overview of the TRMM GV climatological processing system. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. These developmental steps include: (1) extracting radar data over the locations of rain gauges, (2) merging rain gauge and radar data in time and space with user-defined options, (3) automated quality control of radar and gauge merged data by tracking accumulations from each instrument, and (4) deriving Z-R relationships from the quality-controlled merged data over monthly time scales. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results and trends involving monthly accumulation, Z-R relationship, and gauge statistics for each primary GV site will be also displayed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10326','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10326"><span>Fuelwood production in rural Minnesota, 1975.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James E. Blyth; Steven Wilhelm</p> <p>1980-01-01</p> <p>Discusses and analyzes fuelwood production in rural Minnesota from roundwood and primary wood-using mill residue. Compares production in 1975 with production in 1960 and 1970. Assesses outlook for future fuelwood production and potential impact on Minnesota's forest industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000102595&hterms=improvement+products&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dimprovement%2Bproducts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000102595&hterms=improvement+products&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dimprovement%2Bproducts"><span>Evolving Improvements to TRMM Ground Validation Rainfall Estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robinson, M.; Kulie, M. S.; Marks, D. A.; Wolff, D. B.; Ferrier, B. S.; Amitai, E.; Silberstein, D. S.; Fisher, B. L.; Wang, J.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>The primary function of the TRMM Ground Validation (GV) Program is to create GV rainfall products that provide basic validation of satellite-derived precipitation measurements for select primary sites. Since the successful 1997 launch of the TRMM satellite, GV rainfall estimates have demonstrated systematic improvements directly related to improved radar and rain gauge data, modified science techniques, and software revisions. Improved rainfall estimates have resulted in higher quality GV rainfall products and subsequently, much improved evaluation products for the satellite-based precipitation estimates from TRMM. This presentation will demonstrate how TRMM GV rainfall products created in a semi-automated, operational environment have evolved and improved through successive generations. Monthly rainfall maps and rainfall accumulation statistics for each primary site will be presented for each stage of GV product development. Contributions from individual product modifications involving radar reflectivity (Ze)-rain rate (R) relationship refinements, improvements in rain gauge bulk-adjustment and data quality control processes, and improved radar and gauge data will be discussed. Finally, it will be demonstrated that as GV rainfall products have improved, rainfall estimation comparisons between GV and satellite have converged, lending confidence to the satellite-derived precipitation measurements from TRMM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27374843','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27374843"><span>Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S</p> <p>2016-08-20</p> <p>One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28313006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28313006"><span>The effects on the plankton community of filter-feeding Sacramento blackfish, Orthodon microlepidotus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Byers, Stephanie; Vinyard, Gary L</p> <p>1990-06-01</p> <p>A series of mesocosm experiments was performed to assess the effects on the plankton community of filter-feeding Sacramento blackfish (Cyprinidae; Orthodon microlepidotus). Phytoplankton size-frequency distribution, zooplankton abundance, primary production, potential secondary production, and nutrient concentrations were measured. Blackfish reduce numbers of both evasive and nonevasive zooplankton and large phytoplankton while enhancing nanoplankton densities. Blackfish also significantly increase primary production and potential secondary community production. Levels of dissolved inorganic phosphorus and ammonia-nitrogen also increase. The effects of blackfish are generally similar to those reported for other filter-feeding fish.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22human+anatomy%22&pg=2&id=EJ1132772','ERIC'); return false;" href="https://eric.ed.gov/?q=%22human+anatomy%22&pg=2&id=EJ1132772"><span>Visual Literacy in Primary Science: Exploring Anatomy Cross-Section Production Skills</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>García Fernández, Beatriz; Ruiz-Gallardo, José Reyes</p> <p>2017-01-01</p> <p>Are children competent producing anatomy cross-sections? To answer this question, we carried out a case study research aimed at testing graphic production skills in anatomy of nutrition. The graphics produced by 118 children in the final year of primary education were analysed. The children had to draw a diagram of a human cross section,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/28767','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/28767"><span>Estimating aboveground net primary productivity in forest-dominated ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Brian D. Kloeppel; Mark E. Harmon; Timothy J. Fahey</p> <p>2007-01-01</p> <p>The measurement of net primary productivity (NPP) in forest ecosystems presents a variety of challenges because of the large and complex dimensions of trees and the difficulties of quantifying several components of NPP. As summarized by Clark et al. (2001a), these methodological challenges can be overcome, and more reliable spatial and temporal comparisons can be...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=268936','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=268936"><span>The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=structuralism&pg=4&id=EJ866269','ERIC'); return false;" href="https://eric.ed.gov/?q=structuralism&pg=4&id=EJ866269"><span>Deconstructing Immigrant Girls' Identities through the Production of Visual Narratives in a Catalan Urban Primary School</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rifa-Valls, Montserrat</p> <p>2009-01-01</p> <p>In this article, the research findings of a deconstructive visual ethnography focused on the production of immigrant girls' identities will be analysed. This collaborative research project involved experimentation with a dialogic curriculum aimed at creating diverse identity narratives with immigrant girls at an urban primary school in Barcelona.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34828','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34828"><span>Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E. Carol Adair; William J. Parton; Steven J. Del Grosso; Shendee L. Silver; Mark E. Harmon; Sonia A. Hall; Ingrid C. Burke; Stephen C. Hart</p> <p>2008-01-01</p> <p>As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well-validated mechanistic models, but the same is not true for decomposition, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=346074','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=346074"><span>Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underl...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=325573','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=325573"><span>Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Quantifying global carbon and water balances requires accurate estimation of gross primary production (GPP) and evapotranspiration (ET), respectively, across space and time. Models that are based on the theory of light use efficiency (LUE) and water use efficiency (WUE) have emerged as efficient met...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA258313','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA258313"><span>Arctic Carbon Sinks: Present and Future.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-12-01</p> <p>17 With past ONR support from Grant N00014-87-J-1218, we had successfully coupled simple biological models of phytoplankton production (light and...release of "greenhouse" primary productions of >200 g C m2 yr-1 , gases, C0 2 , N2 0, CH4, and freons, to the tenfold that of other high Arctic shelves...enhancemcnt of primary during previous glacial periods, resulting production in the Arctic and Antarctic in about a 3% increase of today’s ocean Seas</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-05-26/pdf/2011-12930.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-05-26/pdf/2011-12930.pdf"><span>76 FR 30781 - Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas Reporting...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-05-26</p> <p>.......... 325199 Adipic acid manufacturing facilities. Aluminum Production 331312 Primary Aluminum production.... Cement Production 327310 Portland Cement manufacturing plants. Ferroalloy Production........ 331112 Ferroalloys manufacturing facilities. Glass Production 327211 Flat glass manufacturing facilities. 327213...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31D..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31D..03L"><span>Primary Production and Respiration in the Louisiana Coastal Current Drive Patterns of Metabolism and Oxygen on the Louisiana Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehrter, J. C.; Fung, M.</p> <p>2017-12-01</p> <p>Nutrients loads delivered by the Mississippi River to the Louisiana continental shelf (LCS) stimulate phytoplankton production of organic matter and coupled community respiration. These processes ultimately consume oxygen in bottom waters and promote the development of hypoxia and anoxia on the LCS. Several recent studies have emphasized the importance of nearshore (<15 m depth) phytoplankton production and respiration as a principal driver of heterotrophy and oxygen concentration patterns across this shelf. However, no studies to date have measured these nearshore rates. Other studies have invoked a more classical pattern of surface water primary production fueling water-column and bottom water respiration directly beneath through vertical deposition of organic matter. Yet, patterns of heterotrophy that have been observed across most of the LCS do not seem to support this hypothesis. In this study, we investigated these two different ideas by measuring primary production and respiration rates in distinct water masses at stations spanning salinity and depth gradients on the LCS in spring and summer of 2017. Over the course of this study, we have consistently observed highest primary production and respiration rates in nearshore waters of the Louisiana Coastal Current. This narrow band of low salinity water deriving from the Mississippi and Atchafalaya rivers exhibits maximum production rates exceeding 200 mmol C m-3 d-1 and maximum P/R > 10. Other water masses investigated, which included: surface water at offshore locations (> 15 m depth), sub-surface chlorophylla maxima, mid-water O2 minima and maxima, and bottom water, had average production and respiration rates that were 4-10 fold lower than in the nearshore zone and P/R < 1. These results and a scaling analysis demonstrate the potential for organic matter subsidies from the Louisiana Coastal Current to fuel respiration across the wider shelf and downcoast of the river inputs. Further, the results support recent physical and modeling analyses indicating that mid-water O2 minima and maxima observed on the LCS are primarily derived from lateral advection as opposed to developing in place as a result of excess primary production, sinking, and respiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-61.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-61.pdf"><span>9 CFR 3.61 - Primary enclosures used to transport live rabbits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary enclosures used to transport... and Transportation of Rabbits Transportation Standards § 3.61 Primary enclosures used to transport... transport in commerce any live rabbit in a primary enclosure that does not conform to the following...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-61.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-61.pdf"><span>9 CFR 3.61 - Primary enclosures used to transport live rabbits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary enclosures used to transport... and Transportation of Rabbits Transportation Standards § 3.61 Primary enclosures used to transport... transport in commerce any live rabbit in a primary enclosure that does not conform to the following...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4211843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4211843"><span>Interspecific Neighbor Interactions Promote the Positive Diversity-Productivity Relationship in Experimental Grassland Communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Yuhua; Wang, Yongfan; Yu, Shixiao</p> <p>2014-01-01</p> <p>Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity ecosystem functioning experiments spatially explicitly manipulated. To test the effect of heterospecific interactions on productivity, direct evidence of heterospecific neighborhood interaction is needed. In this study we conducted experiments with a detailed spatial design to investigate whether and how heterospecific neighborhood interactions promote primary productivity in a grassland community. The results showed that increasing the heterospecific: conspecific contact ratio significantly increased productivity. We found there was a significant difference in the variation in plant height between monoculture and mixture communities, suggesting that height-asymmetric competition for light plays a central role in promoting productivity. Heterospecific interactions make tall plants grow taller and short plants become smaller in mixtures compared to monocultures, thereby increasing the efficiency of light interception and utilization. Overyielding in the mixture communities arises from the fact that the loss in the growth of short plants is compensated by the increased growth of tall plants. The positive correlation between species richness and primary production was strengthened by increasing the frequency of heterospecific interactions. We conclude that species richness significantly promotes primary ecosystem production through heterospecific neighborhood interactions. PMID:25350670</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25350670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25350670"><span>Interspecific neighbor interactions promote the positive diversity-productivity relationship in experimental grassland communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yuhua; Wang, Yongfan; Yu, Shixiao</p> <p>2014-01-01</p> <p>Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity ecosystem functioning experiments spatially explicitly manipulated. To test the effect of heterospecific interactions on productivity, direct evidence of heterospecific neighborhood interaction is needed. In this study we conducted experiments with a detailed spatial design to investigate whether and how heterospecific neighborhood interactions promote primary productivity in a grassland community. The results showed that increasing the heterospecific: conspecific contact ratio significantly increased productivity. We found there was a significant difference in the variation in plant height between monoculture and mixture communities, suggesting that height-asymmetric competition for light plays a central role in promoting productivity. Heterospecific interactions make tall plants grow taller and short plants become smaller in mixtures compared to monocultures, thereby increasing the efficiency of light interception and utilization. Overyielding in the mixture communities arises from the fact that the loss in the growth of short plants is compensated by the increased growth of tall plants. The positive correlation between species richness and primary production was strengthened by increasing the frequency of heterospecific interactions. We conclude that species richness significantly promotes primary ecosystem production through heterospecific neighborhood interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC53G1289P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC53G1289P"><span>Agricultural Yield Trends in Malawi: Utilizing Remote Sensing to Observe Crop Productivity and Sensitivity to Biophysical and Social Drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peter, B.</p> <p>2015-12-01</p> <p>The primary objective of this research is to distinguish primary and secondary trends in the spatiotemporal variability of agricultural productivity in Malawi. The assessment was performed by analyzing the Net Primary Productivity (NPP) product derived from NASA MODIS satellite imagery and by drawing comparisons between individual land areas and the country-wide statistics. The data were categorized by placing each individual land area into one of six categories: low, average, or high productivity, and whether or not they were resilient or sensitive to biophysical and/or social production drivers. In order to mitigate productivity interference from forest and other land cover types, a custom agricultural land use was developed. Five land cover datasets, including FAO, GLC, IFPRI, GlobCover, and MODIS were combined to minimize errors of commission. Model assessment occurred via field work in Malawi. Approximately 200 sites were visited across nearly the entire extent of the country. Cropland and land cover were assessed via visual inspection, true color/near-infrared photography, and on-site interviews with farmers and extension officers to inquire about productivity and limiting factors for yield. Additionally, we present a continental scale application of the model to demonstrate its performance across scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930072203&hterms=methane+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmethane%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930072203&hterms=methane+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmethane%2Bproduction"><span>Primary production control of methane emission from wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whiting, G. J.; Chanton, J. P.</p> <p>1993-01-01</p> <p>Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....12.9991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....12.9991M"><span>Changing nutrient stoichiometry affects phytoplankton production, DOP build up and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.</p> <p>2015-07-01</p> <p>Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially-driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low N : P ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified N availability as controlling of primary production, while a possible co-limitation of nitrate and phosphate (P) could not be ruled out. To better understand the impact of changing N : P ratios on primary production and on N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicate was supplied at 15 μmol L-1 in all mesocosms. We monitored nutrient drawdown, bloom formation, biomass build up and diazotrophic feedback in response to variable nutrient stoichiometry. Our results confirmed N to be limiting to primary production. We found that excess P was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low P availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where inorganic N was still available, indicating that bioavailable N does not necessarily has to have a negative impact on N2 fixation. We observed a shift from a mixed cyanobacterial/proteobacterial dominated active diazotrophic community towards diazotrophic diatom symbionts of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially modifying primary productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13..781M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13..781M"><span>Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.</p> <p>2016-02-01</p> <p>Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria-proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially influencing primary productivity and carbon export.