cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism
NASA Astrophysics Data System (ADS)
Cong, F.; Li, J.
2016-12-01
The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence stratigraphic framework. Results show that high average organic carbon contents in the study interval are mainly attributed to high primary production. The results also show a good correlation between high organic carbon accumulation and intervals of transgression.
Implications of Secondary Aftershocks for Failure Processes
NASA Astrophysics Data System (ADS)
Gross, S. J.
2001-12-01
When a seismic sequence with more than one mainshock or an unusually large aftershock occurs, there is a compound aftershock sequence. The secondary aftershocks need not have exactly the same decay as the primary sequence, with the differences having implications for the failure process. When the stress step from the secondary mainshock is positive but not large enough to cause immediate failure of all the remaining primary aftershocks, failure processes which involve accelerating slip will produce secondary aftershocks that decay more rapidly than primary aftershocks. This is because the primary aftershocks are an accelerated version of the background seismicity, and secondary aftershocks are an accelerated version of the primary aftershocks. Real stress perturbations may be negative, and heterogeneities in mainshock stress fields mean that the real world situation is quite complicated. I will first describe and verify my picture of secondary aftershock decay with reference to a simple numerical model of slipping faults which obeys rate and state dependent friction and lacks stress heterogeneity. With such a model, it is possible to generate secondary aftershock sequences with perturbed decay patterns, quantify those patterns, and develop an analysis technique capable of correcting for the effect in real data. The secondary aftershocks are defined in terms of frequency linearized time s(T), which is equal to the number of primary aftershocks expected by a time T, $ s ≡ ∫ t=0T n(t) dt, where the start time t=0 is the time of the primary aftershock, and the primary aftershock decay function n(t) is extrapolated forward to the times of the secondary aftershocks. In the absence of secondary sequences the function s(T)$ re-scales the time so that approximately one event occurs per new time unit; the aftershock sequence is gone. If this rescaling is applied in the presence of a secondary sequence, the secondary sequence is shaped like a primary aftershock sequence, and can be fit by the same modeling techniques applied to simple sequences. The later part of the presentation will concern the decay of Hector Mine aftershocks as influenced by the Landers aftershocks. Although attempts to predict the abundance of Hector aftershocks based on stress overlap analysis are not very successful, the analysis does do a good job fitting the decay of secondary sequences.
Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...
2014-09-01
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill
2015-01-01
Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Integrative Clinical Genomics of Metastatic Cancer
Robinson, Dan R.; Wu, Yi-Mi; Lonigro, Robert J.; Vats, Pankaj; Cobain, Erin; Everett, Jessica; Cao, Xuhong; Rabban, Erica; Kumar-Sinha, Chandan; Raymond, Victoria; Schuetze, Scott; Alva, Ajjai; Siddiqui, Javed; Chugh, Rashmi; Worden, Francis; Zalupski, Mark M.; Innis, Jeffrey; Mody, Rajen J.; Tomlins, Scott A.; Lucas, David; Baker, Laurence H.; Ramnath, Nithya; Schott, Ann F.; Hayes, Daniel F.; Vijai, Joseph; Offit, Kenneth; Stoffel, Elena M.; Roberts, J. Scott; Smith, David C.; Kunju, Lakshmi P.; Talpaz, Moshe; Cieslik, Marcin; Chinnaiyan, Arul M.
2017-01-01
SUMMARY Metastasis is the primary cause of cancer-related deaths. While The Cancer Genome Atlas (TCGA) has sequenced primary tumor types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here, we perform whole exome and transcriptome sequencing of 500 adult patients with metastatic solid tumors of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing for the identification of gene fusions, pathway activation, and immune profiling. Integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers. PMID:28783718
Isolation of prolactin and growth hormone from the pituitary of the holostean fish Amia calva.
Dores, R M; Noso, T; Rand-Weaver, M; Kawauchi, H
1993-06-01
Pituitaries from adult male and female Amia calva (Order Holostei) were acid extracted and fractionated by gel filtration column chromatography and reversed-phase high performance liquid chromatography. This two-step isolation procedure yielded homogeneous pools of Amia prolaction (PRL) and growth hormone (GH). The amino acid composition of both purified polypeptides was determined. Primary sequence analysis of the first 22 positions at the N-terminal of Amia PRL revealed that this region has 63% sequence identity with eel PRL-1. The N-terminal region of Amia PRL lacks the disulfide bridge which is characteristic of tetrapod PRLs. Primary sequence analysis of the first 24 positions at the N-terminal of Amia GH revealed that this region has 62% sequence identity with eel GH and 54% sequence identity with both blue shark GH and sea turtle GH. Based on N-terminal analysis, it appears that Amia PRL and GH are more closely related to teleost PRLs and GHs than they are to tetrapod PRLs and GHs.
Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.
Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario
2011-04-01
Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.
ERIC Educational Resources Information Center
Molenaar, Inge; Chiu, Ming Ming
2014-01-01
Extending past research showing that regulative activities (metacognitive and relational) can aid learning, this study tests whether sequences of cognitive, metacognitive and relational activities affect subsequent cognition. Scaffolded by a computer avatar, 54 primary school students (working in 18 groups of 3) discussed writing a report about a…
Brannon, A Rose; Vakiani, Efsevia; Sylvester, Brooke E; Scott, Sasinya N; McDermott, Gregory; Shah, Ronak H; Kania, Krishan; Viale, Agnes; Oschwald, Dayna M; Vacic, Vladimir; Emde, Anne-Katrin; Cercek, Andrea; Yaeger, Rona; Kemeny, Nancy E; Saltz, Leonard B; Shia, Jinru; D'Angelica, Michael I; Weiser, Martin R; Solit, David B; Berger, Michael F
2014-08-28
Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.
Schaeffer, E; Sninsky, J J
1984-01-01
Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835
Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly
Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng
2012-01-01
Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission. PMID:22745728
Molinari, Luisa; Mameli, Consuelo; Gnisci, Augusto
2013-09-01
A sequential analysis of classroom discourse is needed to investigate the conditions under which the triadic initiation-response-feedback (IRF) pattern may host different teaching orientations. The purpose of the study is twofold: first, to describe the characteristics of classroom discourse and, second, to identify and explore the different interactive sequences that can be captured with a sequential statistical analysis. Twelve whole-class activities were video recorded in three Italian primary schools. We observed classroom interaction as it occurs naturally on an everyday basis. In total, we collected 587 min of video recordings. Subsequently, 828 triadic IRF patterns were extracted from this material and analysed with the programme Generalized Sequential Query (GSEQ). The results indicate that classroom discourse may unfold in different ways. In particular, we identified and described four types of sequences. Dialogic sequences were triggered by authentic questions, and continued through further relaunches. Monologic sequences were directed to fulfil the teachers' pre-determined didactic purposes. Co-constructive sequences fostered deduction, reasoning, and thinking. Scaffolding sequences helped and sustained children with difficulties. The application of sequential analyses allowed us to show that interactive sequences may account for a variety of meanings, thus making a significant contribution to the literature and research practice in classroom discourse. © 2012 The British Psychological Society.
Azab, Marwa Mohamed; Fayyad, Dalia Mukhtar
2018-01-01
The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department) using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials. PMID:29849646
SeqAPASS (Sequence Alignment to Predict Across Species Susceptibility) software and documentation
SeqAPASS is a software application facilitates rapid and streamlined, yet transparent, comparisons of the similarity of toxicologically-significant molecular targets across species. The present application facilitates analysis of primary amino acid sequence similarity (including ...
Primary and secondary structural analyses of glutathione S-transferase pi from human placenta.
Ahmad, H; Wilson, D E; Fritz, R R; Singh, S V; Medh, R D; Nagle, G T; Awasthi, Y C; Kurosky, A
1990-05-01
The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form.
Zhang, Wanying; Wang, Tao; Huang, Shuaiwu; Zhao, Xiuli
2018-04-10
To detect mutation of HPGD gene among three pedigrees affected with primary hypertrophic osteoarthropathy (PHO) by DNA sequencing and high-resolution melting (HRM) analysis. Genomic DNA was extracted from peripheral blood samples collected from the pedigrees. PCR and direct sequencing were carried out to identify potential mutations of the HPGD gene. Amplicons containing the mutation spot were generated by nested PCR. The products were then subjected to HRM analysis using the HR-1 instrument. Direct sequencing was carried out in family members and healthy individuals to confirm the result of HRM analysis. A homozygous mutation c.310_311delCT was detected in 2 affected probands, while a heterozygous mutation c.310_311delCT was detected in the third proband. HRM analysis of the fragments encompassing HPGD exon 3 showed 3 curve patterns representing three different genotypes, i.e., the wild type, the c.310_311delCT homozygote, and the c.310_311delCT heterozygote. Result of DNA sequencing was consistent with that of the HRM analysis and phenotype of the subjects. The c.310_311delCT mutation may be the most prevalent mutation among Chinese population. HRM analysis has provided an optimized method for genetic testing of HPGD mutation for its simplicity, rapid turnover and high sensitivity.
Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S
2001-12-01
Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.
Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.
1998-03-01
Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.
Plaga, W; Lottspeich, F; Oesterhelt, D
1992-04-01
An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.
A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.
Williams, Emma L; Kemper, Markus J; Rumsby, Gill
2006-09-01
Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.
Amemiya, Kenji; Hirotsu, Yosuke; Goto, Taichiro; Nakagomi, Hiroshi; Mochizuki, Hitoshi; Oyama, Toshio; Omata, Masao
2016-12-01
Identifying genetic alterations in tumors is critical for molecular targeting of therapy. In the clinical setting, formalin-fixed paraffin-embedded (FFPE) tissue is usually employed for genetic analysis. However, DNA extracted from FFPE tissue is often not suitable for analysis because of its low levels and poor quality. Additionally, FFPE sample preparation is time-consuming. To provide early treatment for cancer patients, a more rapid and robust method is required for precision medicine. We present a simple method for genetic analysis, called touch imprint cytology combined with massively paralleled sequencing (touch imprint cytology [TIC]-seq), to detect somatic mutations in tumors. We prepared FFPE tissues and TIC specimens from tumors in nine lung cancer patients and one patient with breast cancer. We found that the quality and quantity of TIC DNA was higher than that of FFPE DNA, which requires microdissection to enrich DNA from target tissues. Targeted sequencing using a next-generation sequencer obtained sufficient sequence data using TIC DNA. Most (92%) somatic mutations in lung primary tumors were found to be consistent between TIC and FFPE DNA. We also applied TIC DNA to primary and metastatic tumor tissues to analyze tumor heterogeneity in a breast cancer patient, and showed that common and distinct mutations among primary and metastatic sites could be classified into two distinct histological subtypes. TIC-seq is an alternative and feasible method to analyze genomic alterations in tumors by simply touching the cut surface of specimens to slides. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
König, Caroline; Alquézar, René; Vellido, Alfredo; Giraldo, Jesús
2018-03-01
G-protein-coupled receptors (GPCRs) are a large and diverse super-family of eukaryotic cell membrane proteins that play an important physiological role as transmitters of extracellular signal. In this paper, we investigate Class C, a member of this super-family that has attracted much attention in pharmacology. The limited knowledge about the complete 3D crystal structure of Class C receptors makes necessary the use of their primary amino acid sequences for analytical purposes. Here, we provide a systematic analysis of distinct receptor sequence segments with regard to their ability to differentiate between seven class C GPCR subtypes according to their topological location in the extracellular, transmembrane, or intracellular domains. We build on the results from the previous research that provided preliminary evidence of the potential use of separated domains of complete class C GPCR sequences as the basis for subtype classification. The use of the extracellular N-terminus domain alone was shown to result in a minor decrease in subtype discrimination in comparison with the complete sequence, despite discarding much of the sequence information. In this paper, we describe the use of Support Vector Machine-based classification models to evaluate the subtype-discriminating capacity of the specific topological sequence segments.
Thomas, Xiomara V; Grady, Bart P X; Van Der Meer, Jan T M; Ho, Cynthia K; Vanhommerig, Joost W; Rebers, Sjoerd P; De Jong, Menno D; Van Der Valk, Marc; Prins, Maria; Molenkamp, Richard; Schinkel, Janke
2015-11-01
High rates of hepatitis C virus (HCV) reinfections among HIV-infected men who have sex with men (MSM) following clearance of a primary infection suggest absence of protective immunity. Here, we investigated the incidence of HCV super and reinfections in 85 HIV-infected MSM with incident HCV infection. Serial sequencing of a fragment of NS5B and the HCV envelope was used to longitudinally characterize the virus. If the primary genotype was still present at the most recent viremic time point, as indicated by the NS5B sequence analysis, serial envelope 2/hypervariable region 1 (E2/HRV1) sequence analysis was performed to distinguish a new infection with the same genotype (clade switch) from intrahost evolution. Incidence rate and cumulative incidence of secondary infections were estimated, and the effect of the primary genotype (1a versus non1) on the risk of acquiring a second infection with the same genotype was determined using Cox proportional-hazards analysis. Among 85 patients with a median follow-up of 4.8 years, incidence rate of secondary infections was 5.39 cases/100 person-years (95% confidence interval 3.34-8.26). Cumulative incidence of genotype switches was markedly higher than the cumulative incidence of clade switches (26.7 versus 4.8% at 5 years, respectively). In patients with HCV-1a as primary infection, the risk for acquiring another HCV-1a infection was reduced compared to those with a primary non-HCV-1a subsequently acquiring HCV-1a (hazard ratio 0.25, 95% confidence interval 0.07-0.93). Risk of acquiring a secondary infection with the primary genotype was strikingly reduced compared with the risk of acquiring a secondary infection with a different genotype.
