ERIC Educational Resources Information Center
Utica City School District, NY.
Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, health, general science, physical science) and grade level. Concepts regarding characteristics of living things are stressed in objectives for the primary grades (K-5), and reproductive biology is covered…
ERIC Educational Resources Information Center
Stover, Shawn
2016-01-01
Undergraduate science students benefit greatly by learning to read and interpret primary research articles. However, once they obtain a level of competence in analyzing primary literature and develop a better understanding of the nature of science, they may become frustrated by the lack of scientific literacy and objectivity demonstrated by the…
NASA Technical Reports Server (NTRS)
Tiscareno, Matthew S.; Showalter, Mark R.; French, Richard G.; Burns, Joseph A.; Cuzzi, Jeffrey N.; de Pater, Imke; Hamilton, Douglas P.; Hedman, Matthew M.; Nicholson, Philip D.; Tamayo, Daniel;
2016-01-01
The James Webb Space Telescope (JWST) will provide unprecedented opportunities to observe the rings and small satellites in our Solar System, accomplishing three primary objectives: (1) discovering new rings and moons, (2) unprecedented spectroscopy, and (3) time-domain observations. We give details on these science objectives and describe requirements that JWST must fulfill in order to accomplish the science objectives.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Developed by primary teachers and elementary principals from small districts in Snohomish and Island counties in Washington, this handbook contains sequenced student learning objectives for grades K-3 in the curriculum areas of reading, language arts, mathematics, science, and social studies. Each student learning objective is correlated to the…
ERIC Educational Resources Information Center
Park, Jisun; Song, Jinwoong; Abrahams, Ian
2016-01-01
This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term "unintended" learning to distinguish it from "intended" learning that appears in teachers' learning objectives. Data were collected using…
Concept Mapping and Pupils' Learning in Primary Science in Singapore
ERIC Educational Resources Information Center
Ling, Yuan; Boo, Hong Kwen
2007-01-01
This paper reports on a quasi-experimental study which examined the effectiveness of concept mapping as a revision tool in enhancing pupils' examination performances in primary science. The research objective seeks to determine whether there are significant differences in achievement between the concept mapping and traditional method of revision…
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
ERIC Educational Resources Information Center
Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife
2011-01-01
The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…
Contemporary Primary Science Curricula in the United Kingdom
ERIC Educational Resources Information Center
Henry, John A.
1976-01-01
Following a review of the impact of Piaget's theories of cognitive development on science curriculum design, the evolution and development of the Science 5/13 Project, designed to extend the work of Nuffield Junior Science Project, is described. Evaluation studies assessing the aims and objectives of this project are detailed. (BT)
ERIC Educational Resources Information Center
Willsher, Kerre; Penman, Joy
2011-01-01
This paper discusses an initiative called "Scientists in Schools" which was implemented with a group of seventy (n=70) Year 4 and Year 7 students studying in a local school in regional South Australia with the primary objective of raising awareness and interest in the study of sciences. Mezirow's critical reflection was used by the…
ERIC Educational Resources Information Center
Delclaux, Monique; Saltiel, Edith
2013-01-01
This article presents the results of an evaluation of local teacher support strategies for implementing inquiry-based science education (IBSE) in French primary schools. The research objective was to determine which aspects of the French model of IBSE are implemented in class, and the efficiency of each teacher support strategy. Data were…
CURRICULUM GUIDE FOR SCIENCE, PRIMARY 2-3.
ERIC Educational Resources Information Center
GRAHAM, KATHRYN A.; AND OTHERS
COURSE CONTENT, ACTIVITIES, AND REFERENCE INFORMATION FOR TEACHING SCIENCE IN SECOND AND THIRD GRADES ARE INCLUDED IN THIS VOLUME. INTRODUCTORY REMARKS DISCUSS AN APPROACH TO THE TEACHING OF SCIENCE AND THE GENERAL OBJECTIVES OF THE SCIENCE PROGRAM. SIX UNITS OF STUDY ARE PRESENTED FOR SECOND GRADE--(1) DIFFERENCES BETWEEN PLANTS AND ANIMALS, (2)…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Developed by 40 primary teachers and 10 elementary principals from small school districts in Washington, this handbook contains sequenced student learning objectives for grades K-3 in science and social studies and for grades K-8 in reading, language arts, and mathematics. The handbook is designed to assist teachers with the improvement of…
Integration of the primary health care approach into a community nursing science curriculum.
Vilakazi, S S; Chabeli, M M; Roos, S D
2000-12-01
The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.
The role of metadata in managing large environmental science datasets. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, R.B.; DeVaney, D.M.; French, J. C.
1995-06-01
The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.
Double TNT: Targeting New Teachers and Teaching by Novel Techniques.
ERIC Educational Resources Information Center
Williams-Robertson, Lydia
A program developed by the Austin (Texas) Independent School District under a 2-year grant from the National Science Foundation is described and evaluated. The primary objectives of the program were to: interest minority and female students in science; attract these groups to the teaching of science; enrich the elementary school science…
A Study by the Chinese Academy of Sciences on the Benefits of Study Abroad
ERIC Educational Resources Information Center
Xiaoxuan, Li
2004-01-01
This article reports on a study by the Chinese Academy of Sciences relating to the benefits of study abroad. The Chinese Academy of Sciences, as a national-level research entity, has the mission of developing China's science and technology, and the primary objective of its studies abroad work is to carry forward and promote the advance of China's…
ERIC Educational Resources Information Center
Rivard, Léonard P.; Gueye, Ndeye R.
2016-01-01
'Literacy in the Science Classroom Project" was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted…
ERIC Educational Resources Information Center
Öztürk, Faruk
2016-01-01
The aim of this study is to examine the development of science concept in Turkey. It is seen that the historical process of science concept in Turkey has developed within two stages. The first setting is the later stages of the Ottoman State and the Republican Era, at which time positivism was prevalent as noted in the objectives of the national…
ERIC Educational Resources Information Center
Wielard, Valerie Michelle
2013-01-01
The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…
Earth Science and Applications attached payloads on Space Station
NASA Technical Reports Server (NTRS)
Wicks, Thomas G.; Arnold, Ralph R.
1990-01-01
This paper describes the Office of Space Science and Applications' process for Attached Payloads on Space Station Freedom from development through on-orbit operations. Its primary objectives are to detail the sequential steps of the attached payload methodology by tracing in particular the selected Earth Science and Applications' payloads through this flow and relate the integral role of Marshall Space Flight Center's Science Utilization Management function of integration and operations.
The "Curriculum for Excellence": A Major Change for Scottish Science Education
ERIC Educational Resources Information Center
Brown, Sally
2014-01-01
The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…
101 Environmental Education Activities. Booklet 4--Science Activities.
ERIC Educational Resources Information Center
Whitney, Helen, Comp.
Fourth in the series "101 Environmental Education Activities" by the Upper Mississippi River ECO-Center, the booklet contains 39 environment-based science activities directed to students in primary, intermediate, and junior high classes. Organization of the activities usually includes grade level, objectives, procedures, and materials,…
ERIC Educational Resources Information Center
Adams, Yvonne H.; And Others
In this guide for teaching science in the Duval County Public Schools, Jacksonville, Florida, the following items are included for each grade level from one to six: (1) county-adopted resources; (2) supplementary resources; (3) scope and sequence; (4) primary ideas, secondary ideas, and performance objectives; and (5) correlation with…
Social Work Science and Knowledge Utilization
ERIC Educational Resources Information Center
Marsh, Jeanne C.; Reed, Martena
2016-01-01
Objective: This article advances understanding of social work science by examining the content and methods of highly utilized or cited journal articles in social work. Methods: A data base of the 100 most frequently cited articles from 79 social work journals was coded and categorized into three primary domains: content, research versus…
NEEMO 20: Science Training, Operations, and Tool Development
NASA Technical Reports Server (NTRS)
Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.
2016-01-01
The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.
NASA's Applied Sciences for Water Resources
NASA Technical Reports Server (NTRS)
Doorn, Bradley; Toll, David; Engman, Ted
2011-01-01
The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Office of Curriculum Services.
The natural science curriculum guide for gifted primary students includes a sample teaching-learning plan for an ecology unit and eight sample lesson plans. Chapter One provides an overview of the unit, a review of behavioral objectives, and a list of concepts and generalizations. The second chapter cites a teaching-learning plan dealing with such…
ERIC Educational Resources Information Center
Yaman, Süleyman
2017-01-01
Due to problems related their content and use; textbooks do not achieve the expected effect in learning although they are one of the most important elements of the science curriculum. Questions in textbooks are also important criteria in determining the effect of textbooks. In this study, it was aimed to compare questions in four different science…
ERIC Educational Resources Information Center
Carver, Rebecca Bruu; Wiese, Eline Fatima; Breivik, Jarle
2014-01-01
After completion of formal education, the mass media represent people's primary source of scientific information. Besides the traditional attention to scientific knowledge, national curricula are therefore increasingly emphasizing critical and reflexive engagement with media content as a key objective of science education. Despite this curricular…
How Can You Make the Most of Those "WOW Moments"?
ERIC Educational Resources Information Center
Hardman, Sally; Luke, Sue
2016-01-01
Children are naturally curious about the world around them and are often intrigued by everyday objects and experiences. Primary school teachers frequently make use of "WOW moments" to generate children's interest in science (Feasey, 2005). These moments capitalise on the children's fascination with objects and experiences in their…
NASA'S Water Resources Element Within the Applied Sciences Program
NASA Technical Reports Server (NTRS)
Toll, David; Doorn, Bradley; Engman, Edwin
2011-01-01
The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.
ERIC Educational Resources Information Center
Ministerio de Educacion, Guatemala City (Guatemala). Direccion de Bienestar Estudiantil y Educacion Especial.
This booklet presents specification tables illustrating the relative importance given to topics on tests within a particular subject area. The general subject areas are social studies, Spanish, mathematics, and natural sciences. Tables are provided for final exams in each of these areas for several primary grades, illustrating the importance of…
NASA Technical Reports Server (NTRS)
Neupert, Werner M.
1991-01-01
The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.
Sink or Float. Modified Primary. Revised. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Defendorf, Jean, Ed.
This publication provides information and activities for teaching about water, whether certain objects will sink or float, and process skills including observing, classifying, inferring, measuring, predicting, and collecting and interpreting data. There are 14 lessons in the unit. The first four lessons deal with the classification of objects and…
Life sciences payload definition and integration study, task C and D. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.
DSCOVR Public Release Statement V02
Atmospheric Science Data Center
2017-07-06
... where it performs its primary objective of monitoring the solar wind as well as observing the Earth from sunrise to sunset with two Earth Science sensors: the Earth Polychromatic Imaging Camera (EPIC) and ...
ERIC Educational Resources Information Center
McCormack, Orla; Gleeson, Jim
2010-01-01
The "Exploring Masculinities" (EM) programme was piloted in 22 Irish single-sex boys' post-primary schools during the late 1990s. Following objections from some influential journalists and an organisation representing parents whose sons attended Catholic secondary schools, the Minister for Education and Science put the planned…
Using Primary Literature to Teach Science Literacy to Introductory Biology Students
Krontiris-Litowitz, Johanna
2013-01-01
Undergraduate students struggle to read the scientific literature and educators have suggested that this may reflect deficiencies in their science literacy skills. In this two-year study we develop and test a strategy for using the scientific literature to teach science literacy skills to novice life science majors. The first year of the project served as a preliminary investigation in which we evaluated student science literacy skills, created a set of science literacy learning objectives aligned with Bloom’s taxonomy, and developed a set of homework assignments that used peer-reviewed articles to teach science literacy. In the second year of the project the effectiveness of the assignments and the learning objectives were evaluated. Summative student learning was evaluated in the second year on a final exam. The mean score was 83.5% (±20.3%) and there were significant learning gains (p < 0.05) in seven of nine of science literacy skills. Project data indicated that even though students achieved course-targeted lower-order science literacy objectives, many were deficient in higher-order literacy skills. Results of this project suggest that building scientific literacy is a continuing process which begins in first-year science courses with a set of fundamental skills that can serve the progressive development of literacy skills throughout the undergraduate curriculum. PMID:23858355
Cola, Philip A.; Rosenblum, Daniel
2013-01-01
Abstract Emphasis has been placed on assessing the efficiency of clinical and translational research as part of the National Institutes of Health (NIH) goal to “improve human health.” Improvements identified and implemented by individual organizations cannot address the research infrastructure needs of all clinical and translational research conducted. NIH's National Center for Advancing Translational Sciences (NCATS) has brought together 61 Clinical and Translational Science Award (CTSA) sites creating a virtual national laboratory that reflects the diversity and breadth of academic medical centers to collectively improve clinical and translational science. The annual Clinical Research Management workshop is organized by the CTSA consortium with participation from CTSA awardees, NIH, and others with an interest in clinical research management. The primary objective of the workshop is to disseminate information that improves clinical research management although the specific objectives of each workshop evolve within the consortium. The fifth annual workshop entitled “Learning by doing; applying evidence‐based tools to re‐engineer clinical research management” took place in June 2012. The primary objective of the 2012 workshop was to utilize data to evaluate, modify, and improve clinical research management. This report provides a brief summary of the workshop proceedings and the major themes discussed among the participants. PMID:23919369
Strasser, Jane E; Cola, Philip A; Rosenblum, Daniel
2013-08-01
Emphasis has been placed on assessing the efficiency of clinical and translational research as part of the National Institutes of Health (NIH) goal to "improve human health." Improvements identified and implemented by individual organizations cannot address the research infrastructure needs of all clinical and translational research conducted. NIH's National Center for Advancing Translational Sciences (NCATS) has brought together 61 Clinical and Translational Science Award (CTSA) sites creating a virtual national laboratory that reflects the diversity and breadth of academic medical centers to collectively improve clinical and translational science. The annual Clinical Research Management workshop is organized by the CTSA consortium with participation from CTSA awardees, NIH, and others with an interest in clinical research management. The primary objective of the workshop is to disseminate information that improves clinical research management although the specific objectives of each workshop evolve within the consortium. The fifth annual workshop entitled "Learning by doing; applying evidence-based tools to re-engineer clinical research management" took place in June 2012. The primary objective of the 2012 workshop was to utilize data to evaluate, modify, and improve clinical research management. This report provides a brief summary of the workshop proceedings and the major themes discussed among the participants. © 2013 Wiley Periodicals, Inc.
Neptune aerocapture mission and spacecraft design overview
NASA Technical Reports Server (NTRS)
Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora
2004-01-01
A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.
ERIC Educational Resources Information Center
Pezzoli, Jean A.; Ainsworth, Don
This document proposes a program in sustainable technology at Maui Community College (Hawaii). This new career program would be designed to provide four Certificates of Competence, a Certificate of Achievement, and an Associate in Applied Science degree. The primary objectives of the program are to meet student, county, and state needs for…
Using a Review Book to Improve Knowledge Retention
ERIC Educational Resources Information Center
Elmas, Ridvan; Aydogdu, Bülent; Saban, Yakup
2017-01-01
This study has two primary objectives. The first one is preparation of an efficient review book including a series of activities, which will help fourth grade students exercise what they learned in the elementary science course in a year. The second objective is examination of the prepared book in the framework of student and teacher opinions. In…
NASA Astrophysics Data System (ADS)
Choirunnisa, N. L.; Prabowo, P.; Suryanti, S.
2018-01-01
The main objective of this study is to describe the effectiveness of 5E instructional model-based learning to improve primary school students’ science process skills. The science process skills is important for students as it is the foundation for enhancing the mastery of concepts and thinking skills needed in the 21st century. The design of this study was experimental involving one group pre-test and post-test design. The result of this study shows that (1) the implementation of learning in both of classes, IVA and IVB, show that the percentage of learning implementation increased which indicates a better quality of learning and (2) the percentage of students’ science process skills test results on the aspects of observing, formulating hypotheses, determining variable, interpreting data and communicating increased as well.
Solar System Science with the Twinkle Space Mission
NASA Astrophysics Data System (ADS)
Bowles, N.; Lindsay, S.; Tessenyi, M.; Tinetti, G.; Savini, G.; Tennyson, J.; Pascale, E.; Jason, S.; Vora, A.
2017-09-01
Twinkle is a space-based telescope mission designed for the spectroscopic observation (0.4 to 4.5 μm) of exoplanet atmospheres and Solar System objects. The system design and mission implementation are based on existing, well studied concepts pioneered by Surrey Satellite Technology Ltd for low-Earth orbit Earth Observation satellites, supported by a novel international access model to allow facility access to researchers worldwide. Whilst Twinkle's primary science goal is the observation of exoplanet atmospheres its wide spectroscopic range and photometric stability also make it a unique platform for the observation of Solar system objects.
Magnetospheric Multiscale Mission Navigation Performance During Apogee-Raising and Beyond
NASA Technical Reports Server (NTRS)
Farahmand, Mitra; Long, Anne; Hollister, Jacob; Rose, Julie; Godine, Dominic
2017-01-01
The primary objective of the Magnetospheric Multiscale (MMS) Mission is to study the magnetic reconnection phenomena in the Earths magnetosphere. The MMS mission consists of four identical spinning spacecraft with the science objectives requiring a tetrahedral formation in highly elliptical orbits. The MMS spacecraft are equipped with onboard orbit and time determination software, provided by a weak-signal Global Positioning System (GPS) Navigator receiver hosting the Goddard Enhanced Onboard Navigation System (GEONS). This paper presents the results of MMS navigation performance analysis during the Phase 2a apogee-raising campaign and Phase 2b science segment of the mission.
An Overview of the EOS Data Dissemination Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H.K.; Pfister, Robin; Weinstein, Beth
2008-01-01
The Earth Observing System Data and Information System (EOSDIS) is the primary data system serving the broad-scope of NASA s Earth Observing System (EOS) program and a significant portion of the "heritage" Earth science data. EOSDIS was designed to support the Earth sciences within NASA s Science Mission Directorate (previously the Earth Science Enterprise (ESE) and Mission to Planet Earth). The EOS Program was NASA s contribution to the United States Global Change Research Program (USGCRP) enacted by Congress in 1990 as part of the Global Change Act. ESE s objective was to launch a series of missions to help answer fundamental global change questions such as "How is Earth changing?" and "What are the consequences for life on Earth?" resulting support of this objective, EOSDIS distributes a wide variety of data to a diverse community.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Developed during 1975-76 by 40 primary teachers and 10 elementary principals from 12 small school districts in 2 Washington counties and first used during 1976-77 in more than 20 districts, this K-3 mathematics curriculum is designed to assist district compliance with Washington's Student Learning Objectives (SLO) Law, which requires…
ERIC Educational Resources Information Center
Özbek, Ramazan
2017-01-01
The aim of this study is to evaluate opinions of prospective teachers attending Social Sciences Teaching Department Primary Education Section on the objectives of Human Rights Education in the scope of Citizenship and Democracy Education Curriculum. This study is vital for learning of democratic life. 25 prospective teachers studying in the 8th…
SOCCER: Comet Coma Sample Return Mission
NASA Technical Reports Server (NTRS)
Albee, A. L.; Uesugi, K. T.; Tsou, Peter
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.
ERIC Educational Resources Information Center
Ruddock, Graham; Sainsbury, Marian
2008-01-01
This study looks at the curricula for mathematics, science and literacy, comparing England's curricula with those of other countries based on performance in international comparative surveys. The main objective was to answer the question: How does the content of the Primary Curriculum in England at Key stage 2 compare in literacy, math and science…
DSCOVR Public Release Statement
Atmospheric Science Data Center
2016-11-23
... its primary objective of monitoring the solar wind as well as observing the Earth from sunrise to sunset with two Earth Science ... radiative fluxes of the entire dayside of Earth (NISTAR) as well as key spectral radiative characteristics in 10 narrowband channels ...
The ICESat/GLAS Instrument Operations Report. Volume 4
NASA Technical Reports Server (NTRS)
Jester, Peggy L.
2012-01-01
The Geoscience Laser Altimeter System (GLAS) was the primary instrument aboard the first ICESat spacecraft. ICESat's primary objectives are to determine the mass balance of the polar ice sheets and their contributions to global sea level change, and to obtain essential data for prediction of future changes in ice volume and sea-level. ICESat launched successfully from Vandenberg Air Force Base on January 12, 2003 23:45 UT. The ICESat science mission began in February 2003 and ended on October 11, 2009. De-orbit of the spacecraft occurred on August 30, 2010. This document focusses on the GLAS instrument operations during the ICESat mission. This document will not discuss science results.
Hot DOGs: The Most Luminous Galaxies Found by WISE
NASA Astrophysics Data System (ADS)
Eisenhardt, Peter; Tsai, Chao-Wei; Wu, Jingwen; Griffith, Roger; Yan, Lin; Stern, Daniel; Stanford, Adam; Blain, Andrew; Benford, Dominic; Bridge, Carrie; Assef, Roberto; Petty, Sara
2013-02-01
NASA's Wide-field Infrared Survey Explorer (WISE) has achieved its fundamental goal by delivering its all-sky survey at 3.4, 4.6, 12 and 22 (micron) (W1, W2, W3, and W4), reaching sensitivities hundreds of times deeper than IRAS. One of the two primary science objectives for WISE is to identify the most luminous galaxies in the Universe (Ultra-Luminous IR Galaxies, or ULIRGs). We have used WISE photometry to select an all- sky sample of objects which are extremely luminous, and for which Herschel far-IR follow-up observations are underway. The objects are prominent in W3 and W4, but faint or undetected in W1 and W2. Available spectroscopy and far IR photometry for these objects show they typically have redshifts z > 2 and luminosities over 10^13 L_odot, with about 10% exceeding 10^14 L_odot and rivaling the brightest known QSOs. Their dust is more than twice as hot as other IR luminous objects: they are hot dust obscured galaxies or ``hot DOGs," and may represent a new phase in galaxy evolution. We request NOAO time to obtain redshifts and optical and near IR photometry for the all-sky sample of the brightest hot DOGs, all of which are in our Herschel program. With existing and allocated observations, this request should complete the acquisition of these crucial data for this primary WISE science objective.
Hot DOGs: The Most Luminous Galaxies Found by WISE
NASA Astrophysics Data System (ADS)
Eisenhardt, Peter; Tsai, Chao-Wei; Wu, Jingwen; Assef, Roberto; Stern, Daniel; Wright, Edward
2013-08-01
NASA's Wide-field Infrared Survey Explorer (WISE) has achieved its fundamental goal by delivering an all-sky survey at 3.4, 4.6, 12 and 22 (micron) (W1, W2, W3, and W4), reaching sensitivities hundreds of times deeper than IRAS. One of the two primary science objectives for WISE is to identify the most luminous galaxies in the Universe. We have used WISE photometry to select an all-sky sample of objects which are extremely luminous, and for which Herschel far-IR follow-up observations are 99% complete. The objects are prominent in W3 and W4, but faint or undetected in W1 and W2. The spectroscopy and far IR photometry for these objects show they typically have redshifts z > 2 and luminosities over 10^13 L_⊙, with about 5 - 10% exceeding 10^14 L_⊙ and rivaling the brightest known QSOs. Their dust is more than twice as hot as other IR luminous objects: they are hot dust obscured galaxies or ``hot DOGs," and may represent a new phase in galaxy evolution. Because our 2012B allocation had mixed weather, we request 2013B NOAO time to complete the collection of redshifts and optical and near IR photometry for this all-sky sample of the brightest hot DOGs. With existing and allocated observations, this request should complete the acquisition of these crucial data for this primary WISE science objective.
Curricular Guidelines for Neuroanatomy.
ERIC Educational Resources Information Center
Journal of Dental Education, 1981
1981-01-01
Presented are the curricular guidelines for Neuroanatomy developed by the Section on Anatomical Sciences of the American Association of Dental Schools for use by individual educational institutions as curriculum development aids. Included are recommendations for primary educational goals, prerequisites, scope, content, behavioral objectives,…
Atmospheric Science Data Center
2015-03-16
Deep Convective Clouds and Chemistry (DC3) Data and Information The Deep Convective Clouds and Chemistry ( DC3 ) field campaign is investigating the impact of deep, ... processes, on upper tropospheric (UT) composition and chemistry. The primary science objectives are: To quantify and ...
INTEGRATING THE SCIENCE AND TECHNOLOGY OF ENVIRONMENTAL ASSESSMENT ACROSS FEDERAL AGENCIES
Seven Federal Agencies are conducting collaborative research to provide the next generation of environmental models for analyzing complex multimedia, multi-stressor contamination problems. Among the primary objectives of the Memorandum of Understanding (MOU) are 1) to provide a ...
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Technical Reports Server (NTRS)
Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.
2016-01-01
Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.
Fighting for life: Religion and science in the work of fish and wildlife biologists
NASA Astrophysics Data System (ADS)
Geffen, Joel Phillip
Philosophers, historians, and sociologists of science have argued that it is impossible to separate fact from value. Even so, Americans generally demand that scientists be "objective." No bias is permitted in their work. Religious motivations in particular are widely considered anathema within the halls of science. My dissertation addresses both theoretical and practical aspects concerning objectivity in science through an examination of fish and wildlife biologists. I hypothesized that they use the language of objective science as a tool to convince others to protect habitats and species. Further, I claimed that this "rhetoric of science" is employed either consciously or unconsciously on behalf of personal values, and that religious and/or spiritual values figure significantly among these. Regarding the issue's practical applications, I argued in support of Susan Longino's assertion that while subjective influences exist in science, they do not necessarily indicate that objectivity has been sacrificed. My primary methodology is ethnographic. Thirty-five biologists working in the Pacific Northwest were interviewed during the course of summer 2001. Participant ages ranged from 23 to 78. Both genders were represented, as were various ethnic and cultural backgrounds, including Native American. I used a questionnaire to guide respondents through a consistent set of open-ended queries. I organized their answers under four categories: the true, the good, the beautiful, and the holy. The first three were borrowed from the theoretical writings of philosopher Immanuel Kant. The last came from Rudolf Otto's theological work. These categories provided an excellent analytical framework. I found that the great majority of fish and wildlife biologists strive for objectivity. However, they are also informed by powerful contextual values. These are derived from environmental ethics, aesthetic preferences pertaining to ecosystem appearance and function, and visceral experiences of connection with nature. These were blended into their practice of science to varying degrees. My hypothesis was affirmed. Science is not value-free, and nor can it be. Yet, contextual values do not necessarily undermine scientific objectivity.
DOT National Transportation Integrated Search
2014-10-01
The primary objective of the work described in this report is to review the National Institute of Science and Technology (NIST) guidelines and foundational publications from an automotive : cybersecurity risk management stand-point. The NIST approach...
ERIC Educational Resources Information Center
Hasni, Abdelkrim; Potvin, Patrice; Belletête, Vincent
2017-01-01
In recent decades, many studies have examined students' interest in science and technology (S&T) at school. However, few investigations have studied this interest in a manner that accounts for the status that students assign to this subject relative to other subjects in the curriculum. The main objective of this article is to conduct such an…
ERIC Educational Resources Information Center
Yiu, Chang-li; Wilde, Carroll O.
Vector analysis is viewed to play a key role in many branches of engineering and the physical sciences. This unit is geared towards deriving identities and establishing "machinery" to make derivations a routine task. It is noted that the module is not an applications unit, but has as its primary objective the goal of providing science,…
NASA Technical Reports Server (NTRS)
Sobeck, Charlie (Editor)
1987-01-01
The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.
Recent Electric Propulsion Development Activities for NASA Science Missions
NASA Technical Reports Server (NTRS)
Pencil, Eric J.
2009-01-01
(The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated valve concept, as well as a pressure control module, which will regulate pressure from the propellant tank. Cross-platform component standardization and simplification are being investigated through the Standard Architecture task to reduce first user costs for implementing electric propulsion systems. Progress on current hardware development, recent test activities and future plans are discussed.
NASA Astrophysics Data System (ADS)
Walan, Susanne; Nilsson, Pernilla; Ewen, Birgitta Mc
2017-10-01
Studies have shown that there is a need for pedagogical content knowledge among science teachers. This study investigates two primary teachers and their objectives in choosing inquiry- and context-based instructional strategies as well as the relation between the choice of instructional strategies and the teachers' knowledge about of students' understanding and intended learning outcomes. Content representations created by the teachers and students' experiences of the enacted teaching served as foundations for the teachers' reflections during interviews. Data from the interviews were analyzed in terms of the intended, enacted, and experienced purposes of the teaching and, finally, as the relation between intended, enacted, and experienced purposes. Students' experiences of the teaching were captured through a questionnaire, which was analyzed inductively, using content analysis. The results show that the teachers' intended teaching objectives were that students would learn about water. During the enacted teaching, it seemed as if the inquiry process was in focus and this was also how many of the students experienced the objectives of the activities. There was a gap between the intended and experienced objectives. Hardly any relation was found between the teachers' choice of instructional strategies and their knowledge about students' understanding, with the exception that the teacher who also added drama wanted to support her students' understanding of the states of water.
Unintended knowledge learnt in primary science practical lessons
NASA Astrophysics Data System (ADS)
Park, Jisun; Abrahams, Ian; Song, Jinwoong
2016-11-01
This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt.
ASSESSING AND MANAGING MERCURY FROM HISTORIC AND CURRENT MINING ACTIVITIES
In order for ORD to address uncertainties resulting from past or historical mining practices a technology transfer workshop was conducted in November, 2000 in San Francisco, CA. Two primary objectives for this workshop were: 1) identify state-of-the-science practices and techniqu...