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=377224','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=377224"><span>Oxidation of Alcohols by Botrytis cinerea1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fukuda, D. S.; Brannon, D. R.</p> <p>1971-01-01</p> <p>Crude cell-free preparations of Botrytis cinerea were found to oxidize straight-chain primary alcohols (except methanol), aromatic primary alcohols, and unsaturated primary alcohols. The resulting products were the corresponding aldehydes and an equal molar quantity of hydrogen peroxide. PMID:5102778</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24370692','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24370692"><span>Primary production in a tropical large lake: the role of phytoplankton composition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Darchambeau, F; Sarmento, H; Descy, J-P</p> <p>2014-03-01</p> <p>Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ (14)C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (PBm) was found, ranging between 1.15 and 7.21 g carbong(-1)chlorophyll ah(-1), and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (Ik) ranged between 91 and 752 μE m(-2)s(-1) and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll am(-2) (annual mean) and from 143 to 278 g carbon m(-2)y(-1), respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B51N0612G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B51N0612G"><span>Towards 250 m mapping of terrestrial primary productivity over Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonsamo, A.; Chen, J. M.</p> <p>2011-12-01</p> <p>Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B34D..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B34D..06T"><span>A Mathematical Model for Estimation of Kelp Bed Productivity: Age Dependence and Contributions of Subsurface Kelp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trumbo, S. K.; Palacios, S. L.; Zimmerman, R. C.; Kudela, R. M.</p> <p>2012-12-01</p> <p>Macrocystis pyrifera, giant kelp, is a major primary producer of the California coastal ocean that provides habitat for marine species through the formation of massive kelp beds. The estimation of primary productivity of these kelp beds is essential for a complete understanding of their health and of the biogeochemistry of the region. Current methods involve either the application of a proportionality constant to remotely sensed biomass or in situ frond density measurements. The purpose of this research was to improve upon conventional primary productivity estimates by developing a model which takes into account the spectral differences among juvenile, mature, and senescent tissues as well as the photosynthetic contributions of subsurface kelp. A modified version of a seagrass productivity model (Zimmerman 2006) was used to quantify carbon fixation. Inputs included estimates of the underwater light field as computed by solving the radiative transfer equation (with the Hydrolight(TM) software package) and biological parameters obtained from the literature. It was found that mature kelp is the most efficient primary producer, especially in light-limited environments, due to increased light absorptance. It was also found that incoming light attenuates below useful levels for photosynthesis more rapidly than has been previously accounted for in productivity estimates, with productivity dropping below half maximum at approximately 0.75 m. As a case study for comparison with the biomass method, the model was applied to Isla Vista kelp bed in Santa Barbara, using area estimates from the MODIS-ASTER Simulator (MASTER). A graphical user-interface was developed for users to provide inputs to run the kelp productivity model under varying conditions. Accurately quantifying kelp productivity is essential for understanding its interaction with offshore ecosystems as well as its contribution to the coastal carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20308417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20308417"><span>Primary broiler breeding--striking a balance between economic and well-being traits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katanbaf, M N; Hardiman, J W</p> <p>2010-04-01</p> <p>Primary breeders are well aware that selecting for better health and well-being along with economic traits such as faster growth rate, higher levels of meat yield, and improved efficiency of feed utilization are critical to balanced long-term genetic progress of their pure lines as well as to increased production efficiency of broiler products for the broiler industry. Cobb collects and selects on over 50 phenotypic observations per pedigree candidate at various ages. Over 50% of these collections are involved with evaluation of each bird's health, welfare, and fitness. Some examples of these traits are various chick defects, various broiler age skeletal and leg abnormalities, feather cover, various physiological measures of heart and lung functions, and specific causes of mortality. Large pedigree populations, massive data collection infrastructure, integration of better technologies in evaluation of phenotypes, and sophisticated data analysis capability have allowed geneticists to perform selections that are balanced for both economic and welfare traits. Cobb's internal as well as worldwide sponsored research has facilitated geneticists to make science-based breeding decisions. Each pedigree line per product available to primary breeders exhibits their own unique characteristics that are enhanced by selective breeding and positioned in special mating schemes to produce the product and welfare performance that our customers demand. Additionally, most if not all primary breeding companies now offer different products for different markets that exhibit varying levels of performance and behavior to fit customer needs. Future expansion of these products and creation of new products by breeding companies will be in large dictated by both our customers and consumers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4989309','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4989309"><span>Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shiozaki, Takuhei; Ijichi, Minoru; Isobe, Kazuo; Hashihama, Fuminori; Nakamura, Ken-ichi; Ehama, Makoto; Hayashizaki, Ken-ichi; Takahashi, Kazutaka; Hamasaki, Koji; Furuya, Ken</p> <p>2016-01-01</p> <p>We examined nitrification in the euphotic zone, its impact on the nitrogen cycles, and the controlling factors along a 7500 km transect from the equatorial Pacific Ocean to the Arctic Ocean. Ammonia oxidation occurred in the euphotic zone at most of the stations. The gene and transcript abundances for ammonia oxidation indicated that the shallow clade archaea were the major ammonia oxidizers throughout the study regions. Ammonia oxidation accounted for up to 87.4% (average 55.6%) of the rate of nitrate assimilation in the subtropical oligotrophic region. However, in the shallow Bering and Chukchi sea shelves (bottom ⩽67 m), the percentage was small (0–4.74%) because ammonia oxidation and the abundance of ammonia oxidizers were low, the light environment being one possible explanation for the low activity. With the exception of the shallow bottom stations, depth-integrated ammonia oxidation was positively correlated with depth-integrated primary production. Ammonia oxidation was low in the high-nutrient low-chlorophyll subarctic region and high in the Bering Sea Green Belt, and primary production in both was influenced by micronutrient supply. An ammonium kinetics experiment demonstrated that ammonia oxidation did not increase significantly with the addition of 31–1560 nm ammonium at most stations except in the Bering Sea Green Belt. Thus, the relationship between ammonia oxidation and primary production does not simply indicate that ammonia oxidation increased with ammonium supply through decomposition of organic matter produced by primary production but that ammonia oxidation might also be controlled by micronutrient availability as with primary production. PMID:26918664</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26802106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26802106"><span>Primary healthcare provider knowledge, beliefs and clinic-based practices regarding alternative tobacco products and marijuana: a qualitative study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bascombe, Ta Misha S; Scott, Kimberly N; Ballard, Denise; Smith, Samantha A; Thompson, Winifred; Berg, Carla J</p> <p>2016-06-01</p> <p>Use prevalence of alternative tobacco products and marijuana has increased dramatically. Unfortunately, clinical guidelines have focused on traditional cigarettes with limited attention regarding these emerging public health issues. Thus, it is critical to understand how healthcare professionals view this issue and are responding to it. This qualitative study explored knowledge, beliefs and clinic-based practices regarding traditional and alternative tobacco products (cigar-like products, smokeless tobacco, hookah, e-cigarettes) and marijuana among rural and urban Georgia primary healthcare providers. The sample comprised 20 healthcare providers in primary care settings located in the Atlanta Metropolitan area and rural southern Georgia who participated in semi-structured interviews. Results indicated a lack of knowledge about these products, with some believing that some products were less harmful than traditional cigarettes or that they may be effective in promoting cessation or harm reduction. Few reported explicitly assessing use of these various products in clinic. In addition, healthcare providers reported a need for empirical evidence to inform their clinical practice. Healthcare providers must systematically assess use of the range of tobacco products and marijuana. Evidence-based recommendations or information sources are needed to inform clinical practice and help providers navigate conversations with patients using or inquiring about these products. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=140768&Lab=NCER&keyword=age+AND+early+AND+primary&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=140768&Lab=NCER&keyword=age+AND+early+AND+primary&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>We used a combination of data from USDA Forest Service inventories, intensive<br>chronosequences, extensive sites, and satellite remote sensing, to estimate biomass<br>and net primary production (NPP) for the forested region of western Oregon. The<br>study area was divided int...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7958','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7958"><span>Satellite-based modeling of gross primary production in an evergreen needleleaf forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III</p> <p>2004-01-01</p> <p>The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/4911','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/4911"><span>Expertise in Primary and Secondary Solid-Wood Processing Available from State, Federal, and University Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Janice K. Wiedenbeck</p> <p>2002-01-01</p> <p>The following list includes USDA Forest Service, state, and University personnel with expertise in primary and secondary solid-wood processing, particularly with respect to lumber sawing and cut-up operations, and issues related to product yield, mill productivity, and markets. Experts within these three groups are listed by region: Northeast, Mid-Atlantic, South,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50258','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50258"><span>A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kevin Schaefer; Christopher R. Schwalm; Chris Williams; M. Altaf Arain; Alan Barr; Jing M. Chen; Kenneth J. Davis; Dimitre Dimitrov; Timothy W. Hilton; David Y. Hollinger; Elyn Humphreys; Benjamin Poulter; Brett M. Raczka; Andrew D. Richardson; Alok Sahoo; Peter Thornton; Rodrigo Vargas; Hans Verbeeck; Ryan Anderson; Ian Baker; T. Andrew Black; Paul Bolstad; Jiquan Chen; Peter S. Curtis; Ankur R. Desai; Michael Dietze; Danilo Dragoni; Christopher Gough; Robert F. Grant; Lianhong Gu; Atul Jain; Chris Kucharik; Beverly Law; Shuguang Liu; Erandathie Lokipitiya; Hank A. Margolis; Roser Matamala; J. Harry McCaughey; Russ Monson; J. William Munger; Walter Oechel; Changhui Peng; David T. Price; Dan Ricciuto; William J. Riley; Nigel Roulet; Hanqin Tian; Christina Tonitto; Margaret Torn; Ensheng Weng; Xiaolu Zhou</p> <p>2012-01-01</p> <p>Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/33421','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/33421"><span>Survey studies how to reach primary hardwood producers with new information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Philip Araman; Robert Smith; Matthew Winn</p> <p>2009-01-01</p> <p>It is important for the timber industry to obtain new knowledge in order to stay competitive, increase productivity, or to produce new products from a sometime changing resource. We sought to understand how new knowledge— innovative techniques, improved technology, and marketing information—reach our primary forest industries in the United States. We surveyed hardwood...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=290968','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=290968"><span>Drivers of variation in aboveground net primary productivity and plant community composition differe across a broad precipitation gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>It has long been a goal of ecology to determine what factors drive variation in aboveground net primary production (ANPP). Total annual precipitation has been shown to be a strong predictor of ANPP across broad spatial scales, but a poor predictor at local scales. Here we aim to determine the amount...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol15/pdf/CFR-2012-title40-vol15-part63-subpartGGGGGG-app1.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol15/pdf/CFR-2012-title40-vol15-part63-subpartGGGGGG-app1.pdf"><span>40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Applicability of General Provisions to Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIE...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol15/pdf/CFR-2014-title40-vol15-part63-subpartGGGGGG-app1.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol15/pdf/CFR-2014-title40-vol15-part63-subpartGGGGGG-app1.pdf"><span>40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Applicability of General Provisions to Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIE...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol15/pdf/CFR-2013-title40-vol15-part63-subpartGGGGGG-app1.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol15/pdf/CFR-2013-title40-vol15-part63-subpartGGGGGG-app1.pdf"><span>40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Applicability of General Provisions to Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIE...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/18898','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/18898"><span>Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky</p> <p>2005-01-01</p> <p>Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41317','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41317"><span>Relationships between net primary productivity and forest stand age in U.S. forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens Kattge</p> <p>2012-01-01</p> <p>Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49200','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49200"><span>Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Linda B. Phillips; Andrew J. Hansen; Curtis H. Flather</p> <p>2008-01-01</p> <p>Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15550800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15550800"><span>The effect of improving primary care depression management on employee absenteeism and productivity. A randomized trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rost, Kathryn; Smith, Jeffrey L; Dickinson, Miriam</p> <p>2004-12-01</p> <p>To test whether an intervention to improve primary care depression management significantly improves productivity at work and absenteeism over 2 years. Twelve community primary care practices recruiting depressed primary care patients identified in a previsit screening. Practices were stratified by depression treatment patterns before randomization to enhanced or usual care. After delivering brief training, enhanced care clinicians provided improved depression management over 24 months. The research team evaluated productivity and absenteeism at baseline, 6, 12, 18, and 24 months in 326 patients who reported full-or part-time work at one or more completed waves. Employed patients in the enhanced care condition reported 6.1% greater productivity and 22.8% less absenteeism over 2 years. Consistent with its impact on depression severity and emotional role functioning, intervention effects were more observable in consistently employed subjects where the intervention improved productivity by 8.2% over 2 years at an estimated annual value of US 1982 dollars per depressed full-time equivalent and reduced absenteeism by 28.4% or 12.3 days over 2 years at an estimated annual value of US 619 dollars per depressed full-time equivalent. This trial, which is the first to our knowledge to demonstrate that improving the quality of care for any chronic disease has positive consequences for productivity and absenteeism, encourages formal cost-benefit research to assess the potential return-on-investment employers of stable workforces can realize from using their purchasing power to encourage better depression treatment for their employees.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70150420','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70150420"><span>Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert</p> <p>2013-01-01</p> <p>We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22447406','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22447406"><span>Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B</p> <p>2012-09-01</p> <p>The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JMS....69..226D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JMS....69..226D"><span>Concentration of floating biogenic material in convergence zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dandonneau, Yves; Menkes, Christophe; Duteil, Olaf; Gorgues, Thomas</p> <p></p> <p>Some organisms that live just below the sea surface (the neuston) are known more as a matter of curiosity than as critical players in biogeochemical cycles. The hypothesis of this work is that their existence implies that they receive some food from an upward flux of organic matter. The behaviour of these organisms and of the associated organic matter, hereafter mentioned as floating biogenic material (FBM) is explored using a global physical-biogeochemical coupled model, in which its generation is fixed to 1% of primary production, and decay rate is of the order of 1 month. The model shows that the distribution of FBM should depart rapidly from that of primary production, and be more sensitive to circulation patterns than to the distribution of primary production. It is trapped in convergence areas, where it reaches concentrations larger by a factor 10 than in divergences, thus enhancing and inverting the contrast between high and low primary productivity areas. Attention is called on the need to better understand the biogeochemical processes in the first meter of the ocean, as they may impact the distribution of food for fishes, as well as the conditions for air-sea exchange and for the interpretation of sea color.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995DSRI...42.1773S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995DSRI...42.1773S"><span>Regionally and seasonally differentiated primary production in the North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sathyendranath, Shubha; Longhurst, Alan; Caverhill, Carla M.; Platt, Trevor</p> <p>1995-10-01</p> <p>A bio-geochemical classification of the N. Atlantic Basin is presented according to which the basin is first divided into four primary algal domains: Polar, West-Wind, Trades and Coastal. These are in turn sub-divided into smaller provinces. The classification is based on differences in the physical environment which are likely to influence regional algal dynamics. The seasonally-differentiated parameters of the photosynthesis-light curve ( P-I curve) and parameters that define the vertical structure in chlorophyll profile are then established for each province, based on an analysis of an archive of over 6000 chlorophyll profiles, and over 1800 P-I curves. These are then combined with satellite-derived chlorophyll data for the N. Atlantic, and information on cloud cover, to compute primary production at the annual scale. using a model that computes spectral transmission of light underwater, and spectral, photosynthetic response of phytoplankton to available light. The results are compared with earlier, satellite-derived, estimates of basin-scale primary production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/972647','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/972647"><span>Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sanchez, Marla; Homan, Gregory; Lai, Judy</p> <p>2009-09-24</p> <p>This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved tomore » date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/139575','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/139575"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>DiZio, S.M.