Yang, Lingyi; Zhang, Lin; Huang, Qiujuan; Liu, Changxu; Qi, Lisha; Li, Lingmei; Qu, Tongyuan; Wang, Yalei; Liu, Suxiang; Meng, Bin; Sun, Baocun; Cao, Wenfeng
2018-05-01
The purpose of this study was to distinguish synchronous primary endometrial and ovarian carcinomas from single primary tumor with metastasis by clinical pathologic criteria and whole exome sequencing (WES). Fifty-two patients with synchronous endometrial and ovarian carcinomas (SEOCs) between 2010 and 2017 were reviewed and subjected to WES. On the basis of the Scully criteria, 11 cases were supposed as synchronous primary endometrial and ovarian carcinomas, 38 cases as single primary tumor with metastasis, and the remaining 3 cases (S50-S52) cannot be defined. Through a quantization scoring analysis, 9 cases that were scored 0-1 point were defined as synchronous primary endometrial and ovarian carcinomas, and 42 cases that were scored 3-8 points were defined as single primary tumor with metastasis. Two of the undefined cases were classified into metastatic disease, and another one that scored 2 points (S52) was subjected to WES. S52 was deemed synchronous primary endometrial and ovarian carcinomas, with few shared somatic mutations and overlapping copy number varieties. The finding of a serous component examined from the uterine endometrium samples further illustrated that the case was synchronous primary endometrial and ovarian carcinomas. By scoring criterion, SEOCs were divided into 2 groups: synchronous primary endometrial and ovarian carcinoma group and single primary tumor with metastasis group. The analysis of clonality indicated that the case that scored 2 (S52) can be considered as synchronous primary endometrial and ovarian carcinomas. Scoring criteria of clinical pathology, along with the study of the WES, may further identify the classification of SEOCs.
Two Preferences in Question-Answer Sequences in Language Classroom Context
ERIC Educational Resources Information Center
Hosoda, Yuri; Aline, David
2013-01-01
Discussing two preferences associated with question-answer sequences, this study examines student responses to teacher questions in primary school English-as-a-foreign-language classes. The paper starts out with a reconsideration of institutional context, with a focus on classroom context from a conversation analysis perspective. We then introduce…
Teacher Deployment of "Oh" in Known-Answer Question Sequences
ERIC Educational Resources Information Center
Hosoda, Yuri
2016-01-01
This conversation analytic study describes some specific interactional contexts in which native English-speaking teachers produce "oh" in known-answer question sequences in English language classes. The data for this study come from 10 video-recorded Japanese primary school English language class sessions. The analysis identified three…
ERIC Educational Resources Information Center
Abd-Kadir, Jan; Hardman, Frank
2007-01-01
This paper explores the discourse of whole class teaching in Kenyan and Nigerian primary school English lessons. Twenty lessons were analysed using a system of discourse analysis focusing on the teacher-led three-part exchange sequence of Initiation-Response-Feedback (IRF). The focus of the analysis was on the first and third part of the IRF…
Effects of Sequences of Cognitions on Group Performance Over Time
Molenaar, Inge; Chiu, Ming Ming
2017-01-01
Extending past research showing that sequences of low cognitions (low-level processing of information) and high cognitions (high-level processing of information through questions and elaborations) influence the likelihoods of subsequent high and low cognitions, this study examines whether sequences of cognitions are related to group performance over time; 54 primary school students (18 triads) discussed and wrote an essay about living in another country (32,375 turns of talk). Content analysis and statistical discourse analysis showed that within each lesson, groups with more low cognitions or more sequences of low cognition followed by high cognition added more essay words. Groups with more high cognitions, sequences of low cognition followed by low cognition, or sequences of high cognition followed by an action followed by low cognition, showed different words and sequences, suggestive of new ideas. The links between cognition sequences and group performance over time can inform facilitation and assessment of student discussions. PMID:28490854
Effects of Sequences of Cognitions on Group Performance Over Time.