The Shuttle Imaging Radar B (SIR-B) experiment report
NASA Technical Reports Server (NTRS)
Cimino, Jo Bea; Holt, Benjamin; Richardson, Annie
1988-01-01
The primary objective of the SIR-B experiment was to acquire multiple-incidence-angle radar imagery of a variety of Earth's surfaces to better understand the effects of imaging geometry on radar backscatter. A complementary objective was to map extensive regions of particular interest. Under these broad objectives, many specific scientific experiments were defined by the 43 SIR-B Science Team members, including studies in the area of geology, vegetation, radar penetration, oceanography, image analysis, and calibration technique development. Approximately 20 percent of the planned digital data were collected, meeting 40 percent of the scientific objectives. This report is an overview of the SIR-B experiment and includes the science investigations, hardware design, mission scenario, mission operations, events of the actual missions, astronaut participation, data products (including auxiliary data), calibrations, and a summary of the actual coverage. Also included are several image samples.
NASA Astrophysics Data System (ADS)
Brown, Desmond P.; Reed, Jack A.
The Primary Education Improvement Program (Science) developed in Nigeria from 1970-1980 adopted a process approach to the teaching of science for children in Classes One and Two of primary school. In that insufficient formative data were available a study was organized to evaluate the attainment of the program's major objectives in terms of the children's ability to practice process skills. The study also attempted to measure children's interest, active participation and understanding of the lessons, as well as the availability of materials and ease of preparing and teaching the lessons for the teachers. Data were collected by means of teacher opinionnaires and a children's test to measure the attainment of process skills. The teachers who completed the opinionnaires rated the program as successful in terms of all the measured criteria. Children in the experimental and control groups were tested and their performances were compared. The results indicated that there were some significant differences in total test scores in favor of the experimental group after one year of primary school but none after two years. The program, though highly rated by teachers, did not produce the intended changes in children's behavior.
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2015-01-01
During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
This collection of lessons deals with nutrition in health and medicine and specifically the digestive system and its functions. The primary objective of this collection of lessons is to provide information on what constitutes good nutrition. Among the problems treated in these lessons are heart disease, peptic ulcer, hepatitis, vitamin deficiency…
Children's Question Asking and Curiosity: A Training Study
ERIC Educational Resources Information Center
Jirout, Jamie; Klahr, David
2011-01-01
A primary instructional objective of most early science programs is to foster children's scientific curiosity and question-asking skills (Jirout & Klahr, 2011). However, little is known about the relationship between curiosity, question-asking behavior, and general inquiry skills. While curiosity and question asking are invariably mentioned in…
The dark side of risk and crisis communication: legal conflicts and responsibility allocation
NASA Astrophysics Data System (ADS)
Scolobig, A.
2015-04-01
Inadequate, misinterpreted or missing risk and crisis communication may be a reason for practitioners, and sometimes even science advisors, to become subjects of criminal charges. This work discusses the legal consequences of communication. After presenting some cases, the discussion focuses on three critical issues: the development of effective communication protocols; the role, tasks and responsibilities of science advisors; and the collateral effects of practitioners' defensive behaviours. For example, if the avoidance of personal liability becomes a primary objective for practitioners, it may clash with other objectives, such as the protection of vulnerable communities or the transparency of decision-making. The conclusion presents some ideas for future research on the legal aspects of risk communication.
Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability
NASA Astrophysics Data System (ADS)
Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.
2016-12-01
The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.
Curiosity Rover's First Anniversary
2013-08-06
Jim Green, director, Planetary Division, NASA's Science Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
Jim Green, director, Planetary Division, NASA's Science Mission Directorate, answers a question at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Spacelab 3 Mission Science Review
NASA Technical Reports Server (NTRS)
Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)
1987-01-01
Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.
Gifted Education in the Netherlands
ERIC Educational Resources Information Center
De Boer, Greet C.; Minnaert, Alexander E. M. G.; Kamphof, Gert
2013-01-01
In the summer of 2011, the Dutch Minister of Education, Culture, and Science presented a letter to the Cabinet, containing the policy objectives for the education of talented, gifted, and highly gifted students. In action plans for primary, secondary, and higher education, in addition to the development of teacher skills, specific measures were…
Growing the Seeds of Scientific Enquiry
ERIC Educational Resources Information Center
Deller, Clarysly
2017-01-01
As plants and seed dispersal are common themes in primary science, the author thought that she would share an enquiry challenge activity that addresses many of the "working scientifically" objectives of the National Curriculum for England. Year 3 and 4 children had a whole afternoon made up firstly of "playing", planning and…
Children Go Bonkers about Bugs
ERIC Educational Resources Information Center
Fielding, Sue; Jones, Meriel
2014-01-01
Learning outside the classroom is an objective in primary education in the UK and an ideal way to introduce science. School grounds, allotments, community farms and sports areas, parks, nature reserves and community woodlands can be accessed in both urban and rural areas. These provide accessible spaces that can be used inexpensively throughout…
Developments in Science and Technology.
1981-01-01
order to meet API ’s requirements for image processing, large data- base transfers, advanced graphic processing, and shar- Tte use of I)EC’net software...Descripion moored plant at an island site, with the electricity sup- plied by undersea cable to a shore utility grid. The Because the primary objective was
Soil Moisture Active Passive (SMAP) Calibration and validation plan and current activities
USDA-ARS?s Scientific Manuscript database
The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-...
ERIC Educational Resources Information Center
Barbour, Jeffrey Paul; Ward, Lisa M.
2001-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in art, home economics, social studies, reading, language arts, and science. Library Media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each…
The 1991 EOS reference handbook
NASA Technical Reports Server (NTRS)
Dokken, David (Editor)
1991-01-01
The following topics are covered: (1) The Global Change Research Program; (2) The Earth Observing System (EOS) goal and objectives; (3) primary EOS mission requirements; (4) EOS science; (5) EOS Data and Information System (EOSDIS) architecture; (6) data policy; (7) international cooperation; (8) plans and status; (9) the role of the National Oceanic and Atmospheric Administration; (10) The Global Fellowship Program; (11) management of EOS; (12) mission elements; (13) EOS instruments; (14) interdisciplinary science investigations; (15) points of contact; and (16) acronyms and abbreviations.
If an antelope is a document, then a rock is data: preserving earth science samples for the future
NASA Astrophysics Data System (ADS)
Ramdeen, S.
2015-12-01
As discussed in seminal works by Briet (1951) and Buckland (1998), physical objects can be considered documents when given specific context. In the case of an antelope, in the wild it's an animal, in a zoo it's a document. It is the primary source of information, specifically when it is made an object of study. When discussing earth science data, we may think about numbers in a spreadsheet or verbal descriptions of a rock. But what about physical materials such as cores, cuttings, fossils, and other tangible objects? The most recent version of the American Geophysical Union's data position statement states data preservation and management policies should apply to both "digital data and physical objects"[1]. If an antelope is a document, than isn't a rock a form of data? Like books in a library or items in a museum, these objects require surrogates (digital or analog) that allow researchers to access and retrieve them. Once these scientific objects are acquired, researchers can process the information they contain. Unlike books, and some museum materials, most earth science objects cannot yet be completely replaced by digital surrogates. A fossil may be scanned, but the original is needed for chemical testing and ultimately for 'not yet developed' processes of scientific analysis. These objects along with their metadata or other documentation become scientific data when they are used in research. Without documentation of key information (i.e. the location where it was collected) these objects may lose their scientific value. This creates a complex situation where we must preserve the object, its metadata, and the connection between them. These factors are important as we consider the future of earth science data, our definitions of what constitutes scientific data, as well as our data preservation and management practices. This talk will discuss current initiatives within the earth science communities (EarthCube's EC3 and iSamples; USGS's data preservation program; etc.) and within the communities of information science. As practitioners, these librarians, information scientists, and archivists work on similar issues and can offer practices and theories that might help us 'future proof' physical earth science records. [1] http://sciencepolicy.agu.org/draft-data-position-statement-comment
NASA Astrophysics Data System (ADS)
Spilker, T. R.
2002-09-01
In July of this year the National Academy of Science released a draft of its report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," briefly describing the current state of solar system planetary science and the most important science objectives for the next decade (2003-2013). It includes a prioritized list of five mission concepts that might be flown as part of NASA's fledgling New Frontiers Program; each "concept" is more a list of science or measurement objectives than a full mission concept, since it does not specify implementation details in most cases. Number three on that list is the "Jupiter Polar Orbiter with Probes" ("JPOP") mission. This mission concept combines the strengths of previously described or proposed Jupiter missions into a single mission, and gains from the synergies of some of the newly-combined investigations. The primary science objectives are: 1. Determine if Jupiter has a central core 2. Determine the deep abundance of water (and other volatiles) 3. Measure Jupiter's deep winds 4. Determine the structure of Jupiter's dynamo magnetic field 5. Sample in situ Jupiter's polar magnetosphere This paper examines some of the implementation options for a JPOP mission, and gives relative advantages and disadvantages. Given the New Frontier Program's maximum cost to NASA of \\650M, plus an approx. \\120M cap on international contributions, implementing the full range of JPOP science objectives in a single New Frontiers mission may be challenging. This work was performed at the Jet Propulsion Laboratory / California Institute of Technology, under contract with the National Aeronautics and Space Administration.
The Factors and Features of Museum Fatigue in Science Centres Felt by Korean Students
NASA Astrophysics Data System (ADS)
Kim, Minchul; Dillon, Justin; Song, Jinwoong
2018-03-01
One of the objectives of science education in science centres has been the enhancement of interest in science. However, museum fatigue has a negative impact on interest. Museum fatigue has been described as physical tiredness or a decrease in visitors' interest in a museum. The learning experience of students in science centres is also influenced by museum fatigue. The purpose of this study is to identify the phenomena of museum fatigue in science centres and to identity how it is manifested. First, we identified the factors causing museum fatigue in science centres using the data from an open-ended questionnaire which was given to 597 primary, middle and high school students in South Korea. From the responses to the questionnaire, 50 factors causing museum fatigue in science centres were identified. A second Likert-type questionnaire with the 50 factors of museum fatigue in science centres was administered to 610 primary, middle and high school students in South Korea. Using reliability and factor analyses, we developed a framework of the factors causing museum fatigue in science centres, which consists of three contexts, 12 categories and 50 factors. Secondly, through statistical analyses including T test and ANOVA analysis, the features of students' museum fatigue in science centres were analysed and compared regarding student gender, school level, interest in science, grade of school science, the number of visits, and type of visit. The results, which were found to be statistically significant, are reported and discussed. The findings of this study are intended to serve for a deeper understanding and practical improvement of science learning in science centres.
NASA Astrophysics Data System (ADS)
Scolobig, A.
2015-06-01
Inadequate, misinterpreted, or missing risk and crisis communication may be a reason for practitioners, and sometimes science advisors, to become the subjects of criminal investigations. This work discusses the legal consequences of inadequate risk communication in these situations. After presenting some cases, the discussion focuses on three critical issues: the development of effective communication protocols; the role, tasks, and responsibilities of science advisors; and the collateral effects of practitioners' defensive behaviours. For example, if the avoidance of personal liability becomes a primary objective for practitioners, it may clash with other objectives, such as the protection of vulnerable communities or the transparency of decision making. The conclusion presents some ideas for future research on the legal aspects of risk communication.
The planetary spatial data infrastructure for the OSIRIS-REx mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.
2017-12-01
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity operations.The SPOC is a live system that handles inputs from spacecraft and science instrument telemetry, and science data producers. It includes multiple levels of validation, both automated and manual to process all data in a robust and reliable manner and eventually deliver it to the NASA Planetary Data System for archive.
Social Studies: A Primary Activities Handbook/A Language Arts Approach.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg.
Learning activities and teaching methods based on the social science disciplines and language arts skills are presented to aid classroom teachers in grades one through three as they develop and implement social studies education programs. Major objectives of the handbook are to identify social studies concepts which are within the realm of…
Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, E.W.
1995-02-01
This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.
Participatory Research for Primary Health Care.
ERIC Educational Resources Information Center
Cassara, Beverly B.
Participatory research began as a reaction to traditional social science research methodology, which tended to make persons into objects of study. It had its beginnings in Tanzania around 1970, when a group of farmers participated in research to assess and solve the problem of losses of grain harvests. The process grew out of the philosophy of…
Cricital Thinking Abilities That Support Scientific Skills. Workshop.
ERIC Educational Resources Information Center
Pallas, Stella
Science is suggested as an excellent content area for teaching primary students the creative and critical thinking skills that can help them become better problem solvers. J. P. Guilford's Structure of Intellect model and Benjamin Bloom's Taxonomy of Educational Objectives serve as the basis for developing exercises which lead to improvement of…
Mystery Powders. [Modified Primary]. Revised. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This publication provides information and activities for identifying objects using the five senses and process skills including observing, classifying, collecting and interpreting data, inferring, and predicting. Lessons 1 through 3 deal with the identification of an unknown substance and the physical properties of powders. Lessons 4 through 6 are…
Bio-objects and the media: the role of communication in bio-objectification processes.
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-06-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.
SLS-PLAN-IT: A knowledge-based blackboard scheduling system for Spacelab life sciences missions
NASA Technical Reports Server (NTRS)
Kao, Cheng-Yan; Lee, Seok-Hua
1992-01-01
The primary scheduling tool in use during the Spacelab Life Science (SLS-1) planning phase was the operations research (OR) based, tabular form Experiment Scheduling System (ESS) developed by NASA Marshall. PLAN-IT is an artificial intelligence based interactive graphic timeline editor for ESS developed by JPL. The PLAN-IT software was enhanced for use in the scheduling of Spacelab experiments to support the SLS missions. The enhanced software SLS-PLAN-IT System was used to support the real-time reactive scheduling task during the SLS-1 mission. SLS-PLAN-IT is a frame-based blackboard scheduling shell which, from scheduling input, creates resource-requiring event duration objects and resource-usage duration objects. The blackboard structure is to keep track of the effects of event duration objects on the resource usage objects. Various scheduling heuristics are coded in procedural form and can be invoked any time at the user's request. The system architecture is described along with what has been learned with the SLS-PLAN-IT project.
NASA Astrophysics Data System (ADS)
Muñoz-Franco, Granada; Criado, Ana María; García-Carmona, Antonio
2018-04-01
This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.
A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans
NASA Technical Reports Server (NTRS)
1982-01-01
The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.
Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)
NASA Technical Reports Server (NTRS)
Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2016-01-01
The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying FT and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems. There are no L1 science requirements for the L4_C product; however self-imposed requirements have been established focusing on NEE as the primary product field for validation, and on demonstrating L4_C accuracy and success in meeting product science requirements (Jackson et al. 2012). The other L4_C product fields also have strong utility for carbon science applications; however, analysis of these other fields is considered secondary relative to primary validation activities focusing on NEE. The L4_C targeted accuracy requirements are to meet or exceed a mean unbiased accuracy (ubRMSE) for NEE of 1.6 g C/sq m/d or 30 g C/sq m/yr, emphasizing northern (45N) boreal and arctic ecosystems; this is similar to the estimated accuracy level of in situ tower eddy covariance measurement-based observations (Baldocchi 2008).
Primary school children and teachers discover the nature and science of planet Earth and Mars
NASA Astrophysics Data System (ADS)
Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten
2016-04-01
For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a scientist, evoked questions that were developed by Aristotelian discourse towards researchable empirical questions. Here teachers and scientists closely collaborated to develop effective queries. The final questions were then investigated by couples of pupils following the empirical cycle up to the point of a poster presentation.
NASA Astrophysics Data System (ADS)
Wu, Yongchang; Hu, Zhiquan; Xiao, Bilin; Li, Quanxin
Agricultural science & technology information service system ‘110’ (ASTISS-110), connected through unitary telephone hotline as well as multipurpose service of the network, television and video etc, is one of the most characteristic content of the Chinese rural informatization. ASTISS-110 is a low cost and high efficiency way to make the agricultural science & technology achievements extension and achieve the combination of science & technology with farmers in the rural area. This paper would primary focus on the ASTISS-110 foundation and system principle. On basis of its main functions and system objectives, we put forward the combination of the ‘Sky- Land-People’ technical solution, and analyze the management operation mechanism from commonweal service, enterprise management and commercialization operation.
Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations
NASA Technical Reports Server (NTRS)
Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.
2015-01-01
This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.
2011-08-25
Leesa Hubbard, teacher in residence, Sally Ride Science, San Diego, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)
2011-08-25
Jim Green (left), director, Planetary Science Division at NASA Headquarters, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)
2011-08-25
Jim Green, director, Planetary Science Division at NASA Headquarters, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)
Mariner 9 mapping science sequence design.
NASA Technical Reports Server (NTRS)
Goldman, A. M., Jr.
1973-01-01
The primary mission of Mariner 9 was to map the Martian surface. This paper discusses in detail the design of the mapping science sequences which were executed by the spacecraft in sixty days and during which over eighty percent of the surface was photographed. The sequence design was influenced by many factors: experimenter scientific objectives, instrument capabilities, spacecraft capabilities, orbit characteristics, and data return rates, which are illustrated graphically. Typical orbits are depicted for each of the three different mapping phases lasting twenty days. Examples of typical orbital sequence plans prepared daily during mission operations are given.
ERIC Educational Resources Information Center
Shugar, Candace; Robinson, Alice A.
2003-01-01
Provides six fully developed library media activities that are designed for use with specific curriculum units in creative dramatics, language arts, social studies, reading, and science. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are described for…
How Things Work: The Physics of Everyday Life, 2nd Edition
NASA Astrophysics Data System (ADS)
Bloomfield, Louis A.
2000-12-01
Written primarily for a one-term, undergraduate level course, this book attempts to convey an understanding and appreciation for the concepts and principles of Physics by finding them within specific objects of everyday experience. It's primary market are liberal arts students who are seeking a connection between science and the world they live in; among its many secondary markets are the growing number of institutions offering courses with scientific real-world context. These courses may also be offered to students from the Sciences, Engineering, Architecture, and other technical fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia Needham
2008-06-30
The primary objective of this project was to engage members of the public in an active and balanced deliberative discussion about the social, ethical, legal, environmental, and policy issues arising from nanotechnologies. A second but equally important objective was to interest members of the public in learning more about science and technology and nanotechnology specifically by understanding how it will affect their lives. The objectives were met through a series of electronic and face-to-face citizen forums conducted in conjunction with three Fred Friendly Seminars being taped on the University of California, Berkeley campus in partnership with Lawrence Hall of Sciencemore » (this forum was conducted in partnership with the St. Louis Science Center); the Boston Museum of Science in Boston, MA; and the State Museum of South Carolina in Columbia, South Carolina. The topical area for each forum paralleled the content of the Fred Friendly Seminars series being taped at each location, but specific topics/issues were drawn from the concerns and interests of the communities. The three topical areas included Environmental Impact (St. Louis), Privacy vs. Security (Boston), and Health and Enhancement (Columbia). The PI and project leader worked with the local science centers to identify stakeholder groups, such as academic, corporate and government scientists; environmental advocates; business leaders; science and technology journalists; and public policy makers within each community. Representatives from each group along with members of the general public were invited to participate in a series of on line and in person deliberations that were designed to provide basic information about the science, its potential benefits and risks, and avenues for public participation in policy formulation. On line resources were designed and managed by ScienceVIEW at Lawrence Hall of Science and Earth & Sky, Inc. The activities at each site were evaluated by Inverness Research Associates to assess whether they have achieved the objectives.« less
Teaching students to read the primary literature using POGIL activities.
Murray, Tracey Arnold
2014-01-01
The ability to read, interpret, and evaluate articles in the primary literature are important skills that science majors will use in graduate school and professional life. Because of this, it is important that students are not only exposed to the primary literature in undergraduate education, but also taught how to read and interpret these articles. To achieve this objective, POGIL activities were designed to use the primary literature in a majors biochemistry sequence. Data show that students were able to learn content from the literature without separate activities or lecture. Students also reported an increase in comfort and confidence in approaching the literature as a result of the activities. Copyright © 2013 The International Union of Biochemistry and Molecular Biology.
75 FR 48369 - Notice of Intent To Seek Approval To Establish an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... INFORMATION: Title of Collection: A Social Network Analysis of the National Science Foundation's Research and... Office of Management and Budget (OMB) for review and approval. A Social Network Analysis of the National... programs. The primary objectives of the study are to conduct a social network analysis of the REESE and DR...
Water Reclamation Technology Development at Johnson Space Center
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Pickering, Karen
2014-01-01
Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.
Siren call of metaphor: subverting the proper task of neuroscience.
Werner, Gerhard
2004-09-01
Under the assumption that nervous systems form a distinct category among the objects in Nature, applying metaphors of psychological and behavioral science disciplines is flawed and invites confusion. Moreover, such practices obscure and detract from the primary task of Neurophysiology: to investigate the intrinsic properties of nervous systems, uncontaminated with concepts borrowed from other disciplines.
NASA Astrophysics Data System (ADS)
Markic, Silvija; Eilks, Ingo
2012-03-01
The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology, chemistry, and physics, respectively, as well as primary school science). The qualitative data from the first study are based on student teachers' drawings of themselves in teaching situations. It was formulated using Grounded Theory to test three scales: Beliefs about Classroom Organisation, Beliefs about Teaching Objectives, and Epistemological Beliefs. Three further quantitative studies give insight into student teachers' curricular beliefs, their beliefs about the nature of science itself, and about the student- and/or teacher-centredness of science teaching. This paper describes a design to integrate all these data within a mixed methods framework. The aim of the current study is to describe a broad, triangulated picture of freshman science student teachers' beliefs about teaching and learning within their respective science teaching domain. The study reveals clear tendencies between the sub-groups. The results suggest that freshman chemistry and-even more pronouncedly-freshman physics student teachers profess quite traditional beliefs about science teaching and learning. Biology and primary school student teachers express beliefs about their subjects which are more in line with modern educational theory. The mixed methods approach towards the student teachers' beliefs is reflected upon and implications for science education and science teacher education are discussed.
NASA Astrophysics Data System (ADS)
Forbes, Anne; Skamp, Keith
2016-02-01
MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.
Using systems science for population health management in primary care.
Li, Yan; Kong, Nan; Lawley, Mark A; Pagán, José A
2014-10-01
Population health management is becoming increasingly important to organizations managing and providing primary care services given ongoing changes in health care delivery and payment systems. The objective of this study is to show how systems science methodologies could be incorporated into population health management to compare different interventions and improve health outcomes. The New York Academy of Medicine Cardiovascular Health Simulation model (an agent-based model) and data from the Behavioral Risk Factor Surveillance System were used to evaluate a lifestyle program that could be implemented in primary care practice settings. The program targeted Medicare-age adults and focused on improving diet and exercise and reducing weight. The simulation results suggest that there would be significant reductions projected in the proportion of the Medicare-age population with diabetes after the implementation of the proposed lifestyle program for a relatively long term (3 and 5 years). Similar results were found for the subpopulations with high cholesterol, but the proposed intervention would not have a significant effect in the proportion of the population with hypertension over a time period of <5 years. Systems science methodologies can be useful to compare the health outcomes of different interventions. These tools can become an important component of population health management because they can help managers and other decision makers evaluate alternative programs in primary care settings. © The Author(s) 2014.
Earth Science Markup Language: Transitioning From Design to Application
NASA Technical Reports Server (NTRS)
Moe, Karen; Graves, Sara; Ramachandran, Rahul
2002-01-01
The primary objective of the proposed Earth Science Markup Language (ESML) research is to transition from design to application. The resulting schema and prototype software will foster community acceptance for the "define once, use anywhere" concept central to ESML. Supporting goals include: 1. Refinement of the ESML schema and software libraries in cooperation with the user community. 2. Application of the ESML schema and software libraries to a variety of Earth science data sets and analysis tools. 3. Development of supporting prototype software for enhanced ease of use. 4. Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate. 5. Widespread publication of the ESML approach, schema, and software.
NASA Technical Reports Server (NTRS)
Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.
2012-01-01
The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.
Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire
2006-01-01
In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and efficiency and reducing costs of instruments and networks. Encourage a breadth of scientific capabilities in Menlo Park to foster interdisciplinary science. Communicate USGS science to a diverse audience.
Discover Primary Science: Developing Primary Science in Ireland
ERIC Educational Resources Information Center
Horner, Margaret; Palmer, Marion
2007-01-01
"Discover Primary Science" is a major project in primary science education in Ireland. In 2006-2007 it involves 2400 primary schools, 45 host centres, and two government departments. However, it started out as a local initiative taken by one state agency in 2002 involving four Institutes of Technology and 40 primary schools. The aim of…
Space Shuttle to deploy Magellan planetary science mission
NASA Technical Reports Server (NTRS)
1989-01-01
The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).
NASA Astrophysics Data System (ADS)
Deehan, James; Danaia, Lena; McKinnon, David H.
2018-03-01
The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.
James Webb Space Telescope: The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
Scheduled to begin its 10 year mission no sooner than 2013, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.
James Webb Space Telescope (JWST): The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2008-01-01
The James Webb Space Telescope (JWST), expected to launch in 2011, will study the origin and evolution of luminous objects, galaxies, stars, planetary systems and the origins of life. It is optimized for near infrared wavelength operation of 0.6-28 micrometers and will have a 5 year mission life (with a 10 year goal). This presentation reviews JWST's science objectives, the JWST telescope and mirror requirements and how they support the JWST architecture. Additionally, an overview of the JWST primary mirror technology development effort is highlighted.
ERIC Educational Resources Information Center
Jungblom, Edwin N.
The publication contains exercises on population education which can be used in social studies and science classes in grades 4-7. Although the language of the material is geared to the intermediate grades, the exercises can easily be adapted for primary, high school, and adult education. The publication's major objective is to change the lifestyle…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.
This committee report is intended to accompany S. 1067, a bill designed to provide for a coordinated federal research program in high-performance computing (HPC). The primary objective of the legislation is given as the acceleration of research, development, and application of the most advanced computing technology in research, education, and…
The U.S. Geological Survey Great Lakes Science Center has developed a plan to implement revision of its annual fish community survey of Lake Superior. The primary objective of the revision is improvement of the sampling design to be more representative of the Lake Superior fish c...
Diagnostic Assessment of Preparedness of Level One Sports Science Students for Biomechanics Modules
ERIC Educational Resources Information Center
Dixon, Sharon J.
2005-01-01
The primary objective of this study was to investigate the use of a diagnostic test to assess the preparedness of level one students for a sports biomechanics module. During their first week at university, a cohort of 108 students completed a diagnostic test at the end of their first lecture in sports biomechanics, with no prior notice. Upon…
USDA-ARS?s Scientific Manuscript database
Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...
ERIC Educational Resources Information Center
Keselman, Alla; Kaufman, David R.; Patel, Vimla L.
2004-01-01
A primary objective for science education is to impart robust knowledge that has applicability to real-world problems. This article presents research investigating the relationship between adolescents' conceptual understanding of the biological basis of HIV and critical reasoning. Middle and high school students were interviewed about their…
Introduction to Statistics. Learning Packages in the Policy Sciences Series, PS-26. Revised Edition.
ERIC Educational Resources Information Center
Policy Studies Associates, Croton-on-Hudson, NY.
The primary objective of this booklet is to introduce students to basic statistical skills that are useful in the analysis of public policy data. A few, selected statistical methods are presented, and theory is not emphasized. Chapter 1 provides instruction for using tables, bar graphs, bar graphs with grouped data, trend lines, pie diagrams,…
O'Connor, A; Anthony, R; Bergamasco, L; Coetzee, J F; Dzikamunhenga, R S; Johnson, A K; Karriker, L A; Marchant-Forde, J N; Martineau, G P; Millman, S T; Pajor, E A; Rutherford, K; Sprague, M; Sutherland, M A; von Borell, E; Webb, S R
2016-04-01
Accurate and complete reporting of study methods, results and interpretation are essential components for any scientific process, allowing end-users to evaluate the internal and external validity of a study. When animals are used in research, excellence in reporting is expected as a matter of continued ethical acceptability of animal use in the sciences. Our primary objective was to assess completeness of reporting for a series of studies relevant to mitigation of pain in neonatal piglets undergoing routine management procedures. Our second objective was to illustrate how authors can report the items in the Reporting guidElines For randomized controLled trials for livEstoCk and food safety (REFLECT) statement using examples from the animal welfare science literature. A total of 52 studies from 40 articles were evaluated using a modified REFLECT statement. No single study reported all REFLECT checklist items. Seven studies reported specific objectives with testable hypotheses. Six studies identified primary or secondary outcomes. Randomization and blinding were considered to be partially reported in 21 and 18 studies, respectively. No studies reported the rationale for sample sizes. Several studies failed to report key design features such as units for measurement, means, standard deviations, standard errors for continuous outcomes or comparative characteristics for categorical outcomes expressed as either rates or proportions. In the discipline of animal welfare science, authors, reviewers and editors are encouraged to use available reporting guidelines to ensure that scientific methods and results are adequately described and free of misrepresentations and inaccuracies. Complete and accurate reporting increases the ability to apply the results of studies to the decision-making process and prevent wastage of financial and animal resources.
James Webb Space Telescope: The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
NASA James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. Its architecture, e.g. aperture, wavelength range and operating temperature, is driven by JWST's science objectives. Introduction: Scheduled to start its 5 year mission after 2018, JWST will study the origin and evolution of galaxies, stars and planetary systems. Its science mission is to: Identify the first bright objects that formed in the early Universe, and follow the ionization history. Determine how galaxies form. Determine how galaxies and dark matter, including gas, stars, metals, overall morphology and active nuclei evolved to the present day. Observe the birth and early development of stars and the formation of planets. And, study the physical and chemical properties of solar systems for the building blocks of Life. Principle: To accomplish the JWST science objectives requires a larger aperture infrared cryogenic space telescope. A large aperture is required because the objects are very faint. The infrared spectral range is required because the objects are so far away that their ultraviolet and visible wavelength spectral lines are red-shifted into the infrared. Because the telescope is infrared, it needs to be cryogenic. And, because of the telescope is infrared, it must operate above the Earth's atmosphere, i.e. in space. JWST is probably the single most complicated mission that humanity has attempted. It is certainly the most difficult optical fabrication and testing challenge of our generation. The JWST 6.5 m diameter primary mirror is nearly a parabola with a conic constant of -0.9967 and radius of curvature at 30K of 15.880 m. The primary mirror is divided into 18 segments with 3 different prescriptions; each with its own off-axis distance and aspheric departure. The radius of curvature for all 18 segments must match to +/- 0.150 mm at 30K. JWST is diffraction limited at 2 micrometers which translates into a transmitted wavefront specification of 156 nm rms. Of that amount, 50 nm rms is allocated to the primary mirror. Each segment is allocated 22 nm rms surface error. At the start of the JWST program, the capability to make such a mirror did not exist. In 1996, NASA began a systematic and comprehensive mirror technology development effort which resulted in JWST. This program resulted in a qualified mirror fabrication process being approved in 2006. Today, all JWST primary mirror segments meet their requirements and are on schedule for a 2018 launch. The next step is system level assembly, integration and test. Ambient tests will be conducted at Goddard Space Flight Center and cryogenic system level testing will be performed in Chamber A at the Johnson Space Center.