</p> <p></p> <p>Various state regulatory agencies have expressed a need for networking with information gatherers/researchers to produce a concise compilation of primary information so that the basis for regulatory standards can be scientifically referenced. California has instituted several programs to retrieve primary information, generate primary information through research, and generate unique regulatory standards by integrating the primary literature and the products of research. This paper describes these programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70160535','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70160535"><span>Habitat, not resource availability, limits consumer production in lake ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Craig, Nicola; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.</p> <p>2015-01-01</p> <p>Food web productivity in lakes can be limited by dissolved organic carbon (DOC), which reduces fish production by limiting the abundance of their zoobenthic prey. We demonstrate that in a set of 10 small, north temperate lakes spanning a wide DOC gradient, these negative effects of high DOC concentrations on zoobenthos production are driven primarily by availability of warm, well-oxygenated habitat, rather than by light limitation of benthic primary production as previously proposed. There was no significant effect of benthic primary production on zoobenthos production after controlling for oxygen, even though stable isotope analysis indicated that zoobenthos do use this resource. Mean whole-lake zoobenthos production was lower in high-DOC lakes with reduced availability of oxygenated habitat, as was fish biomass. These insights improve understanding of lake food webs and inform management in the face of spatial variability and ongoing temporal change in lake DOC concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sfei.org/documents/pulse-estuary-monitoring-and-managing-water-quality-san-francisco-estuary-0','USGSPUBS'); return false;" href="http://www.sfei.org/documents/pulse-estuary-monitoring-and-managing-water-quality-san-francisco-estuary-0"><span>What is causing the phytoplankton increase in San Francisco Bay?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, J.E.; Jassby, A.D.; Schraga, T.S.; Dallas, K.L.</p> <p>2006-01-01</p> <p>The largest living component of San Francisco Bay is the phytoplankton, a suspension of microscopic cells that convert sunlight energy into new living biomass through the same process of photosynthesis used by land plants. This primary production is the ultimate source of food for clams, zooplankton, crabs, sardines, halibut, sturgeon, diving ducks, pelicans, and harbor seals. From measurements made in 1980, we estimated that phytoplankton primary production in San Francisco Bay was about 200,000 tons of organic carbon per year (Jassby et al. 1993). This is equivalent to producing the biomass of 5500 adult humpback whales, or the calories to feed 1.8 million people. These numbers may seem large, but primary production in San Francisco Bay is low compared to many other nutrient-enriched estuaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4131931','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4131931"><span>Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1413512-primary-heterotrophic-productivity-relate-multikingdom-diversity-hypersaline-mat','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1413512-primary-heterotrophic-productivity-relate-multikingdom-diversity-hypersaline-mat"><span>Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; ...</p> <p>2017-10-17</p> <p>Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles.more » These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming"><span>Reduced North American terrestrial primary productivity linked to anomalous Arctic warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong; ...</p> <p>2017-07-10</p> <p>Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5812518','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5812518"><span>Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.</p> <p>2017-01-01</p> <p>Abstract Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle. PMID:29045626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSA51A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSA51A..01S"><span>Operationalizing Space Weather Products - Process and Issues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scro, K. D.; Quigley, S.</p> <p>2006-12-01</p> <p>Developing and transitioning operational products for any customer base is a complicated process. This is the case for operational space weather products and services for the USAF. This presentation will provide information on the current state of affairs regarding the process required to take an idea from the research field to the real-time application of 24-hour space weather operations support. General principles and specific issues are discussed and will include: customer requirements, organizations in-play, funding, product types, acquisition of engineering and validation data, security classification, version control, and various important changes that occur during the process. The author's viewpoint is as an individual developing space environmental system-impact products for the US Air Force: 1) as a member of its primary research organization (Air Force Research Laboratory), 2) working with its primary space environment technology transition organization (Technology Application Division of the Space and Missile Systems Center, SMC/WXT), and 3) delivering to the primary sponsor/customer of such system-impact products (Air Force Space Command). The experience and focus is obviously on specific military operationalization process and issues, but most of the paradigm may apply to other (commercial) enterprises as well.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming"><span>Reduced North American terrestrial primary productivity linked to anomalous Arctic warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong</p> <p></p> <p>Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1413512','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1413512"><span>Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl</p> <p></p> <p>Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles.more » These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31342','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31342"><span>Root production method system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wayne Lovelace</p> <p>2002-01-01</p> <p>The RPM system (Root Production Method) is a multistep production system of container tree production that places primary emphasis on the root system because the root system ultimately determines the tree's survival and performance in its outplanted environment. This particular container production system has been developed to facilitate volume production, in a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29447218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29447218"><span>FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying</p> <p>2018-01-01</p> <p>The metabolism of individual organisms and biological communities can be viewed as a network of metabolites connected to each other through chemical reactions. In metabolic networks, chemical reactions transform reactants into products, thereby transferring elements between these metabolites. Knowledge of how elements are transferred through reactant/product pairs allows for the identification of primary compound connections through a metabolic network. However, such information is not readily available and is often challenging to obtain for large reaction databases or genome-scale metabolic models. In this study, a new algorithm was developed for automatically predicting the element-transferring reactant/product pairs using the limited information available in the standard representation of metabolic networks. The algorithm demonstrated high efficiency in analyzing large datasets and provided accurate predictions when benchmarked with manually curated data. Applying the algorithm to the visualization of metabolic networks highlighted pathways of primary reactant/product connections and provided an organized view of element-transferring biochemical transformations. The algorithm was implemented as a new function in the open source software package PSAMM in the release v0.30 (https://zhanglab.github.io/psamm/).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25011277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25011277"><span>[Analysis on influential factors in China's exports of primary and semi-finished products of traditional Chinese medicine to ASEAN].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qian, Yun-Xu; Yang, Yue; Zhao, Wei; Bi, Kai-Shun</p> <p>2014-04-01</p> <p>Two regression models, based on panel data over the period of 2000-2011, are built and used to analyze what factors determine China's exports of primary and semi-finished products of traditional Chinese medicine to ASEAN. The results indicate that, China GDP, the ratio of ASEAN to China GDP per capita, average export price, the ratio of state-owned assets to total assets, have a significant positive influence on the export volumes of primary products of Chinese medicine. At the same time, RMB appreciation, the ratio of three kinds of foreign-invested assets to total assets, China-ASEAN Early Harvest Program, ASEAN-China Free Trade Area have a significant negative influence. In respect of the export volumes of semi-finished products of Chinese medicine, the significant influential factors are ASEAN GDP and the ratio of ASEAN to China GDP per capita. The former is positive and the latter is negative. In order to optimize the commodity composition of experts, it is needed to increase export volumes of both primary and semi-finished products of Chinese medicine. According to the analysis above, some proposals are put forward, such as, improving the performance of foreign capital, playing an exemplary and leading role in technological innovation by state-owned enterprises, taking advantage of bargaining power of suppliers, increasing outward foreign direct investment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25884251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25884251"><span>The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B</p> <p>2015-05-05</p> <p>Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..375M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..375M"><span>The puzzle of HCN in comets: Is it both a product and a primary species?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mumma, M.; Bonev, B.; Charnley, S.; Cordiner, M.; DiSanti, M.; Gibb, E.; Magee-Sauer, K.; Paganini, L.; Villanueva, G.</p> <p>2014-07-01</p> <p>Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular-cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: - HCN is often used as a proxy for water when the dominant species (H_2O) is not available for simultaneous measurement, as at radio wavelengths. If much HCN is sometimes produced in the coma, its adoption as a water proxy could introduce unwanted bias to taxonomies based on composition. - HCN is one of the few volatile carriers of nitrogen accessible to remote sensing, with NH_3 being the dominant nitrile. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. - The stereoisomer HNC is regarded as a product species, thought to result from coma chemistry involving HCN. But, could another reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? - The production rate for CN greatly exceeds the possible production from HCN in some comets, demonstrating the presence of another (more important) precursor of CN radicals in them. - The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets, but in others the infrared rate exceeds the radio rate substantially. Is prompt emission from vibrationally excited HCN responsible? - With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H_2O, CH_3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). We will present the evidence for and against these points, and suggest ways to test the primary and product origins of cometary HCN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H53I..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H53I..08G"><span>Characteristic Fracture Spacing in Primary and Secondary Recovery from Naturally Fractured Reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, J.; Rossen, W.</p> <p>2015-12-01</p> <p>We showed previously (Gong and Rossen, 2014a,b) that, if the fracture aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is well-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery (EOR) process, the production of oil depends on the supply of injected water or EOR agent. This suggests that the characteristic fracture spacing for the dual-porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured reservoir should account not for all fractures but only the relatively small portion of the fracture network carrying almost all the injected water or EOR agent. In contrast, in primary production even a relatively small fracture represents an effective path for oil to flow to a production well. Thus in primary production the effective fracture spacing should include all the fractures. This distinction means that the "shape factor" in dual-porosity/dual-permeability reservoir simulators and the repeating unit in homogenization should depend on the process involved: specifically, it should be different for primary and secondary or tertiary recovery. We test this hypothesis in a simple representation of a fractured reservoir with a non-uniform distribution of fracture flow conductivities. We compare oil production, flow patterns in matrix, and the pattern of oil recovery around fractures with and without the "unimportant" fractures present. In primary production, all fractures which are much more permeable than matrix play a significant role in production. The shape factor or repeating-unit size should reflect the entire fracture distribution. In secondary or tertiary production, the role of fractures that carry relatively little flow depends on injection rate, the ratio of flow carried by the different fractures, and the permeability of matrix. In some cases, the appropriate shape factor or repeating-unit size for waterflood or EOR should reflect only those fractures that carry most of the flow. References:Gong, and Rossen, 14th ECMOR Conf., Catania, Sicily, 2014(a). Gong, and Rossen, Intl. Discrete Fracture Network Eng. Conf., Vancouver, Canada, 2014(b).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/19026','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/19026"><span>Effects of climate change and shifts in forest composition on forest net primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown</p> <p>2008-01-01</p> <p>Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46824','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46824"><span>Estimating climate change effects on net primary production of rangelands in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running</p> <p>2014-01-01</p> <p>The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40028','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40028"><span>Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. Flint Hughes; Seeven R. Archer; Gegory P. Asner; Carol A. Wessman; Chad McMurtry; Jim Nelson; R. James. Ansley</p> <p>2006-01-01</p> <p>When woody plant abundance increases in grasslands and savannas, a phenomenon widely observed worldwide, there is considerable uncertainty as to whether aboveground net primary productivity (ANPP) and ecosystem carbon (C) and nitrogen (N) pools increase, decrease, or remain the same. We estimated ANPP and C and N pools in aboveground vegetation and surface soils on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38378','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38378"><span>Kentucky’s timber industry - an assessment of timber product output and use, 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jason A. Cooper; Tony G. Johnson; Christopher G. Nevins</p> <p>2011-01-01</p> <p>In 2009, roundwood output from Kentucky’s forests totaled 136.3 million cubic feet, 27 percent less than in 2007. Mill byproducts generated from primary manufacturers decreased 28 percent to 65.4 million cubic feet. Ninety-nine percent of plant residues were used for a product. Industrial fuel, charcoal/chemical wood, and miscellaneous were the primary uses of mill...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46472','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46472"><span>Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram Oren</p> <p>2014-01-01</p> <p>Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13957','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13957"><span>The ratio of NPP to GPP: evidence of change over the course of stand development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Annikki Makela; Harry T. Valentine</p> <p>2001-01-01</p> <p>Using Scots pine (Pinus sylvestris L.) in Fenno-Scandia as a case study, we investigate whether net primary production (NPP) and maintenance respiration are constant fractions of gross primary production (GPP) as even-aged mono-specific stands progress from initiation to old age. A model of the ratio of NPP to GPP is developed based on (1) the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43267','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43267"><span>Projected US timber and primary forest product market impacts of climate change mitigation through timber set-asides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang</p> <p>2013-01-01</p> <p>Whereas climate change mitigation involving payments to forest landowners for accumulating carbon on their land may increase carbon stored in forests, it will also affect timber supply and prices. This study estimated the effect on US timber and primary forest product markets of hypothetical timber set-aside scenarios where US forest landowners would be paid to forego...