Molenaar, Inge; Chiu, Ming Ming
2017-04-01
Extending past research showing that sequences of low cognitions (low-level processing of information) and high cognitions (high-level processing of information through questions and elaborations) influence the likelihoods of subsequent high and low cognitions, this study examines whether sequences of cognitions are related to group performance over time; 54 primary school students (18 triads) discussed and wrote an essay about living in another country (32,375 turns of talk). Content analysis and statistical discourse analysis showed that within each lesson, groups with more low cognitions or more sequences of low cognition followed by high cognition added more essay words. Groups with more high cognitions, sequences of low cognition followed by low cognition, or sequences of high cognition followed by an action followed by low cognition, showed different words and sequences, suggestive of new ideas. The links between cognition sequences and group performance over time can inform facilitation and assessment of student discussions.
Hiramatsu, K; Harada, K; Tsuneyama, K; Sasaki, M; Fujita, S; Hashimoto, T; Kaneko, S; Kobayashi, K; Nakanuma, Y
2000-07-01
The etiopathogenesis of bile duct lesion in primary biliary cirrhosis is unknown, though the participation of bacteria and/or their components and products is suspected. In this study, we tried to detect and identify bacteria in the bile of patients with primary biliary cirrhosis by polymerase chain reaction using universal bacterial primers of the 16S ribosomal RNA gene. Gallbladder bile samples from 15 patients with primary biliary cirrhosis, 5 with primary sclerosing cholangitis, 5 with hepatitis C virus-related liver cirrhosis, 11 with cholecystolithiasis, and from 12 normal adult gallbladders were used. In addition to the culture study, partial bacterial 16S ribosomal RNA gene was amplified by polymerase chain reaction (PCR) taking advantage of universal primers that can amplify the gene of almost all bacterial species, and the amplicons were cloned and sequenced. Sequence homology with specific bacterial species was analyzed by database research. Bacterial contamination at every step of the bile sampling, DNA extraction and PCR study was avoided. Furthermore, to confirm whether bacterial DNA is detectable in liver explants, the same analysis was performed using 10 liver explants of patients with primary biliary cirrhosis. In primary biliary cirrhosis, 75% (p<0.0001) of 100 clones were identified as so-called gram-positive cocci while these cocci were positive in only 5% in cholecystolithiasis (p<0.0001). In cholecystolithiasis gram-negative rods were predominant instead. One bacterial species detected in a normal adult was not related to those detected in primary biliary cirrhosis and cholecystolithiasis patients. No bacterial DNA was detected by PCR amplification in 10 liver explants of patients with primary biliary cirrhosis. The present results raise several possible roles of gram-positive bacteria in bile in the etiopathogenesis of primary biliary cirrhosis. However, these results could also reflect an epiphenomenon due to decreased bile flow in the patients with primary biliary cirrhosis at an advanced stage.
Complete amino acid sequence of the myoglobin from the Pacific sei whale, Balaenoptera borealis.
Jones, B N; Rothgeb, T M; England, R D; Gurd, F R
1979-04-25
The complete amino acid sequence of the major component myoglobin from Pacific sei whale, Balaenoptera borealis, was determined by specific cleavage of the protein to obtain large peptides which are readily degraded by the automatic sequencer. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. From the sequence analysis of four of these peptides and the apomyoglobin, over 75% of the covalent structure of the protein was obtained. The remainder of the primary structure was determined by the sequence analysis of peptides that resulted from further digestion of the amino-terminal and central cyanogen bromide fragments. The amino-terminal fragment was specifically cleaved at its two tryptophanyl residues with N-chlorosuccinimide and the central cyanogen bromide fragment was cleaved at its glutamyl residues with staphylococcal protease and at its single tyrosyl residue with N-bromosuccinimide. The primary structure of this myoglobin proved identical with that from the gray whale but differs from that of the finback whale at four positions, from that of the minke whale at three positions and from the myoglobin of the humpback whale at one position. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea.
Beintema, J J; Peumans, W J
1992-03-09
The primary structure of stinging nettle (Urtica dioica) agglutinin has been determined by sequence analysis of peptides obtained from three overlapping proteolytic digests. The sequence of 80 residues consists of two hevein-like domains with the same spacing of half-cystine residues and several other conserved residues as observed earlier in other proteins with hevein-like domains. The hinge region between the two domains is four residues longer than those between the four domains in cereal lectins like wheat germ agglutinin.