Primary Science Interview: Science Sparks
ERIC Educational Resources Information Center
Bianchi, Lynne
2016-01-01
In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…
UV/Visible Telescope with Hubble Disposal
NASA Technical Reports Server (NTRS)
Benford, Dominic J.
2013-01-01
Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.
Bio-objects and the media: the role of communication in bio-objectification processes
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-01-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763
NASA Astrophysics Data System (ADS)
Cooper, Grant; Kenny, John; Fraser, Sharon
2012-08-01
Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.
SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change
NASA Astrophysics Data System (ADS)
Rosen, P. A.
2016-12-01
Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.
NASA Space Sciences Symposium-1977
NASA Technical Reports Server (NTRS)
1977-01-01
The primary objective of the symposium was to motivate American Indians and other minority youths and women to select science and engineering as viable career choices, thereby making them available to the technical work force. Other objectives were: (1) to determine how aerospace technology careers and aerospace activities can be made more relevant to minorities and women; (2) to provide an opportunity for key NASA officials to interact with teachers and counselors of the participating schools; (3) to stimulate a greater interest among American Indian organizations and students in NASA's research and development programs; (4) to help NASA's efforts in the recruiting of minorities and women into its work force; and (5) to provide opportunities for minority aerospace scientists and engineers to interact with the minority community, particularly with youths at the junior high school and high school levels.
Curiosity Rover's First Anniversary
2013-08-06
Prasun Desai, acting director, Strategic Integration, NASA's Space Technology Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
A small-scaled model of NASA's Curiosity rover is seen at a public event observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
NASA Administrator Charles Bolden speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
Sam Scimemi, director, NASA's International Space Station Program, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
NASA Astrophysics Data System (ADS)
Varela, P.; Costa, M. F.
2015-04-01
The exploration process leading to the understanding of physical phenomena, such as light and its interaction with matter, raises great interest and curiosity in children. However, in most primary schools, children rarely have the opportunity to conduct science activities in which they can engage in an enquiry process even if by the action of the teacher. In this context, we have organised several in-service teacher training courses and carried out several pedagogic interventions in Portuguese primary schools, with the aim of promoting inquiry- based science education. This article describes one of those projects, developed with a class of the third grade, which explored the curricular topic “Light Experiments”. Various activities were planned and implemented, during a total of ten hours spread over five lessons. The specific objectives of this paper are: to illustrate and analyse the teaching and learning process promoted in the classroom during the exploration of one of these lessons, and to assess children's learning three weeks after the lessons. The results suggest that children made significant learning which persisted. We conclude discussing some processes that stimulated children’ learning, including the importance of teacher questioning in scaffolding children's learning and some didactic implications for teacher training.
NASA Astrophysics Data System (ADS)
Danielsson, Anna T.; Warwick, Paul
2014-04-01
In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.
2016-01-01
The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.
ERIC Educational Resources Information Center
Karakuyu, Yunus
2011-01-01
The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…
NASA Astrophysics Data System (ADS)
Adler, David S.; Workman, William M., III; Chance, Don
2004-09-01
The Science and Mission Scheduling Branch (SMSB) of the Space Telescope Science Institute (STScI) historically operated exclusively under VMS. Due to diminished support for VMS-based platforms at STScI, SMSB recently transitioned to Unix operations. No additional resources were available to the group; the project was SMSB's to design, develop, and implement. Early decisions included the choice of Python as the primary scripting language; adoption of Object-Oriented Design in the development of base utilities; and the development of a Python utility to interact directly with the Sybase database. The project was completed in January 2004 with the implementation of a GUI to generate the Command Loads that are uplinked to HST. The current tool suite consists of 31 utilities and 271 tools comprising over 60,000 lines of code. In this paper, we summarize the decision-making process used to determine the primary scripting language, database interface, and code management library. We also describe the finished product and summarize lessons learned along the way to completing the project.
ERIC Educational Resources Information Center
Forbes, Anne; Skamp, Keith
2016-01-01
"MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups--primary teachers, primary students and mentors--interact around the "domain" of "investigating scientifically". This paper builds on three earlier…
ERIC Educational Resources Information Center
Anderson, Dayle; Moeed, Azra
2017-01-01
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…
ERIC Educational Resources Information Center
Pinder, Patrice Juliet
2012-01-01
The primary objectives of this research were to explore achievement pattern differences and the influence of family factors on the achievement patterns of Afro-Caribbean and African American students within the United States (U.S.). The study utilized two research designs; a causal-comparative and a correlational design. A student family…
Canyval-x: Cubesat Astronomy by NASA and Yonsei Using Virtual Telescope Alignment Experiment
NASA Technical Reports Server (NTRS)
Shah, Neerav
2016-01-01
CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science.
ERIC Educational Resources Information Center
Massoudi, Mehrdad
2004-01-01
The primary objective of this paper is to study the various possible responses to a new theory or perspective, whether this new theory is in science, philosophy, or religion. The response will depend on how one defines authority and truth. A brief discussion on certain aspects of Eastern spirituality is given. I rely on the philosophical aspect of…
ERIC Educational Resources Information Center
Danielsson, Anna T.; Warwick, Paul
2014-01-01
In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on…
ERIC Educational Resources Information Center
Petersen, Jacinta E.; Treagust, David F.
2014-01-01
Science in the Australian primary school context is in a state of renewal with the recent implementation of the Australian Curriculum: Science. Despite this curriculum renewal, the results of primary students in science have remained static. Science in Australia has been identified as one of the least taught subjects in the primary school…
Summary of the Science performed onboard the International Space Station during Increments 12 and 13
NASA Technical Reports Server (NTRS)
Jules, Kenol
2007-01-01
By September of 2007, continuous human presence on the International Space Station will reach a milestone of eighty months. The many astronauts and cosmonauts, who live onboard the station during the last fourteen Increments over that time span, spend their time building the station as well as performing science on a daily basis. Over those eighty months, the U.S astronauts crew members logged over 2954 hours of research time. Far more research time has been accumulated by experiments controlled by investigators on the ground. The U.S astronauts conducted over one hundred and twenty six (126) science investigations. From these hundred and twenty six science investigations, many were operated across multiple Increments. The crew also installed, activated and operated nine (9) science racks that supported six science disciplines ranging from material sciences to life science. By the end of Increment 14, a total of 5083 kg of research rack mass were ferried to the station as well as 5021 kg of research mass. The objectives of this paper are three-fold. (1) To briefly review the science conducted on the International Space Station during the previous eleven Increments; (2) to discuss in detail the science investigations that were conducted on the station during Increments 12 and 13. The discussion will focus mainly on the primary objectives of each investigation and their associated hypotheses that were investigated during these two Increments. Also, some preliminary science results will be discussed for each of the investigation as science results availability permit. (3) The paper will briefly touch on what the science complement planning was and what was actually accomplished due to real time science implementation and challenges during these two Increments in question to illustrate the challenges of daily science activity while the science platform is under construction. Finally, the paper will briefly discuss the science research complements for the other two Increments, Increments 14 and 15, to preview how much science might be accomplished during these two Increments.
New Method for Characterizing the State of Optical and Opto-Mechanical Systems
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James
2014-01-01
James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.
Polycarbonate crowns for primary teeth revisited: restorative options, technique and case reports.
Venkataraghavan, Karthik; Chan, John; Karthik, Sandhya
2014-01-01
Esthetics by definition is the science of beauty - that particular detail of an animate or inanimate object that makes it appealing to the eye. In the modern, civilized, and cosmetically conscious world, well-contoured and well-aligned white teeth set the standard for beauty. Such teeth are not only considered attractive but are also indicative of nutritional health, self esteem, hygienic pride, and economic status. Numerous treatment approaches have been proposed to address the esthetics and retention of restorations in primary teeth. Even though researchers have claimed that certain restorations are better than the others, particularly owing to the issues mentioned above, the search for the ideal esthetic restoration for the primary teeth continues. This paper revisits and attempts to reintroduce the full coverage restoration, namely, polycarbonate crown, for use in primary anterior teeth.
Graczynski, M R
2000-09-10
Index Copernicus is ranking system set up by members of the medical community in the Region. There were created five groups of parameters like scientific, editorial and technical quality, circulation and frequency-market stability, which allow for the generation of such a ranking system. The Authors of the Ranking System are aware of the deficiencies of parametrical analysis of science, however they believe the numbers at least set up clear, objective and just rules for all. Index Copernicus could be said the primary objectives of the system for which it has been created for.
The James Webb Space Telescope (JWST), The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.
Primary Teachers' Attitudes toward Science: A New Theoretical Framework
ERIC Educational Resources Information Center
van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; Asma, Lieke J. F.
2012-01-01
Attention to the attitudes of preservice and inservice primary teachers toward science is of fundamental importance to research on primary science education. However, progress in this field of research has been slow due to the poor definition and conceptualization of the construct of primary teachers' attitude toward science. This poor theoretical…
Phytotherapy in primary health care
Antonio, Gisele Damian; Tesser, Charles Dalcanale; Moretti-Pires, Rodrigo Otavio
2014-01-01
OBJECTIVE To characterize the integration of phytotherapy in primary health care in Brazil. METHODS Journal articles and theses and dissertations were searched for in the following databases: SciELO, Lilacs, PubMed, Scopus, Web of Science and Theses Portal Capes, between January 1988 and March 2013. We analyzed 53 original studies on actions, programs, acceptance and use of phytotherapy and medicinal plants in the Brazilian Unified Health System. Bibliometric data, characteristics of the actions/programs, places and subjects involved and type and focus of the selected studies were analyzed. RESULTS Between 2003 and 2013, there was an increase in publications in different areas of knowledge, compared with the 1990-2002 period. The objectives and actions of programs involving the integration of phytotherapy into primary health care varied: including other treatment options, reduce costs, reviving traditional knowledge, preserving biodiversity, promoting social development and stimulating inter-sectorial actions. CONCLUSIONS Over the past 25 years, there was a small increase in scientific production on actions/programs developed in primary care. Including phytotherapy in primary care services encourages interaction between health care users and professionals. It also contributes to the socialization of scientific research and the development of a critical vision about the use of phytotherapy and plant medicine, not only on the part of professionals but also of the population. PMID:25119949
A strategy for space biology and medical science for the 1980s and 1990s
NASA Technical Reports Server (NTRS)
1987-01-01
A guideline is provided for developing NASA's long-term mission plans and a rational, coherent research program. Ten topical areas for research are addressed: developmental biology, gravitropism in plants, sensorimotor integration, bone and mineral metabolism, cardiovascular/pulmonary function, muscle remodeling, nutrition, human reproduction, space anemia, and human behavior. Scientific goals, objectives, and required measurements and facilities for each of the major areas of space biology and medicine are identified and described along with primary goals and objectives for each of these disciplines. Proposals are made concerning the use of scientific panels to oversee the implementation of the strategy, life sciences' need for continuous access to spaceflight opportunities, the advantages of a focused mission strategy, certain design features that will enhance spaceflight experimentation, and general facilities. Other topics that are considered include mission planning, crew selection and training, and interagency and international cooperation.
STS-79 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.
Mobile Devices and Apps as Scaffolds to Science Learning in the Primary Classroom
NASA Astrophysics Data System (ADS)
Falloon, Garry
2017-12-01
Considerable work over many years has explored the contribution technology can make to science learning, at all levels of education. In the school sector, historically this has focused on the use of fixed, desktop-based or semi-mobile laptop systems for purposes such as experiment data collection or analysis, or as a means of engaging or motivating interest in science. However, the advent of mobile devices such as iPads supported by a huge array of low or no cost apps, means that new opportunities are becoming available for teachers to explore how these resources may be useful for supporting `hands on' science learning. This article reports outcomes from a study of primary (elementary) school students' use of a series of apps integrated with practical science activities, in a topic exploring Energy concepts. It used an innovative display capture tool to examine how the students used the apps and features of their iPads to scaffold their practical work at different stages during the experiments. Results identify device functions and app-based scaffolds that assisted these students to structure their experiments, understand procedures, think about the influence of variables and communicate and share outcomes. However, they also discovered limitations in the apps' ability to support conceptual knowledge development, identifying the critical role of teachers and the importance of task structure and design to ensuring conceptual knowledge objectives are met.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Science and Technology Teachers' Views of Primary School Science and Technology Curriculum
ERIC Educational Resources Information Center
Yildiz-Duban, Nil
2013-01-01
This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…
Balancing Science Objectives and Operational Constraints: A Mission Planner's Challenge
NASA Technical Reports Server (NTRS)
Weldy, Michelle
1996-01-01
The Air Force minute sensor technology integration (MSTI-3) satellite's primary mission is to characterize Earth's atmospheric background clutter. MSTI-3 will use three cameras for data collection, a mid-wave infrared imager, a short wave infrared imager, and a visible imaging spectrometer. Mission science objectives call for the collection of over 2 million images within the one year mission life. In addition, operational constraints limit camera usage to four operations of twenty minutes per day, with no more than 10,000 data and calibrating images collected per day. To balance the operational constraints and science objectives, the mission planning team has designed a planning process to e event schedules and sensor operation timelines. Each set of constraints, including spacecraft performance capabilities, the camera filters, the geographical regions, and the spacecraft-Sun-Earth geometries of interest, and remote tracking station deconflictions has been accounted for in this methodology. To aid in this process, the mission planning team is building a series of tools from commercial off-the-shelf software. These include the mission manifest which builds a daily schedule of events, and the MSTI Scene Simulator which helps build geometrically correct scans. These tools provide an efficient, responsive, and highly flexible architecture that maximizes data collection while minimizing mission planning time.
Primary and Secondary School Science.
ERIC Educational Resources Information Center
Educational Documentation and Information, 1984
1984-01-01
This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…
ERIC Educational Resources Information Center
Fitzgerald, Angela; Dawson, Vaille; Hackling, Mark
2009-01-01
Effective science teaching is vital for improved student learning outcomes in primary school science. Therefore, there is a need to tease out the components of effective science teaching to better understand what effective primary teachers do in their classrooms and why they do it. Four primary teachers, each nominated as effective science…
The Primary Science Project in Norway: Action Research and Curriculum Development.
ERIC Educational Resources Information Center
Jorde, Doris
This paper describes the Primary Science Project in Norway whose goals were to describe the primary (grades 1-6) science classroom and to make recommendations on improvements for primary science teaching. The purpose of this study was to study the classroom climate, specifically focusing on the social interactions between teachers and students.…
The Juno Radiation Monitoring (RM) Investigation
NASA Astrophysics Data System (ADS)
Becker, H. N.; Alexander, J. W.; Adriani, A.; Mura, A.; Cicchetti, A.; Noschese, R.; Jørgensen, J. L.; Denver, T.; Sushkova, J.; Jørgensen, A.; Benn, M.; Connerney, J. E. P.; Bolton, S. J.; Allison, J.; Watts, S.; Adumitroaie, V.; Manor-Chapman, E. A.; Daubar, I. J.; Lee, C.; Kang, S.; McAlpine, W. J.; Di Iorio, T.; Pasqui, C.; Barbis, A.; Lawton, P.; Spalsbury, L.; Loftin, S.; Sun, J.
2017-11-01
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno's star cameras and science instruments at Jupiter. The investigation's objective is to profile Jupiter's >10-MeV electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation's data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno's first science orbit, and how the measurements may be used to infer the external relativistic electron environment.
Curiosity Rover's First Anniversary
2013-08-06
Jason Townsend, NASA's Deputy Social Media Manager, asks a question on behalf of a NASA Twitter follower at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
ERIC Educational Resources Information Center
Hirça, Necati
2015-01-01
Although science experiments are the basis of teaching science process skills (SPS), it has been observed that a large number of prospective primary teachers (PPTs), by virtue of their background, feel anxious about doing science experiments. To overcome this problem, a proposal was suggested for primary school teachers (PSTs) to teach science and…
NASA Technical Reports Server (NTRS)
Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.
2000-01-01
NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.
The great asteroid nomenclature controversy of 1801
NASA Technical Reports Server (NTRS)
Cunningham, Clifford J.
1992-01-01
With the almost complete neglect of 19th century asteroid research by professional historians of science, it is scarcely surprising that great gaps exist in our knowledge of that important field. This paper focuses on issue of naming the first asteroid. This seemingly innocuous issue assumed great importance because many believed the object discovered by Giuseppe Piazzi at Palermo Observatory to be the eighth primary planet of the solar system.
Test and Validation of the Mars Science Laboratory Robotic Arm
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Kim, W.; Carsten, J.; Tompkins, V.; Trebi-Ollennu, A.; Florow, B.
2013-01-01
The Mars Science Laboratory Robotic Arm (RA) is a key component for achieving the primary scientific goals of the mission. The RA supports sample acquisition by precisely positioning a scoop above loose regolith or accurately preloading a percussive drill on Martian rocks or rover-mounted organic check materials. It assists sample processing by orienting a sample processing unit called CHIMRA through a series of gravity-relative orientations and sample delivery by positioning the sample portion door above an instrument inlet or the observation tray. In addition the RA facilitates contact science by accurately positioning the dust removal tool, Alpha Particle X-Ray Spectrometer (APXS) and the Mars Hand Lens Imager (MAHLI) relative to surface targets. In order to fulfill these seemingly disparate science objectives the RA must satisfy a variety of accuracy and performance requirements. This paper describes the necessary arm requirement specification and the test campaign to demonstrate these requirements were satisfied.
PSQM--Reflections of a PSQM Hub Leader
ERIC Educational Resources Information Center
Johnson, Sue
2011-01-01
Primary Science Quality Mark Scheme is a joint project led by the Association for Science Education, the national network of Science Learning Centres and Barnet Local Authority. The Primary Science Quality Mark is an award scheme to develop and celebrate the quality of science teaching and learning in primary schools. It encourages teachers to let…
ERIC Educational Resources Information Center
Herbert, Sandra; Xu, Lihua; Kelly, Leissa
2017-01-01
Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…
Borlawsky, Tara B.; Dhaval, Rakesh; Hastings, Shannon L.; Payne, Philip R. O.
2009-01-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative. PMID:21347164
Borlawsky, Tara B; Dhaval, Rakesh; Hastings, Shannon L; Payne, Philip R O
2009-03-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative.
Toward Describing the Effects of Ozone Depletion on Marine Primary Productivity and Carbon Cycling
NASA Technical Reports Server (NTRS)
Cullen, John J.
1995-01-01
This project was aimed at improved predictions of the effects of UVB and ozone depletion on marine primary productivity and carbon flux. A principal objective was to incorporate a new analytical description of photosynthesis as a function of UV and photosynthetically available radiation (Cullen et. al., Science 258:646) into a general oceanographic model. We made significant progress: new insights into the kinetics of photoinhibition were used in the analysis of experiments on Antarctic phytoplankton to generate a general model of UV-induced photoinhibition under the influence of ozone depletion and vertical mixing. The way has been paved for general models on a global scale.
At the Crossroads: The Impact of New Irish Science Curricula on First Year Post-Primary Students
ERIC Educational Resources Information Center
Varley, Janet Penelope; Murphy, Cliona; Veale, Orlaith
2013-01-01
In Ireland, new science curricula were introduced at primary and early post-primary levels in 2003, in an effort to reverse declining interest and enrolment in science. This paper reports on a national study that explored first year post-primary students' experiences of and attitudes towards school science under these new curricula. Data were…
Development and Exemplification of a Model for Teacher Assessment in Primary Science
ERIC Educational Resources Information Center
Davies, D. J.; Earle, S.; McMahon, K.; Howe, A.; Collier, C.
2017-01-01
The Teacher Assessment in Primary Science project is funded by the Primary Science Teaching Trust and based at Bath Spa University. The study aims to develop a whole-school model of valid, reliable and manageable teacher assessment to inform practice and make a positive impact on primary-aged children's learning in science. The model is based on a…
ERIC Educational Resources Information Center
Bayraktar, Sule
2011-01-01
The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…
At the Crossroads: The Impact of New Irish Science Curricula on First Year Post-Primary Students
NASA Astrophysics Data System (ADS)
Varley, Janet Penelope; Murphy, Clíona; Veale, Órlaith
2013-02-01
In Ireland, new science curricula were introduced at primary and early post-primary levels in 2003, in an effort to reverse declining interest and enrolment in science. This paper reports on a national study that explored first year post-primary students' experiences of and attitudes towards school science under these new curricula. Data were gathered from 366 pupils using survey and case study approaches. Findings revealed broadly positive attitudes towards post-primary school science, especially the experimental work that is at the heart of the new curriculum. However, it would appear that students were not conducting open-ended investigations or using information and communications technology [ICT] to any great extent; moreover, there was some evidence of traditional teaching methods being utilised. Pupils were highly critical of previous primary school science experiences, reporting a lack of `hands-on' activities, didactic methodologies and, for a significant minority, a paucity of any memorable primary science at all. Improvements in curricular implementation are proposed.
The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design
NASA Astrophysics Data System (ADS)
France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason
2017-08-01
The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.
Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching
NASA Astrophysics Data System (ADS)
Abed, Osama H.; Abd-El-Khalick, Fouad
2015-03-01
Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.
NASA Astrophysics Data System (ADS)
Forbes, Anne; Skamp, Keith
2017-07-01
MyScience is a primary science education initiative in which being in a community of practice (CoP) is integral to the learning process. Stakeholder groups—primary teachers, primary students and scientist mentors—interact around the CoP domainof investigating scientifically and learn from each other through participation. This paper is the fifth in a series and reports 27 year 5/6 students' (from three schools) perceptions of how their views were influenced through their involvement in a MyScience CoP. Semi-structured interviews, guided by a phenomenographic framework, were the substantive data source. Primary students' perceptions about science, science learning and science teaching were analysed using attributes associated with both communities of practice and the nature of science. Findings reveal that students' perceptions of what it means to be doing science' were transformed through their participation and students were able to identify some of the contributing factors. Where appropriate, students' views were compared with the published views of their participating scientist mentors and teachers from earlier papers. Implications for science teaching and learning in primary school community of practice settings are discussed.
STS-66 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.
STS-66 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W., Jr.
1995-02-01
The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.
NASA Astrophysics Data System (ADS)
Martin, Jenny
2017-09-01
This paper provides a report of a case study on the professional agency of an experienced early years teacher, Sarah, who successfully embedded a chemical science program of teaching-learning for her students aged between 6 and 8. Interactive ethnography informs the research design, and discursive psychology provides the tools for the analysis of Sarah's speech acts for her positioning as a responsible agent. Reframing the problem of primary teacher reluctance to teach science in terms of primary teachers' professional agency using discursive psychology, this ontological study provides new insight into issues related to the provision of science education in primary schools and asks: How do primary teachers position themselves and others in relation to science curriculum and education? The research calls for research methodologies and reform efforts in primary science that are better grounded in the local moral orders of primary schools.
Turkish Young Children's Views on Science and Scientists
ERIC Educational Resources Information Center
Ozgelen, Sinan
2012-01-01
The purpose of the study was to investigate 3rd grade primary students' views on science and scientists. The sample consisted of 254 3rd grade public school students in Mersin. Primary students were asked to answer three basic questions; 1) What is science? 2) Who does science? 3) How is science done? Primary students were requested to give…
Science That Matters: Exploring Science Learning and Teaching in Primary Schools
ERIC Educational Resources Information Center
Fitzgerald, Angela; Smith, Kathy
2016-01-01
To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…
ERIC Educational Resources Information Center
van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette
2013-01-01
In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…
Training of physicians for the twenty-first century: role of the basic sciences.
Grande, Joseph P
2009-09-01
Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.
ERIC Educational Resources Information Center
Forbes, Anne; Skamp, Keith
2014-01-01
"MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. This paper describes the ongoing journey to date of eight primary teachers from three primary schools who actively participated in "MyScience" over an extended period. Their views of interactions…
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis
2016-02-01
Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.
Science and Observation Recommendations for Future NASA Carbon Cycle Research
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.
2002-01-01
Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.
ERIC Educational Resources Information Center
Forbes, Anne; Skamp, Keith
2013-01-01
"MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. One component of this initiative involves professional scientists interacting with primary school communities which are navigating their way towards sustainable "communities of practice" around the "domain" of…
The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects
NASA Astrophysics Data System (ADS)
van Eyken, Julian C.; Ciardi, David R.; Rebull, Luisa M.; Stauffer, John R.; Akeson, Rachel L.; Beichman, Charles A.; Boden, Andrew F.; von Braun, Kaspar; Gelino, Dawn M.; Hoard, D. W.; Howell, Steve B.; Kane, Stephen R.; Plavchan, Peter; Ramírez, Solange V.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Grillmair, Carl J.; Laher, Russ; Levitan, David; Mattingly, Sean; Surace, Jason A.
2011-08-01
The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3fdg5 × 2fdg3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).
The LUVOIR Large Mission Concept
NASA Astrophysics Data System (ADS)
O'Meara, John; LUVOIR Science and Technology Definition Team
2018-01-01
LUVOIR is one of four large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. We are currently developing two architectures: Architecture A with a 15.1 meter segmented primary mirror, and Architecture B with a 9.2 meter segmented primary mirror. Our focus in this presentation is the Architecture A LUVOIR. LUVOIR will operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The initial instruments developed for LUVOIR Architecture A include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a high resolution UV/optical spectropolarimeter. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable, upgradable, and primarily driven by guest observer science programs. In this presentation, we will describe the observatory, its instruments, and survey the transformative science LUVOIR can accomplish.
ERIC Educational Resources Information Center
Harlen, Wynne, Comp.
A conference on science and technology and future human needs was attended by over 300 science educators from 64 countries. Educators with particular interest in primary science and technology education extended their stay for an additional seminar. This report highlights the events of that seminar. Contents include: (1) recent and on-going work…
The 1973 report and recommendations of the NASA Science Advisory Committee on Comets and Asteroids
NASA Technical Reports Server (NTRS)
Atkins, K. (Editor)
1973-01-01
The present day knowledge is reported of comets and asteroids and recommendations for a development program needed to provide instruments to achieve certain scientific objectives are also presented. Discussions include reports on the primary experiments and instruments, the instruments of potential applicability, mission classes and parameters, mission opportunities, and vehicular technology. An annotated bibliography and recommendations for flight projects, propulsion systems, and experiment development are included.
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.; Gellert, R.; Yen, A.; Bell, J. F., III; Blaney, D.; Christensen, P. R.; Crumpler, L.; Chu, P.; Farrand, W. H.
2005-01-01
The primary objective of the MER Spirit and Opportunity Rovers is to identify and investigate rocks, outcrops, and soils that have the highest possible chance of preserving evidence of water activity on Mars. The Athena Science Instrument Payload onboard the two rovers has provided geochemical and mineralogical information that indicates a variety of aqueous processes and various degrees of alteration at the two landing sites.
The Mars Express/NASA Project at JPL
NASA Technical Reports Server (NTRS)
Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.
2005-01-01
ESA s Mars Express Mission involves international collaboration between the European Space Agency (ESA) and the European space agencies with the National Aeronautics and Space Administration (NASA) as a junior partner. The primary objective of this mission is to search for hydrologic resources on the surface of Mars. Mars Express was launched from Baikonur, Kazakhstan on June 2, 2003 and arrived at Mars on December 25, 2003. Orbital science observations started in January 2004.
ERIC Educational Resources Information Center
McKinnon, Merryn; Lamberts, Rod
2014-01-01
The science teaching self-efficacy beliefs of primary school teachers influence teaching practice. The purpose of this research was to determine if informal education institutions, such as science centres, could provide professional development that influences the science teaching self-efficacy beliefs of pre-service and in-service primary school…
ERIC Educational Resources Information Center
Schofield, Kathy
2014-01-01
Kathy Schofield explains how the Primary Science Teaching Trust (PSTT) came into being and how it continues to enhance science for primary teachers and children. The Primary Science Teaching Trust provides financial assistance to help improve the learning and teaching of science in the U.K. The Trust was established in April 1997 as an independent…
Primary Science Quality Mark--2016 Update
ERIC Educational Resources Information Center
Turner, Jane
2016-01-01
Back in May 2011, an article in "Primary Science" described how the idea for a quality mark for primary science was developed from an initial conversation at an Association for Science Education annual conference (Turner, Marshall and Elsmore, 2011). Its intention then, as now, was to support and champion good practice and raise the…
Introducing Pre-university Students to Primary Scientific Literature Through Argumentation Analysis
NASA Astrophysics Data System (ADS)
Koeneman, Marcel; Goedhart, Martin; Ossevoort, Miriam
2013-10-01
Primary scientific literature is one of the most important means of communication in science, written for peers in the scientific community. Primary literature provides an authentic context for showing students how scientists support their claims. Several teaching strategies have been proposed using (adapted) scientific publications, some for secondary education, but none of these strategies focused specifically on scientific argumentation. The purpose of this study is to evaluate a strategy for teaching pre-university students to read unadapted primary scientific literature, translated into students' native language, based on a new argumentation analysis framework. This framework encompasses seven types of argumentative elements: motive, objective, main conclusion, implication, support, counterargument and refutation. During the intervention, students studied two research articles. We monitored students' reading comprehension and their opinion on the articles and activities. After the intervention, we measured students' ability to identify the argumentative elements in a third unadapted and translated research article. The presented framework enabled students to analyse the article by identifying the motive, objective, main conclusion and implication and part of the supports. Students stated that they found these activities useful. Most students understood the text on paragraph level and were able to read the article with some help for its vocabulary. We suggest that primary scientific literature has the potential to show students important aspects of the scientific process and to learn scientific vocabulary in an authentic context.