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38844','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38844"><span>Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito</p> <p>2010-01-01</p> <p>Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39701','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39701"><span>Below-ground carbon flux and partitioning: global patterns and response to temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C.M. Litton; C.P. Giardina</p> <p>2008-01-01</p> <p>1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28400458','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28400458"><span>What drives the prescribing of growth hormone preparations in England? Prices versus patient preferences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chapman, Stephen R; Fitzpatrick, Raymond W; Aladul, Mohammed I</p> <p>2017-04-11</p> <p>The patent expiry of a number of biological medicines and the advent of biosimilars raised the expectations of healthcare commissioners that biosimilars would reduce the high cost of these medicines and produce potential savings to the NHS. We aimed to examine the prescribing pattern of different growth hormone preparations (ready to use and reconstitution requiring) in primary and secondary care in England to determine relative rates of decrease or increase and identify the possible factors influencing prescribing following the introduction of biosimilar growth hormone in 2008. Longitudinal observational study. Primary care prescribing cost and volume data was derived from the NHS business services authority website, and for secondary care from the DEFINE database, between April 2011 and December 2015. Quarterly prescribing analysis to examine trends and measure the relationship between usage and price. Expenditure and usage of growth hormone in primary care decreased by 17.91% and 7.29%, respectively, whereas expenditure and usage in secondary care increased by 68.41% and 100%, respectively, between April 2011 and December 2015. The usage of reconstitution requiring products significantly declined in primary care (R²=0.9292) and slightly increased in use in secondary care (R²=0.139). In contrast, the usage of ready-to-use products significantly increased in use in primary (R²=0.7526) and secondary care (R²=0.9633), respectively. Weak or no correlation existed between the usage and price of growth hormone preparations in primary and secondary care. The price of growth hormone products was not the key factor influencing the prescribing of the biological medicines. The main driver for specific product selection was the ease of use and the number of steps in dose preparation. Prescribers appear to be taking into account patient preferences rather than cost in their prescribing decisions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.4751V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.4751V"><span>Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi; Lindh, Markus V.; Pinhassi, Jarone; Conley, Daniel J.; Kritzberg, Emma S.</p> <p>2016-08-01</p> <p>The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=birth+AND+rates+AND+poor+AND+countries&pg=2&id=ED199813','ERIC'); return false;" href="https://eric.ed.gov/?q=birth+AND+rates+AND+poor+AND+countries&pg=2&id=ED199813"><span>Primary Schooling and Economic Development: A Review of the Evidence. World Bank Staff Working Paper No. 399.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Colclough, Christopher</p> <p></p> <p>By reviewing pertinent studies and data, this paper seeks to define the economic benefits of primary schooling within a worldwide context. The author concludes that investment in primary schooling results in more productivity at work and in the home. The returns from primary schooling in most developing countries are higher than from other forms…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040013011&hterms=dependency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddependency','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040013011&hterms=dependency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddependency"><span>Ocean Primary Production Estimates from Terra MODIS and Their Dependency on Satellite Chlorophyll Alpha Algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.</p> <p>2003-01-01</p> <p>Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....1219861V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....1219861V"><span>Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Wambeke, F.; Pfreundt, U.; Barani, A.; Berthelot, H.; Moutin, T.; Rodier, M.; Hess, W. R.; Bonnet, S.</p> <p>2015-12-01</p> <p>N2 fixation fuels ~ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE mesocosm experiment designed to track the fate of diazotroph derived nitrogen (DDN) in the New Caledonia lagoon. Here, we examined the temporal dynamics of heterotrophic bacterial production during this experiment. Three replicate large-volume (~ 50 m3) mesocosms were deployed and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between N2 fixation rates and primary production, determined bacterial growth efficiency and established carbon budgets of the system from the DIP fertilization to the end of the experiment (days 5-23). Heterotrophic bacterioplankton production (BP) and alkaline phosphatase activity (APA) were statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget was notably higher than generally cited for oligotrophic environments (27-43 %), possibly due to a high representation of proteorhodopsin-containing organisms within the picoplanctonic community. The carbon budget showed that the main fate of gross primary production (particulate + dissolved) was respiration (67 %), and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but slightly correlated, and only during P2 phase, with N2 fixation rates. Our results suggest that most of the DDN reached the heterotrophic bacterial community through indirect processes, like mortality, lysis and grazing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024345','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024345"><span>Using simple environmental variables to estimate below-ground productivity in grasslands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.</p> <p>2002-01-01</p> <p>In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B51J..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B51J..02W"><span>FLUXNET to MODIS: Connecting the dots to capture heterogenious biosphere metabolism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woods, K. D.; Schwalm, C.; Huntzinger, D. N.; Massey, R.; Poulter, B.; Kolb, T.</p> <p>2015-12-01</p> <p>Eddy co-variance flux towers provide our most widely distributed network of direct observations for land-atmosphere carbon exchange. Carbon flux sensitivity analysis is a method that uses in situ networks to understand how ecosystems respond to changes in climatic variables. Flux towers concurrently observe key ecosystem metabolic processes (e..g. gross primary productivity) and micrometeorological variation, but only over small footprints. Remotely sensed vegetation indices from MODIS offer continuous observations of the vegetated land surface, but are less direct, as they are based on light use efficiency algorithms, and not on the ground observations. The marriage of these two data products offers an opportunity to validate remotely sensed indices with in situ observations and translate information derived from tower sites to globally gridded products. Here we provide correlations between Enhanced Vegetation Index (EVI), Leaf Area Index (LAI) and MODIS gross primary production with FLUXNET derived estimates of gross primary production, respiration and net ecosystem exchange. We demonstrate remotely sensed vegetation products which have been transformed to gridded estimates of terrestrial biosphere metabolism on a regional-to-global scale. We demonstrate anomalies in gross primary production, respiration, and net ecosystem exchange as predicted by both MODIS-carbon flux sensitivities and meteorological driver-carbon flux sensitivities. We apply these sensitivities to recent extreme climatic events and demonstrate both our ability to capture changes in biosphere metabolism, and differences in the calculation of carbon flux anomalies based on method. The quantification of co-variation in these two methods of observation is important as it informs both how remotely sensed vegetation indices are correlated with on the ground tower observations, and with what certainty we can expand these observations and relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29114947','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29114947"><span>Household cleaning products and the risk of allergic dermatitis: a prospective cohort study with primary-school children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, X; Tan, L; Yu, I T S; Zhang, Z; Wong, C C-Y; Guo, C; Ho, K F; Lau, A P S; Yeoh, E K; Lee, A; Lao, X Q</p> <p>2018-04-01</p> <p>Household cleaning products are widely used by the public, but limited data have been obtained on whether their use induces allergic dermatitis in children. This study investigated the association between exposure to household cleaning products and allergic dermatitis in primary-school children. A prospective cohort study of Hong Kong primary-school children was conducted between 2012 and 2014. A baseline survey was administered to 1812 students who did not have allergic dermatitis. Information on respiratory symptoms, exposure to household chemical cleaning products and other topics was collected using a self-administered questionnaire. A cumulative chemical burden (CCB) score was calculated for each student by summing the duration of exposure to 14 chemical cleaning products. Principal component analysis was used to identify patterns in the use of these cleaning products. Logistic regression was performed to calculate relative risk (RR) with 95% confidence intervals (CIs) after adjusting for potential confounders. Eighty-nine (4.9%) of the students surveyed had dermatitis during the follow-up. However, exposure to individual chemical cleaning products was not found to be associated with the children's allergic dermatitis (all P > 0.05). In contrast to those in the lowest tertile, neither CCB scores in the middle tertile (RR: 1.16, 95% CI: 0.67 to 2.00) nor those in the highest tertile (RR: 1.24, 95% CI: 0.73 to 2.14) were significantly associated with the risk of allergic dermatitis. The adjusted RR for every 5-unit increment in CCB score was 1.01 (95% CI: 0.98 to 1.03). Four patterns of cleaning-product use were derived, but none were found to be associated with the risk of dermatitis (all P > 0.05). The use of household chemical cleaning products is not associated with the risk of dermatitis in primary-school children. © 2017 European Academy of Dermatology and Venereology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4388648','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4388648"><span>Exploring How Pain Leads to Productivity Loss in Primary Care Consulters for Osteoarthritis: A Prospective Cohort Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wilkie, Ross; Hay, Elaine M.; Croft, Peter; Pransky, Glenn</p> <p>2015-01-01</p> <p>Objective Osteoarthritis pain has become a leading cause of decreased productivity and work disability in older workers, a major concern in primary care. How osteoarthritis pain leads to decreased productivity at work is unclear; the aim of this study was to elucidate causal mechanisms and thus identify potential opportunities for intervention. Methods Population-based prospective cohort study of primary care consulters with osteoarthritis. Path analysis was used to test proposed mechanisms by examining the association between pain at baseline, and onset of work productivity loss at three years for mediation by physical limitation, depression, poor sleep and poor coping mechanisms. Results High pain intensity was associated with onset of work productivity loss (Adjusted Odds Ratio 2.5; 95%CI 1.3, 4.8). About half of the effect of pain on work productivity was a direct effect, and half was mediated by the impact of pain on physical function. Depression, poor sleep quality and poor coping did not mediate the association between high pain intensity and onset of work productivity loss. Conclusions As pain is a major cause of work productivity loss, results suggest that decreasing pain should be a major focus. However, successfully improving function may have an indirect effect by decreasing the impact of pain on work productivity, especially important as significant pain reduction is often difficult to achieve. Although depression, sleep problems, and coping strategies may be directly related to work productivity loss, addressing these issues may not have much effect on the significant impact of pain on work productivity. PMID:25849594</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25849594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25849594"><span>Exploring how pain leads to productivity loss in primary care consulters for osteoarthritis: a prospective cohort study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilkie, Ross; Hay, Elaine M; Croft, Peter; Pransky, Glenn</p> <p>2015-01-01</p> <p>Osteoarthritis pain has become a leading cause of decreased productivity and work disability in older workers, a major concern in primary care. How osteoarthritis pain leads to decreased productivity at work is unclear; the aim of this study was to elucidate causal mechanisms and thus identify potential opportunities for intervention. Population-based prospective cohort study of primary care consulters with osteoarthritis. Path analysis was used to test proposed mechanisms by examining the association between pain at baseline, and onset of work productivity loss at three years for mediation by physical limitation, depression, poor sleep and poor coping mechanisms. High pain intensity was associated with onset of work productivity loss (Adjusted Odds Ratio 2.5; 95%CI 1.3, 4.8). About half of the effect of pain on work productivity was a direct effect, and half was mediated by the impact of pain on physical function. Depression, poor sleep quality and poor coping did not mediate the association between high pain intensity and onset of work productivity loss. As pain is a major cause of work productivity loss, results suggest that decreasing pain should be a major focus. However, successfully improving function may have an indirect effect by decreasing the impact of pain on work productivity, especially important as significant pain reduction is often difficult to achieve. Although depression, sleep problems, and coping strategies may be directly related to work productivity loss, addressing these issues may not have much effect on the significant impact of pain on work productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRG..116.4010D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRG..116.4010D"><span>Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.</p> <p>2011-12-01</p> <p>The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3815394','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3815394"><span>Metabolic regulation and overproduction of primary metabolites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sanchez, Sergio; Demain, Arnold L.</p> <p>2008-01-01</p> <p>Summary Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well‐known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum‐derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement. PMID:21261849</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27138563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27138563"><span>Effects of Detrital Subsidies on Soft-Sediment Ecosystem Function Are Transient and Source-Dependent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gladstone-Gallagher, Rebecca V; Lohrer, Andrew M; Lundquist, Carolyn J; Pilditch, Conrad A</p> <p>2016-01-01</p> <p>Detrital subsidies from marine macrophytes are prevalent in temperate estuaries, and their role in structuring benthic macrofaunal communities is well documented, but the resulting impact on ecosystem function is not understood. We conducted a field experiment to test the effects of detrital decay on soft-sediment primary production, community metabolism and nutrient regeneration (measures of ecosystem function). Twenty four (2 m2) plots were established on an intertidal sandflat, to which we added 0 or 220 g DW m-2 of detritus from either mangroves (Avicennia marina), seagrass (Zostera muelleri), or kelp (Ecklonia radiata) (n = 6 plots per treatment). Then, after 4, 17 and 46 d we measured ecosystem function, macrofaunal community structure and sediment properties. We hypothesized that (1) detrital decay would stimulate benthic primary production either by supplying nutrients to the benthic macrophytes, or by altering the macrofaunal community; and (2) ecosystem responses would depend on the stage and rate of macrophyte decay (a function of source). Avicennia detritus decayed the slowest with a half-life (t50) of 46 d, while Zostera and Ecklonia had t50 values of 28 and 2.6 d, respectively. However, ecosystem responses were not related to these differences. Instead, we found transient effects (up to 17 d) of Avicennia and Ecklonia detritus on benthic primary production, where initially (4 d) these detrital sources suppressed primary production, but after 17 d, primary production was stimulated in Avicennia plots relative to controls. Other ecosystem function response variables and the macrofaunal community composition were not altered by the addition of detritus, but did vary with time. By sampling ecosystem function temporally, we were able to capture the in situ transient effects of detrital subsidies on important benthic ecosystem functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15948242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15948242"><span>Different cytokine response of primary colonic epithelial cells to commensal bacteria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lan, Jing-Gang; Cruickshank, Sheena-Margaret; Singh, Joy-Carmelina-Indira; Farrar, Mark; Lodge, James-Peter-Alan; Felsburg, Peter-John; Carding, Simon-Richard</p> <p>2005-06-14</p> <p>To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1alpha/beta and betadefensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2alpha expression, respectively. TNFalpha, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4315991','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4315991"><span>Different cytokine response of primary colonic epithelial cells to commensal bacteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lan, Jing-Gang; Cruickshank, Sheena Margaret; Singh, Joy Carmelina Indira; Farrar, Mark; Lodge, James Peter Alan; Felsburg, Peter John; Carding, Simon Richard</p> <p>2005-01-01</p> <p>AIM: To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. METHODS: A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. RESULTS: Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1α/β and β defensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2α expression, respectively. TNFα, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. CONCLUSION: These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo. PMID:15948242</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27861616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27861616"><span>Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying</p> <p>2016-01-01</p> <p>This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5115830','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5115830"><span>Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying</p> <p>2016-01-01</p> <p>This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season. PMID:27861616</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28815594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28815594"><span>Differential effects of changes in spectral irradiance on photoacclimation, primary productivity and growth in Rhodomonas salina (Cryptophyceae) and Skeletonema costatum (Bacillariophyceae) in simulated blackwater environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lawrenz, Evelyn; Richardson, Tammi L</p> <p>2017-12-01</p> <p>The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing-induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl -1 ) · h -1 . Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high-CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short-term 14 C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3-fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl -1 ) · h -1 . Thus, a lack of PFSL differentially impairs primarily CO 2 -fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems. © 2017 Phycological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23602619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23602619"><span>Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Escobar-Hoyos, Luisa F; Hoyos-Giraldo, Luz Stella; Londoño-Velasco, Elizabeth; Reyes-Carvajal, Ingrid; Saavedra-Trujillo, Diana; Carvajal-Varona, Silvio; Sánchez-Gómez, Adalberto; Wagner, Elizabeth D; Plewa, Michael J</p> <p>2013-06-15</p> <p>The haloacetic acids (HAAs) are the second-most prevalent class of drinking water disinfection by-products formed by chemical disinfectants. Previous studies have determined DNA damage and repair of HAA-induced lesions in mammalian and human cell lines; however, little is known of the genomic DNA and chromosome damage induced by these compounds in primary human cells. The aim of this study was to evaluate the genotoxic and clastogenic effects of the monoHAA disinfection by-products in primary human lymphocytes. All monoHAAs were genotoxic in primary human lymphocytes, the rank order of genotoxicity and cytotoxicity was IAA > BAA > CAA. After 6 h of repair time, only 50% of the DNA damage (maximum decrease in DNA damage) was repaired compared to the control. This demonstrates that primary human lymphocytes are less efficient in repairing the induced damage by monoHAAs than previous studies with mammalian cell lines. In addition, the monoHAAs induced an increase in the chromosome aberration frequency as a measurement of the clastogenic effect of these compounds. These results coupled with genomic technologies in primary human cells and other mammalian non-cancerous cell lines may lead to the identification of biomarkers that may be employed in feedback loops to aid water chemists and engineers in the overall goal of producing safer drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29348611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29348611"><span>Prediction is Production: The missing link between language production and comprehension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martin, Clara D; Branzi, Francesca M; Bar, Moshe</p> <p>2018-01-18</p> <p>Language comprehension often involves the generation of predictions. It has been hypothesized that such prediction-for-comprehension entails actual language production. Recent studies provided evidence that the production system is recruited during language comprehension, but the link between production and prediction during comprehension remains hypothetical. Here, we tested this hypothesis by comparing prediction during sentence comprehension (primary task) in participants having the production system either available or not (non-verbal versus verbal secondary task). In the primary task, sentences containing an expected or unexpected target noun-phrase were presented during electroencephalography recording. Prediction, measured as the magnitude of the N400 effect elicited by the article (expected versus unexpected), was hindered only when the production system was taxed during sentence context reading. The present study provides the first direct evidence that the availability of the speech production system is necessary for generating lexical prediction during sentence comprehension. Furthermore, these important results provide an explanation for the recruitment of language production during comprehension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44714','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44714"><span>Recommendations for sustainable development of non-timber forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Gina H. Mohammed</p> <p>2001-01-01</p> <p>Non-timber forest products--or NTFPs--are considered here to be botanical products harvested or originating from forest-based species, but excluding primary timber products, industrial boards and composites, and paper products. A recent study of non-timber forest products in Ontario, Canada, identified at least 50 types of NTFPs and hundreds of specific products used...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10351','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10351"><span>Fuelwood production and sources in Wisconsin, 1981.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James E. Blyth; E. Michael Bailey; W. Brad Smith</p> <p>1984-01-01</p> <p>Discusses and analyzes the 1981 Wisconsin fuelwood production from roundwood and primary wood-using mill residue. Analyzes production by geographic area, type of producer, species, landowner class, type of land, and tree source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850030820&hterms=fixed+asset&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfixed%2Basset','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850030820&hterms=fixed+asset&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfixed%2Basset"><span>Remote sensing of biomass and annual net aerial primary productivity of a salt marsh</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hardisky, M. A.; Klemas, V.; Daiber, F. C.; Roman, C. T.</p> <p>1984-01-01</p> <p>Net aerial primary productivity is the rate of storage of organic matter in above-ground plant issues exceeding the respiratory use by the plants during the period of measurement. It is pointed out that this plant tissue represents the fixed carbon available for transfer to and consumption by the heterotrophic organisms in a salt marsh or the estuary. One method of estimating annual net aerial primary productivity (NAPP) required multiple harvesting of the marsh vegetation. A rapid nondestructive remote sensing technique for estimating biomass and NAPP would, therefore, be a significant asset. The present investigation was designed to employ simple regression models, equating spectral radiance indices with Spartina alterniflora biomass to nondestructively estimate salt marsh biomass. The results of the study showed that the considered approach can be successfully used to estimate salt marsh biomass.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1350979','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1350979"><span>The Effect of Improving Primary Care Depression Management on Employee Absenteeism and Productivity A Randomized Trial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rost, Kathryn; Smith, Jeffrey L.; Dickinson, Miriam</p> <p>2005-01-01</p> <p>Objective: To test whether an intervention to improve primary care depression management significantly improves productivity at work and absenteeism over 2 years. Setting and Subjects: Twelve community primary care practices recruiting depressed primary care patients identified in a previsit screening. Research Design: Practices were stratified by depression treatment patterns before randomization to enhanced or usual care. After delivering brief training, enhanced care clinicians provided improved depression management over 24 months. The research team evaluated productivity and absenteeism at baseline, 6, 12, 18, and 24 months in 326 patients who reported full-or part-time work at one or more completed waves. Results: Employed patients in the enhanced care condition reported 6.1% greater productivity and 22.8% less absenteeism over 2 years. Consistent with its impact on depression severity and emotional role functioning, intervention effects were more observable in consistently employed subjects where the intervention improved productivity by 8.2% over 2 years at an estimated annual value of $1982 per depressed full-time equivalent and reduced absenteeism by 28.4% or 12.3 days over 2 years at an estimated annual value of $619 per depressed full-time equivalent. Conclusions: This trial, which is the first to our knowledge to demonstrate that improving the quality of care for any chronic disease has positive consequences for productivity and absenteeism, encourages formal cost-benefit research to assess the potential return-on-investment employers of stable workforces can realize from using their purchasing power to encourage better depression treatment for their employees. PMID:15550800</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28865910','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28865910"><span>Methods to estimate the transfer of contaminants into recycling products - A case study from Austria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knapp, Julika; Allesch, Astrid; Müller, Wolfgang; Bockreis, Anke</p> <p>2017-11-01</p> <p>Recycling of waste materials is desirable to reduce the consumption of limited primary resources, but also includes the risk of recycling unwanted, hazardous substances. In Austria, the legal framework demands secondary products must not present a higher risk than comparable products derived from primary resources. However, the act provides no definition on how to assess this risk potential. This paper describes the development of different quantitative and qualitative methods to estimate the transfer of contaminants in recycling processes. The quantitative methods comprise the comparison of concentrations of harmful substances in recycling products to corresponding primary products and to existing limit values. The developed evaluation matrix, which considers further aspects, allows for the assessment of the qualitative risk potential. The results show that, depending on the assessed waste fraction, particular contaminants can be critical. Their concentrations were higher than in comparable primary materials and did not comply with existing limit values. On the other hand, the results show that a long-term, well-established quality control system can assure compliance with the limit values. The results of the qualitative assessment obtained with the evaluation matrix support the results of the quantitative assessment. Therefore, the evaluation matrix can be suitable to quickly screen waste streams used for recycling to estimate their potential environmental and health risks. To prevent the transfer of contaminants into product cycles, improved data of relevant substances in secondary resources are necessary. In addition, regulations for material recycling are required to assure adequate quality control measures, including limit values. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP11A1029R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP11A1029R"><span>Evaluation of Organic Proxies for Quantifying Past Primary Productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raja, M.; Rosell-Melé, A.; Galbraith, E.</p> <p>2017-12-01</p> <p>Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029625&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029625&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction"><span>Factors affecting the estimate of primary production from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balch, W. M.; Byrne, C. F.</p> <p>1994-01-01</p> <p>Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912177L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912177L"><span>How would the ocean carbon cycle be affected by radiation management geoengineering?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauvset, Siv K.; Tjiputra, Jerry; Muri, Helene; Grini, Alf</p> <p>2017-04-01</p> <p>Human emissions of carbon dioxide to the atmosphere is unequivocally causing global warming and climate change (IPCC, 2013). At the 21st United Nations Framework Convention on climate Change (UNFCCC) Conference of the Parties it was agreed to limit the increase in global average temperature to 2˚C above pre-industrial levels. We have used the Norwegian Earth System Model (NorESM1-ME) and applied radiation management (RM) methods in order to bring the future radiative forcing change in the RCP8.5 CO2 emission scenario in line with that of the RCP4.5 CO2 emission scenario. Three different RM methods, with varying effects on atmospheric physics, were used in these experiments: stratospheric aerosol injection (SAI); marine sky brightening (MSB); and cirrus cloud thinning (CCT). Here we will present how the different methods affect the ocean carbon cycle, which is a well-known and important feedback on climate change. In particular, we focus on changes to the ocean primary production, which are known to be spatially and temporally complex. We show that while the global mean temperature when applying RM is similar to that in the RCP4.5 scenario, no RM method produce similar ocean primary production as in the RCP4.5 scenario. Our simulations indicate that when it comes to the ocean primary productivity there will be regional winners and losers. The different RM methods also produce spatially very different results, partly linked to how the different RM methods affect clouds. The results of this work does nothing to diminish the complexity of climate impacts on primary production, but rather highlights that any change in ocean primary production is driven by a combination of several parameters, which all change in different ways. The experiments highlight the, at present, uncertain changes to ocean productivity in the future and highlights the caution necessary before additional human perturbations to the Earth system is attempted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol11/pdf/CFR-2011-title40-vol11-sec63-1310.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol11/pdf/CFR-2011-title40-vol11-sec63-1310.pdf"><span>40 CFR 63.1310 - Applicability and designation of affected sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... basis for two or more products, and if one of those products is a thermoplastic product, then the... the determination of the primary product for the specified period, applicability shall be determined... manufacture one product for the greatest operating time over the specified 5 year period for existing process...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol11/pdf/CFR-2010-title40-vol11-sec63-1310.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol11/pdf/CFR-2010-title40-vol11-sec63-1310.pdf"><span>40 CFR 63.1310 - Applicability and designation of affected sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... basis for two or more products, and if one of those products is a thermoplastic product, then the... the determination of the primary product for the specified period, applicability shall be determined... manufacture one product for the greatest operating time over the specified 5 year period for existing process...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol12/pdf/CFR-2012-title40-vol12-sec63-1310.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol12/pdf/CFR-2012-title40-vol12-sec63-1310.pdf"><span>40 CFR 63.1310 - Applicability and designation of affected sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... basis for two or more products, and if one of those products is a thermoplastic product, then the... the determination of the primary product for the specified period, applicability shall be determined... manufacture one product for the greatest operating time over the specified 5 year period for existing process...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol12/pdf/CFR-2013-title40-vol12-sec63-1310.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol12/pdf/CFR-2013-title40-vol12-sec63-1310.pdf"><span>40 CFR 63.1310 - Applicability and designation of affected sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... basis for two or more products, and if one of those products is a thermoplastic product, then the... the determination of the primary product for the specified period, applicability shall be determined... manufacture one product for the greatest operating time over the specified 5 year period for existing process...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49762','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49762"><span>California's forest products industry and timber harvest, 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Chelsea P. McIver; Joshua P. Meek; Micah G. Scudder; Colin B. Sorenson; Todd A. Morgan; Glenn A. Christensen</p> <p>2015-01-01</p> <p>This report traces the flow of California's 2012 timber harvest through the primary wood products industry and provides a description of the structure, condition, and economic impacts of California's forest products sector. Historical forest products industry changes are discussed, as well as trends in harvest, production, mill residue, and sales. Also...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1034114.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1034114.pdf"><span>Primary School Teacher Candidates' Geometric Habits of Mind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Köse, Nilu¨fer Y.; Tanisli, Dilek</p> <p>2014-01-01</p> <p>Geometric habits of mind are productive ways of thinking that support learning and using geometric concepts. Identifying primary school teacher candidates' geometric habits of mind is important as they affect the development of their future students' geometric thinking. Therefore, this study attempts to determine primary school teachers' geometric…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol1/pdf/CFR-2012-title21-vol1-sec1-227.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol1/pdf/CFR-2012-title21-vol1-sec1-227.pdf"><span>21 CFR 1.227 - What definitions apply to this subpart?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... means an establishment that sells food products directly to consumers as its primary function. A retail food establishment may manufacture/process, pack, or hold food if the establishment's primary function... holds, directly to consumers. A retail food establishment's primary function is to sell food directly to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol1/pdf/CFR-2014-title21-vol1-sec1-227.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol1/pdf/CFR-2014-title21-vol1-sec1-227.pdf"><span>21 CFR 1.227 - What definitions apply to this subpart?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... means an establishment that sells food products directly to consumers as its primary function. A retail food establishment may manufacture/process, pack, or hold food if the establishment's primary function... holds, directly to consumers. A retail food establishment's primary function is to sell food directly to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol1/pdf/CFR-2011-title21-vol1-sec1-227.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol1/pdf/CFR-2011-title21-vol1-sec1-227.pdf"><span>21 CFR 1.227 - What definitions apply to this subpart?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... means an establishment that sells food products directly to consumers as its primary function. A retail food establishment may manufacture/process, pack, or hold food if the establishment's primary function... holds, directly to consumers. A retail food establishment's primary function is to sell food directly to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol1/pdf/CFR-2013-title21-vol1-sec1-227.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol1/pdf/CFR-2013-title21-vol1-sec1-227.pdf"><span>21 CFR 1.227 - What definitions apply to this subpart?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... means an establishment that sells food products directly to consumers as its primary function. A retail food establishment may manufacture/process, pack, or hold food if the establishment's primary function... holds, directly to consumers. A retail food establishment's primary function is to sell food directly to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-113.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-113.pdf"><span>9 CFR 3.113 - Primary enclosures used to transport marine mammals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... marine mammals. 3.113 Section 3.113 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... the animals, their handlers, or other persons. (d) Marine mammals transported in the same primary... used. Within the primary enclosures used to transport marine mammals, the animals will be maintained on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-113.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-113.pdf"><span>9 CFR 3.113 - Primary enclosures used to transport marine mammals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... marine mammals. 3.113 Section 3.113 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... the animals, their handlers, or other persons. (d) Marine mammals transported in the same primary... used. Within the primary enclosures used to transport marine mammals, the animals will be maintained on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-113.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-113.pdf"><span>9 CFR 3.113 - Primary enclosures used to transport marine mammals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... marine mammals. 3.113 Section 3.113 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... the animals, their handlers, or other persons. (d) Marine mammals transported in the same primary... used. Within the primary enclosures used to transport marine mammals, the animals will be maintained on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-113.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-113.pdf"><span>9 CFR 3.113 - Primary enclosures used to transport marine mammals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... marine mammals. 3.113 Section 3.113 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... the animals, their handlers, or other persons. (d) Marine mammals transported in the same primary... used. Within the primary enclosures used to transport marine mammals, the animals will be maintained on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-113.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-113.pdf"><span>9 CFR 3.113 - Primary enclosures used to transport marine mammals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... marine mammals. 