Teachers' perceptions on primary science teaching
NASA Astrophysics Data System (ADS)
Kijkuakul, Sirinapa
2018-01-01
This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.
General Astrophysics with the HabEx Workhorse Camera
NASA Astrophysics Data System (ADS)
Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT
2018-01-01
The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.
WFIRST: Guest observer science with the coronagraph instrument
NASA Astrophysics Data System (ADS)
Levesque, Emily; Lomax, Jamie; Akeson, Rachel; Meshkat, Tiffany; WFIRST CGI GO working group
2018-01-01
In addition to the discovery and characterization of exoplanets, the coronagraph instrument (CGI) on WFIRST has the potential for ground-breaking discoveries in other fields through the Guest Observer (GO) program. 25% of the observing time in the primary mission will be made available to the GO community, and GO science with the CGI spans a broad range of scientific applications. These include imaging of binary and multiple asteroids and Kuiper Belt objects, the circumstellar environments of evolved giants and supergiants, debris disks around young stars, and the circumnuclear regions of active galactic nuclei. In this poster we summarize some of the key compelling science gains that can be pursued with the GO program and present preliminary analyses of the technical gains that the CGI will be able to offer over other contemporary coronagraphs, including those on JWST and ground-based observatories.
NASA Technical Reports Server (NTRS)
Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)
1991-01-01
The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.
ESML for Earth Science Data Sets and Analysis
NASA Technical Reports Server (NTRS)
Graves, Sara; Ramachandran, Rahul
2003-01-01
The primary objective of this research project was to transition ESML from design to application. The resulting schema and prototype software will foster community acceptance for the Define once, use anywhere concept central to ESML. Supporting goals include: 1) Refinement of the ESML schema and software libraries in cooperation with the user community; 2) Application of the ESML schema and software to a variety of Earth science data sets and analysis tools; 3) Development of supporting prototype software for enhanced ease of use; 4) Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate; and 5) Widespread publication of the ESML approach, schema, and software.
Rapid Cadence Collections with the Space Surveillance Telescope
NASA Astrophysics Data System (ADS)
Monet, David G.; Axelrod, T.; Blake, T.; Claver, C. F.; Lupton, R.; Pearce, E.; Shah, R.; Woods, D.
2013-01-01
The Defense Advanced Research Projects Agency (DARPA) has constructed the 3.5-m Space Surveillance Telescope (SST) on North Oscura Peak in the White Sands Missle Range in New Mexico. The primary goal of the SST program is the monitoring of the Earth's geosynchronous belt for microsatellites and debris. DARPA has announced that SST may also provide the science community a unique asset for astronomical surveys. This paper presents preliminary results from rapid cadence science collections (1.0-sec exposures every 2.5-sec) of a 9.5 square degree area centered near the open cluster M67. The goal of this survey is to find and study astronomical objects whose brightness varies over these short time scales.
Making Physics Matter in Primary Schools
NASA Astrophysics Data System (ADS)
Flaherty, Jackie; Cox, Wendy; Poole, Amanda; Watson, Jenny; Greygoose, Kirstin
2016-04-01
"Efforts to broaden students' aspirations, particularly in relation to STEM, need to begin in primary school." Kings College London "Aspires" Research Project 2013 From my outreach activity I have learnt that primary teachers could feel under pressure when faced with delivering the science curriculum. The teachers could be lacking confidence in their subject knowledge, lacking the equipment needed to deliver practical science or lacking enthusiasm for the subject. In addition, English and Mathematics were the subjects that were externally tested and reported to the authorities and so some teachers felt that time for science was being marginalised to ensure the best results in the externally assessed subjects. In my work with The Ogden Trust Primary Science team I have been involved in developing a range of strategies to address some of the issues outlined above. • CPD (Teacher Training) Programme We have provided free training to improve teachers knowledge and understanding of key physics concepts to GCSE standard and a practical workshop consisting of ten investigations, extension and challenge tasks. The teachers each receive a book of lesson plans and a resource box containing a class set of the equipment required. The four year programme covers Forces Light and Sound Electricity Earth & Space • "Phiz Labs" Funding from The Ogden Trust has allowed us to set up science laboratories within primary schools. The pupils have lab coats, goggles and access to a range of equipment that allows them to participate in more practical science activity and open-ended investigative work. My Phiz Lab is in the secondary school where I teach physics and practical workshops for primary pupils and teachers are held there on a regular basis. • Enrichment In order to enthuse and challenge the primary pupils a variety of enrichment activities take place. These include "Physics of Go-Karts" and "Particle Physics for Primary" workshops, competitions and regional Science Fairs held at Universities. Stargazing evenings and Family Learning Nights where parents join their children to learn about science together are very popular. • Sixth Form Science Ambassadors A-level Physics students (age17-18) are trained as STEM Ambassadors to run after school science clubs for primary schools. I have worked with the British Science Association to develop this scheme and my students have received Gold CREST Awards for their science communication skills. This year, in conjunction with the Royal Institution, we have introduced "Maths for Physics Masterclasses" for gifted and talented primary pupils. Sixth form Space Ambassadors also train their younger peers to use the Bradford University Robotic Space Telescope to take images of planets and stars and to analyse the images. These schemes benefit the primary pupils, the sixth form students who gain invaluable teamwork and science communication skills and the primary teachers who attend these sessions. Initial evaluations have shown a greatly increased engagement in science in primary schools. Many of the schools involved have received the Primary Science Quality Mark.
Use Root Cause Analysis Teaching Strategy to Train Primary Pre-Service Science Teachers
ERIC Educational Resources Information Center
Lu, Chow-chin; Tsai, Chun-wei; Hong, Jon-chao
2008-01-01
This study examined the Root Cause Analysis (RCA) teaching strategy on pre-service primary science teachers and instinct pre-service teachers to apply RCA teaching strategy to science curriculums. RCA Teaching Strategy is to coordinates 5 Why Method and Fishbone Diagram. The participants included 18 pre-service primary science teachers and the…
Teaching Primary Science with Almost Nothing
ERIC Educational Resources Information Center
Kelly, Lois; Schofield, Kathy
2012-01-01
In the summer of 2010 the authors spent two weeks helping teachers in a primary school near Kampala to develop their science curriculum. In common with many primary schools in Uganda science was taught as "facts to be learnt." This was partly because the teachers had had little or no first-hand experience of practical science or science…
ERIC Educational Resources Information Center
Smith, Greg
2014-01-01
This study investigates the influence of a two-year professional development programme on primary teachers' attitudes towards primary science, their confidence and competence in teaching science, and pupils' attitudes towards school science. Unlike the traditional "one-size-fits all" model of professional development, the model developed…
The State of Primary Science in England
ERIC Educational Resources Information Center
Waters-Adams, Steve; Barron, Pete
2012-01-01
In this article, Steve Waters-Adams and Pete Barron respond to Alan Peacock's Viewpoint article, "The art of nose blowing", in the last issue of "Primary Science" (n123, pages 34-36), in which he questioned why primary science in English primary schools seemed not to be improving in spite of the resources put into it.…
Primary Science at the Discovery Corner
ERIC Educational Resources Information Center
Nagel, Bert
2015-01-01
Imagine 98% of children in your country leaving primary school without ever having done a science investigation. This almost complete absence of primary science is the situation just over the North Sea from Britain--in the Netherlands. A recent survey showed that only about 120 primary schools in the Netherlands, out of a total of 6000, do some…
NASA Astrophysics Data System (ADS)
Szczęsna, Joanna
2010-01-01
School education is both a starting point for the development of various scientific disciplines (school educates future researchers) and the result of science. The landscape research is conducted within many scientific disciplines and has a long tradition. Lanscape education, which is the result of a scientific dimension, is implemented in primary school under the nature subject. Primary school education is the only level at which the geographical contents are carried out on landscape. The landscape is of interest to many disciplines: geography, architecture, social sciences and the arts. In recent years, there were many studies which contained an overview of the main strands of the science of landscape, presented the differences in the meaning of the concept and objectives of individual research disciplines. These studies have become the ground for the characterization of the concept of landscape education implemented in Polish school and its evaluation in terms of scientific achievements. A review of educational purposes, the basic content of education and achievements of students, demonstrate the influence of multiple scientific disciplines in school landscape education. The most significant share of the course content are achievements of geography disciplines, particularly: physical geography, environmental protection and landscape ecology. Other scientific fields: literature, art, psychology, sociology, and architecture do not have any impact on the school landscape education or their impact remains marginal.
Studying the Surfaces of the Icy Galilean Satellites With JIMO
NASA Astrophysics Data System (ADS)
Prockter, L.; Schenk, P.; Pappalardo, R.
2003-12-01
The Geology subgroup of the Jupiter Icy Moons Orbiter (JIMO) Science Definition Team (SDT) has been working with colleagues within the planetary science community to determine the key outstanding science goals that could be met by the JIMO mission. Geological studies of the Galilean satellites will benefit from the spacecraft's long orbital periods around each satellite, lasting from one to several months. This mission plan allows us to select the optimal viewing conditions to complete global compositional and morphologic mapping at high resolution, and to target geologic features of key scientific interest at very high resolution. Community input to this planning process suggests two major science objectives, along with corresponding measurements proposed to meet them. Objective 1: Determine the origins of surface features and their implications for geological history and evolution. This encompasses investigations of magmatism (intrusion, extrusion, and diapirism), tectonism (isostatic compensation, and styles of faulting, flexure and folding), impact cratering (morphology and distribution), and gradation (erosion and deposition) processes (impact gardening, sputtering, mass wasting and frosts). Suggested measurements to meet this goal include (1) two dimensional global topographic mapping sufficient to discriminate features at a spatial scale of 10 m, and with better than or equal to 1 m relative vertical accuracy, (2) nested images of selected target areas at a range of resolutions down to the submeter pixel scale, (3) global (albedo) mapping at better than or equal to 10 m/pixel, and (4) multispectral global mapping in at least 3 colors at better than or equal to 100 m/pixel, with some subsets at better than 30 m/pixel. Objective 2. Identify and characterize potential landing sites for future missions. A primary component to the success of future landed missions is full characterization of potential sites in terms of their relative age, geological interest, and engineering safety. Measurement requirements suggested to meet this goal (in addition to the requirements of Objective 1) include the acquisition of super-high resolution images of selected target areas (with intermediate context imaging) down to 25 cm/pixel scale. The Geology subgroup passed these recommendations to the full JIMO Science Definition Team, to be incorporated into the final science recommendations for the JIMO mission.
How CubeSats contribute to Science and Technology in Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian
2017-01-01
CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.
An astrometric facility for planetary detection on the space station
NASA Technical Reports Server (NTRS)
Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.
1987-01-01
An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.
MAVEN - Mars Atmosphere and Volatile EvolutioN Mission
NASA Technical Reports Server (NTRS)
Grebowsky, Joseph M.; Jakosky, Bruce M.
2011-01-01
NASA's MAVEN mission (to be launched in late 2013) is the first mission to Mars devoted to sampling all of the upper atmosphere neutral and plasma environments, including the well-mixed atmosphere, the exosphere, ionosphere, outer magnetosphere and near-Mars solar wind. It will fill in some measurement gaps remaining from the successful Mars Global Surveyor and the on-going Mars Express missions. The primary science objectives of MAVEN are: 1. Provide a comprehensive picture of the present state of the upper atmosphere and ionosphere of Mars; 2. Understand the processes controlling the present state; and 3. Determine how loss of volatiles to outer space in the present epoch varies with changing solar condition - EUY, solar wind and interplanetary magnetic field measurements will provide the varying solar energy inputs into the system. Knowing how these processes respond to the Sun's energy inputs in the current epoch will provide a framework for projecting atmospheric processes back in time to profile MARS' atmospheric evolution and to explore "where the water went", A description will be given of the science objectives, the instruments, and the current status of the project, emphasizing the value of having collaborations between the MAVEN project and the Mars upper atmosphere science community.
Sampson, Rod; Cooper, Jamie; Barbour, Rosaline; Polson, Rob; Wilson, Philip
2015-01-01
Objectives To synthesise the published literature on the patient experience of the medical primary–secondary care interface and to determine priorities for future work in this field aimed at improving clinical outcomes. Design Systematic review and metaethnographic synthesis of primary studies that used qualitative methods to explore patients’ perspectives of the medical primary–secondary care interface. Setting International primary–secondary care interface. Data sources EMBASE, MEDLINE, CINAHL Plus with Full text, PsycINFO, Psychology and Behavioural Sciences Collection, Health Business Elite, Biomedica Reference Collection: Comprehensive Library, Information Science & Technology Abstracts, eBook Collection, Web of Science Core Collection: Citation Indexes and Social Sciences Citation Index, and grey literature. Eligibility criteria for selecting studies Studies were eligible for inclusion if they were full research papers employing qualitative methodology to explore patients’ perspectives of the medical primary–secondary care interface. Review methods The 7-step metaethnographic approach described by Noblit and Hare, which involves cross-interpretation between studies while preserving the context of the primary data. Results The search identified 690 articles, of which 39 were selected for full-text review. 20 articles were included in the systematic review that encompassed a total of 689 patients from 10 countries. 4 important areas specific to the primary–secondary care interface from the patients’ perspective emerged: barriers to care, communication, coordination, and ‘relationships and personal value’. Conclusions and implications of key findings Patients should be the focus of any transfer of care between primary and secondary systems. From their perspective, areas for improvement may be classified into four domains that should usefully guide future work aimed at improving quality at this important interface. Trial registration number PROSPERO CRD42014009486. PMID:26474939
Young "Science Ambassadors" Raise the Profile of Science
ERIC Educational Resources Information Center
Ridley, Katie
2014-01-01
Katie Ridley, science coordinator at St. Gregory's Catholic Primary School, Liverpool, UK, states that the inspiration for "science ambassadors" came after embarking on the Primary Science Quality Mark programme at their school. Ridley realized that science was just not recognised as such by the children, they talked about scientific…
Kevin C. Knutson; David A. Pyke; Troy A. Wirth; David S. Pilliod; Matthew L. Brooks; Jeanne C. Chambers
2009-01-01
Department of the Interior (DOI) bureaus have invested heavily (for example, the U.S. Bureau of Land Management (BLM) spent more than $60 million in fiscal year 2007) in seeding vegetation for emergency stabilization and burned area rehabilitation of non-forested arid lands over the past 10 years. The primary objectives of these seedings commonly are to (1) reduce the...
Evaluating Primary School Student's Deep Learning Approach to Science Lessons
ERIC Educational Resources Information Center
Ilkörücü Göçmençelebi, Sirin; Özkan, Muhlis; Bayram, Nuran
2012-01-01
This study examines the variables which help direct students to a deep learning approach to science lessons, with the aim of guiding programmers and teachers in primary education. The sample was composed of a total of 164 primary school students. The Learning Approaches to Science Scale developed by Ünal (2005) for Science and Technology lessons…
ERIC Educational Resources Information Center
Earle, Sarah
2014-01-01
Background: Since the discontinuation of Standard Attainment Tests (SATs) in science at age 11 in England, pupil performance data in science reported to the UK government by each primary school has relied largely on teacher assessment undertaken in the classroom. Purpose: The process by which teachers are making these judgements has been unclear,…
ERIC Educational Resources Information Center
Laidlaw, Kristy-Rebecca; Taylor, Neil; Fletcher, Peter
2009-01-01
The teaching of science has long been viewed as problematic within primary classrooms across Australia. This study explores the teaching of primary science in an area of rural and regional Australia (the New England Region of New South Wales) where small populations, remote settings and isolation can make the teaching of science and other Key…
ERIC Educational Resources Information Center
Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis
2013-01-01
This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…
ERIC Educational Resources Information Center
Bajah, Sam Tunde
1981-01-01
The African Primary Science Programme (APSP) was one of the three major projects in Africa sponsored by Educational Services Incorporated (ESI), later the Educational Development Center (EDC), Newton, Massachusetts. The problems of introducing this programme in the anglophone African States and its implications for science education are discussed.…
ERIC Educational Resources Information Center
Skinner, Nigel C.; Preece, Peter F. W.
2003-01-01
Describes the AstraZeneca-Exeter Science through Telematics (AZEST) project and reports that the Internet has much potential as a communication channel for the provision and discussion of INSET materials for primary science in the UK. Evaluates websites dedicated to primary science at the local level, concept mapping for stimulating discussion,…
NASA Astrophysics Data System (ADS)
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-07-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, Patrick
The primary challenge motivating this project is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who can perform analysis only on a small fraction of the data they calculate, resulting in the substantial likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, which is known as in situ processing. The idea in situ processing was not new at the time ofmore » the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by Department of Energy (DOE) science projects. Our objective was to produce and enable the use of production-quality in situ methods and infrastructure, at scale, on DOE high-performance computing (HPC) facilities, though we expected to have an impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve this objective, we engaged in software technology research and development (R&D), in close partnerships with DOE science code teams, to produce software technologies that were shown to run efficiently at scale on DOE HPC platforms.« less
Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform
NASA Technical Reports Server (NTRS)
Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.
2010-01-01
Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.
Teaching Primary Science: How Research Helps
ERIC Educational Resources Information Center
Harlen, Wynne
2010-01-01
The very first edition of "Primary Science Review" included an article entitled "Teaching primary science--how research can help" (Harlen, 1986), which announced that a section of the journal would be for reports of research and particularly for teachers reporting their classroom research. The intervening 24 years have seen…
NASA Astrophysics Data System (ADS)
Chamnanwong, Pornpaka; Thathong, Kongsak
2018-01-01
In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Smith, D. E.; Asmar, S. W.; Konopliv, A. S.; Lemoine, F. G.; Melosh, J.; Neumann, G. A.; Phillips, R. J.; Solomon, S. C.; Watkins, M. M.; Wieczorek, M. A.; Williams, J. G.; Andrews-Hanna, J. C.; Garrick-Bethell, I.; Head, J. W.; Kiefer, W. S.; Matsuyama, I.; McGovern, P. J.; Nimmo, F.; Soderblom, J. M.; Taylor, J.; Weber, R. C.; Goossens, S. J.; Kruizinga, G. L.; Mazarico, E.; Park, R. S.; Yuan, D.
2013-12-01
The Gravity Recovery and Interior Laboratory (GRAIL), a dual-spacecraft, gravity-mapping mission that is a component of NASA's Discovery Program, has successfully concluded its Primary and Extended Missions, and is currently in the science analysis phase. In order to safely navigate the dual spacecraft at an average altitude of 22.5 km above the lunar surface during the Extended Mission phase in the fall of 2012, and to derive the greatest information from the full mission data set, the focus had been on the production of gravitational fields with the highest-possible resolution. Spherical harmonic models of the Moon's gravitational field, produced by separate software systems at the Goddard Space Flight Center and the Jet Propulsion Laboratory, now include observations from both the Primary and Extended Missions. The highest-resolution models to date are to degree and order 900, corresponding to a spatial block size of 6 km, and are ideally suited to study the structure of the Moon's crust in extraordinary detail. GRAIL has achieved all measurement objectives for the Primary Mission, enabling all science investigations to be addressed. One of these investigations is to study the lunar hemispherical asymmetry, i.e., the difference between the nearside and farside. In this study we explore the nearside and farside mantle by isolating the long-wavelength gravity field. We accomplish this objective by removing plausible short-wavelength contributions from the crust that were based on the full resolution of high-degree and -order models, and by considering constraints from crustal compositions and volumes of mare basalt deposits. We localize the power spectral contributions of the nearside and farside to constrain lateral density variations, such as those associated with melting from the source regions of the mare basalts.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Colliander, Andreas; Conaty, Austin; Jackson, Thomas; Kimball, John
2015-01-01
During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public beta release scheduled for 30 October 2015. The primary objective of the beta release is to allow users to familiarize themselves with the data product before the validated product becomes available. The beta release also allows users to conduct their own assessment of the data and to provide feedback to the L4_SM science data product team. The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta release of the data. The validation against sparse network measurements and the evaluation of the assimilation diagnostics address Stage 2 validation criteria by expanding the assessment to regional and global scales.
An interstellar precursor mission
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.
1977-01-01
A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.
Artist Concept of Atlantis' new home
2012-01-18
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers are constructing 40-foot-diameter dish antenna arrays for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. The antennas will be part of the operations command center facility. The construction site is near the former Vertical Processing Facility, which has been demolished. The Ka-BOOM project is one of the final steps in developing the techniques to build a high power, high resolution radar system capable of becoming a Near Earth Object Early Warning System. While also capable of space communication and radio science experiments, developing radar applications is the primary focus of the arrays. Photo credit: NASA/ Ben Smegelsky
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1990-01-01
The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.
Satellite Ocean Color Sensor Design Concepts and Performance Requirements
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan
2014-01-01
In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to 800 nanometers with three additional discrete near infrared (NIR) and shortwave infrared (SWIR) ocean aerosol correction bands. Also, to avoid drift in sensor sensitivity from being interpreted as environmental change, climate change research requires rigorous monitoring of sensor stability. For SeaWiFS, monthly lunar imaging accurately tracked stability at an accuracy of approximately 0.1% that allowed the data to be used for climate studies [2]. It is now acknowledged by the international community that future missions and sensor designs need to accommodate lunar calibrations. An overview of ocean color remote sensing and a review of the progress made in ocean color remote sensing and the variety of research applications derived from global satellite ocean color data are provided. The purpose of this chapter is to discuss the design options for ocean color satellite radiometers, performance and testing criteria, and sensor components (optics, detectors, electronics, etc.) that must be integrated into an instrument concept. These ultimately dictate the quality and quantity of data that can be delivered as a trade against mission cost. Historically, science and sensor technology have advanced in a "leap-frog" manner in that sensor design requirements for a mission are defined many years before a sensor is launched and by the end of the mission, perhaps 15-20 years later, science applications and requirements are well beyond the capabilities of the sensor. Section 3 provides a summary of historical mission science objectives and sensor requirements. This progression is expected to continue in the future as long as sensor costs can be constrained to affordable levels and still allow the incorporation of new technologies without incurring unacceptable risk to mission success. The IOCCG Report Number 13 discusses future ocean biology mission Level-1 requirements in depth.
Teaching physics using project-based engineering curriculum with a theme of alternative energy
NASA Astrophysics Data System (ADS)
Tasior, Bryan
The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.
Promoting children's agency and communication skills in an informal science program
NASA Astrophysics Data System (ADS)
Wulf, Rosemary; Hinko, Kathleen; Finkelstein, Noah
2013-01-01
The Partnerships for Informal Science Education in the Community (PISEC) program at the University of Colorado Boulder brings together university and community institutions to create an environment where K-12 students join with university educators to engage in inquiry-based scientific practices after school. In our original framing, these afterschool activities were developed to reinforce the traditional learning goals of the classroom, including mastering scientific content, skills and processes. Recently, the primary focus of the PISEC curriculum has been shifted towards the development of students' scientific identity, an explicit objective of informal learning environments. The new curriculum offers students more activity choices, affords opportunities for scientific drawings and descriptions, and provides incentive for students to design their own experiments. We have analyzed student science notebooks from both old and new curricula and find that with the redesigned curriculum, students exhibit increased agency and more instances of scientific communication while still demonstrating substantial content learning gains.
ERIC Educational Resources Information Center
Cakmakci, Gultekin; Sevindik, Hatice; Pektas, Meryem; Uysal, Asli; Kole, Fatma; Kavak, Gamze
2012-01-01
This paper reports on an attempt to investigate Turkish primary school students' interest in science by using their self-generated questions. We investigated students' interest in science by analyzing 1704 self-generated science-related questions. Among them, 826 questions were submitted to a popular science magazine called Science and Children.…
NASA Technical Reports Server (NTRS)
Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.
NASA Technical Reports Server (NTRS)
Farley, Rodger E.; Quinn, David A.
2004-01-01
With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.
Science Organizations Remind Senators of Consensus on Climate Change
NASA Astrophysics Data System (ADS)
Chell, Kaitlin
2009-11-01
AGU and 17 other scientific organizations sent an open letter to the U.S. Senate on 21 October reminding senators of the scientific consensus on anthropogenic climate change. The letter was sent 1 week before the Senate Committee on Environment and Public Works began a series of hearings on climate change legislation, the Clean Energy Jobs and American Power Act (Senate bill 1733). The letter states, “Observations throughout the world make it clear that climate change is occurring, and rigorous scientific research demonstrates that the greenhouse gases emitted by human activities are the primary driver. These conclusions are based on multiple independent lines of evidence, and contrary assertions are inconsistent with an objective assessment of the vast body of peer-reviewed science.”
The Lunar Reconnaissance Orbiter: Plans for the Science Phase
NASA Technical Reports Server (NTRS)
Vondrak, Richard R.; Keller, John W.; Chin, Gordon; Petro, Noah; Rice, James; Garvin, James
2011-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), which was launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's primary objectives included the search for resources and to investigate the Lunar radiation environment. This phase of the mission was completed on September 15,2010 when the operational responsibility for LRO was transferred from ESMD to NASA's Science Mission directorate (SMD). Under SMD, the mission focuses on a new set of goals related to the history of the Moon, its current state and what its history can tell us about the evolution of the Solar System.
1996-12-04
The Mars Pathfinder began the journey to Mars with liftoff atop a Delta II expendable launch vehicle from launch Complex 17B on Cape Canaveral Air Station. The Mars Pathfinder traveled on a direct trajectory to Mars, and arrived there in July 1997. Mars Pathfinder sent a lander and small robotic rover, Sojourner, to the surface of Mars. The primary objective of the mission was to demonstrate a low-cost way of delivering a science package to the surface of Mars using a direct entry, descent and landing with the aid of small rocket engines, a parachute, airbags and other techniques. In addition, landers and rovers of the future will share the heritage of Mars Pathfinder designs and technologies first tested in this mission. Pathfinder also collected invaluable data about the Martian surface.
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.
Improving the primary school science learning unit about force and motion through lesson study
NASA Astrophysics Data System (ADS)
Phaikhumnam, Wuttichai; Yuenyong, Chokchai
2018-01-01
The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.
NASA Astrophysics Data System (ADS)
Marks, Ann
2009-04-01
The Physicists in Primary Schools (PIPS) project is a joint venture initiated by the UK Women in Physics Group. A team from the University of Sheffield, with Engineering and Physical Sciences Research Council funding, has developed fun presentations and novel class activities using everyday articles for physicists to take into primary schools. The objectives are to instill enthusiasm in young children-including girls-through the enjoyment and excitement of physics, and support primary school teachers with a curriculum which includes many abstract concepts. All PIPS material is free to download from the Institute of Physics website (www.iop.org/pips), providing PowerPoint presentations and detailed explanations, as well as videos of the activities in classrooms. The topics are suitable for children age 4 to 11 years. There is interest in translating the presentations into other languages as there are few words on the slides and the material is likely valuable for older age groups. The presentations therefore have the potential to be useful worldwide.
The CoRe of the Matter: Developing Primary Teachers' Professional Knowledge in Science
ERIC Educational Resources Information Center
Hume, Anne
2016-01-01
In an educational landscape of primary teachers' underdeveloped professional knowledge and low feelings of self-efficacy around science teaching, the prospects for science losing status in the primary school curriculum seems grim. This paper reports positive findings from a New Zealand research project designed to support and enhance primary…
Leading Change in the Primary Science Curriculum
ERIC Educational Resources Information Center
Waller, Nicky; Baker, Chris
2014-01-01
Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…
ERIC Educational Resources Information Center
Turner, Jane
2011-01-01
Liz Lawrence has recently finished her term as Chair of Primary Science Committee (PSC). She is one of the 41 hub leaders who have led and mentored 192 schools across England and British Forces' schools in Germany, to achieve the first ever nationally recognised awards to celebrate excellence in primary science. In this article, the author writes…
ERIC Educational Resources Information Center
Caleon, Imelda S.; Subramaniam, R.
2008-01-01
The attitudes towards science of upper-primary students in three ability strands (average, above average, and gifted) were investigated. A total of 580 upper primary students from co-educational government and government-aided schools in Singapore were involved in this study. The attitude subscales investigated were enjoyment of science,…
Effect of a Science Diagram on Primary Students' Understanding about Magnets
ERIC Educational Resources Information Center
Preston, Christine
2016-01-01
The research investigated the effect of a science diagram on primary students' conceptual understanding about magnets. Lack of research involving students of primary age means that little is known about the potential of science diagrams to help them understand abstract concepts such as magnetism. Task-based interviews were conducted individually…
Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students
ERIC Educational Resources Information Center
Palmer, David; Dixon, Jeanette; Archer, Jennifer
2015-01-01
Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…
The "New" Science Specialists: Promoting and Improving the Teaching of Science in Primary Schools
ERIC Educational Resources Information Center
Campbell, Coral; Chittleborough, Gail
2014-01-01
A Victorian government initiative called "The Primary Science Specialists Professional Learning Program" is designed to tackle students' falling interest in science by investing in the building of teacher capacity. The aims of the initiative are: to improve the science knowledge base of all teachers and therefore increase teachers'…
The NEAR Multispectral Imager.
NASA Astrophysics Data System (ADS)
Hawkins, S. E., III
1998-06-01
Multispectral Imager, one of the primary instruments on the Near Earth Asteroid Rendezvous (NEAR) spacecraft, uses a five-element refractive optics telescope, an eight-position filter wheel, and a charge-coupled device detector to acquire images over its sensitive wavelength range of ≍400 - 1100 nm. The primary science objectives of the Multispectral Imager are to determine the morphology and composition of the surface of asteroid 433 Eros. The camera will have a critical role in navigating to the asteroid. Seven narrowband spectral filters have been selected to provide multicolor imaging for comparative studies with previous observations of asteroids in the same class as Eros. The eighth filter is broadband and will be used for optical navigation. An overview of the instrument is presented, and design parameters and tradeoffs are discussed.
ERIC Educational Resources Information Center
Murphy, Cliona; Smith, Greg
2012-01-01
Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…
ERIC Educational Resources Information Center
Biddulph, Fred; Osborne, Roger
Two booklets were developed by the Learning in Science Project (Primary)--LISP(P)--to help teachers adopt an approach to primary science teaching which would enhance children's understanding of floating and sinking. Both booklets were designed to enable teachers to reconceptualize their teaching task from activity-driven, didactic teaching to…
ERIC Educational Resources Information Center
Hampp, Constanze; Schwan, Stephan
2015-01-01
One characteristic of science centers and science museums is that they communicate scientific findings by presenting real scientific objects. In particular, science museums focus on the historical context of scientific discoveries by displaying authentic objects, defined as original objects that once served a science-related, real-world purpose…
NASA Technical Reports Server (NTRS)
Jules, Kenol; Istasse, Eric; Stenuit, Hilde; Murakami, Jeiji; Yoshizaki, Izumi; Johnson-Green, Perry
2008-01-01
With the launch of the STS-122 on February 7, 2008, which delivered the European Columbus science module and the upcoming STS-124 flight, which will deliver the Japanese Kibo science module in May 2008, the International Space Station will become truly International with Europe and Japan joining the United States of America and Russia to perform science on a continuous basis in a wide spectrum of science disciplines. The last science module, Kibo, of the United States Orbital Segment (USOS) will be mated to the station on time to celebrate its first decade in low Earth orbit in October 2008 (end of Increment 17), thus ushering in the second decade of the station with all the USOS science modules mated and performing science. The arrival of the Kibo science module will also mark continuous human presence on the station for eighty eight (88) months, and, with the addition of the ESA science module during the STS-122 flight, the USOS will be made up of four space agencies: CSA, ESA, JAXA and NASA, spanning three continents. With the additional partners coming onboard with different research needs, every effort is being made to coordinate science across the USOS segment in an integrated manner for the benefit of all parties. One of the objectives of this paper is to discuss the integrated manner in which science planning/replanning and prioritization during the execution phase of an increment is being done. The main focus, though, of this paper is to summarize and to discuss the science performed during Increments 16 and 17 (October 2007 to October 2008). The discussion will focus mainly on the primary objectives of each investigation and their associated hypotheses that were investigated during these two Increments. Also, preliminary science results will be discussed for each of the investigation as science results availability permit. Additionally, the paper will briefly touch on what the science complement for these two increments was and what was actually accomplished due to real time science implementation and constraints. Finally, the paper will briefly discuss the science research complements for the next three Increments: Increments 18 to 20, in order to preview how much science might be accomplished during these three upcoming Increments of the station next decade.
NASA Astrophysics Data System (ADS)
Watters, James J.; Ginns, Ian S.
1997-03-01
The implementation of effective science programmes in primary schools is of continuing interest and concern for professional developers. As part of the Australian Academy of science's approach to creating an awareness of Primary Investigations, a project team trialed a series of satellite television broadcasts of lessons related to two units of the curriculum for Year 3 and 4 children in 48 participating schools. The professional development project entitled Simply Science, included a focused component for the respective classroom teachers, which was also conducted by satellite. This paper reports the involvement of a Year 4 teacher in the project and describes her professional growth. Already an experienced and confident teacher, no quantitative changes in science teaching self efficacy were detected. However, her pedagogical content knowledge and confidence to teach science in the concept areas of matter and energy were enhanced. Changes in the teacher's views about the co-operative learning strategies espoused by Primary Investigations were also evident. Implications for the design of professional development programmes for primary science teachers are discussed.
NASA Technical Reports Server (NTRS)
Havens, Glen G.
2007-01-01
MRO project is a system of systems requiring system engineering team to architect, design, integrate, test, and operate these systems at each level of the project. The challenge of system engineering mission objectives into a single mission architecture that can be integrated tested, launched, and operated. Systems engineering must translate high-level requirements into integrated mission design. Systems engineering challenges were overcome utilizing a combination by creative designs built into MRO's flight and ground systems: a) Design of sophisticated spacecraft targeting and data management capabilities b) Establishment of a strong operations team organization; c) Implementation of robust operational processes; and d) Development of strategic ground tools. The MRO system has met the challenge of its driving requirements: a) MRO began its two-year primary science phase on November 7, 2006, and by July 2007, met it minimum requirement to collect 15 Tbits of data after only eight months of operations. Currently we have collected 22 Tbits. b) Based on current performance, mission data return could return 70 Tbits of data by the end of the primary science phase in 2008.
NASA Astrophysics Data System (ADS)
van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy
2017-01-01
This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious about teaching science and felt less dependent on contextual factors compared to the control group. With regard to attitude towards conducting inquiry, teachers felt less anxious and more able to conduct an inquiry project. There were no effects on other attitude components, such as self-efficacy beliefs or relevance beliefs, or on self-reported science teaching behaviour. These results indicate that practitioner research may have a partially positive effect on teachers' attitudes, but that it may not be sufficient to fully change primary teachers' attitudes and their actual science teaching behaviour. In comparison, a previous study showed that attitude-focused professional development in science education has a more profound impact on primary teachers' attitudes and science teaching behaviour. In our view, future interventions aiming to stimulate science teaching should combine both approaches, an explicit focus on attitude change together with familiarisation with inquiry, in order to improve primary teachers' attitudes and classroom practices.
NASA Astrophysics Data System (ADS)
van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette
2013-03-01
In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the professionalization of these teachers in the field of primary science education. With the development of this instrument, we sought to fulfill the need for a statistically and theoretically valid and reliable instrument to measure pre-service and in-service teachers' attitudes. The DAS Instrument is based on a comprehensive theoretical framework for attitude toward (teaching) science. After pilot testing, the DAS was revised and subsequently validated using a large group of respondents (pre-service and in-service primary teachers) (N = 556). The theoretical underpinning of the DAS combined with the statistical data indicate that the DAS possesses good construct validity and that it proves to be a promising instrument that can be utilized for research purposes, and also as a teacher training and coaching tool. This instrument can therefore make a valuable contribution to progress within the field of science education.
NASA Astrophysics Data System (ADS)
Park, Jisun; Song, Jinwoong; Abrahams, Ian
2016-03-01
This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term `unintended' learning to distinguish it from `intended' learning that appears in teachers' learning objectives. Data were collected using video and audio recordings of a sample of twenty-four whole class practical science lessons, taught by five teachers, in Korean primary schools with 10- to 12-year-old students. In addition, video and audio recordings were made for each small group of students working together in order to capture their activities and intra-group discourse. Pre-lesson interviews with the teachers were undertaken and audio-recorded to ascertain their intended learning objectives. Selected key vignettes, including unintended learning, were analysed from the perspective of intellectual passion developed by Polanyi. What we found in this study is that unintended learning could occur when students got interested in something in the first place and could maintain their interest. In addition, students could get conceptual knowledge when they tried to connect their experience to their related prior knowledge. It was also found that the processes of intended learning and of unintended learning were different. Intended learning was characterized by having been planned by the teacher who then sought to generate students' interest in it. In contrast, unintended learning originated from students' spontaneous interest and curiosity as a result of unplanned opportunities. Whilst teachers' persuasive passion comes first in the process of intended learning, students' heuristic passion comes first in the process of unintended learning. Based on these findings, we argue that teachers need to be more aware that unintended learning, on the part of individual students, can occur during their lesson and to be able to better use this opportunity so that this unintended learning can be shared by the whole class. Furthermore, we argue that teachers' deliberate action and a more interactive classroom culture are necessary in order to allow students to develop, in addition to heuristic passion, persuasive passion towards their unintended learning.
Kover, Paula X; Hogge, Emily S
2017-10-01
The official school regulator in England (OFSTED) recently reported that the delivery of science lessons has been significantly diminished in many primary schools. There is concern that the lack of good quality science in school can reduce the recruitment of young scientists, and the level of science literacy among the general public. We believe university scientists and undergraduate students can have a significant impact in the delivery of science in primary schools. However, a relatively small proportion of scientists engage with young children to improve curricular primary school science education. Here, we argue that long term engagement with primary schools can produce significant impact for the scientist's research, schools, and society. As an example, we describe our experience developing teaching materials for the topic of "Evolution and inheritance"; highlighting possible pitfalls and perceived benefits, in hope of encouraging and facilitating other scientists to engage with primary schools. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Walma van der Molen, Juliette; van Aalderen-Smeets, Sandra
2013-01-01
Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical concept of attitude, methodological flaws in…
Pre-Service Science and Primary School Teachers' Identification of Scientific Process Skills
ERIC Educational Resources Information Center
Birinci Konur, Kader; Yildirim, Nagihan
2016-01-01
The purpose of this study was to conduct a comparative analysis of pre-service primary school and science teachers' identification of scientific process skills. The study employed the survey method, and the sample included 95 pre-service science teachers and 95 pre-service primary school teachers from the Faculty of Education at Recep Tayyip…
A Study on Teaching Gases to Prospective Primary Science Teachers through Problem-Based Learning
ERIC Educational Resources Information Center
Senocak, Erdal; Taskesenligil, Yavuz; Sozbilir, Mustafa
2007-01-01
The aim of this study was to compare the achievement of prospective primary science teachers in a problem-based curriculum with those in a conventional primary science teacher preparation program with regard to success in learning about gases and developing positive attitudes towards chemistry. The subjects of the study were 101 first year…
Developing Primary Science Teacher Expertise: Thinking about the System
ERIC Educational Resources Information Center
Bull, Ally
2016-01-01
This report comes from an exploratory project looking at professional learning and development for primary science teachers. In recent years there has been increased interest in science in New Zealand for social and economic reasons. However, there has been concern that the primary school system is not preparing students as well as it could in…
North Tyneside Perspective on Primary Science APP
ERIC Educational Resources Information Center
Keilty, Ged
2010-01-01
The status of primary science as a core subject has been gradually corroded in recent years, with the abolition of targets for science and the focus of the primary national strategy on literacy and numeracy. The NAIGS Committee were very well positioned within local authorities to pilot APP, but first had to write the criteria. Towards the end of…
Envisioning an Ecologically Sustainable Campus At New England College
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paula Amato; Gregory Palmer
Appropriation funding for our project Ecologically Sustainable Campus - New England College (NH). 67.09. supported five environmental initiatives: (1) a wood pellet boiler for our Science Building, (2) solar hot water panels and systems for five campus buildings, (3) campus-wide energy lighting efficiency project, (4) new efficiency boiler system in Colby Residence Hall, and (5) energy efficient lighting system for the new artificial athletic turf field. (1) New England College purchased and installed a new wood pellet boiler in the Science Building. This new boiler serves as the primary heating source for this building. Our boiler was purchased through Newmore » England Wood Pellet, LLC, located in Jaffrey, New Hampshire. The boiler selected was a Swebo, P500. 300KW wood pellet boiler. The primary goals, objectives, and outcomes of this initiative include the installation of a wood pellet boiler system that is environmentally friendly, highly efficient, and represents a sustainable and renewable resource for New England College. This project was completed on December 15, 2010. (2) New England College purchased and installed solar hot water panels and systems for the Science Building, the Simon Center (student center), the H. Raymond Danforth Library, Gilmore Dining Hall, and Bridges Gymnasium. The College worked with Granite State Plumbing & Heating, LLC, located in Weare, New Hampshire on this project. The solar panels are manufactured by Heat Transfer; the product is Heat Transfer 30-tube collector panels (Evacuated Tube Type) with stainless steel hardware. The interior equipment includes Super Stor Ultra stainless steel super insulated storage tank, Taco 009 Bronze circulator pump, Solar Relay Control Pack, and a Taco Thermal Expansion Tank. The primary goals, objectives, and outcomes of this initiative will allow the College to utilize the sun as an energy resource. These solar hot water panels and systems will alleviate our dependency on fossil fuel as our primary fuel resource and provide a reliable energy source that supplies the hot water needs for sanitation, dishwashing at our dining facilities, and shower facilities for our athletes. This project initiative was completed on June 30, 2010. (3) New England College has completed energy efficiency lighting projects throughout campus, which included upgrades and new systems throughout our buildings. This project also installed efficiency controls for the Lee Clement Arena and refrigeration equipment in the Gilmore Dining Hall. The College worked with Atlantic Energy Solutions, located in Foxboro, Massachusetts on our 50/50 energy efficiency lighting project and campus-wide audit. The actual implementation of the project was completed by D. Poole Electrical Services, located in Center Barnstead, New Hampshire. The primary goals, objectives, and outcomes of this initiative were to install energy efficient lighting systems throughout our campus buildings, which ultimately will provide New England College with a more efficient way to manage and control its energy use. This project initiative was completed on February 15, 2010. (4) New England College purchased and installed a high efficiency and clean burning system for the Colby Residence Hall, which is the primary housing for our freshman. We purchased and installed two Buderus Boilers, model number G515/10 with two Riello Burners, model number RL 38/2. The College worked with Granite State Plumbing & Heating, LLS, located in Weare, New Hampshire on the installation of this high efficiency and clean burning system for the Colby Residence Hall. The primary goals, objectives, and outcomes for this initiative included the installation of a designed system of two boilers to provide redundancy for backup measures. This new system will provide New England College the flexibility to utilize just one smaller boiler to provide heat and hot water during non-peak periods thus continued reduction in energy use and our carbon footprint. This project initiative was completed on September 18, 2009. (5) New England College purchased and installed energy efficient lighting for our new artificial athletic turf field. The College selected Light-Structure Green lighting systems and worked with Musco Lighting, located in Oskaloosa. Iowa. The primary goals, objectives, and outcomes of this initiative were to install innovative lighting systems that significantly reduce energy costs and provide a high level of efficiency, resulting in overall utility savings to the College. This lighting technology combines the energy efficient equipment along with a focused lighting objective (field playing surface) to reduce the number of lighting heads needed to illuminate the playing surface to NCAA standards while reducing energy consumption by 50%. This project was completed on October 15, 2009.« less
Reflections from organization science on the development of primary health care research networks.
Fenton, E; Harvey, J; Griffiths, F; Wild, A; Sturt, J
2001-10-01
In the UK, policy changes in primary health care research and development have led to the establishment of primary care research networks. These organizations aim to increase research culture, capacity and evidence base in primary care. As publicly funded bodies, these networks need to be accountable. Organizational science has studied network organizations including why and how they develop and how they function most effectively. This paper draws on organizational science to reflect on why primary care research networks appear to be appropriate for primary care research and how their structures and processes can best enable the achievement of their aims.
Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, Wes
2016-07-24
The primary challenge motivating this team’s work is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who are able to perform analysis only on a small fraction of the data they compute, resulting in the very real likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, an approach that is known as in situ processing. The idea in situ processing wasmore » not new at the time of the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by DOE science projects. In large, our objective was produce and enable use of production-quality in situ methods and infrastructure, at scale, on DOE HPC facilities, though we expected to have impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve that objective, we assembled a unique team of researchers consisting of representatives from DOE national laboratories, academia, and industry, and engaged in software technology R&D, as well as engaged in close partnerships with DOE science code teams, to produce software technologies that were shown to run effectively at scale on DOE HPC platforms.« less
Politicizing science: conceptions of politics in science and technology studies.
Brown, Mark B
2015-02-01
This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.
NASA Astrophysics Data System (ADS)
Murphy, Colette; Beggs, Jim; Carlisle, Karen; Greenwood, Julian
2004-08-01
This study is an investigation of the impact of collaborative teaching by student-teachers and classroom teachers on children's enjoyment and learning of science. The paper describes findings from a project in which undergraduate science specialist student-teachers were placed in primary schools where they 'co-taught' investigative science and technology with primary teachers. Almost six months after the student placement, a survey of children's attitudes to school science revealed that these children enjoyed science lessons more and showed fewer gender or age differences in their attitudes to science than children who had not been involved in the project. The authors discuss how this model of collaborative planning, teaching and evaluation can both enhance teacher education and improve children's experience of science.
ERIC Educational Resources Information Center
Shannon, Sarah; Winterman, Brian
2012-01-01
Primary literature is our main mode of communication in the sciences. As such, it is important for our undergraduates in the discipline to learn how to read primary literature. Incorporating primary literature into undergraduate science courses is often difficult because students are unprepared to comprehend primary articles. Learning to read and…
Continuity and Coherence in the Science Curriculum.
ERIC Educational Resources Information Center
James, E. O.
1988-01-01
Exposes concerns related to physics in the period of mandatory education levels. Discussed are primary science, the transition from primary to secondary, content and process, double award GSCE science, science and technology, and reform of GCE advanced level. Argues toward a reappraisal of the mechanism for curricular reform. (CW)
Links in the Chain: Bringing Together Literacy and Science
ERIC Educational Resources Information Center
Taylor, Neil; Hansford, Diane; Rizk, Nadya; Taylor, Subhashni
2017-01-01
In Australia, the Federal Government and the Australian Academy of Science have developed a programme entitled "Primary Connections" (primaryconnections.org. au), aimed at supporting the teaching of science in the primary sector. The programme makes strong and explicit links between science and literacy through the use of word walls,…
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Pakakis, Michael; Christie, Ian
2011-09-01
The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive environment promotes high order thinking skills such as problem solving, team work, communication skills and leadership. To promote the teaching of science in the classroom, and prepare the students for their mission, the program includes a pre-visit program. These classroom-based lessons model best practice in effective science teaching and learning to support the development of confident primary science teachers.
What Do Children Write in Science? A Study of the Genre Set in a Primary Science Classroom
ERIC Educational Resources Information Center
Honig, Sheryl
2010-01-01
This article reports on the types of scientific writing found in two primary grade classrooms. These results are part of a larger two-year study whose purpose was to examine the development of informational writing of second- and third-grade students as they participated in integrated science-literacy instruction. The primary purpose of the…
ERIC Educational Resources Information Center
Danielsson, Anna; Warwick, Paul
2014-01-01
Previous research has highlighted challenges associated with embracing an inquiry approach to science teaching for primary teachers, often associating these challenges with insecurity linked to the lack of content knowledge. We argue that in order to understand the extent to which primary student teachers are able to embrace science teaching…
ERIC Educational Resources Information Center
Anderson, Dayle
2015-01-01
Students' negative experiences of science in the primary sector have commonly been blamed on poor teacher content knowledge. Yet, teacher beliefs have long been identified as strong influences on classroom practice. Understanding the nature of teacher beliefs and their influence on primary science teaching practice could usefully inform teacher…
ERIC Educational Resources Information Center
Set, Beata; Hadman, Joanne; Ashipala, Daniel Opotamutale
2017-01-01
Purpose: The rationale behind this study was to investigate how three Grade 5 Natural Sciences teachers in three Western Cape primary schools teach science concepts so as to enable the researcher to gain a deeper understanding and more insightful perception of the ways in which the pedagogical practices of South African primary school teachers…
ERIC Educational Resources Information Center
Biddulph, Fred; McMinn, Bill
An alternative approach for teaching primary school science has been proposed by the Learning in Science Project (Primary--LISP(P). This study investigated the use of the approach during three series of lessons on the topic "metals." Each series followed the same general pattern: (1) an introductory session to stimulate children to ask…
Lunar Team Report from a Planetary Design Workshop at ESTEC
NASA Astrophysics Data System (ADS)
Gray, A.; MacArthur, J.; Foing, B. H.
2014-04-01
On February 13, 2014, GeoVUsie, a student association for Earth science majors at Vrijie University (VU), Amsterdam, hosted a Planetary Sciences: Moon, Mars and More symposium. The symposium included a learning exercise the following day for a planetary design workshop at the European Space Research and Technology Centre (ESTEC) for 30 motivated students, the majority being from GeoVUsie with little previous experience of planetary science. Students were split into five teams and assigned pre-selected new science mission projects. A few scientific papers were given to use as reference just days before the workshop. Three hours were allocated to create a mission concept before presenting results to the other students and science advisors. The educational backgrounds varied from second year undergraduate students to masters' students from mostly local universities.The lunar team was told to design a mission to the lunar south pole, as this is a key destination agreed upon by the international lunar scientific community. This region has the potential to address many significant objectives for planetary science, as the South Pole-Aitken basin has preserved early solar system history and would help to understand impact events throughout the solar system as well as the origin and evolution of the Earth-Moon system, particularly if samples could be returned. This report shows the lunar team's mission concept and reasons for studying the origin of volatiles on the Moon as the primary science objective [1]. Amundsen crater was selected as the optimal landing site near the lunar south pole [2]. Other mission concepts such as RESOLVE [3], L-VRAP [4], ESA's lunar lander studies and Luna-27 were reviewed. A rover and drill were selected as being the most suitable architecture for the requirements of this mission. Recommendations for future student planetary design exercises were to continue events like this, ideally with more time, and also to invite a more diverse range of educational backgrounds, i.e., both engineering and science students/professionals.
Standardized Sky Partitioning for the Next Generation Astronomy and Space Science Archives
NASA Technical Reports Server (NTRS)
Lal, Nand (Technical Monitor); McLean, Brian
2004-01-01
The Johns Hopkins University and Space Telescope Science Institute are working together on this project to develop a library of standard software for data archives that will benefit the wider astronomical community. The ultimate goal was to develop and distribute a software library aimed at providing a common system for partitioning and indexing the sky in manageable sized regions and provide complex queries on the objects stored in this system. Whilst ongoing maintenance work will continue the primary goal has been completed. Most of the next generation sky surveys in the different wavelengths like 2MASS, GALEX, SDSS, GSC-II, DPOSS and FIRST have agreed on this common set of utilities. In this final report, we summarize work on the work elements assigned to the STScI project team.
The Explored Asteroids: Science and Exploration in the Space Age
NASA Astrophysics Data System (ADS)
Sears, D. W. G.
2015-11-01
Interest in asteroids is currently high in view of their scientific importance, the impact hazard, and the in situ resource opportunities they offer. They are also a case study of the intimate relationship between science and exploration. A detailed review of the twelve asteroids that have been visited by eight robotic spacecraft is presented here. While the twelve explored asteroids have many features in common, like their heavily cratered and regolith covered surfaces, they are a remarkably diverse group. Some have low-eccentricity orbits in the main belt, while some are potentially hazardous objects. They range from dwarf planets to primary planetesimals to fragments of larger precursor objects to tiny shards. One has a moon. Their surface compositions range from basaltic to various chondrite-like compositions. Here their properties are reviewed and what was confirmed and what was newly learned is discussed, and additionally the explored asteroids are compared with comets and meteorites. Several topics are developed. These topics are the internal structure of asteroids, water distribution in the inner solar system and its role in shaping surfaces, and the meteoritic links.
Remote Sensing in Geography in the New Millennium: Prospects, Challenges and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Walsh, Stephen J.; Jensen, John R.; Ridd, Merrill K.; Arnold, James E. (Technical Monitor)
2002-01-01
As noted in the first edition of Geography in America, the term remote sensing was coined in the early 1960's by geographers to describe the process of obtaining data by use of both photographic and nonphotographic instruments. Although this is still a working definition today, a more explicit and updated definition as it relates to geography can be phrased as: "remote sensing is the science, art, and technology of identifying, characterizing, measuring, and mapping of Earth surface, and near earth surface, phenomena from some position above using photographic or nonphotographic instruments." Both patterns and processes may be the object of investigation using remote sensing data. The science dimension of geographic remote sensing is rooted in the fact that: a) it is dealing with primary data, wherein the investigator must have an understanding of the environmental phenomena under scrutiny, and b) the investigator must understand something of the physics of the energy involved in the sensing instrument and the atmospheric pathway through which the energy passes from the energy source, to the Earth object to the sensor.
1997-05-08
The mission patch for STS-85 is designed to reflect the broad range of science and engineering payloads on the flight. The primary objectives of the mission were to measure chemical constituents in Earth’s atmosphere with a free-flying satellite and to flight-test a new Japanese robotic arm designed for use on the International Space Station (ISS). STS-85 was the second flight of the satellite known as Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 CRISTA-SPAS-02. CRISTA, depicted on the right side of the patch pointing its trio of infrared telescopes at Earth’s atmosphere, stands for Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere. The high inclination orbit is shown as a yellow band over Earth’s northern latitudes. In the Space Shuttle Discovery’s open payload bay an enlarged version of the Japanese National Space Development Agency’s (NASDA) Manipulator Flight Demonstration (MFD) robotic arm is shown. Also shown in the payload bay are two sets of multi-science experiments: the International Extreme Ultraviolet Hitchhiker (IEH-02) nearest the tail and the Technology Applications and Science (TAS-01) payload. Jupiter and three stars are shown to represent sources of ultraviolet energy in the universe. Comet Hale-Bopp, which was visible from Earth during the mission, is depicted at upper right. The left side of the patch symbolizes daytime operations over the Northern Hemisphere of Earth and the solar science objectives of several of the payloads.
NASA Astrophysics Data System (ADS)
Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin
2016-10-01
Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.
Implementing Science Notebooks in the Primary Grades
ERIC Educational Resources Information Center
Nesbit, Catherine R.; Hargrove, Tracy Y.; Harrelson, Linda; Maxey, Bob
2004-01-01
In this article, the author details the process teachers can use to teach primary-age children how to use science notebooks. To lay the foundation for using notebooks, the author describes important elements of science notebooks and makes a distinction between science note-books and journals. In addition, the article highlights the benefits…
Primary Science: Are There Any Reasons to Be Cheerful?
ERIC Educational Resources Information Center
Turner, Jane
2010-01-01
During the last decade, science in the Primary curriculum has been squeezed from different directions. The literacy and numeracy strategies restricted time for science enquiry, and the perceived importance of the science SAT restricted teachers' imaginations and confidence. The end of this SAT was announced shortly after the publication of the…
Primary Connections: Simulating the Classroom in Initial Teacher Education
ERIC Educational Resources Information Center
Hume, Anne Christine
2012-01-01
The challenge of preparing novice primary teachers for teaching in an educational environment, where science education has low status and many teachers have limited science content knowledge and lack the confidence to teach science, is great. This paper reports on an innovation involving a sustained simulation in an undergraduate science education…
Australian National University Science Extension Day
ERIC Educational Resources Information Center
Fletcher, Sarah
2016-01-01
The first Australian National University (ANU) Science Extension Day was held on September 8, 2015. The ANU Science Extension Day is a project that was initiated by Theodore Primary School (ACT) and developed by Theodore Primary, Calwell High School, Science Educators Association of the ACT (SEA*ACT), and the ANU. The project was developed with a…
Affecting Primary Science: A Case from the Early Years.
ERIC Educational Resources Information Center
Watts, Mike; Walsh, Amanda
1997-01-01
Claims that there is a "down-drift" in the teaching of science, with even preschools now obligated to teach science content. Investigates (through one teacher's diary) how primary teachers interact with scientific teachings and how they can best be inducted into the teaching and learning of science. Concludes that incorporating personal…
"Am I Like a Scientist?": Primary Children's Images of Doing Science in School
ERIC Educational Resources Information Center
Zhai, Junqing; Jocz, Jennifer Ann; Tan, Aik-Ling
2014-01-01
A considerable body of evidence highlights how inquiry-based science can enhance students' epistemic and conceptual understanding of scientific concepts, principles, and theories. However, little is known about how students view themselves as learners of science. In this paper, we explore primary children's images of doing science in school and…
Advancing the Science of Implementation in Primary Health Care.
Bazemore, Andrew; Neale, Anne Victoria; Lupo, Phillip; Seehusen, Dean
2018-01-01
Implementation Science is commonly described as the study of methods and approaches that promote the uptake and use of evidence-based interventions into routine practice and policymaking. In this issue of JABFM , investigators share a wealth of new insights from the frontlines of Implementation Science in primary care: what it is, how we are doing it, and how it is advancing the evidence base of primary care. The breadth of implementation science in primary care is affirmed by the range of topics covered, from thought leader recommendations on future directions for the field, to reports on how best practices in policy and practice are shaping primary care implementation in the United States and Canada. There are also important updates on agents of primary care implementation themselves, such as practice facilitators, geriatric care teams, and family physicians interested in providing obstetric care. Other articles report on novel practice transformation efforts that advance health promotion and disease prevention, and innovative approaches to identifying and addressing social determinants of health in primary care practices and the communities they serve. The articles seem to generate as many new questions as they answer, and highlight the need for continued emphasis on advancing the science of implementation in primary health care. © Copyright 2018 by the American Board of Family Medicine.
Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality
ERIC Educational Resources Information Center
Aykac, Necdet
2012-01-01
This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…
So Long Primary School Science, and Thanks for All the Fun
ERIC Educational Resources Information Center
Stringer, John
2010-01-01
The author looks at the future of primary science, and is not encouraged. It's pretty much all over for science in primary schools. One only has to look at the poor showing on the stands at January's ASE Annual Conference to see that it is no longer a publishing priority. Eroded by falling status, undermined by national strategies, and finally put…
ERIC Educational Resources Information Center
Looi, C.-K.; Zhang, B.; Chen, W.; Seow, P.; Chia, G.; Norris, C.; Soloway, E.
2011-01-01
This paper presents the findings of a research project in which we transformed a primary (grade) 3 science curriculum for delivery via mobile technologies, and a teacher enacted the lessons over the 2009 academic year in a class in a primary school in Singapore. The students had a total of 21 weeks of the mobilized lessons in science, which were…
ERIC Educational Resources Information Center
Loughland, Tony; Nguyen, Hoa Thi Mai
2016-01-01
There has been a call for effective professional learning to improve the quality of the science teaching of primary teachers in Australia. It seems from the literature that teaching science effectively is a challenging endeavour for primary teachers. Professional learning based on the instructional core framework is an emerging approach that has…
From Witnessing to Recording--Material Objects and the Epistemic Configuration of Science Classes
ERIC Educational Resources Information Center
Roehl, Tobias
2012-01-01
Drawing on concepts developed in actor-network theory and postphenomenology this article shows how material objects in the science classroom become part of epistemic configurations and thus co-shape science education. An ethnographic study on epistemic objects in science education is the basis for the analysis of two of these objects: experimental…
Europa Small Lander Design Concepts
NASA Astrophysics Data System (ADS)
Zimmerman, W. F.