3.113 Section 3.113 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... the animals, their handlers, or other persons. (d) Marine mammals transported in the same primary... used. Within the primary enclosures used to transport marine mammals, the animals will be maintained on...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1435136-magnetic-properties-crystallization-kinetics-fe100xnix-metal-amorphous-nanocomposites','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1435136-magnetic-properties-crystallization-kinetics-fe100xnix-metal-amorphous-nanocomposites"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aronhime, Natan; Zoghlin, Eli; Keylin, Vladimir</p> <p></p> <p>Fe-Ni based metal amorphous nanocomposites (MANCs) are investigated in the pseudo-binary alloys (Fe 100–xNi x) 80Nb 4Si 2B 14. To optimize the soft magnetic properties of the nanocomposites, primary and secondary crystallization kinetics must be understood. As such, primary and secondary crystallization temperatures are determined by differential scanning calorimetry, and activation energies are calculated, along with the resulting crystalline phases. Time-temperature-transformation diagrams for primary and secondary crystallization in (Fe 70Ni 30) 80Nb 4Si 2B 14 are presented. Saturation magnetization and Curie temperature are determined. In conclusion, the shape of magnetization vs. time curves for (Fe 30Ni 70) 80Nb 4Si 2Bmore » 14 at various temperatures suggest that the secondary crystal product often consumes some of the primary crystalline product.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47997','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47997"><span>Forest sector and primary forest products industry contributions to the economies of the southern states: 2011 update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Consuelo Brandeis; Donald G. Hodges</p> <p>2015-01-01</p> <p>The analysis in this article provides an update on the southern forest sector economic activity after the downturn experienced in 2008–2009. The analysis was conducted using Impact Analysis for Planning (IMPLAN) software and data sets for 2009 and 2011 and results from the USDA Forest Service Timber Products Output latest survey of primary wood processing mills....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/42970','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/42970"><span>Life Cycle Primary Energy and Carbon Analysis of Recovering Softwood Framing Lumber and Hardwood Flooring for Reuse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Richard D. Bergman; Hongmei Gu; Thomas R. Napier; James Salazar; Robert H. Falk</p> <p>2012-01-01</p> <p>Recovering wood for reuse in a new house affects energy and greenhouse gas emissions. This paper finds the energy and emissions for recovering softwood framing lumber and hardwood flooring from an old house for installation in a new house. Recovering wood displaces primary production of new wood products and avoids the end-of-life (EOL) burdens for the old house. We...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA201152','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA201152"><span>Enterotoxins of Staphylococci</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-01-01</p> <p>staphylococcal enterotoxin B in monkeys. Appl . Microbial. 16:187-192. Huang, I.-Y. and Bergdoll. M. S. (1970). The primary structure of staphylococcal enterotoxin...EPIDEMIOLOGY 132 III. PRODUCTION AND ISOLATION 132 A. Production 132 B. Purification 134 C. Purity 135 IV. STRUCTURE AND FUNCTION 138 A. Basic Structure 138 B...Primary Structure and Active Site 138 C. Modification Studies 142 D. Conformation 143 V. DETECTION METHODS 146 VI. SYNTHESIS 148 A. Cloning of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49510','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49510"><span>Inter-annual variability and spatial coherence of net primary productivity across a western Oregon Cascades landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Travis J. Woolley; Mark E. Harmon; Kari B. O’Connell</p> <p>2015-01-01</p> <p>Inter-annual variability (IAV) of forest Net Primary Productivity (NPP) is a function of both extrinsic (e.g., climate) and intrinsic (e.g., stand dynamics) drivers. As estimates of NPP in forests are scaled from trees to stands to the landscape, an understanding of the relative effects of these factors on spatial and temporal behavior of NPP is important. Although a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/19389','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/19389"><span>Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Scott V. Ollinger; Marie-Louise Smith</p> <p>2005-01-01</p> <p>Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15840','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15840"><span>Improved estimates of net primary productivity from MODIS satellite data at regional and local scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Yude Pan; Richard Birdsey; John Hom; Kevin McCullough; Kenneth Clark</p> <p>2006-01-01</p> <p>We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak? hickory forests in the region. However...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38486','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38486"><span>Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al</p> <p>2011-01-01</p> <p>Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GPC....46...57S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GPC....46...57S"><span>Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Straškrábová, V.; Izmest'yeva, L. R.; Maksimova, E. A.; Fietz, S.; Nedoma, J.; Borovec, J.; Kobanova, G. I.; Shchetinina, E. V.; Pislegina, E. V.</p> <p>2005-04-01</p> <p>Three years of regular weekly/biweekly monitoring of seasonal changes in temperature, transparency, chlorophyll a (CHL) and bacteria [erythrosine-stained microscopic counts and cultivable colony forming units (CFUs)] at the vertical profile in the South basin of Lake Baikal (51°54'195″N, 105°04'235″E, depth 800 m) were evaluated. In more detail, the structure and function of phytoplankton and the microbial loop in the euphotic layer at the same site were investigated during the late-winter-early-spring period under the ice. The depth of euphotic zone (up to 1% of surface irradiation) was 35 to 40 m. Primary production was measured three times a week with the 14C method in 2, 10, 20, 30 and 40 m. Maximum production was found in 10 m, with lower values towards the surface (light inhibition) and towards the lower layers. The total production in cells larger than 1 μm in the column (0-40 m) was 204-240 mg C d -1 m -2, 30-40% of it being in cells 1-3 μm (mostly picocyanobacteria), which represented roughly 9% of the total chlorophyll a (estimated from pigment analyses). A major part of phytoplankton biomass was formed by diatoms ( Synedra acus Hust., Asterionella formosa Hass. and Stephanodiscus meyerii Genkal & Popovskaya). Total production (including extracellular, dissolved organic matter) was 235-387 mg C day -1 m -2, and the exudates were readily used by bacteria (particles 0.2-1 μm). This part amounted to 1-5% of cellular production in 2 to 20 m and 11-77% of cellular production in 20-40 m, i.e., in light-limited layers. From 0 to 30 m, chlorophyll a concentration was 0.8 to 1.3 μg l -1, wherefrom it decreased rapidly to 0.1 μg l -1 towards the depth of 40 m. Bacteria (DAPI-stained microscopic counts) reached 0.5-1.4×10 6 ml -1; their cell volumes measured via image analysis were small (average 0.05 μm -3), often not well countable when erythrosine stain was used. Bacterial biomasses were in the range of 6-21 μg C l -1. Numbers of colony forming units (CFUs) on nutrient fish-agar were c. 3-4 orders lower than DAPI counts. The amounts of heterotrophic protists were low, whereby flagellates reached 6 to 87 ml -1 and ciliates, 0.2-1.2 ml -1 (mostly Oligotrichida). Bacterial production was measured in the same depths as primary production using 3H-thymidine (Thy) and 14C-leucine (Leu) uptake. Consistently, bacterial abundances, biomasses, thymidine and leucine production were higher by 30-50% in layers 2, 10 and 20 m compared with that in the deeper 30 and 40 m, where cellular primary production was negligible. Leucine uptake in the deeper layers was even three times lower than in the upper ones. From the comparison of primary and bacterial production, bacteria roughly use 20-40% of primary production during 24 h in the layers 2 to 20 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.138...63H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.138...63H"><span>Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoppe, C. J. M.; Klaas, C.; Ossebaar, S.; Soppa, M. A.; Cheah, W.; Laglera, L. M.; Santos-Echeandia, J.; Rost, B.; Wolf-Gladrow, D. A.; Bracher, A.; Hoppema, M.; Strass, V.; Trimborn, S.</p> <p>2017-04-01</p> <p>The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration through the biological pump. In the current study, two large-scale blooms observed in 2012 during a cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlorophyll a -specific photosynthesis was more efficient in the bloom closer to the island of South Georgia (39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m-2 developed despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward the declining phase of the blooms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..122...72S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..122...72S"><span>Deep-sea fluxes of barium and lithogenic trace elements in the subtropical northeast Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, Judith; Dellwig, Olaf; Waniek, Joanna J.</p> <p>2017-04-01</p> <p>Total particle flux, Barium and lithogenic trace element fluxes were measured at the mooring Kiel 276 (33°N, 22°W) in the deep-sea of the subtropical Northeast Atlantic. The particulate material was collected between 2002 and 2008 with a sediment trap in 2000 m depth and analyzed with ICP-OES/-MS to determine its geochemical composition. The particle flux is controlled by primary production, lithogenic particle inputs via atmospheric transport and the migration of the Azores Front. We used refractory trace elements (eg. Ti, Zr, and the rare earth elements) to demonstrate the changes in flux and composition of the material due to lithogenic inputs. Shortly after periods of high dust load and enhanced primary production an increase in lithogenic trace element fluxes occurred. Especially the formation of aggregates with biogenic matter seems to have a major impact on the downwards transport of lithogenic particles. The observation of particulate Ba is of great interest since it is known as a proxy for past and present primary production. Ba fluxes ranging between 0.02 mg m-2 d-1 and 1.21 mg m-2 d-1 with biogenic proportions up to 97%. The fluxes of particulate Barium in the water column are mainly attributed to the strength of primary production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168815','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168815"><span>Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Churchill, A.C.; Turetsky, Merritt R.; McGuire, A. David; Hollingsworth, Teresa N.</p> <p>2014-01-01</p> <p>Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on plant species abundance and ecosystem primary production in an Alaskan fen by manipulating the water table in field treatments to mimic either sustained flooding (raised water table) or drought (lowered water table) conditions for 6 years. We found that water table treatments altered plant species abundance by increasing sedge and grass cover in the raised water table treatment and reducing moss cover while increasing vascular green area in the lowered water table treatment. Gross primary productivity was lower in the lowered treatment than in the other plots, although there were no differences in total biomass or vascular net primary productivity among the treatments. Overall, our results indicate that vegetation abundance was more sensitive to variation in water table than total biomass and vascular biomass accrual. Finally, in our experimental peatland, drought had stronger consequences for change in vegetation abundance and ecosystem function than sustained flooding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18051650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18051650"><span>Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Norkko, A; Thrush, S F; Cummings, V J; Gibbs, M M; Andrew, N L; Norkko, J; Schwarz, A M</p> <p>2007-11-01</p> <p>Predicting the dynamics of ecosystems requires an understanding of how trophic interactions respond to environmental change. In Antarctic marine ecosystems, food web dynamics are inextricably linked to sea ice conditions that affect the nature and magnitude of primary food sources available to higher trophic levels. Recent attention on the changing sea ice conditions in polar seas highlights the need to better understand how marine food webs respond to changes in such broad-scale environmental drivers. This study investigated the importance of sea ice and advected primary food sources to the structure of benthic food webs in coastal Antarctica. We compared the isotopic composition of several seafloor taxa (including primary producers and invertebrates with a variety of feeding modes) that are widely distributed in the Antarctic. We assessed shifts in the trophic role of numerically dominant benthic omnivores at five coastal Ross Sea locations. These locations vary in primary productivity and food availability, due to their different levels of sea ice cover, and proximity to polynyas and advected primary production. The delta15N signatures and isotope mixing model results for the bivalves Laternula elliptica and Adamussium colbecki and the urchin Sterechinus neumeyeri indicate a shift from consumption of a higher proportion of detritus at locations with more permanent sea ice in the south to more freshly produced algal material associated with proximity to ice-free water in the north and east. The detrital pathways utilized by many benthic species may act to dampen the impacts of large seasonal fluctuations in the availability of primary production. The limiting relationship between sea ice distribution and in situ primary productivity emphasizes the role of connectivity and spatial subsidies of organic matter in fueling the food web. Our results begin to provide a basis for predicting how benthic ecosystems will respond to changes in sea ice persistence and extent along environmental gradients in the high Antarctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816019A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816019A"><span>Primary production of phytoplankton in the estuaries of different types (by the example of the Curonian and Vistula Lagoons of the Baltic Sea and the Volga delta)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aleksandrov, Sergei; Gorbunova, Julia</p> <p>2016-04-01</p> <p>The aim was to analyze the long-term change of the primary production in large estuaries of different types (Volga delta, Curonian and Vistula Lagoons) under the impact of environmental factors (e.g. climate changes, algal blooms, invasion mollusk). The researches (primary production, chlorophyll, nutrients and others) were carried out monthly from March-April to November in the Vistula and Curonian Lagoons since 1991 to 2015, and in the Lower part of the Volga Delta and fore-delta since 1996 to 2007. The Volga River is the largest river in Europe that flows into the Caspian Sea and it forms a great delta. According to the analysis of long-term data (from the 1960s), the maximum eutrophication and primary production (85-100 gCṡm-2ṡyear-1) in the Volga Delta was observed in the 1980s. In the 1990s, fertilizers use and the input of nutrients into the Volga Delta decreased significantly. Due of the high-flow exchange in the delta, especially during high-water years, observed in the 1980s - early 2000s, this led to a significant decrease in the concentration of nutrients in the water in the Volga Delta. As a result, in the 1990-2000s, the primary production has decreased to the level of 1960s-1970s (40-60 gCṡm-2ṡyear-1) and the process of eutrophication was replaced by de-eutrophication. At present, the trophic status of the Volga delta assessed as mesotrophic. The future trend of phytoplankton primary production of the Volga delta will greatly depend on the scenario of nutrients loading and river runoff. The Curonian Lagoon and Vistula Lagoon are the largest coastal lagoons of the Baltic Sea, relating to the most highly productive water bodies of Europe. The Curonian Lagoon is choke mostly freshwater lagoon, while the Vistula Lagoon is restricted brackish water lagoon. In the last decades the nutrients loading changes, warming trend and biological invasions are observed. The Curonian Lagoon may be characterized as hypertrophic water body. The local climate warming combined with other factors (freshwater, slow-flow exchange, high nutrients concentrations) creates conditions for ongoing eutrophication and harmful algae blooms despite of significant reduction of nutrients loading in 1990s-2000s. Mean annual primary production in 2000s and 2010s (490 and 570 gCṡm-2ṡyear-1) is considerable higher, than in the middle of 1970s (300 gCṡm-2ṡyear-1). Harmful algal blooms in July-October (chlorophyll to 700-3400 μg/l) result in deterioration of the water chemical parameters, death of fish in the coastal zone and pollution with toxins. The climate warming was cause of algal blooms in restricted Vistula Lagoon in 1990-2010. Mean annual primary production in 2000s and 2010s (415 and 450 gCṡm-2ṡyear-1) is considerable higher, than in the middle of 1970s (300 gCṡm-2ṡyear-1). After the invasion of the filter-feeding bivalve Rangia the benthic biomass increased by 17 times (to 500 g/m2 in 2011-2014), and chlorophyll "a" decreased by 2 times (to 20 g/m3 in 2011-2014). The phytoplankton assimilation numbers increased by 2-3 times (to 300-400 mgCṡmgChl-1ṡday-1) in 2012-2015 which are discover in aquatic ecosystems and primary production remained at previous level. Therefore mollusc invasion improved water quality, but Vistula lagoon ecosystem remained at eutrophic-hypertrophic level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26891564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26891564"><span>Sterile Product Packaging and Delivery Systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akers, Michael J</p> <p>2015-01-01</p> <p>Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4832216','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4832216"><span>METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Pancer, G.P.; Zegger, J.L.