2005-12-01
Title: Europa Small Lander Design Concepts Authors: Wayne F. Zimmerman, James Shirley, Robert Carlson, Tom Rivellini, Mike Evans One of the primary goals of NASA's Outer Planets Program is to revisit the Jovian system. A new Europa Geophysical Explorer (EGE) Mission has been proposed and is under evaluation. There is in addition strong community interest in a surface science mission to Europa. A Europa Lander might be delivered to the Jovian system with the EGE orbiter. A Europa Astrobiology Lander (EAL) Mission has also been proposed; this would launch sometime after 2020. The primary science objectives for either of these would most likely include: Surface imaging (both microscopic and near-field), characterization of surface mechanical properties (temperature, hardness), assessment of surface and near-surface organic and inorganic chemistry (volatiles, mineralogy, and compounds), characterization of the radiation environment (total dose and particles), characterization of the planetary seismicity, and the measurement of Europa's magnetic field. The biggest challenges associated with getting to the surface and surviving to perform science investigations revolve around the difficulty of landing on an airless body, the ubiquitous extreme topography, the harsh radiation environment, and the extreme cold. This presentation reviews some the recent design work on drop-off probes, also called "hard landers". Hard lander designs have been developed for a range of science payload delivery systems spanning small impactors to multiple science pods tethered to a central hub. In addition to developing designs for these various payload delivery systems, significant work has been done in weighing the relative merits of standard power systems (i.e., batteries) against radioisotope power systems. A summary of the power option accommodation benefits and issues will be presented. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract from NASA,
The Luminosity Measurement for the DZERO Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Gregory R.
Primary project objective: The addition of University of Nebraska-Lincoln (UNL) human resources supported by this grant helped ensure that Fermilab’s DZERO experiment had a reliable luminosity measurement through the end of Run II data taking and an easily-accessible repository of luminosity information for all collaborators performing physics analyses through the publication of its final physics results. Secondary project objective: The collaboration between the UNL Instrument Shop and Fermilab’s Scintillation Detector Development Center enhanced the University of Nebraska’s future role as a particle detector R&D and production facility for future high energy physics experiments. Overall project objective: This targeted project enhancedmore » the University of Nebraska’s presence in both frontier high energy physics research in DZERO and particle detector development, and it thereby served the goals of the DOE Office of Science and the Experimental Program to Stimulate Competitive Research (EPSCoR) for the state of Nebraska.« less
NASA Astrophysics Data System (ADS)
Rivard, Léonard P.; Gueye, Ndeye R.
2016-05-01
Literacy in the Science Classroom Project was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted in different classrooms. We also wanted to identify the challenges and enablers to implementing these literacy strategies and practices at the classroom, school, and district levels. Data collection involved both qualitative and quantitative methodologies: student questionnaires; interviews with teachers, principals, and mentor; and focus groups with students. The findings suggest that the program had an impact on beliefs and practices commensurate with the workshop participation of individual teachers. These language-enhanced teacher practices also had a positive impact on the use of talking, reading and writing by students in the science classroom. Finally, continuing PD support may be needed in certain jurisdictions for strengthening minority-language programs given the high teacher mobility in content-area classrooms evident in this study.
NASA Astrophysics Data System (ADS)
Wisdom, Sonya L.
The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.
ERIC Educational Resources Information Center
Gillies, Robyn M.; Nichols, Kim
2015-01-01
Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…
Primary results from the Pan-STARRS-1 Outer Solar System Key Project
NASA Astrophysics Data System (ADS)
Holman, Matthew J.; Chen, Ying-Tung; Lackner, Michael; Payne, Matthew John; Lin, Hsing-Wen; Cristopher Fraser, Wesley; Lacerda, Pedro; Pan-STARRS 1 Science Consortium
2016-10-01
We have completed a search for slow moving bodies in the data obtained by the Pan-STARRS-1 (PS1) Science Consortium from 2010 to 2014. The data set covers the full sky north of -30 degrees declination, in the PS1 g, r, i, z, y, and w (g+r+i) filters. Our novel distance-based search is effective at detecting and linking very slow moving objects with sparsely sampled observations, even if observations are widely separated in RA, Dec and time, which is relevant to the future LSST solar system searches. In particular, our search is sensitive to objects at heliocentric distances of 25-2000 AU with magnitudes brighter than approximately r=22.5, without limits on the inclination of the object. We recover hundreds of known TNOs and Centaurs and discover hundreds of new objects, measuring phase and color information for many of them. Other highlights include the discovery of a second retrograde TNO, a number of Neptune Trojans, and large numbers of distant resonant TNOs.
New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science
NASA Astrophysics Data System (ADS)
Skolnik, S.; Ramirez-Linan, R.
2016-12-01
NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.
Primary Objective Grating Astronomical Telescope
NASA Technical Reports Server (NTRS)
Ditto, Thomas D.
2007-01-01
It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel
Aquarius Mission Technical Overview
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.
2007-01-01
Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.
Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.
Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arienti, Marco; Oefelein, Joe; Doisneau, Francois
2016-08-01
As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.
NASA Technical Reports Server (NTRS)
Gattis, Christy; Rodriguez, Pete (Technical Monitor)
2000-01-01
The Materials Science Research Facility (MSRF) is a multi-user, multi-purpose facility for materials science research. One experiment within the MSRF will be the Quench Module Insert (QMI), a high-temperature furnace with unique capabilities for processing different classes of materials. The primary functions of the QMI furnace are to melt, directionally solidify, and quench metallic samples, providing data to aid in understanding the effects of the microgravity environment on the characteristics of these processed metals. The QMI houses sealed individual sample ampoules containing material to be processed. Quenching of the samples in the QMI furnace is accomplished by releasing low-melting-point metallic shoes into contact with the outside of the sample ampoule, dissipating heat and cooling the sample inside. The impact from this method of quench will induce sample vibrations which could be large enough to adversely affect sample quality. Utilizing breadboard hardware, the sample quench sequence, releasing the shoes, was conducted. Data was collected from accelerometers located on the breadboard sample cartridge, indicating the maximum acceleration achieved by the sample. The primary objective of the test described in this presentation was to determine the acceleration imparted on the sample by the shoe contact. From this information, the science community can better assess whether this method of quench will allow them to obtain the data they need.
Using Scavenger Hunts to Familiarize Students with Scientific Journal Articles.
Lijek, Rebeccah S; Fankhauser, Sarah C
2016-03-01
Primary scientific literature can be difficult to navigate for anyone unfamiliar with its foreign, formal structure. We sought to create a fun, easy learning tool to help familiarize students of all ages with the structure of a scientific article. Our main learning objective was for the student to realize that science writing is formulaic-that specific information is found in predictable locations within an article-and that, with an understanding of the formula, anyone can comfortably navigate any journal article and accurately predict what to expect to find in each section. To this end, we designed a Journal Article Scavenger Hunt that requires the user to find and identify a series of commonplace features of a primary research article. The scavenger hunt activity is quick and easy to implement, and is adaptable to various ages and settings, including the classroom, lab, and at outreach events. The questions in the scavenger hunt can be scaled in difficulty and specificity to suit the instructor's needs. Over many years of using this activity, we have received positive feedback from students of all ages, from elementary school students to lay adult-learners as well as science teachers themselves. By making the unknown seem predictable and approachable, the scavenger hunt helps a variety of audiences feel more comfortable with science and more confident in their ability to engage directly with the scientific literature. Journal of Microbiology & Biology Education.
Let's do science with children
NASA Astrophysics Data System (ADS)
Paolini, Mara
2013-04-01
The school where I worked in 2011,was for primary school teachers-to-be. Classes were formed by a high number of students with a handicapped student in each class. The school was attended mainly by girls with low self-esteem and difficulties in fulfilling their homework. Moreover secondary school students often find science far from their world and rather boring. So helping them understand the relationship between science and everyday life, between chemistry and society was my main objective . Simple / elementary experiments were chosen : if presented and carried out with scientific method, they can prove very useful in the development of specific abilities, from simple observation to the more complex and vital ability to grasp cause and effect relation. I think that the direct observation of facts and phenomena is the foundation to stimulate the process of learning and abstracting experiments: A. The pressure as a force, the behavior of the hot and cold water. 1. the implosion of the can 2. the candle 3. the balloon and the bottle 4. the egg in the bottle Monitoring and evaluation The direct observation of students during operations and final written reports were the ways which was evaluated the project. Results of the project carried out: The students were able to use scientific language correctly, to explain the phenomenon to primary school children using their own ideas. they also devised a table where to list the experiments carried out
Challenges of In-Flight Calibrations for the Mars Reconnaissance Orbiter Payload
NASA Technical Reports Server (NTRS)
Xaypraseuth, Peter
2007-01-01
The Mars Reconnaissance Orbiter is the most complex spacecraft that has ever been sent to investigate the Red Planet. A major part of what makes this mission so complex is the suite of instruments that were selected. The instruments on MRO vary from a simple imaging system, not much larger than a pocket knife to the largest camera ever flown to another planet. Not only does the size of the instruments vary, so do the scientific investigations associated with each instrument. In order to ensure that this payload suite would be able to satisfy all of its science objectives, a major effort was put forth by the MRO Project to ensure these instruments were well calibrated prior to the start of the Primary Science Phase. The in-flight calibration plan for MRO proved to be quite challenging, given the often conflicting requirements due to the varying capability of each of the instruments and the desire to constrain the workload on the Mission Operations personnel. The quality of data returned by MRO since the start of the Primary Science Phase is a tribute to the effort that was put forth to characterize the in-flight performance of the instruments. This paper will describe the challenges associated with the planning and implementation of the various calibration events on MRO, and will exhibit some of the results from those calibrations.
Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Calhourn, Philip C.; Garrick, Joseph C.
2007-01-01
The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.
NASA Astrophysics Data System (ADS)
Abualrob, Marwan M. A.; Gnanamalar Sarojini Daniel, Esther
2013-10-01
This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second, using this list, ninth grade science textbooks and curriculum document contents were analyzed. Third, based on this content analysis, a possible list of 71 learning objectives for the integration of STS elements was prepared. This list of learning objectives was refined by using a two-round Delphi technique. The Delphi study was used to rate and to determine the consensus regarding which items (i.e. learning objectives for STS in the ninth grade science textbooks in Palestine) are to be accepted for inclusion. The results revealed that of the initial 71 objectives in round one, 59 objectives within round two had a mean score of 5.683 or higher, which indicated that the learning objectives could be included in the development of STS modules for ninth grade science in Palestine.
ERIC Educational Resources Information Center
Sert Çibik, Ayse
2014-01-01
The purpose of this research was to investigate the primary education second level students' motivations towards science learning in terms of various factors. Within the research, the variation of the total motivational scores in science learning according to the gender, class, socio-economic levels, success in science-technology course and…
Learning Science through Creating a "Slowmation": A Case Study of Preservice Primary Teachers
ERIC Educational Resources Information Center
Hoban, Garry; Nielsen, Wendy
2013-01-01
Many preservice primary teachers have inadequate science knowledge, which often limits their confidence in implementing the subject. This paper proposes a new way for preservice teachers to learn science by designing and making a narrated stop-motion animation as an instructional resource to explain a science concept. In this paper, a simplified…
ERIC Educational Resources Information Center
Nicholas, Howard; Ng, Wan
2009-01-01
As many primary pre-service teachers enter teacher education courses with little science background, it is essential in teacher education courses to provide opportunities for them to learn more science independently. The purpose of this study is to investigate an online pedagogical activity that fosters the social construction of science knowledge…
ERIC Educational Resources Information Center
Hast, Michael
2017-01-01
For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…
Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival
ERIC Educational Resources Information Center
Morgan, Anne-Marie
2012-01-01
A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…
ERIC Educational Resources Information Center
Mansfield, Caroline F.; Woods-McConney, Amanda
2012-01-01
Teacher efficacy has become an important field of research especially in subjects teachers may find challenging, such as science. This study investigates the sources of teachers' efficacy for teaching science in primary schools in the context of authentic teaching situations with a view to better understanding sources of teachers' efficacy…
Resilience of Science Teaching Philosophies and Practice in Early Career Primary Teaching Graduates
ERIC Educational Resources Information Center
Bartholomew, Rex; Anderson, Dayle; Moeed, Azra
2012-01-01
There has been recent concern over the variable quality of science teaching in New Zealand primary schools. One reason suggested has been the relatively low levels of science education components in initial teacher education (ITE) programmes. This paper follows a cohort of recent teacher graduates from a science education course in their ITE…
Teacher Training and Pre-Service Primary Teachers' Self-Efficacy for Science Teaching
ERIC Educational Resources Information Center
Velthuis, Chantal; Fisser, Petra; Pieters, Jules
2014-01-01
This study focuses on the improvement of pre-service teachers' self-efficacy for teaching science by including science courses within the teacher training program. Knowing how efficacy beliefs change over time and what factors influence the development by pre-service primary teachers of positive science teaching efficacy beliefs may be useful for…
ERIC Educational Resources Information Center
Kenny, John Daniel
2012-01-01
This paper reports on a partnership approach preparing pre-service primary teachers to teach science. Partnerships involving pre-service teachers and volunteer in-service colleagues were formed to teach science in the classroom of the colleague, with support from the science education lecturer. Each pre-service teacher collaboratively planned and…
Scientists' Prioritization of Communication Objectives for Public Engagement.
Dudo, Anthony; Besley, John C
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
Sherwill-Navarro, Pamela J.; Wallace, Addajane L.
2004-01-01
Objective: To evaluate the impact in the health care literature of research articles that provided evidence of the value of library services (including MEDLINE) as an element of quality health care. Data Sources/Selection: Four research articles on the relationship between use of library services and quality health care were selected as “primary articles” from a MEDLINE search using appropriate Medical Subject Heading. Primary articles met the following criteria: written in English, reported research, related to clinical care, and published before 1995. Data Extraction: The technique of citation analysis was used to measure the impact of the primary articles on the subsequent literature. The number, authorship, type, and publication venue of articles citing the primary articles were determined using ISI Web of Science, MEDLINE, other electronic resources, and the citing articles themselves. For the 146 English-language citing articles, the article type (i.e., advocacy, instructional, research) was noted; and, for those that reported research, the use to which the author put the cited material was determined. Results: The primary articles were cited more often than the average articles published that year in the same journals. At the time of the study each article had been cited almost every year since publication. Of the 146 citing articles written in English, 43% were written by librarians, 38% by physicians, 12% by librarians with physicians. The majority were published in medical journals, followed in order of decreasing frequency by the Bulletin of the Medical Library Association, information science journals, and health administration journals. Conclusions: The results of this study demonstrate that published research on the value of medical library services has an impact on the literature. These articles are read and cited and continue to be of value. PMID:14762461
ERIC Educational Resources Information Center
de Villiers, Rian; Plantan, Tiffany; Gaines, Michael
2016-01-01
The Science Made Sensible (SMS) programme began as a partnership between the University of Miami (UM), Florida, USA, and some public schools in Miami. In this programme, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of…
ERIC Educational Resources Information Center
Ozturk, Elif; Ucus, Sukran
2015-01-01
Argumentation is highlighted as one of the most important activities of science education by many researchers. The main aim of this research is to examine primary school students' nature of science classes and argumentation skills in terms of their academic success in primary science classes. Thus, the main interest of the study is centered on the…
ERIC Educational Resources Information Center
Ozturk, Elif; Ucus, Sukran
2015-01-01
Argumentation is highlighted as one of the most important activities of science education by many researchers. The main aim of this research is to examine primary school students' nature of science classes and argumentation skills in terms of their academic success in primary science classes. Thus, the main interest of the study is centered on the…
ERIC Educational Resources Information Center
Milne, Ian
2007-01-01
The revamped New Zealand curriculum emphasises "scientific literacy for all students" and provides teachers with an opportunity to promote science as an integral element of the primary school curriculum. Exploring and explaining the natural world in primary science can provide authentic contexts for the development of knowledge, skills,…
Science Unlimited: Grades K-6 Competency Matrix.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Div. of Arts and Sciences.
This competency matrix matches the primary and intermediate Science Unlimited lessons with the established competencies which appear in the Science Unlimited competency continuum. Primary lessons deal with: investigating dripping faucets; classification/sorting; smell; eyes; color; air; weather; observation and description; mystery boxes; change;…
Where do teens go to get the 411 on sexual health? A teen intern in clinical research with teens.
Reznik, Yana; Tebb, Kathleen
2008-01-01
Research Setting: The research for the study reported here was conducted in conjunction with the Biomedical and Health Sciences Internship for High School Students at the University of California, San Francisco, Department of Pediatrics. The eight-week intensive summer program promotes interest in science, medicine, and health among young people by introducing students to the professional world of science, broadly defined. Interns are expected to assist in a specific research project that addresses a scientific question. They participate in a variety of lectures and are exposed to faculty members, medical students, and college graduates working as research assistants in a rich academic and clinical research setting. This study was conducted within Kaiser Permanente (KP) of Northern California as part of a larger study aimed at increasing Chlamydia screening among sexually active adolescents. It was approved by Committee on Human Research, the institutional review board (IRB) for the University of California, San Francisco and the IRB for KP Northern California. There were two primary objectives of this study: first, we sought to identify where teenagers obtain information about sexual health; second, we examined whether aspects of a clinician's communication style with a teen during a health care visit were associated with the teen choosing that clinician as a primary source of sexual health information (as compared with parents, peers, teachers, the news media, and other sources). Teens who perceived that their clinician communicated with respect and explained information in ways that they could understand were more likely to cite their clinician as a source of sexual health information. Having time alone (confidentiality) with a physician was also associated with teens' selection of a clinician as a primary information source. Whether the clinician asked about sex during the health care visit was significantly associated with males selecting the clinician as a primary source of sexual health information. An important finding, at least for males, because teens do not always bring up the topic.
[Scientific output in the health sciences in Ecuador].
Sisa, Iván; Espinel, Mauricio; Fornasini, Marco; Mantilla, Gonzalo
2011-10-01
This cross-sectional study describes the characteristics and trends of health sciences-related studies published in Ecuador from 1999-2009. Its objective is to contribute to the design and implementation of a research and development policy whose work is centered on the country's health priorities. Bibliometric indicators of production applied to publications in health sciences in Ecuador were used for the analysis. The publications were from the LILACS and MEDLINE databases. It was found that 625 articles were published from 1999-2009, primarily in the clinical-surgical areas (60%), followed by epidemiology (17.4%), basic sciences (14.1%), and health systems (8.5%). Only 4.3% and 7.2% of the production in this period was related to the primary causes of morbidity and mortality, respectively. It was found that private institutions generated more health research than public institutions, and hospitals (public, private, and mixed) produced a higher percentage than universities. The analysis showed that there was limited scientific production in health sciences in Ecuador during the study period, with a slight increase in the last two years that may be due in part to greater investment in research and development by the National Secretariat of Science and Technology (SENACYT). Investment increased from 0.20% to 0.44% of gross domestic product between 2006 and 2009.
Soil Science Education for Primary and Secondary Students
NASA Astrophysics Data System (ADS)
Sparrow, Elena; Yoshikawa, Kenji; Kopplin, Martha
2013-04-01
Soils is one of the science investigation areas in the Global learning and Observations to Benefit the Environment (GLOBE), an international science and education program (112 countries) that teaches primary and secondary students to learn science by doing science. For each area of investigation GLOBE provides background information, measurement protocols and learning activities compiled as a chapter in the GLOBE Teacher's Guide. Also provided are data sheets and field guides to assist in the accurate collection of data as well as suggestions of scientific instruments and calibration methods. Teachers learn GLOBE scientific measurement protocols at professional development workshops led by scientists and educators, who then engage their students in soil studies that also contribute to ongoing science investigations. Students enter their data on the GLOBE website and can access their data as well as other data contributed by students from other parts of the world. Soil characterization measurements carried out in the field include site description, horizon depths, soil structure, soil color, soil consistence, soil texture, roots, rocks and carbonates. Other field measurements are soil temperature and soil moisture monitoring while the following measurements are carried out in the classroom or laboratory: gravimetric soil moisture, bulk density, particle density, particle size distribution, pH and soil fertility (nitrogen, phosphorus and potassium). Learning activities provide support for preparing students to do the measurements and for better understanding of science concepts. Many countries in GLOBE have adopted standards for education including science education with commonalities among them. For the Teacher's Guide, the National Science Education Standards published by the US National Academy of Sciences, selected additional content standards that GLOBE scientists and educators feel are appropriate and the National Geography Standards prepared by the (US) National Education Standards Project, are being used. Educational objectives for students include gaining scientific inquiry abilities in addition to understanding scientific concepts. The Soils chapter also includes some suggestions for managing students in the field and classroom. A new protocol has also been developed by the Seasons and Biomes project, one of the GLOBE earth system science projects. Active Layer monitoring uses a Frost Tube that measures when and how deeply soil freezes and is currently being used in more than 200 sites in Alaska. Teachers have successfully implemented soil studies in their curriculum and have used it to teach about the science process.
Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update
NASA Astrophysics Data System (ADS)
Fox, N. J.
2017-12-01
The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.
International Space Station (ISS)
2002-07-10
This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
RESOLVE Mission Architecture for Lunar Resource Prospecting and Utilization
NASA Technical Reports Server (NTRS)
George, J. A.; Mattes, G. W.; Rogers, K. N.; Magruder, D. F.; Paz, A. J.; Vaccaro, H. M.; Baird, R. S.; Sanders, G. B.; Smith, J. T.; Quinn, J. W.;
2012-01-01
Design Reference Mission (DRM) evaluations were performed for The Regolith & Environment Science, and Oxygen & Lunar Volatile Extraction (RESOLVE) project to determine future flight mission feasibility and understand potential mission environment impacts on hardware requirements, science/resource assessment objectives, and mission planning. DRM version 2.2 (DRM 2.2) is presented for a notional flight of the RESOLVE payload for lunar resource ground truth and utilization (Figure 1) [1]. The rover/payload deploys on a 10 day surface mission to the Cabeus crater near the lunar south pole in May of 2016. A drill, four primary science instruments, and a high temperature chemical reactor will acquire and characterize water and other volatiles in the near sub-surface, and perform demonstrations of In-Situ Re-source Utilization (ISRU). DRM 2.2 is a reference point, and will be periodically revised to accommodate and incorporate changes to project approach or implementation, and to explore mission alternatives such as landing site or opportunity.
Faculty Development Program Models to Advance Teaching and Learning Within Health Science Programs
Lancaster, Jason W.; Stein, Susan M.; MacLean, Linda Garrelts; Van Amburgh, Jenny
2014-01-01
Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school. PMID:24954939
Faculty development program models to advance teaching and learning within health science programs.
Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M
2014-06-17
Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.
Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update
NASA Astrophysics Data System (ADS)
Fox, N. J.
2016-12-01
Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.
From Primary to Secondary Science: Keeping the Threads Intact
ERIC Educational Resources Information Center
Mould, Kirsten
2015-01-01
There are many transition points in the school life of a child, but the move from primary to secondary school is a particularly significant one. How can both the social and academic threads remain intact? In this article, Kristen Mould discusses the main issues relating to transition from primary to secondary science. She cites the primary factors…
LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE ...
This report estimates the natural background and ambient concentrations of primary producer abundance indicators in California wadeable streams, identifies thresholds of adverse effects of nutrient-stimulated primary producer abundance on benthic macroinvertebrate and algal community structure in CA wadeable streams, and evaluates existing nutrient-algal response models for CA wadeable streams (Tetra Tech 2006), with recommendations for improvements. This information will be included in an assessment of the science forming the basis of recommendations for stream nutrient criteria for the state of California. The objectives of the project are three-fold: 1. Estimate the natural background and ambient concentrations of nutrients and candidate indicators of primary producer abundance in California wadeable streams; 2. Explore relationships and identify thresholds of adverse effects of nutrient concentrations and primary producer abundance on indicators of aquatic life use in California wadeable streams; and 3. Evaluate the Benthic Biomass Spreadsheet Tool (BBST) for California wadeable streams using existing data sets, and recommend avenues for refinement. The intended outcome of this study is NOT final regulatory endpoints for nutrient and response indicators for California wadeable streams.
NASA Astrophysics Data System (ADS)
Anderson, Dayle; Moeed, Azra
2017-05-01
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.
Europa Explorer - An Exceptional Mission Using Existing Technology
NASA Technical Reports Server (NTRS)
Clark, Karla B.
2007-01-01
A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.
Cooperative Learning in Science: Follow-up from primary to high school
NASA Astrophysics Data System (ADS)
Thurston, Allen; Topping, Keith J.; Tolmie, Andrew; Christie, Donald; Karagiannidou, Eleni; Murray, Pauline
2010-03-01
This paper reports a two-year longitudinal study of the effects of cooperative learning on science attainment, attitudes towards science, and social connectedness during transition from primary to high school. A previous project on cooperative learning in primary schools observed gains in science understanding and in social aspects of school life. This project followed 204 children involved in the previous project and 440 comparison children who were not as they undertook transition from 24 primary schools to 16 high schools. Cognitive, affective, and social gains observed in the original project survived transition. The implications improving the effectiveness of school transition by using cooperative learning initiatives are explored. Possibilities for future research and the implications for practice and policy are discussed.
An Overview of Environmental Education in Middle School Natural Science Courses
ERIC Educational Resources Information Center
Zhanbao, Shu
2004-01-01
Environmental education in middle school natural science courses is based on integrating environmental knowledge into natural science education. Therefore, environmental education objectives should be set as an extension of the objectives for natural science education. However, in order to reach the objectives laid out for environmental education…
NASA Astrophysics Data System (ADS)
Earle, Sarah
2014-05-01
Background:Since the discontinuation of Standard Attainment Tests (SATs) in science at age 11 in England, pupil performance data in science reported to the UK government by each primary school has relied largely on teacher assessment undertaken in the classroom. Purpose:The process by which teachers are making these judgements has been unclear, so this study made use of the extensive Primary Science Quality Mark (PSQM) database to obtain a 'snapshot' (as of March 2013) of the approaches taken by 91 English primary schools to the formative and summative assessment of pupils' learning in science.
ERIC Educational Resources Information Center
Johnson, Carolyn
2003-01-01
Take a cyber journey through the world of science! Presenting more than 150 websites with primary source documents and authoritative data, this versatile book helps educators guide students on virtual scientific fieldtrips in all areas of science, from astronomy, biology, and chemistry to genetics, physics, and space science. Students can meet…
ERIC Educational Resources Information Center
Malamitsa, Katerina; Kasoutas, Michael; Kokkotas, Panagiotis
2009-01-01
In this paper, the development of sixth grade students' critical thinking skills in science courses is discussed relatively to the contribution of the integration of aspects of History of Science into instruction. Towards this direction a project on electromagnetism was designed and implemented aiming to engage primary school students in a…
ERIC Educational Resources Information Center
Albion, Peter R.; Spence, Karen G.
2013-01-01
The teaching of science is important, both to meet the need for future workers in fields requiring scientific capability and to equip students for full participation in modern societies where many decisions depend upon knowledge of science. However, many teachers in Australian primary schools do not allocate science education sufficient amounts of…
ERIC Educational Resources Information Center
Bozdogan, Aykut Emre; Yalcin, Necati
2009-01-01
This research aimed to examine the effects of visiting exhibitions and participating in the activities offered by science centers on raising the interest of second level students of primary education in science and improving their academic achievements. Thirty one 8th grade students chosen randomly from primary schools participated in the research…
Development and exemplification of a model for Teacher Assessment in Primary Science
NASA Astrophysics Data System (ADS)
Davies, D. J.; Earle, S.; McMahon, K.; Howe, A.; Collier, C.
2017-09-01
The Teacher Assessment in Primary Science project is funded by the Primary Science Teaching Trust and based at Bath Spa University. The study aims to develop a whole-school model of valid, reliable and manageable teacher assessment to inform practice and make a positive impact on primary-aged children's learning in science. The model is based on a data-flow 'pyramid' (analogous to the flow of energy through an ecosystem), whereby the rich formative assessment evidence gathered in the classroom is summarised for monitoring, reporting and evaluation purposes [Nuffield Foundation. (2012). Developing policy, principles and practice in primary school science assessment. London: Nuffield Foundation]. Using a design-based research (DBR) methodology, the authors worked in collaboration with teachers from project schools and other expert groups to refine, elaborate, validate and operationalise the data-flow 'pyramid' model, resulting in the development of a whole-school self-evaluation tool. In this paper, we argue that a DBR approach to theory-building and school improvement drawing upon teacher expertise has led to the identification, adaptation and successful scaling up of a promising approach to school self-evaluation in relation to assessment in science.
NASA Astrophysics Data System (ADS)
Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert
2017-09-01
The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.
Planetary Science with Balloon-Borne Telescopes
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot
2015-01-01
The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.
STS-40 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.
STS-40 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-07-01
The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.
First Lunar Outpost support study
NASA Technical Reports Server (NTRS)
Bartz, Christopher; Cook, John; Rusingizandekwe, Jean-Luc
1993-01-01
The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts.
Continuing Professional Development and Learning in Primary Science Classrooms
ERIC Educational Resources Information Center
Fraser, Christine A.
2010-01-01
This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…
Remote sensing of the biosphere
NASA Technical Reports Server (NTRS)
1986-01-01
The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.
Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition
NASA Technical Reports Server (NTRS)
Ewing, Anthony; Adams, Charles
2004-01-01
Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.
NASA Technical Reports Server (NTRS)
Smith, Timothy A.