</p> <p>1961-12-19</p> <p>A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2770561','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2770561"><span>Impact of gastroesophageal reflux disease on work absenteeism, presenteeism and productivity in daily life: a European observational study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gisbert, Javier P; Cooper, Alun; Karagiannis, Dimitrios; Hatlebakk, Jan; Agréus, Lars; Jablonowski, Helmut; Nuevo, Javier</p> <p>2009-01-01</p> <p>Background The RANGE (Retrospective ANalysis of GastroEsophageal reflux disease [GERD]) study assessed differences among patients consulting a primary care physician due to GERD-related reasons in terms of: symptoms, diagnosis and management, response to treatment, and effects on productivity, costs and health-related quality of life. This subanalysis of RANGE determined the impact of GERD on productivity in work and daily life. Methods RANGE was conducted at 134 primary care sites across six European countries (Germany, Greece, Norway, Spain, Sweden and the UK). All subjects (aged ≥18 years) who consulted with their primary care physician over a 4-month identification period were screened retrospectively, and those consulting at least once for GERD-related reasons were identified (index visit). From this population, a random sample was selected to enter the study and attended a follow-up appointment, during which the impact of GERD on productivity while working (absenteeism and presenteeism) and in daily life was evaluated using the self-reported Work Productivity and Activity Impairment Questionnaire for patients with GERD (WPAI-GERD). Results Overall, 373,610 subjects consulted with their primary care physician over the 4-month identification period, 12,815 for GERD-related reasons (3.4%); 2678 randomly selected patients attended the follow-up appointment. Average absenteeism due to GERD was highest in Germany (3.2 hours/week) and lowest in the UK (0.4 hours/week), with an average of up to 6.7 additional hours/week lost due to presenteeism in Norway. The average monetary impact of GERD-related work absenteeism and presenteeism were substantial in all countries (from €55/week per employed patient in the UK to €273/patient in Sweden). Reductions in productivity in daily life of up to 26% were observed across the European countries. Conclusion GERD places a significant burden on primary care patients, in terms of work absenteeism and presenteeism and in daily life. The resulting costs to the local economy may be substantial. Improved management of GERD could be expected to lessen the impact of GERD on productivity and reduce costs. PMID:19835583</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19835583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19835583"><span>Impact of gastroesophageal reflux disease on work absenteeism, presenteeism and productivity in daily life: a European observational study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gisbert, Javier P; Cooper, Alun; Karagiannis, Dimitrios; Hatlebakk, Jan; Agréus, Lars; Jablonowski, Helmut; Nuevo, Javier</p> <p>2009-10-16</p> <p>The RANGE (Retrospective ANalysis of GastroEsophageal reflux disease [GERD]) study assessed differences among patients consulting a primary care physician due to GERD-related reasons in terms of: symptoms, diagnosis and management, response to treatment, and effects on productivity, costs and health-related quality of life. This subanalysis of RANGE determined the impact of GERD on productivity in work and daily life. RANGE was conducted at 134 primary care sites across six European countries (Germany, Greece, Norway, Spain, Sweden and the UK). All subjects (aged >or=18 years) who consulted with their primary care physician over a 4-month identification period were screened retrospectively, and those consulting at least once for GERD-related reasons were identified (index visit). From this population, a random sample was selected to enter the study and attended a follow-up appointment, during which the impact of GERD on productivity while working (absenteeism and presenteeism) and in daily life was evaluated using the self-reported Work Productivity and Activity Impairment Questionnaire for patients with GERD (WPAI-GERD). Overall, 373,610 subjects consulted with their primary care physician over the 4-month identification period, 12,815 for GERD-related reasons (3.4%); 2678 randomly selected patients attended the follow-up appointment. Average absenteeism due to GERD was highest in Germany (3.2 hours/week) and lowest in the UK (0.4 hours/week), with an average of up to 6.7 additional hours/week lost due to presenteeism in Norway. The average monetary impact of GERD-related work absenteeism and presenteeism were substantial in all countries (from euro55/week per employed patient in the UK to euro273/patient in Sweden). Reductions in productivity in daily life of up to 26% were observed across the European countries. GERD places a significant burden on primary care patients, in terms of work absenteeism and presenteeism and in daily life. The resulting costs to the local economy may be substantial. Improved management of GERD could be expected to lessen the impact of GERD on productivity and reduce costs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSR...125...18O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSR...125...18O"><span>Phytoplankton community composition and primary production in the tropical tidal ecosystem, Maputo Bay (the Indian Ocean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olofsson, Malin; Karlberg, Maria; Lage, Sandra; Ploug, Helle</p> <p>2017-07-01</p> <p>Maputo Bay is highly affected by large tidal changes and riverine freshwater input with a phytoplankton biomass peak during March each year. Microscopy analysis was used to describe how the phytoplankton community composition was affected by tidal changes, during four in situ incubation experiments. Using stable isotope tracers, new and total primary production, based on nitrate (15NO3-)- and carbon (13C-bicarbonate)-assimilation were estimated. The highest biovolume of phytoplankton (> 2 μm) and also the highest C- and NO3--assimilation rates (nM h-1) were found at spring-high tide. The C:N (mol:mol) ratio of particulate organic matter (POM) varied between 6.0 and 8.2. The proportion of diatoms in the phytoplankton community was higher at spring-high tide as compared to neap-low tide, whereas dinoflagellates were found in a reverse pattern. New production ranged between 6.3% and 10.4% of total primary production and was thus within the range previously reported for tropical regions. The largest proportion of NO3--based new production relative to total production was estimated during calm conditions and spring-high tide. Concordantly, a large fraction of the microplanktonic community covered their N-demand by other sources of N than NO3-.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOL....36...92Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOL....36...92Z"><span>Spatial contrast in phytoplankton, bacteria and microzooplankton grazing between the eutrophic Yellow Sea and the oligotrophic South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yafeng; Wang, Xutao; Yin, Kedong</p> <p>2018-01-01</p> <p>Three cruises were conducted to investigate the distributions of nutrients, chlorophyll a (Chl- a), new and regenerated primary production, bacterial abundance and production, and microzooplankton grazing rates in the Yellow Sea (YS) and the South China Sea (SCS) during March and May. As the water column moved from low to high temperature, weak to strong stratification and high to low nutrients from the YS to the SCS, Chl- a, primary production and bacterial biomass decreased. In contrast, bacterial production, microzooplankton grazing and size preference increased from the YS to the SCS. The increasing grazing activity and decreasing f-ratio from the YS to the SCS suggest roles of regenerated nutrients in the supporting the community increased and more bacteria played important roles in the carbon flow in the oligotrophic SCS than in the eutrophic YS. These variabilities force the classical food chain dominated community in the eutrophic waters into the microbial loop, which is dominant in oligotrophic waters. As nutrients decrease, temperature and grazing activity increase from the YS to the SCS. The increasing ratio of integrated bacterial production to integrated primary production indicates that communities change from autotrophy to heterotrophy and waters change from a carbon sink to a carbon source.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25817914','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25817914"><span>Microbial and sponge loops modify fish production in phase-shifting coral reefs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L</p> <p>2015-10-01</p> <p>Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PrOce..75..771B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PrOce..75..771B"><span>Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions A theoretical investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beckmann, Aike; Hense, Inga</p> <p>2007-12-01</p> <p>This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29666319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29666319"><span>Shifting plant species composition in response to climate change stabilizes grassland primary production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Huiying; Mi, Zhaorong; Lin, Li; Wang, Yonghui; Zhang, Zhenhua; Zhang, Fawei; Wang, Hao; Liu, Lingli; Zhu, Biao; Cao, Guangmin; Zhao, Xinquan; Sanders, Nathan J; Classen, Aimée T; Reich, Peter B; He, Jin-Sheng</p> <p>2018-04-17</p> <p>The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17234324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17234324"><span>Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, C; Liu, M; An, S; Chen, J M; Yan, P</p> <p>2007-11-01</p> <p>Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112490&hterms=sugar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsugar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112490&hterms=sugar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsugar"><span>The sugar model: catalysis by amines and amino acid products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weber, A. L.</p> <p>2001-01-01</p> <p>Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25791415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25791415"><span>Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xiaodong; Sadineni, Vikram; Maity, Mita; Quan, Yong; Enterline, Matthew; Mantri, Rao V</p> <p>2015-12-01</p> <p>Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to transfer the process parameters that are developed in lab scale lyophilizer to commercial scale without a loss in product quality. This process is often accomplished by costly engineering runs or through an iterative process at the commercial scale. Here, we are highlighting a combination of computational and experimental approach to predict commercial process parameters for the primary drying phase of lyophilization. Heat and mass transfer coefficients are determined experimentally either by manometric temperature measurement (MTM) or sublimation tests and used as inputs for the finite element model (FEM)-based software called PASSAGE, which computes various primary drying parameters such as primary drying time and product temperature. The heat and mass transfer coefficients will vary at different lyophilization scales; hence, we present an approach to use appropriate factors while scaling-up from lab scale to commercial scale. As a result, one can predict commercial scale primary drying time based on these parameters. Additionally, the model-based approach presented in this study provides a process to monitor pharmaceutical product robustness and accidental process deviations during Lyophilization to support commercial supply chain continuity. The approach presented here provides a robust lyophilization scale-up strategy; and because of the simple and minimalistic approach, it will also be less capital intensive path with minimal use of expensive drug substance/active material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GBioC..27..847B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GBioC..27..847B"><span>Combined constraints on global ocean primary production using observations and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le</p> <p>2013-09-01</p> <p>production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112181&hterms=rothschild&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drothschild','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112181&hterms=rothschild&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drothschild"><span>The effects of UV radiation A and B on diurnal variation in photosynthesis in three taxonomically and ecologically diverse microbial mats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cockell, C. S.; Rothschild, L. J.</p> <p>1999-01-01</p> <p>Photosynthetic primary production, the basis of most global food chains, is inhibited by UV radiation. Evaluating UV inhibition is therefore important for assessing the role of natural levels of UV radiation in regulating ecosystem behavior as well as the potential impact of stratospheric ozone depletion on global ecosystems. As both photosynthesis and UV fluxes are subject to diurnal variations, we examined the diurnal variability of the effect of UV radiation on photosynthesis in three diverse algal mats. In one of the mats (Cyanidium caldarium) a small mean decrease in primary productivity over the whole day occurred when both UVA and UVB were screened out. In two of the mats (Lyngbya aestuarii and Zygogonium sp.) we found a mean increase in the total primary productivity over the day when UVB alone was screened and a further increase when UVA and UVB were both screened out. Variations in the effects of UV radiation were found at different times of the day. This diurnal variability may be because even under the same solar radiation flux, there are different factors that may control photosynthetic rate, including nutritional status and other physiological processes in the cell. The results show the importance of assessing the complete diurnal productivity. For some of the time points the increase in the mean was still within the standard deviations in primary productivity, illustrating the difficulty in dissecting UV effects from other natural variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20058107','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20058107"><span>Determination of end point of primary drying in freeze-drying process control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patel, Sajal M; Doen, Takayuki; Pikal, Michael J</p> <p>2010-03-01</p> <p>Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22589262-environmental-product-declarations-accordance-en-en-how-account-primary-energy-secondary-resources','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22589262-environmental-product-declarations-accordance-en-en-how-account-primary-energy-secondary-resources"><span>Environmental product declarations in accordance with EN 15804 and EN 16485 — How to account for primary energy of secondary resources?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Achenbach, Hermann, E-mail: hermann.achenbach@thuenen.de; Diederichs, Stefan K.; Wenker, Jan L.</p> <p></p> <p>As a core product category rule (PCR), EN 15804 defines rules for conducting the life cycle assessment (LCA) of building products in the context of environmental product declarations (EPDs). This European standard is complemented by EN 16485, which provides further guidance for specific aspects for the LCA of wood and wood-based construction products. For all life cycle stages under consideration, the renewable and non-renewable primary energy employed for energy generation or material use is accounted for. Furthermore, the inputs and outputs of secondary materials (SM), renewable secondary fuels (RSF) and non-renewable secondary fuels (NRSF) have to be reported. Especially inmore » the end-of life stage as well as in the production stage, the standards do not exactly rule the accounting method of the primary energy contained in SM, RSF and NRSF. As both standards leave room for interpretation, we wrote this discussion article to introduce this issue to the LCA community and to present our developed accounting specifications. In general, we consider EN 15804 and EN 16485 as helpful tools for the LCA of building products. We hope that our ideas on certain aspects contribute to a better understanding of the standards, possibly leading to further improvement in the course of the standardization process.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..196..269C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..196..269C"><span>Factors affecting surf zone phytoplankton production in Southeastern North Carolina, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cahoon, Lawrence B.; Bugica, Kalman; Wooster, Michael K.; Dickens, Amanda Kahn</p> <p>2017-09-01</p> <p>The biomass and productivity of primary producers in the surf zone of the ocean beach at Wrightsville Beach, North Carolina, USA, were measured during all seasons, along with environmental parameters and nutrient levels. Variation in biomass (chlorophyll a) was associated with temperature. Primary production (PP), measured by in situ 14-C incubations, was a function of chlorophyll a, tide height at the start of incubations, and rainfall in the preceding 24-hr period. Biomass-normalized production (PB) was also a function of tide height and rainfall in the preceding 24-hr period. We interpreted these results as evidence of surf production 1) as combined contributions of phytoplankton and suspended benthic microalgae, which may confound application of simple P-E models to surf zone production, and 2) being regulated by nutrient source/supply fluctuations independently from other factors. Surf zone biomass and production levels are intermediate between relatively high estuarine values and much lower coastal ocean values. Surf zone production may represent an important trophic connection between these two important ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160008108','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160008108"><span>Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas</p> <p>2016-01-01</p> <p>The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying FT and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems. There are no L1 science requirements for the L4_C product; however self-imposed requirements have been established focusing on NEE as the primary product field for validation, and on demonstrating L4_C accuracy and success in meeting product science requirements (Jackson et al. 2012). The other L4_C product fields also have strong utility for carbon science applications; however, analysis of these other fields is considered secondary relative to primary validation activities focusing on NEE. The L4_C targeted accuracy requirements are to meet or exceed a mean unbiased accuracy (ubRMSE) for NEE of 1.6 g C/sq m/d or 30 g C/sq m/yr, emphasizing northern (45N) boreal and arctic ecosystems; this is similar to the estimated accuracy level of in situ tower eddy covariance measurement-based observations (Baldocchi 2008).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.143...91L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.143...91L"><span>Spatial distribution of common Minke whale (Balaenoptera acutorostrata) as an indication of a biological hotspot in the East Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Dasom; An, Yong Rock; Park, Kyum Joon; Kim, Hyun Woo; Lee, Dabin; Joo, Hui Tae; Oh, Young Geun; Kim, Su Min; Kang, Chang Keun; Lee, Sang Heon</p> <p>2017-09-01</p> <p>The minke whale (Balaenoptera acutorostrata) is the most common baleen whale among several marine mammal species observed in Korea. Since a high concentrated condition of prey to whales can be obtained by physical structures, the foraging whale distribution can be an indicator of biological hotspot. Our main objective is verifying the coastal upwelling-southwestern East Sea as a productive biological hotspot based on the geographical distribution of minke whales. Among the cetacean research surveys of the National Institute of Fisheries Science since 1999, 9 years data for the minke whales available in the East Sea were used for this study. The regional primary productivity derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) was used for a proxy of biological productivity. Minke whales observed during the sighting surveys were mostly concentrated in May and found mostly (approximately 70%) in the southwestern coastal areas (< 300 m) where high chlorophyll concentrations and primary productivity were generally detected. Based on MODIS-derived primary productivity algorithm, the annual primary production (320 g C m-2 y-1) estimated in the southwestern coastal region of the East Sea belongs to the highly productive coastal upwelling regions in the world. A change in the main spatial distribution of minke whales was found in recent years, which indicate that the major habitats of mink whales have been shifted into the north of the common coastal upwelling regions. This is consistent with the recently reported unprecedented coastal upwelling in the mid-eastern coast of Korea. Based on high phytoplankton productivity and high distribution of minke whales, the southwestern coastal regions can be considered as one of biological hotspots in the East Sea. These regions are important for ecosystem dynamics and the population biology of top marine predators, especially migratory whales and needed to be carefully managed from a resource management perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25374404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25374404"><span>Abuse-deterrent formulations: part 1 - development of a formulation-based classification system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mastropietro, David J; Omidian, Hossein</p> <p>2015-02-01</p> <p>Strategies have been implemented to decrease the large proportion of individuals misusing abusable prescription medications. Abuse-deterrent formulations (ADFs) have been grown to incorporate many different technologies that still lack a systematic naming and organizational nomenclature. Without a proper classification system, it has been challenging to properly identify ADFs, study and determine common traits or characteristics and simplify communication within the field. This article introduces a classification system for all ADF approaches and examines the physical, chemical and pharmacological characteristics of a formulation by placing them into primary, secondary and tertiary categories. Primary approaches block tampering done directly to the product. Secondary approaches work in vivo after the product is administered. Tertiary approaches use materials that discourage abuse but do not stop tampering. Part 2 of this article discusses proprietary technologies, patents and products utilizing primary approaches. Drug products using opioid antagonists and aversive agents have been seen over the past few decades to discourage primarily overuse and injection. However, innovation in formulation development has introduced products capable of deterring multiple forms of tampering and abuse. Often, this is accomplished using known excipients and manufacturing methods that are repurposed to prevent crushing, extraction and syringeability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010MS%26E...11a2002K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010MS%26E...11a2002K"><span>Radiation prevulcanized natural rubber latex: Cytotoxicity and safety evaluation on animal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keong, C. C.; Zin, W. M. Wan; Ibrahim, P.; Ibrahim, S.</p> <p>2010-05-01</p> <p>Radiation prevulcanized natural rubber latex (RVNRL) was claimed to be more user friendly than natural rubber latex prevulcanized by sulphur curing system. The absence of Type IV allergy inducing chemicals in RVNRL make it a suitable material for manufacturing of many kinds of latex products, especially those come into direct contact with users. This paper reveals and discusses the findings of cytotoxicity test and safety evaluation on animal for RVNRL. The test was done on RVNRL films prepared by coagulant dipping method and RVNRL dipped products produced by latex dipped product manufacturers. Cytotocixity test was carried out on mammalian cell culture American Type Culture Collection CCL 81, Vero. Results indicated that no cytotoxic effect from RVNRL films and products was found on the cell culture. Two animal studies, namely dermal sensitization study and primary skin irritation study, were done on gloves made from RVNRL. Albino white guinea pigs were used as test subjects in dermal sensitization study and results showed no sensitization induced by the application of test material in the guinea pigs. Primary skin irritation study was done on New Zealand white rabbits and results showed that the product tested was not corrosive and was not a primary irritant</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23442209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23442209"><span>The steel scrap age.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M</p> <p>2013-04-02</p> <p>Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26061204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26061204"><span>Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining</p> <p>2015-01-01</p> <p>Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070035051','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070035051"><span>The Influence of Sea Ice on Primary Production in the Southern Ocean: A Satellite Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Walker O., Jr.; Comiso, Josefino C.</p> <p>2007-01-01</p> <p>Sea ice in the Southern Ocean is a major controlling factor on phytoplankton productivity and growth, but the relationship is modified by regional differences in atmospheric and oceanographic conditions. We used the phytoplankton biomass (binned at 7-day intervals), PAR and cloud cover data from SeaWiFS, ice concentrations data from SSM/I and AMSR-E, and sea-surface temperature data from AVHRR, in combination with a vertically integrated model to estimate primary productivity throughout the Southern Ocean (south of 60"s). We also selected six areas within the Southern Ocean and analyzed the variability of the primary productivity and trends through time, as well as the relationship of sea ice to productivity. We found substantial interannual variability in productivity from 1997 - 2005 in all regions of the Southern Ocean, and this variability appeared to be driven in large part by ice dynamics. The most productive regions of Antarctic waters were the continental shelves, which showed the earliest growth, the maximum biomass, and the greatest areal specific productivity. In contrast, no large, sustained blooms occurred in waters of greater depth (> 1,000 m). We suggest that this is due to the slightly greater mixed layer depths found in waters off the continental shelf, and that the interactive effects of iron and irradiance (that is, increased iron requirements in low irradiance environments) result in the limitation of phytoplankton biomass over large regions of the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec21-163.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec21-163.pdf"><span>14 CFR 21.163 - Privileges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... PROCEDURES FOR PRODUCTS AND PARTS Production Certificates § 21.163 Privileges. (a) The holder of a production... Administrator may inspect the aircraft for conformity with the type design; or (2) In the case of other products... § 147.3 of this chapter, the holder of a production certificate for a primary category aircraft, or for...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1039763','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1039763"><span>Methods and systems for the production of hydrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA</p> <p>2012-03-13</p> <p>Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5869409','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5869409"><span>The Primary Duct of Bothrops jararaca Glandular Apparatus Secretes Toxins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sakai, Fernanda; Portes-Junior, José Antonio; Godoy Viana, Luciana; Mendes Carneiro, Sylvia; Perales, Jonas; Yamanouye, Norma</p> <p>2018-01-01</p> <p>Despite numerous studies concerning morphology and venom production and secretion in the main venom gland (and some data on the accessory gland) of the venom glandular apparatus of Viperidae snakes, the primary duct has been overlooked. We characterized the primary duct of the Bothrops jararaca snake by morphological analysis, immunohistochemistry and proteomics. The duct has a pseudostratified epithelium with secretory columnar cells with vesicles of various electrondensities, as well as mitochondria-rich, dark, basal, and horizontal cells. Morphological analysis, at different periods after venom extraction, showed that the primary duct has a long cycle of synthesis and secretion, as do the main venom and accessory glands; however, the duct has a mixed mode venom storage, both in the lumen and in secretory vesicles. Mouse anti-B. jararaca venom serum strongly stained the primary duct’s epithelium. Subsequent proteomic analysis revealed the synthesis of venom toxins—mainly C-type lectin/C-type lectin-like proteins. We propose that the primary duct’s toxin synthesis products complement the final venom bolus. Finally, we hypothesize that the primary duct and the accessory gland (components of the venom glandular apparatus) are part of the evolutionary path from a salivary gland towards the main venom gland. PMID:29533989</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3907389','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3907389"><span>Plasmacytoid Dendritic Cell Dynamics Tune Interferon-Alfa Production in SIV-Infected Cynomolgus Macaques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bruel, Timothée; Dupuy, Stéphanie; Démoulins, Thomas; Rogez-Kreuz, Christine; Dutrieux, Jacques; Corneau, Aurélien; Cosma, Antonio; Cheynier, Rémi; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Vaslin, Bruno</p> <p>2014-01-01</p> <p>IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα− production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors. PMID:24497833</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1012162','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1012162"><span>Uncarboxylated Osteocalcin and Gprc6a Axis Produce Intratumoral Androgens in Castration-Resistant Prostate Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-05-01</p> <p>multiple pathways, despite castrate levels of testosterone . One such adaptive mechanism is the “intracrine” production of androgens in the primary...despite castrate levels of testosterone . One such adaptive mechanism is the “intracrine” production of androgens in the primary tumor and/or at... testosterone . Thus, just as the skeleton regulates fertility in an endocrine fashion, and it may also promote bone metastasis via an “intracrine” mechanism</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009scd..book.....A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009scd..book.....A"><span>Single Crystal Diffractometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arndt, U. W.; Willis, B. T. M.</p> <p>2009-06-01</p> <p>Preface; Acknowledgements; Part I. Introduction; Part II. Diffraction Geometry; Part III. The Design of Diffractometers; Part IV. Detectors; Part V. Electronic Circuits; Part VI. The Production of the Primary Beam (X-rays); Part VII. The Production of the Primary Beam (Neutrons); Part VIII. The Background; Part IX. Systematic Errors in Measuring Relative Integrated Intensities; Part X. Procedure for Measuring Integrated Intensities; Part XI. Derivation and Accuracy of Structure Factors; Part XII. Computer Programs and On-line Control; Appendix; References; Index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21240340-primary-coal-crushers-grow-meet-demand','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21240340-primary-coal-crushers-grow-meet-demand"><span>Primary coal crushers grow to meet demand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fiscor, S.</p> <p>2009-09-15</p> <p>Mine operators look for more throughput with less fines generation in primary crushers (defined here as single role crushers and two stage crushers). The article gives advice on crusher selection and application. Some factors dictating selection include the desired product size, capacity, Hard Grove grindability index, percentage of rock to be freed and hardness of that rock. The hardness of coal probably has greatest impact on product fineness. 2 refs., 1 fig., 1 tab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA483880','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA483880"><span>Modeling the Response of Primary Production and Sedimentation to Variable Nitrate Loading in the Mississippi River Plume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-03-06</p> <p>oped based on previous observational studies in the MRP . Our annual variations in hypoxic zone size and resulted in suggestions model was developed by...nitrate loading. The nitrogen- based model consisted of nine compartments (nitrate, ammonium, labile dissolved organic nitrogen, bacteria, small...independent dataset of primary production measurements for different riverine N03 loads. Based on simulations over the range of observed springtime N03</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860002179','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860002179"><span>Analysis of Terrestrial Conditions and Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goward, S. N.</p> <p>1985-01-01</p> <p>An ecological model is developed to estimate annual net primary productivity of vegetation in twelve major North American biomes. Three models are adapted and combined, each addressing a different factor known to govern primary productivity, i.e., photosynthesis, respiration, and moisture availability. Measures of intercepted photosynthetically active radiation (1PAR) for input to the photosynthesis model are derived from spectral vegetation index data. Normalized Difference Vegetation Index (NDVI) data are produced from NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) observations for April 1982 through March 1983. NDVI values are sampled from within the biomes at locations for which climatological data are available. Monthly estimates of Net Primary Productivity (NPP) for each sample location are generated and summed over the twelve month period. These monthly estimates are averaged to produce a single annual estimated NPP value for each biomes. Comparison of estimated NPP values with figures reported in the literature produces a correlation coefficient of 85.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860040402&hterms=soft+power&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsoft%2Bpower','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860040402&hterms=soft+power&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsoft%2Bpower"><span>Electron-positron pair production by ultrarelativistic electrons in a soft photon field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mastichiadis, A.; Marscher, A. P.; Brecher, K.</p> <p>1986-01-01</p> <p>The fully differential cross section for photon-electron pair production is integrated numerically over phase space. Results are obtained for the astrophysically interesting case in which the interaction between an ultrarelativistic electron and a soft photon results in electron-positron pair production. The positron spectrum is a function of the energies of both the photon and the electron, as well as the angle of interaction. It is found that the energy at which the positron distribution peaks is inversely proportional to the photon energy and independent of the electron energy. The positron spectrum is integrated once more over initial electron energies for a power-law energy distribution of primary electrons. The same procedure is repeated for the recoil particle; it is shown that the peak of the recoil energy distribution depends linearly on the energy of the primary electron. Finally, semianalytical expressions are obtained for the energy losses of the primary electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830060823&hterms=primary+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprimary%2Bfunction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830060823&hterms=primary+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprimary%2Bfunction"><span>Satellites for the study of ocean primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, R. C.; Baker, K. S.</p> <p>1983-01-01</p> <p>The use of remote sensing techniques for obtaining estimates of global marine primary productivity is examined. It is shown that remote sensing and multiplatform (ship, aircraft, and satellite) sampling strategies can be used to significantly lower the variance in estimates of phytoplankton abundance and of population growth rates from the values obtained using the C-14 method. It is noted that multiplatform sampling strategies are essential to assess the mean and variance of phytoplankton biomass on a regional or on a global basis. The relative errors associated with shipboard and satellite estimates of phytoplankton biomass and primary productivity, as well as the increased statistical accuracy possible from the utilization of contemporaneous data from both sampling platforms, are examined. It is shown to be possible to follow changes in biomass and the distribution patterns of biomass as a function of time with the use of satellite imagery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15797556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15797556"><span>Anticipatory activity in primary motor cortex codes memorized movement sequences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Xiaofeng; Ashe, James</p> <p>2005-03-24</p> <p>Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991Geo....19..877R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991Geo....19..877R"><span>Mass extinctions: Ecological selectivity and primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rhodes, Melissa Clark; Thayer, Charles W.</p> <p>1991-09-01</p> <p>If mass extinctions were caused by reduced primary productivity, then extinctions should be concentrated among animals with starvation-susceptible feeding modes, active lifestyles, and high-energy budgets. The stratigraphic ranges (by stage) of 424 genera of bivalves and 309 genera of articulate brachiopods suggest that there was an unusual reduction of primary productivity at the Cretaceous/Tertiary (K/T) boundary extinction. For bivalves at the K/T, there were (1) selective extinction of suspension feeders and other susceptible trophic categories relative to deposit feeders and other resistant categories, and (2) among suspension feed-ers, selective extinction of bivalves with active locomotion. During the Permian-Triassic (P/Tr) extinction and Jurassic background time, extinction rates among suspension feeders were greater for articulate brachiopods than for bivalves. But during the K/T event, extinction rates of articulates and suspension-feeding bivalves equalized, possibly because the low-energy budgets of articulates gave them an advantage when food was scarce.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title29-vol3/pdf/CFR-2010-title29-vol3-sec541-504.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title29-vol3/pdf/CFR-2010-title29-vol3-sec541-504.pdf"><span>29 CFR 541.504 - Drivers who sell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... products may qualify as exempt outside sales employees only if the employee has a primary duty of making sales. In determining the primary duty of drivers who sell, work performed incidental to and in... determining if a driver has a primary duty of making sales, including, but not limited to: a comparison of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title29-vol3/pdf/CFR-2011-title29-vol3-sec541-504.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title29-vol3/pdf/CFR-2011-title29-vol3-sec541-504.pdf"><span>29 CFR 541.504 - Drivers who sell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... products may qualify as exempt outside sales employees only if the employee has a primary duty of making sales. In determining the primary duty of drivers who sell, work performed incidental to and in... determining if a driver has a primary duty of making sales, including, but not limited to: a comparison of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-114.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title9-vol1/pdf/CFR-2012-title9-vol1-sec3-114.pdf"><span>9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-114.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec3-114.pdf"><span>9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-114.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title9-vol1/pdf/CFR-2013-title9-vol1-sec3-114.pdf"><span>9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-114.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title9-vol1/pdf/CFR-2014-title9-vol1-sec3-114.pdf"><span>9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-114.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title9-vol1/pdf/CFR-2011-title9-vol1-sec3-114.pdf"><span>9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol11/pdf/CFR-2010-title40-vol11-sec63-1323.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol11/pdf/CFR-2010-title40-vol11-sec63-1323.pdf"><span>40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... recovering monomer, reaction products, by-products, or solvent from a stripper operated in batch mode, and the primary condenser recovering monomer, reaction products, by-products, or solvent from a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10410','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10410"><span>Minnesota timber industry--an assessment of timber product output and use, 1990.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald L. Hackett; Richard A. Dahlman</p> <p>1993-01-01</p> <p>Discusses recent Minnesota forest industry trends; production and receipts of pulpwood, saw logs, and veneer logs; and production of other timber products in 1990. Reports on logging residue, wood and bark residue generated at primary wood-using mills, and disposition of mill residues.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>