2012-01-01
The Fast Affordable Science and Technology Satellite (FASTSAT) project is a path finding effort to produce reliable satellite busses for different applications at an unprecedented speed and low cost. The project is designed to be a generational project and the first satellite produced is the Huntsville -01 (HSV-01) spacecraft. The subject of this report is the lessons learned gained during the development, testing, and up to the delivery of the FASTSAT HSV -01 spacecraft. The purpose of this report is to capture the major findings that will greatly benefit the future FASTSAT satellites and perhaps other projects interested in pushing the boundaries for cost and schedule. The FASTSAT HSV -01 primary objectives, success criteria, and team partners are summarized to give a frame of reference to the lessons learned.
Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
NASA Astrophysics Data System (ADS)
Werdell, J.
2016-12-01
The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.
Scientists’ Prioritization of Communication Objectives for Public Engagement
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists’ report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public’s trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869
Kronenfeld, Michael R.
2005-01-01
Objectives: The objective of this study was to identify trends in academic health sciences libraries (AHSLs) as they adapt to the shift from a print knowledgebase to an increasingly digital knowledgebase. This research was funded by the 2003 David A. Kronick Traveling Fellowship. Methods: The author spent a day and a half interviewing professional staff at each library. The questionnaire used was sent to the directors of each library in advance of the visit, and the directors picked the staff to be interviewed and set up the schedule. Results: Seven significant trends were identified. These trends are part of the shift of AHSLs from being facility and print oriented with a primary focus on their role as repositories of a print-based knowledgebase to a new focus on their role as the center or “nexus” for the organization, access, and use of an increasingly digital-based knowledgebase. Conclusion: This paper calls for a national effort to develop a new model or structure for health sciences libraries to more effectively respond to the challenges of access and use of a digital knowledgebase, much the same way the National Library of Medicine did in the 1960s and 1970s in developing and implementing the National Network of Libraries of Medicine. The paper then concludes with some examples or ideas for research to assist in this process. PMID:15685271
The Discovery Channel Telescope: Construction and Design Progress, January 2007
NASA Astrophysics Data System (ADS)
Bida, Thomas A.; Millis, R. L.; Smith, B. W.; Dunham, E. W.; Marshall, H.
2006-12-01
The Discovery Channel Telescope (DCT) is a 4.2m telescope under construction in northern Arizona. The DCT is located at a new site near Happy Jack at 2361m elevation, which was selected following a lengthy site testing campaign that demonstrated DIMM-characterized median ground-level seeing of 0.84-arcsec FWHM. The DCT science mission includes targeted studies of astrophysical and solar system objects utilizing RC and Nasmyth-mounted imaging and spectroscopic instrumentation, and wide-field surveys of KBO’s, NEA’s, and astrophysical objects with a 2-degree FOV prime focus camera. The DCT facility enclosure and control buildings will be completed soon, including the telescope mount and dome supports, major machinery infrastructure, the instrument laboratory, control and computer rooms, and the auxiliary building for the mirror coating plant. Meanwhile, the effort for final figuring and polishing of the 4.3m ULE meniscus primary mirror blank began in August 2006 at the University of Arizona College of Optical Sciences. The primary mirror and its design support, and the integrated telescope mount model, were finite-element analyzed to optimize the design of the mirror and top-end support configurations. The primary mirror axial and tangential actuators will be fabricated in early 2007 and utilized in the final figure and polish cycle. The prime focus camera design has been refined to achieve atmospheric dispersion-compensated 0.25-arcsec images at 1-degree field radius, from B to I-band, at reduced cost through simplification of glasses to standard types and utilization of spheres on all but two lens surfaces. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately conducted with the DCT. Lowell Observatory and Discovery Communications are actively seeking additional partners in the project; interested parties should contact R. L. Millis, Director.
What Is Science? Some Research from Primary Schools
ERIC Educational Resources Information Center
Crompton, Zoe
2013-01-01
By the end of primary school, we might expect children to be able to give a reasonable description of what science is. In their response to the question "What is science?", Eshach and Fried (2005) distinguish between conceptual and procedural knowledge and understanding. They explain that children's conceptual knowledge is developed…
Improving Primary Teachers' Attitudes toward Science by Attitude-Focused Professional Development
ERIC Educational Resources Information Center
van Aalderen-Smeets, Sandra I.; van der Molen, Juliette H. Walma
2015-01-01
This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers' personal attitudes toward science, attitudes toward teaching science, and their science…
Reflections on the Use of Tablet Technology
ERIC Educational Resources Information Center
Wise, Nicki; McGregor, Deb; Bird, James
2015-01-01
This article describes a recent Oxfordshire Big Science Event (BSE), which was combined with Science Week in Bure Park Primary School and involved a competition in which primary school children throughout Oxfordshire devised, carried out, and recorded data from science investigations to answer questions that interested them. Teams of children…
Investigative Primary Science: A Problem-Based Learning Approach
ERIC Educational Resources Information Center
Etherington, Matthew B.
2011-01-01
This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…
Prospective Primary Teachers' Self-Efficacy and Emotions in Science Teaching
ERIC Educational Resources Information Center
Brigido, Maria; Borrachero, Ana Belen; Bermejo, Maria Luisa; Mellado, Vicente
2013-01-01
The self-efficacy of prospective primary teachers was studied, considering in particular the relationship of that construct with the emotions they expect to experience as future science teachers, differentiating between when they will be teaching the content of the "nature sciences" (biology and geology) and that of the "hard…
Effect of a Science Diagram on Primary Students' Understanding About Magnets
NASA Astrophysics Data System (ADS)
Preston, Christine
2016-12-01
The research investigated the effect of a science diagram on primary students' conceptual understanding about magnets. Lack of research involving students of primary age means that little is known about the potential of science diagrams to help them understand abstract concepts such as magnetism. Task-based interviews were conducted individually with 19 year 3 and year 5 students from a single school. Data captured students' prior ideas about magnets and changes in their understanding in response to a diagram as the only intervention. Results revealed a variety of outcomes—conceptual understanding was enhanced, reduced, simultaneously enhanced and reduced or not changed. Particular diagram features constrained students' learning for some students. The study confirms the individual nature of primary students' learning and has implications for teachers about instructional methods using science diagrams.
Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan
NASA Astrophysics Data System (ADS)
Dick, G.; Munson, J.
2017-12-01
Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).
ERIC Educational Resources Information Center
Cole, Henry P.
This paper examines the sequence and hierarchy of objectives in the American Association for the Advancement of Science (AAAS) "Science--A Process Approach" curriculum. The work of Piaget, Bruner forms a framework from which the learning objectives and tasks in the AAAS science curriculum are examined. The points of correspondence…
Association of Psychologic and Nonpsychologic Factors With Primary Dysmenorrhea
Faramarzi, Mahbobeh; Salmalian, Hajar
2014-01-01
Background: Primary dysmenorrhea seems to be one the most common gynecologic condition in women of childbearing age. Objectives: The aim of this research was to evaluate psychologic and nonpsychologic risk factors of primary dysmenorrhea. Materials and Methods: A cross-sectional study was conducted on medical sciences students of Babol University of Medical Sciences. In this study, 180 females with dysmenorrhea and 180 females without dysmenorrhea were enrolled. Psychological risk factors were evaluated in four domains including affect, social support, personality, and alexithymia. Four questionnaires were used to assessed aforementioned domains, namely, Social Support Questionnaire (SSQ), depression, anxiety, stress (DAS-21), 20-item Toronto Alexithymia Scale (TAS-20), and NEO-Five Factor Inventory of Personality (NEO-FFI). In addition, nonpsychologic factors were evaluated in three domains including demographic characteristics, habits, and gynecologic factors. Data were analyzed using the χ2 test and multiple logistic regression analysis. Results: The strongest predictor of primary dysmenorrhea was low social support (OR = 4.25; 95% CI, 2.43-7.41). Risk of dysmenorrhea was approximately 3.3 times higher in women with alexithymia (OR = 3.26; 95% CI, 1.88-5.62), 3.1 times higher in women with menstrual bleeding duration ≥ 7 days (OR = 3.06; 95% CI, 1.73-5.41), 2.5 times higher in women with a neurotic character (OR = 2.53; 95% CI, 1.42-4.50), 2.4 times higher in women with a family history of dysmenorrhea (OR = 2.43; 95% CI, 1.42-4.50), and twice higher in women with high caffeine intake (OR = 1.97; 95% CI, 1.09-3.59). Conclusions: Low social support, alexithymia, neuroticism trait, long menstrual bleeding, family history of dysmenorrhea, and high-caffeine diet are important risk factors for women with primary dysmenorrhea. This study recommended considering psychologic factors as an adjuvant to medical risks in evaluation and treatment of primary dysmenorrhea. PMID:25389482
Biomedical Monitoring and Countermeasures Facility
NASA Technical Reports Server (NTRS)
Stewart, Donald F.
1992-01-01
The Space Station Freedom Program (SSFP) represents the transition within the US Space program from the 'heroic' era of space flight (characterized most vividly by the Mercury and Apollo programs) to an epoch characterized by routine access to the space environment. In this new era, the unique characteristics of the microgravity environment will enable new types of research activities, primarily in the life sciences, materials science, and biotechnology fields. In addition to its role as a'microgravity science laboratory,' Space Station Freedom (SSF) constitutes the operational platform on which the knowledge and skills needed to continue our exploration of space will be acquired. In the area of spacecraft operations, these skills include the ability to assemble, operate, and maintain large structures in space. In the area of crew operations, the potentially harmful effects of extended exposure to microgravity must be understood in order to keep the crew mission capable. To achieve this goal, the complex process of physiological deconditioning must be monitored, and countermeasures utilized as needed to keep the individual crew members within acceptable physiological limits. The countermeasures program under development for the SSF Program is titled the Biomedical Monitoring and Countermeasures (BMAC) program. As implied by the name, this activity has two primary products, a biomedical monitoring element and a countermeasures development effort. The program is a critical path element in the overall SSF Program, and should be considered an essential element of operations on board the space station. It is readily apparent that the capability to both protect and optimize the health and performance of the human operators on board SSF will be a critical element in the overall success of the SSFP. Previous experience within the Russian space program has demonstrated that the time required for countermeasures on extended missions can become a monumental operational burden. Therefore, one of the primary objectives of the countermeasures development activity will be to design and implement countermeasures which are significantly more effective than the existing generation. Other primary objectives include the following: to set health and human performance standards for all mission phases; to determine critical issues that affect performance or return to flight status; to develop and implement monitoring systems to follow health and performance status; and to understand risk, and balance the resource costs of countermeasures vs. the benefit gained.
ERIC Educational Resources Information Center
Dyasi, Hubert M.
This paper is concerned with the teaching-learning strategy of the Primary Science Project of the Science Education Program for Africa. It was presented in the 1976 seminar of the International Institute for Educational Planning (IIEP) of the UNESCO in Paris. The document includes six sections: (1) The concept of a strategy; (2) Description of the…
ERIC Educational Resources Information Center
Rollnick, Marissa; Dlamini, Betty T.; Bradley, John
2015-01-01
This paper investigates the process of teacher change in a group of 8 primary school teachers during their exposure to a science, technology and society (STS) approach to teaching Science in Swaziland. The research aimed to establish the effect of support given to teachers in using the approach through a series of workshops, followed by a 5-week…
STEREO SECCHI Observations of Space Debris: Are They Associated with S/WAVES Dust Detections?
NASA Astrophysics Data System (ADS)
St. Cyr, O. C.; Howard, R. A.; Wang, D.; Thompson, W. T.; Harrison, R. A.; Kaiser, M. L.
2007-12-01
White-light coronagraphs are optimized to reject stray light in order to accomplish their primary science objective - - the observation of coronal mass ejections (CMEs) and the corona. Because they were designed to detect these faint signals while pointing at the Sun, many spacebased coronagraphs in the past (Skylab, SMM, SOHO) have detected "debris" apparently associated with the vehicle. These appear to be sunlit particles very near the front of the telescope aperture (~meters). In at least one case, these earlier debris sightings were interpreted as deteriorating insulation from the thermal blankets on the spacecraft (St. Cyr and Warner, 1991ASPC...17..126S); and for the earlier Sklyab observations, the sightings were believed to be associated with water droplets (Eddy, "A New Sun: The Solar Results from Skylab", NASA SP-402, p119, 1979.) The STEREO SECCHI suite of white-light coronagraphs represents the most recent instantations of these specialized instruments, and for the first time we are able to track CMEs from their initiation at the Sun out to 1 A.U. Since observations commenced, the SECCHI white-light telescopes have been sporadically detecting debris particles. Most of the detections are individual or small numbers of bright objects in the field which therefore do not affect the primary science goals of the mission. But on several occasions in the eight months' of observation there have been "swarms" of these bright objects which completely obscure the field of view of one or more instrument for a brief period of time. Here we report on the intriguing possibility that the SECCHI debris sightings represent particles of thermal insulation, ejected from the spacecraft by interplanetary dust impacts. Because of the large field of view and high duty cycle of the Heliospheric Imagers on STEREO, we may be able to demonstrate that some of these have also been detected by STEREO S/WAVES as sporadic plasma emissions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... primary and national objectives and other program requirements. 570.901 Section 570.901 Housing and Urban... primary and national objectives and other program requirements. HUD will review each entitlement, Insular...)(3) that, consistent with the primary objective of the Act, not less than 70 percent of the aggregate...
Enquiry-Based Science in the Infant Classroom: "Letting Go"
ERIC Educational Resources Information Center
Byrne, Jenny; Rietdijk, Willeke; Cheek, Sue
2016-01-01
Enquiry-based science in primary classrooms is key to encouraging children's interest and curiosity about the world around them and as a result helps to stimulate their understanding and enjoyment of science. Yet many primary teachers lack the confidence to implement enquiry-based approaches effectively. The reasons are myriad and often result in…
Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas
ERIC Educational Resources Information Center
Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy
2015-01-01
This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…
ERIC Educational Resources Information Center
Bilgin, Ayse Aysin Bombaci; Date-Huxtable, Elizabeth; Coady, Carmel; Geiger, Vincent; Cavanagh, Michael; Mulligan, Joanne; Petocz, Peter
2017-01-01
Opening Real Science (ORS) is a three-year government initiative developed as part of the Mathematics and Science Teachers program. It is a collaboration across universities involving teacher educators, scientists, mathematicians, statisticians and educational designers aimed at improving primary and secondary pre-service teachers' competence and…
Science beyond the Classroom Boundaries
ERIC Educational Resources Information Center
Feasey, Rosemary; Bianchi, Lynne
2011-01-01
There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…
Atoms and Molecules: Do They Have a Place in Primary Science?
ERIC Educational Resources Information Center
Lee, Kam-Wah Lucille; Tan, Swee-Ngin
2004-01-01
In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…
Primary School Students' Views about Science, Technology and Engineering
ERIC Educational Resources Information Center
Pekmez, Esin
2018-01-01
Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…
The Influence of Primary Children's Ideas in Science on Teaching Practice.
ERIC Educational Resources Information Center
Akerson, Valarie L.; Flick, Lawrence B.; Lederman, Norman G.
2000-01-01
Explores how children's ideas in science affect elementary science instruction by investigating whether and how three primary teachers recognize and react to student ideas. Finds that the experienced teacher with the highest level of content knowledge had the largest repertoire for eliciting and addressing student ideas, and the intern teacher's…
Introducing the TAPS Pyramid Model
ERIC Educational Resources Information Center
Earle, Sarah
2015-01-01
The Teacher Assessment in Primary Science (TAPS) project is a three-year project based at Bath Spa University and funded by the Primary Science Teaching Trust (PSTT). It aims to develop support for a valid, reliable and manageable system of science assessment that will have a positive impact on children's learning. In this article, the author…
Effective Practical Work in Primary Science: The Role of Empathy
ERIC Educational Resources Information Center
Abrahams, Ian; Reiss, Michael
2010-01-01
"Getting Practical-Improving practical work in science" is a government-funded programme intended to improve the effectiveness and affective value of practical work in school science in England. In order to evaluate the effectiveness of the programme in terms of achieving its aims, ten primary and twenty secondary schools have been…
How Do Interest in Sciences Vary with Gender?
ERIC Educational Resources Information Center
Gafoor, K. Abdul
2011-01-01
This study explores interest in physics, chemistry and biology among school students in Kerala. It used a sample of 3236 (1659 boys, 1577 girls) students studying in upper primary to higher secondary classes. Three separate versions of scale of interest in science were used to quantify interest in science of upper primary, secondary and higher…
Meeting the Reading Challenges of Science Textbooks in the Primary Grades
ERIC Educational Resources Information Center
Bryce, Nadine
2011-01-01
Four primary grade teachers overcame challenges of textbook-based science reading through a focus on reading strategies and an emphasis on making meaning. Teachers used whole-class and small-group guided reading instruction to focus students on organizational and textual features of the science textbooks. They also used teacher-guided talk and…
Energy Decision Science and Informatics | Integrated Energy Solutions |
Science Advanced decision science methods include multi-objective and multi-criteria decision support. Our decision science methods, including multi-objective and multi-criteria decision support. For example, we
Lessons Learned from the Clementine Mission
NASA Technical Reports Server (NTRS)
1997-01-01
According to BMDO, the Clementine mission achieved many of its technology objectives during its flight to the Moon in early 1994 but, because of a software error, was unable to test the autonomous tracking of a cold target. The preliminary analyses of the returned lunar data suggest that valuable scientific measurements were made on several important topics but that COMPLEX's highest-priority objectives for lunar science were not achieved. This is not surprising given that the rationale for Clementine was technological rather than scientific. COMPLEX lists below a few of the lessons that may be learned from Clementine. Although the Clementine mission was not conceived as a NASA science mission exactly like those planned for the Discovery program, many operational aspects of the two are similar. It is therefore worthwhile to understand the strengths and faults of the Clementine approach. Some elements of the Clementine operation that led to the mission's success include the following: (1) The mission's achievements were the responsibility of a single organization and its manager, which made that organization and that individual accountable for the final outcome; (2) The sponsor adopted a hands-off approach and set a minimum number of reviews (three); (3) The sponsor accepted a reasonable amount of risk and allowed the project team to make the trade-offs necessary to minimize the mission's risks while still accomplishing all its primary objectives; and (4) The development schedule was brief and the agreed-on funding (and funding profile) was adhered to. Among the operational shortcomings of Clementine were the following: (1) An overly ambitious schedule and a slightly lean budget (meaning insufficient time for software development and testing, and leading ultimately to human exhaustion); and (2) No support for data calibration, reduction, and analysis. The principal lesson to be learned in this category is that any benefits from the constructive application of higher risk for lower cost and faster schedule will be lost if the schedule does not allow adequate time for the development of all essential systems or makes no allowance for human frailties. Another lesson to be drawn is that despite its limitations, if judged strictly as a science mission, Clementine attested that significant scientific information can be gathered during a technology-demonstration mission. In the current era of limited funds, when science missions will be infrequent, the opportunity to fly scientific instruments aboard missions whose objectives might be other than science must be seized and, indeed, encouraged. During such opportunities it would be inexcusable to do second-class science. Thus the scientific community must be actively involved in such projects from their initiation.
ERIC Educational Resources Information Center
Utica City School District, NY.
Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science, earth science) and grade level. In grades K-6, objectives for topics of science study include conditions for plants and animals to live, adaptation, conservation,…
NASA Technical Reports Server (NTRS)
Beaton, Kara H.; Chappell, Steven P.; Abercromby, Andrew F. J.; Lim, Darlene S. S.
2018-01-01
The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a four-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. The BASALT project has incorporated three field deployments during which real (non-simulated) biological and geochemical field science have been conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication delays and data transmission limitations. BASALT's primary Science objective has been to extract basaltic samples for the purpose of investigating how microbial communities and habitability correlate with the physical and geochemical characteristics of chemically altered basalt environments. Field sites include the active East Rift Zone on the Big Island of Hawai'i, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALT's primary Science Operations objective has been to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment has consisted of ten extravehicular activities (EVAs) on the volcanic flows in which crews of two extravehicular and two intravehicular crewmembers conducted the field science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15 min one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions were evaluated. EVA crewmembers communicated with the MSC via voice and text messaging. They also provided scientific instrument data, still imagery, video streams from chest-mounted cameras, GPS location tracking information. The MSC monitored and reviewed incoming data from the field across delay and provided recommendations for pre-sampling and sampling tasks based on their collective expertise. The scientists used dynamic priority ranking lists, referred to as dynamic leaderboards, to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards throughout the EVA were relayed regularly to the IV crewmembers. The use of these leaderboards enabled the crew to track the dynamic nature of the MSC recommendations and helped minimize crew idle time (defined as time spent waiting for input from Earth during which no other productive tasks are being performed). EVA timelines were strategically designed to enable continuous (delayed) feedback from an Earth-based Science Team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA timeline data, ground assimilation times (defined as the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions.
Group Investigation Teaching Technique in Turkish Primary Science Courses
ERIC Educational Resources Information Center
Aksoy, Gokhan; Gurbuz, Fatih
2013-01-01
This study examined the effectiveness of group investigation teaching technique in teaching "Light" unit 7th grade primary science education level. This study was carried out in two different classes in the Primary school during the 2011-2012 academic year in Erzurum, Turkey. One of the classes was the Experimental Group (group…
Making More Effective Use of Moderation
ERIC Educational Resources Information Center
Rodger, Pauline
2018-01-01
Holt Primary School is a village school in which teachers work as a team within a climate of respect and trust. The teachers were fortunate to take part in the Bath Spa TAPS (Teacher Assessment in Primary Science) research project, which also overlapped with undertaking Gold PSQM (Primary Science Quality Mark). As a result, teacher confidence in…
Promoting Science and Technology in Primary Education: A Review of Integrated Curricula
ERIC Educational Resources Information Center
Gresnigt, Rens; Taconis, Ruurd; van Keulen, Hanno; Gravemeijer, Koeno; Baartman, Liesbeth
2014-01-01
Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from 1994 to 2011. The integrated curricula were…
Understanding Teacher Expertise in Primary Science: A Sociocultural Approach
ERIC Educational Resources Information Center
Traianou, Anna
2006-01-01
In recent years much emphasis has been placed, both by researchers and by policy-makers, on the role that subject knowledge plays in the classroom practice of primary teachers. Within UK research on primary science education, this emphasis is often linked with constructivist ideas about effective teaching. In this article, I explore the…
What Teachers Want: Supporting Primary School Teachers in Teaching Science
ERIC Educational Resources Information Center
Fitzgerald, Angela; Schneider, Katrin
2013-01-01
Impending change can provide us with the opportunity to rethink and renew the things that we do. The first phase of the Australian Curriculum implementation offers primary school teachers the chance to examine their approaches to science learning and teaching. This paper focuses on the perceptions of three primary school teachers regarding what…
Primary Teacher Trainees Preparedness to Teach Science: A Gender Perspective
ERIC Educational Resources Information Center
Mutisya, Sammy M.
2015-01-01
The purpose of this study was to determine Primary Teacher Education (PTE) Trainees' perceptions regarding their preparedness to teach science in primary schools. A descriptive survey research design was used and stratified proportionate random sampling techniques used to select 177 males and 172 females. The study found out that more male trainee…
Footprints, Fireflies and Flight: Primary Science Magic.
ERIC Educational Resources Information Center
Fine, Edith H.; Josephson, Judith P.
1984-01-01
Provides primary grade level science activities that focus on insects, tracks and trails, water, and flight. For each topic, six major ideas plus related activities and suggestions about resources are given. (RH)
International Space Station Research and Facilities for Life Sciences
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Ruttley, Tara M.
2009-01-01
Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
NASA Astrophysics Data System (ADS)
Contreras Flores, Rubén; Villeda Muñoz, Gabriel
2007-03-01
Science and technology disclosure is an integral part of our scientific work as researches; it is an induction process for children, young people and teachers of primary and secondary schools in the state of Queretaro. Education must be offered in a clear and objective way, it allows to the students apply the acquired knowledge to understand the world and improve his quality of life. Nowadays, the Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada of the Instituto Politecnico Nacional Unidad Queretaro (CICATA-IPN Queretaro) together with the Consejo de Ciencia y Tecnologia del Estado de Queretaro (CONCYTEQ) have implemented the "Science and Technology for Children" program (Ciencia y Tecnologia para Ninos - CTN), it allows to the educative sector obtain information through the CONCYTEQ web page. The fist stage of the program was the development of two subjects: the brochure titled "Petroleum, Nonrenewable Natural Resource that Moves the World" and the manual "Experiments of Physics". At the moment we are working with the second stage of the program, it is about the energy generation using renewable sources such as: geothermal, aeolian, solar and biomass. The CTN program allows to students and teachers to create conscience about the importance of the development of the science of technology in our country.
NASA Technical Reports Server (NTRS)
Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.;
2011-01-01
In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge
1993-01-01
This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.
2011-08-25
Maria Zuber, GRAIL principal investigator, Massachusetts Institute of Technology, Cambridge, answers a reporter's question at a press briefing about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)
KEY ITEMS OF INNOVATION MANAGEMENT IN THE PRIMARY HEALTHCARE CENTRES CASE STUDY: FINLAND.
Aslani, Alireza; Zolfagharzadeh, Mohammad Mahdi; Naaranoja, Marja
2015-09-01
Trends such as aging populations, excess costs, rising public expectations, and progress in medical science and technologies point out the necessity of adaptation and development of innovation in the healthcare systems particularly in developed countries. The main objective of this article is to review diffusion of innovation in the healthcare sector. Different types of innovation, diffusion characteristics, and adoption mechanisms are the subjects that are discussed in the selected case study, Finland. Finally, the key items of innovation management in the Finnish health system are introduced. The results can be implemented in other countries as well.
2011-08-25
David Lehman, GRAIL project manager, NASA's Jet Propulsion Laboratory, Pasadena, Calif., speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)
CURIE: Cubesat Radio Interferometry Experiment
NASA Astrophysics Data System (ADS)
Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.
2016-12-01
The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.
NASA Technical Reports Server (NTRS)
Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.
2017-01-01
Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives.
The inseparable role of emotions in the teaching and learning of primary school science
NASA Astrophysics Data System (ADS)
Siry, Christina; Brendel, Michelle
2016-09-01
In this paper, we seek to explore the inseparable role of emotions in the teaching and the learning of science at the primary school level, as we elaborate the theoretical underpinnings and personal experiences that lead us to this notion of inseparability. We situate our perspectives on the complexity of science education in primary schools, draw on existing literature on emotions in science, and present arguments for the necessity of working towards positive emotions in our work with young children and their teachers. We layer our own perspectives and experiences as teachers and as researchers onto methodological arguments through narratives to emerge with a reflective essay that seeks to highlight the importance of emotions in our work with children and their teachers in elementary school science.
NASA Astrophysics Data System (ADS)
Goodale, T. A.
2016-02-01
Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and coastal resources. 11/14 teacher participants established citizen science clubs that focused on marine related issues. Science fair participation increased by 42% and of those students whose mentor teacher was a project participant 90% stated they would likely pursue a marine science related major in college.
ERIC Educational Resources Information Center
Okere, Mark I. O.; Keraro, Fred N.; Anditi, Zephania
2012-01-01
Emerging evidence indicates that culture influences pupils learning of science. However, the influence of culture on science learning is usually not considered when developing science curricular for both primary and secondary schools. This study investigated the extent to which primary and secondary school pupils believe in cultural…
Development of Science Anxiety Scale for Primary School Students
ERIC Educational Resources Information Center
Guzeller, Cem Oktay; Dogru, Mustafa
2012-01-01
The principal aim of the study is to develop a new scale Science Anxiety Scale and to examine its the psychometric properties and construct validity of the Science Anxiety Scale in a sample of 797 primary school students. Exploratory factor analysis was applied and found to have a two-dimensional structure. Confirmatory factor analyses provide…
ERIC Educational Resources Information Center
Gillen, J.; Littleton, K.; Twiner, A.; Staarman, J. K.; Mercer, N.
2008-01-01
All communication is inherently multimodal, and understandings of science need to be multidimensional. The interactive whiteboard offers a range of potential benefits to the primary science classroom in terms of relative ease of integration of a number of presentational and ICT functions, which, taken together, offers new opportunities for…
Science in the Scottish Primary School Curriculum
ERIC Educational Resources Information Center
Peacock, Alan
2005-01-01
When one begins to look at science in primary schools elsewhere, one is immediately struck by the fact that those in England are the odd-ones-out. Hence this is the second in a series of articles looking at how science is dealt with in other systems, beginning with England's immediate neighbours and then looking outwards towards school systems in…
Inquiry-Based Science Education: Towards a Pedagogical Framework for Primary School Teachers
ERIC Educational Resources Information Center
van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke
2016-01-01
Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open…
Reflecting on Teaching of the "Appliance of Science"
ERIC Educational Resources Information Center
Linfield, Rachel
2016-01-01
As a primary school teacher, Rachel Linfield has always been insistent that her students were taught and understood the use behind a particular science fact or process. These days, however, she finds very few students who can recall a single useful science fact that they learned in primary school. Linfield wonders if teaching of the National…
The Art and Science Connection. Hands-On Activities for Primary Students.
ERIC Educational Resources Information Center
Tolley, Kimberley
Most people think that the artist and the scientist live in two totally different worlds. However, art and science are only two different ways of understanding and knowing the world. To help primary students make a connection between art and science, a collection of hands-on activities have been developed. By engaging in these activities that…
Teaching Primary Science: Emotions, Identity and the Use of Practical Activities
ERIC Educational Resources Information Center
Cripps Clark, John; Groves, Susie
2012-01-01
This paper uses cultural historical activity theory to examine the interactions between the choices primary teachers make in the use of practical activities in their teaching of science and the purposes they attribute to these; their emotions, background and beliefs; and the construction of their identities as teachers of science. It draws on four…
Supporting Staff to Develop a Shared Understanding of Science Assessment
ERIC Educational Resources Information Center
Sampey, Carol
2018-01-01
Assessment is not something that stands alone and teachers need support to develop their understanding of both assessment practices and the subject being assessed. Teachers at Shaw Primary School were fortunate to take part in the Teacher Assessment in Primary Science (TAPS) project and, in this article, the outlines how science and assessment can…
ERIC Educational Resources Information Center
H?ng, Ngô Vu Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert
2015-01-01
Social constructivism has been increasingly studied and implemented in science school education. Nevertheless, there is a lack of holistic studies on the implementation of social constructivist approach in primary science education in Confucian heritage culture. This study aims to determine to what extent a social constructivist approach is…
Question Stems and Stories to Stimulate Science!
ERIC Educational Resources Information Center
Smith, Suzanne
2010-01-01
Fox Hill Primary School is part of a family of schools in Sheffield that is piloting the Specialist Schools and Academies Trust Primary Specialism for Science. In parallel to this work, Fox Hill participated in the Smarter Schools project from September 2008-2009. This project, funded by the AstraZeneca Science Teaching Trust, was set up by the…
Co-Teaching as an Approach to Enhance Science Learning and Teaching in Primary Schools
ERIC Educational Resources Information Center
Murphy, Colette; Beggs, Jim
2006-01-01
In this article, we explore some of the experiences of student teachers, classroom teachers, science teacher educators, and children in co-teaching contexts in primary schools. The model of co-teaching adopted enabled student teachers (science specialist), classroom teachers, and university tutors to share expertise and work as equals, without…
ERIC Educational Resources Information Center
Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar
2018-01-01
The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…
ASE and Primary School Science
ERIC Educational Resources Information Center
Harlen, Wynne
2013-01-01
This article focuses on the role of the Association for Science Education (ASE) in supporting and developing policy and practice in primary school science. It first sets the events after the formation of ASE in 1963 in the context of what went before. It then takes a mainly chronological view of some, but by no means all, of ASE's activities…
Integrating STEM into the Primary School Curriculum
ERIC Educational Resources Information Center
Qureshi, Asima
2015-01-01
Science has always been a valued subject at Meadowbrook Primary School, and the head teacher has a real vision for the school to embrace engineering as part of the science curriculum to give the children the opportunity to be more creative with their projects. To get started, teachers attended an engineering workshop run by Science Oxford Schools…
NASA Astrophysics Data System (ADS)
Capak, P.; Mobasher, B.; Scoville, N. Z.; McCracken, H.; Ilbert, O.; Salvato, M.; Menéndez-Delmestre, K.; Aussel, H.; Carilli, C.; Civano, F.; Elvis, M.; Giavalisco, M.; Jullo, E.; Kartaltepe, J.; Leauthaud, A.; Koekemoer, A. M.; Kneib, J.-P.; LeFloch, E.; Sanders, D. B.; Schinnerer, E.; Shioya, Y.; Shopbell, P.; Tanaguchi, Y.; Thompson, D.; Willott, C. J.
2011-04-01
We present three bright z +-dropout candidates selected from deep near-infrared (NIR) imaging of the COSMOS 2 deg2 field. All three objects match the 0.8-8 μm colors of other published z > 7 candidates but are 3 mag brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02 μm with Keck-DEIMOS and all three covering 0.94-1.10 μm and 1.52-1.80 μm with Keck-NIRSPEC detects weak spectral features tentatively identified as Lyα at z = 6.95 and z = 7.69 in two of the objects. The third object is placed at z ~ 1.6 based on a 24 μm and weak optical detection. A comparison with the spectral energy distributions of known z < 7 galaxies, including objects with strong spectral lines, large extinction, and large systematic uncertainties in the photometry, yields no objects with similar colors. However, the λ > 1 μm properties of all three objects can be matched to optically detected sources with photometric redshifts at z ~ 1.8, so the non-detection in the i + and z + bands is the primary factor which favors a z > 7 solution. If any of these objects are at z ~ 7, the bright end of the luminosity function is significantly higher at z > 7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman break selection must be contaminated by a previously unknown population of low-redshift objects with very strong breaks in their broadband spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift are discussed. We show that the primary limitation of z > 7 galaxy searches with broad filters is the depth of the available optical data. Based on observations with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration and made possible by the generous financial support of the W. M. Keck Foundation; the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA; the Canada-France-Hawaii Telescope with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; the United Kingdom Infrared Telescope operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K; the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the National Research Council of Canada, the Canadian Astronomy Data Centre, the Centre National de la Recherche Scientifique de France, TERAPIX and the University of Hawaii; the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS5-26555; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060; the National Radio Astronomy Observatory which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; the 30 m telescope of the Institute for Radioastronomy at Millimeter Wavelengths (IRAM), which is funded by the German Max-Planck-Society, the French CNRS, and the Spanish National Geographical Institute.
Flower, Emily; Jones, Darryl; Bernede, Lilia
2016-07-14
The acceptance and application of citizen science has risen over the last 10 years, with this rise likely attributed to an increase in public awareness surrounding anthropogenic impacts affecting urban ecosystems. Citizen science projects have the potential to expand upon data collected by specialist researchers as they are able to gain access to previously unattainable information, consequently increasing the likelihood of an effective management program. The primary objective of this research was to develop guidelines for a successful regional-scale citizen science project following a critical analysis of 12 existing citizen science case studies. Secondly, the effectiveness of these guidelines was measured through the implementation of a citizen science project, Koala Quest, for the purpose of estimating the presence of koalas in a fragmented landscape. Consequently, this research aimed to determine whether citizen-collected data can augment traditional science research methods, by comparing and contrasting the abundance of koala sightings gathered by citizen scientists and professional researchers. Based upon the guidelines developed, Koala Quest methodologies were designed, the study conducted, and the efficacy of the project assessed. To combat the high variability of estimated koala populations due to differences in counting techniques, a national monitoring and evaluation program is required, in addition to a standardised method for conducting koala population estimates. Citizen science is a useful method for monitoring animals such as the koala, which are sparsely distributed throughout a vast geographical area, as the large numbers of volunteers recruited by a citizen science project are capable of monitoring a similarly broad spatial range.
International Cooperation of Payload Operations on the International Space Station
NASA Technical Reports Server (NTRS)
Melton, Tina; Onken, Jay
2003-01-01
One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.
Understanding Primary Science: Ideas, Concepts and Explanations. Second Edition
ERIC Educational Resources Information Center
Wenham, Martin
2005-01-01
This book has been written to help teachers develop the background knowledge and understanding needed to teach science effectively at primary level. It is intended principally as a resource in attempting to set out facts, develop concepts, and explain theories which primary teachers may find it useful to know and understand in order to plan…
ERIC Educational Resources Information Center
Summers, Mike; Kruger, Colin; Childs, Ann; Mant, Jenny
2001-01-01
Uses a questionnaire to explore understanding in practicing primary school teachers (n=170), primary trainees (n= 120), and secondary science trainees (n=88) in the areas of biodiversity, carbon cycle, ozone, and global warming. Suggests that both basic explanations and difficulties in understanding of teachers in some areas can usefully inform…
ERIC Educational Resources Information Center
Ferreira, Maria Eduarda; Porteiro, Ana Cláudia; Pitarma, Rui
2015-01-01
The Environmental Studies curricular area, taught at primary school level in Portugal, is a challenging context for curricular interdisciplinarity and the achievement of small-scale research and creative and innovative experiences, inside and outside the classroom. From that assumption, we present, under the master course of primary teacher…
ERIC Educational Resources Information Center
Fadzil, Hidayah Mohd; Saat, Rohaida Mohd
2014-01-01
This paper discusses the contributing factors that influence students' acquisition of manipulative skills. Incompetence in manipulative skills in science at a primary level may impede science learning at secondary school. Thus, to confront these issues, an in-depth study was conducted. The research involved 10 primary school students who were…
Comet nucleus sample return mission
NASA Technical Reports Server (NTRS)
1983-01-01
A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.
The Sunrise project: An R&D project for a national information infrastructure prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhnyoung
1995-02-01
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to a prototype National Information Infrastructure (NII) development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multimedia technologies, and data mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; and (3) To define a new way of collaboration between computer science and industrially relevant research.« less
A network-based distributed, media-rich computing and information environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, R.L.
1995-12-31
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less
NASA Astrophysics Data System (ADS)
Downs, R. R.; Peng, G.; Wei, Y.; Ramapriyan, H.; Moroni, D. F.
2015-12-01
Earth science data products and services are being used by representatives of various science and social science disciplines, by planning and decision-making professionals, by educators and learners ranging from primary through graduate and informal education, and by the general public. The diversity of users and uses of Earth science data is gratifying and offers new challenges for enabling the usability of these data by audiences with various purposes and levels of expertise. Users and other stakeholders need capabilities to efficiently find, explore, select, and determine the applicability and suitability of data products and services to meet their objectives and information needs. Similarly, they need to be able to understand the limitations of Earth science data, which can be complex, especially when considering combined or simultaneous use of multiple data products and services. Quality control efforts of stakeholders, throughout the data lifecycle, can contribute to the usability of Earth science data to meet the needs of diverse users. Such stakeholders include study design teams, data producers, data managers and curators, archives, systems professionals, data distributors, end-users, intermediaries, sponsoring organizations, hosting institutions, and others. Opportunities for engaging stakeholders to review, describe, and improve the quality of Earth science data products and services throughout the data lifecycle are identified and discussed. Insight is shared from the development of guidelines for implementing the Group on Earth Observations (GEO) Data Management Principles, the recommendations from the Earth Science Data System Working Group (ESDSWG) on Data Quality, and the efforts of the Information Quality Cluster of the Federation of Earth Science Information Partners (ESIP). Examples and outcomes from quality control efforts of data facilities, such as scientific data centers, that contribute to the usability of Earth science data also are offered.
Heroin-assisted Treatment (HAT) a Decade Later: A Brief Update on Science and Politics
Oviedo-Joekes, Eugenia; Blanken, Peter; Haasen, Christian; Rehm, Jürgen; Schechter, Martin T.; Strang, John; van den Brink, Wim
2007-01-01
Since the initial Swiss heroin-assisted treatment (HAT) study conducted in the mid-1990s, several other jurisdictions in Europe and North America have implemented HAT trials. All of these studies embrace the same goal—investigating the utility of medical heroin prescribing for problematic opioid users—yet are distinct in various key details. This paper briefly reviews (initiated or completed) studies and their main parameters, including primary research objectives, design, target populations, outcome measures, current status and—where available—key results. We conclude this overview with some final observations on a decade of intensive HAT research in the jurisdictions examined, including the suggestion that there is a mounting onus on the realm of politics to translate the—largely positive—data from completed HAT science into corresponding policy and programming in order to expand effective treatment options for the high-risk population of illicit opioid users. PMID:17562183
Virtual Presence: One Step Beyond Reality
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann
1997-01-01
Our primary objective was to team up a group consisting of scientists and engineers from two different NASA cultures, and simulate an interactive teleoperated robot conducting geologic field work on the Moon or Mars. The information derived from the experiment will benefit both the robotics team and the planetary exploration team in the areas of robot design and development, and mission planning and analysis. The Earth Sciences and Space and Life Sciences Division combines the past with the future contributing experience from Apollo crews exploring the lunar surface, knowledge of reduced gravity environments, the performance limits of EVA suits, and future goals for human exploration beyond low Earth orbit. The Automation, Robotics. and Simulation Division brings to the table the technical expertise of robotic systems, the future goals of highly interactive robotic capabilities, treading on the edge of technology by joining for the first time a unique combination of telepresence with virtual reality.
Three years of Transients with Fermi GBM
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2012-01-01
The Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument, sensitive between 8 keV and 40 MeV, with a primary objective of supporting the Large Area Telescope (LAT) in observations of Gamma-Ray Bursts (GRBs). Both instruments are part of the Fermi Gamma-ray Space Telescope. Together, the GBM and LAT instruments have provided ground-breaking measurements of GRBs that have, after 10 years of focus on GRB afterglows, inspired renewed interest in the prompt emission phase of GRBs and the physical mechanisms that fuel them. In addition to GRB science, GBM has made significant contributions to the astrophysics of galactic transient sources including long-term variations in the Crab nebula, spin state transitions in accretion powered pulsars, state transitions in black hole X-ray binaries, and unprecedented time-resolved spectral studies of soft gamma-ray repeater bursts. Closer to home, GBM also contributes to solar flare and terrestrial gamma flash science.
The CAnadian NIRISS Unbiased Cluster Survey (CANUCS)
NASA Astrophysics Data System (ADS)
Ravindranath, Swara; NIRISS GTO Team
2017-06-01
CANUCS GTO program is a JWST spectroscopy and imaging survey of five massive galaxy clusters and ten parallel fields using the NIRISS low-resolution grisms, NIRCam imaging and NIRSpec multi-object spectroscopy. The primary goal is to understand the evolution of low mass galaxies across cosmic time. The resolved emission line maps and line ratios for many galaxies, with some at resolution of 100pc via the magnification by gravitational lensing will enable determining the spatial distribution of star formation, dust and metals. Other science goals include the detection and characterization of galaxies within the reionization epoch, using multiply-imaged lensed galaxies to constrain cluster mass distributions and dark matter substructure, and understanding star-formation suppression in the most massive galaxy clusters. In this talk I will describe the science goals of the CANUCS program. The proposed prime and parallel observations will be presented with details of the implementation of the observation strategy using JWST proposal planning tools.
1990-12-03
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is Jack Jones in the Mission Manager Area.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective of the University of Colorado Advanced Mission Design Program is to define the characteristics and evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, an L1 space station, and a transportation system that anchors these elements to a low Earth orbit (LEO) station. The motivation of this project was based on the idea that a near-Earth space infrastructure is not an end but an important step in a larger plan to expand man's capabilities in space science and technology. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as facilitating the full exploration of the potential for science and industry on the lunar surface. This paper will provide a sound rationale and a detailed scenario in support of the cislunar infrastructure design.
Mission Manager Area of the Spacelab Payload Operations Control Center (SL POCC)
NASA Technical Reports Server (NTRS)
1990-01-01
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is Jack Jones in the Mission Manager Area.
NASA Technical Reports Server (NTRS)
Cintala, M. J.; Durda, D. D.; Housen, K. R.
2005-01-01
Other than remote-sensing and spacecraft-derived data, the only information that exists regarding the physical and chemical properties of asteroids is that inferred through calculations, numerical simulations, extrapolation of experiments, and meteorite studies. Our understanding of the dynamics of accretion of planetesimals, collisional disruption of asteroids, and the macroscopic, shock-induced modification of the surfaces of such small objects is also, for the most part, founded on similar inferences. While considerable strides have been made in improving the state of asteroid science, too many unknowns remain to assert that we understand the parameters necessary for the more practical problem of deflecting an asteroid or asteroid pair on an Earth-intersecting trajectory. Many of these deficiencies could be reduced or eliminated by intentionally deorbiting an asteroidal satellite and monitoring the resulting collision between it and the primary asteroid, a capability that is well within the limitations of current technology.
On sky testing of the SOFIA telescope in preparation for the first science observations
NASA Astrophysics Data System (ADS)
Harms, Franziska; Wolf, Jürgen; Waddell, Patrick; Dunham, Edward; Reinacher, Andreas; Lampater, Ulrich; Jakob, Holger; Bjarke, Lisa; Adams, Sybil; Grashuis, Randy; Meyer, Allan; Bower, Kenneth; Schweikhard, Keith; Keilig, Thomas
2009-08-01
SOFIA, the Stratospheric Observatory for Infrared Astronomy, is an airborne observatory that will study the universe in the infrared spectrum. A Boeing 747-SP aircraft will carry a 2.5 m telescope designed to make sensitive infrared measurements of a wide range of astronomical objects. In 2008, SOFIA's primary mirror was demounted and coated for the first time. After reintegration into the telescope assembly in the aircraft, the alignment of the telescope optics was repeated and successive functional and performance testing of the fully integrated telescope assembly was completed on the ground. The High-speed Imaging Photometer for Occultations (HIPO) was used as a test instrument for aligning the optics and calibrating and tuning the telescope's pointing and control system in preparation for the first science observations in flight. In this paper, we describe the mirror coating process, the subsequent telescope testing campaigns and present the results.
International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Davila, Joseph M.
2010-01-01
The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.
1990-12-07
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. This photo is of Space classroom students in the Discovery Optics Lab at MSFC during STS-35, ASTRO-1 mission payload operations.
1990-12-03
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is the TV OPS area of the SL POCC.
Communicating LightSail: Embedded Reporting and Web Strategies for Citizen-Funded Space Missions
NASA Astrophysics Data System (ADS)
Hilverda, M.; Davis, J.
2015-12-01
The Planetary Society (TPS) is a non-profit space advocacy group with a stated mission to "empower the world's citizens to advance space science and exploration." In 2009, TPS began work on LightSail, a small, citizen-funded spacecraft to demonstrate solar sailing propulsion technology. The program included a test flight, completed in June 2015, with a primary mission slated for late 2016. TPS initiated a LightSail public engagement campaign to provide the public with transparent mission updates, and foster educational outreach. A credentialed science journalist was given unrestricted access to the team and data, and provided regular reports without editorial oversight. An accompanying website, sail.planetary.org, provided project updates, multimedia, and real-time spacecraft data during the mission. Design approaches included a clean layout with text optimized for easy reading, balanced by strong visual elements to enhance reader comprehension and interest. A dedicated "Mission Control" page featured social media feeds, links to most recent articles, and a ground track showing the spacecraft's position, including overflight predictions based on user location. A responsive, cross-platform design allowed easy access across a broad range of devices. Efficient web server performance was prioritized by implementing a static content management system (CMS). Despite two spacecraft contingencies, the test mission successfully completed its primary objective of solar sail deployment. Qualitative feedback on the transparent, embedded reporting style was positive, and website metrics showed high user retention times. The website also grew awareness and support for the primary 2016 mission, driving traffic to a Kickstarter campaign that raised $1.24 million. Websites constantly evolve, and changes for the primary mission will include a new CMS to better support multiple authors and a custom dashboard to display real-time spacecraft sensor data.
STS-45 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1992-01-01
The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).
STS-45 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1992-05-01
The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).
Linking Science with Design and Technology in a Stimulating Approach to Teaching about Levers
ERIC Educational Resources Information Center
Davenport, Carol
2015-01-01
Changes in the National Curriculum for England in 2014 included the introduction of levers, gears, and pulleys into primary science. Although simple mechanisms had been part of the design and technology (DT) curriculum for some time, it was the first time that the science behind the mechanisms had been included at the primary school level. These…
ERIC Educational Resources Information Center
Yalcin, Fatma Aggul; Yalcin, Mehmet
2017-01-01
The purpose of the study was to explore Turkish primary science teacher candidates' understanding of global warming and ozone layer depletion. In the study, as the research approach the survey method was used. The sample consisted of one hundred eighty nine third grade science teacher candidates. Data was collected using the tool developed by the…
ERIC Educational Resources Information Center
Stolberg, Tonie L.
2008-01-01
Analysis of the attitudes of 140 pre-service primary teachers, and of extended interviews with 15 of these prospective teachers, indicates differences in the ways pre-service teachers use science in their heuristic reasoning and their ability and/or willingness to include a spiritual dimension in their science teaching. These differences were a…
ERIC Educational Resources Information Center
Lee, Yew-Jin; Kim, Mijung; Yoon, Hye-Gyoung
2015-01-01
While there has been a remarkable worldwide convergence in the emphases of primary science curricula over the last four decades, the cognitive and knowledge demands that they make on learners have not been well-researched. Without knowing what these intellectual or epistemic requirements are when learning science in school, issues concerning…
Science Content Knowledge: A Component of Teacher Effectiveness in A Primary School in Jamaica
ERIC Educational Resources Information Center
Robinson, Euphemia
2017-01-01
Empirical evidence from the National Education Inspectorate suggested that teachers at the primary school in this study in an island country in the Caribbean have inadequate science content knowledge. Students' average performance on the science Grade Six Achievement Test (GSAT) has been below 40% for the last 5 years. The purpose of this bounded…
Teachers' Beliefs and Self-Reported Use of Inquiry in Science Education in Public Primary Schools
ERIC Educational Resources Information Center
Lucero, Maria; Valcke, Martin; Schellens, Tammy
2013-01-01
This paper describes Ecuadorian in-service teachers and their science teaching practices in public primary schools. We wanted to find out to what extent teachers implement inquiry activities in science teaching, the level of support they provide, and what type of inquiry they implement. Four questionnaires applied to 173 teachers resulted in the…
ERIC Educational Resources Information Center
Murphy, Clíona; Smith, Greg; Varley, Janet; Razi, Özge
2015-01-01
This study investigates how a two-year continuing professional development (CPD) programme, with an emphasis on teaching about science through inquiry, impacted the experiences of, approaches to and attitudes towards teaching science of 17 primary teachers in Dublin. Data sources included interview, questionnaire and reflective journal strategies.…
Analysis of Primary School Student's Science Learning Anxiety According to Some Variables
ERIC Educational Resources Information Center
Karakaya, Ferhat; Avgin, Sakine Serap; Kumperli, Ethem
2016-01-01
On this research, it is analyzed if the science learning anxiety level shows difference according to variables which are gender, grade level, science lesson grade, mother education, father education level. Scanning Design is used for this study. Research working group is consisted of 294 primary school from 6th, 7th and 8th graders on 2015-2016…
Educating the Whole Child through Science: A Portrait of an Exemplary Primary Science Teacher
ERIC Educational Resources Information Center
Tytler, Russell; Clark, John Cripps; Darby, Linda
2009-01-01
This article describes the primary science practice of one teacher as a picture of exemplary professional practice. The teacher, Suzanne Peterson, was a colleague and friend. Her untimely death earlier this year was regarded by those who knew her as a tragic loss to education. As it happens, we have access to many sources of information about…
The Use of CASE to Bridge the Transition between Primary and Secondary School Science in Ireland
ERIC Educational Resources Information Center
McCormack, Lorraine
2016-01-01
This article describes how the Cognitive Acceleration through Science Education (CASE) programme was implemented in the final year of primary school and the first year of secondary school in a number of schools in Ireland. The original CASE programme, pioneered in the 1980s, proved successful in its aim to develop the science-reasoning abilities…
Inquiry and groups: student interactions in cooperative inquiry-based science
NASA Astrophysics Data System (ADS)
Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.
2016-03-01
Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher's interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.
The science of human factors: separating fact from fiction
Russ, Alissa L; Fairbanks, Rollin J; Karsh, Ben-Tzion; Militello, Laura G; Saleem, Jason J; Wears, Robert L
2013-01-01
Background Interest in human factors has increased across healthcare communities and institutions as the value of human centred design in healthcare becomes increasingly clear. However, as human factors is becoming more prominent, there is growing evidence of confusion about human factors science, both anecdotally and in scientific literature. Some of the misconceptions about human factors may inadvertently create missed opportunities for healthcare improvement. Methods The objective of this article is to describe the scientific discipline of human factors and provide common ground for partnerships between healthcare and human factors communities. Results The primary goal of human factors science is to promote efficiency, safety and effectiveness by improving the design of technologies, processes and work systems. As described in this article, human factors also provides insight on when training is likely (or unlikely) to be effective for improving patient safety. Finally, we outline human factors specialty areas that may be particularly relevant for improving healthcare delivery and provide examples to demonstrate their value. Conclusions The human factors concepts presented in this article may foster interdisciplinary collaborations to yield new, sustainable solutions for healthcare quality and patient safety. PMID:23592760
International Space Station (ISS)
2002-07-10
Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
Deep Space 2: The Mars Microprobe Mission
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana
The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.
1990-12-12
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE data review at the Science Operations Area during the mission.
1990-12-02
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of BBKRT data review in the Science Operations Area during the mission.
The Early Years: Science Tickets
ERIC Educational Resources Information Center
Ashbrook, Peggy
2007-01-01
Teachers can spark interest in a science topic by using "science tickets"--special objects offered to children as a way to transition to the science room or into a small group to do a science activity. Objects ranging from ordinary (shells, leaves, or sticks) to unusual (photos, crystals, or plastic worms) appeal to young children's curiosity and…
Matrix evaluation of science objectives
NASA Technical Reports Server (NTRS)
Wessen, Randii R.
1994-01-01
The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.
Improving the Teaching of Science and Technology in Primary Schools--A Cluster Approach
ERIC Educational Resources Information Center
Chambers, Paul
2017-01-01
The position of science and technology in Scottish primary schools is broadly similar to most other primary schools throughout Great Britain. There are certain schools and individuals that perform at a very high level but many schools are hampered by a lack of resources, a lack of confidence in teaching the topics and some significant gaps in the…
ERIC Educational Resources Information Center
Guven, Sibel; Sahin Taskin, Cigdem
2008-01-01
This research aims to understand to what extent primary school pupils who stay at the Institution of Social Services and Child Protection dormitories participate in social science lessons. Data were obtained from pupils staying at the Institution of Social Services and Child Protection dormitories and attending primary schools in Istanbul and…
Children's Ideas about "Metals." Learning in Science Project (Primary). Working Paper No. 112.
ERIC Educational Resources Information Center
Biddulph, Fred; Osborne, Roger
The topic of metals is frequently taught in primary schools. However, when metals are suggested as one of a series of topics for study, students often initially show little enthusiasm for the topic. To determine the ideas that children have about metals the Learning in Science Project (Primary)--LISP(P)--interviewed thirty-eight 9- to 10-year-old…
Improving Achievement in Science in Primary and Secondary Schools. Improving Series
ERIC Educational Resources Information Center
Her Majesty's Inspectorate of Education, 2005
2005-01-01
This report is based on inspections of science in primary and secondary schools carried out between September 2000 and March 2004. In addition to schools inspected as part of the generational cycle, HMI also visited other primary and secondary schools to observe and describe aspects of best practice. The report also draws on other major sources of…
1997-04-22
STS085-S-001 (May 1997) --- The mission patch for STS-85 is designed to reflect the broad range of science and engineering payloads on the flight. The primary objectives of the mission are to measure chemical constituents in Earth?s atmosphere with a free-flying satellite and to flight-test a new Japanese robotic arm designed for use on the International Space Station (ISS). STS-85 is the second flight of the satellite known as CRISTA-SPAS-02. CRISTA, depicted on the right side of the patch pointing its trio of infrared telescopes at Earth?s atmosphere, stands for Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere. The high inclination orbit is shown as a yellow band over Earth?s northern latitudes. In the space shuttle Discovery?s open payload bay an enlarged version of the Japanese National Space Development Agency?s (NASDA) Manipulator Flight Demonstration (MFD) robotic arm is shown. Also shown in the payload bay are two sets of multi-science experiments: the International Extreme Ultraviolet Hitchhiker (IEH-02) nearest the tail and the Technology Applications and Science (TAS-01) payload. Jupiter and three stars are shown to represent sources of ultraviolet energy in the universe. Comet Hale-Bopp, which will be visible from Earth during the mission, is depicted at upper right. The left side of the patch symbolizes daytime operations over the Northern Hemisphere of Earth and the solar science objectives of several of the payloads. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Danielsson, Anna; Warwick, Paul
2014-01-01
Previous research has highlighted challenges associated with embracing an inquiry approach to science teaching for primary teachers, often associating these challenges with insecurity linked to the lack of content knowledge. We argue that in order to understand the extent to which primary student teachers are able to embrace science teaching informed by scientific literacy for all, it is important to take into account various, sometimes competing, science teacher and primary teacher Discourses. The aim of this paper is to explore how such Discourses are constituted in the context of learning to teach during a 1-year university-based Post Graduate Certificate of Education course. The empirical data consist of semi-structured interviews with 11 student teachers. The analysis identifies 5 teacher Discourses and we argue that these can help us to better understand some of the tensions involved in becoming a primary teacher with a responsibility for teaching science: for example, in terms of the interplay between the student teachers' own educational biographies and institutionally sanctioned Discourses. One conclusion is that student teachers' willingness and ability to embrace a Discourse of science education, informed by the aim of scientific literacy for all, may be every bit as constrained by their experience of learning science through 'traditional schooling' as it is by their confidence with respect to their own subject knowledge. The 5 Discourses, with their complex interrelations, raise questions about which identity positions are available to students in the intersections of the Discourses and which identity positions teacher educators may seek to make available for their students.
Kozeracki, Carol A; Carey, Michael F; Colicelli, John; Levis-Fitzgerald, Marc; Grossel, Martha
2006-01-01
UCLA's Howard Hughes Undergraduate Research Program (HHURP), a collaboration between the College of Letters and Science and the School of Medicine, trains a group of highly motivated undergraduates through mentored research enhanced by a rigorous seminar course. The course is centered on the presentation and critical analysis of scientific journal articles as well as the students' own research. This article describes the components and objectives of the HHURP and discusses the results of three program assessments: annual student evaluations, interviews with UCLA professors who served as research advisors for HHURP scholars, and a survey of program alumni. Students indicate that the program increased their ability to read and present primary scientific research and to present their own research and enhanced their research experience at UCLA. After graduating, they find their involvement in the HHURP helped them in securing admission to the graduate program of their choice and provided them with an advantage over their peers in the interactive seminars that are the foundation of graduate education. On the basis of the assessment of the program from 1998-1999 to 2004-2005, we conclude that an intensive literature-based training program increases student confidence and scientific literacy during their undergraduate years and facilitates their transition to postgraduate study.
Workshop on High-Field NMR and Biological Applications
NASA Astrophysics Data System (ADS)
Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.
Perspectives and Visions of Computer Science Education in Primary and Secondary (K-12) Schools
ERIC Educational Resources Information Center
Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.; Mittermeir, Roland T.
2014-01-01
In view of the recent developments in many countries, for example, in the USA and in the UK, it appears that computer science education (CSE) in primary or secondary schools (K-12) has reached a significant turning point, shifting its focus from ICT-oriented to rigorous computer science concepts. The goal of this special issue is to offer a…