STAG3 truncating variant as the cause of primary ovarian insufficiency
Le Quesne Stabej, Polona; Williams, Hywel J; James, Chela; Tekman, Mehmet; Stanescu, Horia C; Kleta, Robert; Ocaka, Louise; Lescai, Francesco; Storr, Helen L; Bitner-Glindzicz, Maria; Bacchelli, Chiara; Conway, Gerard S
2016-01-01
Primary ovarian insufficiency (POI) is a distressing cause of infertility in young women. POI is heterogeneous with only a few causative genes having been discovered so far. Our objective was to determine the genetic cause of POI in a consanguineous Lebanese family with two affected sisters presenting with primary amenorrhoea and an absence of any pubertal development. Multipoint parametric linkage analysis was performed. Whole-exome sequencing was done on the proband. Linkage analysis identified a locus on chromosome 7 where exome sequencing successfully identified a homozygous two base pair duplication (c.1947_48dupCT), leading to a truncated protein p.(Y650Sfs*22) in the STAG3 gene, confirming it as the cause of POI in this family. Exome sequencing combined with linkage analyses offers a powerful tool to efficiently find novel genetic causes of rare, heterogeneous disorders, even in small single families. This is only the second report of a STAG3 variant; the first STAG3 variant was recently described in a phenotypically similar family with extreme POI. Identification of an additional family highlights the importance of STAG3 in POI pathogenesis and suggests it should be evaluated in families affected with POI. PMID:26059840
Pham-Ledard, Anne; Prochazkova-Carlotti, Martina; Deveza, Mélanie; Laforet, Marie-Pierre; Beylot-Barry, Marie; Vergier, Béatrice; Parrens, Marie; Feuillard, Jean; Merlio, Jean-Philippe; Gachard, Nathalie
2017-11-01
Immunophenotype of primary cutaneous diffuse large B-cell lymphoma, leg-type (PCLBCL-LT) suggests a germinal center-experienced B lymphocyte (BCL2+ MUM1+ BCL6+/-). As maturation history of B-cell is "imprinted" during B-cell development on the immunoglobulin gene sequence, we studied the structure and sequence of the variable part of the genes (IGHV, IGLV, IGKV), immunoglobulin surface expression and features of class switching in order to determine the PCLBCL-LT cell of origin. Clonality analysis with BIOMED2 protocol and VH leader primers was done on DNA extracted from frozen skin biopsies on retrospective samples from 14 patients. The clonal DNA IGHV sequence of the tumor was aligned and compared with the closest germline sequence and homology percentage was calculated. Superantigen binding sites were studied. Features of selection pressure were evaluated with the multinomial Lossos model. A functional monoclonal sequence was observed in 14 cases as determined for IGHV (10), IGLV (2) or IGKV (3). IGV mutation rates were high (>5%) in all cases but one (median:15.5%), with superantigen binding sites conservation. Features of selection pressure were identified in 11/12 interpretable cases, more frequently negative (75%) than positive (25%). Intraclonal variation was detected in 3 of 8 tumor specimens with a low rate of mutations. Surface immunoglobulin was an IgM in 12/12 cases. FISH analysis of IGHM locus, deleted during class switching, showed heterozygous IGHM gene deletion in half of cases. The genomic PCR analysis confirmed the deletions within the switch μ region. IGV sequences were highly mutated but functional, with negative features of selection pressure suggesting one or more germinal center passage(s) with somatic hypermutation, but superantigen (SpA) binding sites conservation. Genetic features of class switch were observed, but on the non functional allele and co-existing with primary isotype IgM expression. These data suggest that cell-of origin is germinal center experienced and superantigen driven selected B-cell, in a stage between germinal center B-cell and plasma cell. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Mehta, Sanjay R.; Murrell, Ben; Anderson, Christy M.; Kosakovsky Pond, Sergei L.; Wertheim, Joel O.; Young, Jason A.; Freitas, Lorri; Richman, Douglas D.; Mathews, W. Chris; Scheffler, Konrad; Little, Susan J.; Smith, Davey M.
2016-01-01
Background. Because recently infected individuals disproportionately contribute to the spread of human immunodeficiency virus (HIV), we evaluated the impact of a primary HIV screening program (the Early Test) implemented in San Diego. Methods. The Early Test program used combined nucleic acid and serology testing to screen for primary infection targeting local high-risk individuals. Epidemiologic, HIV sequence, and geographic data were obtained from the San Diego County Department of Public Health and the Early Test program. Poisson regression analysis was performed to determine whether the Early Test program was temporally and geographically associated with changes in incident HIV diagnoses. Transmission chains were inferred by phylogenetic analysis of sequence data. Results. Over time, a decrease in incident HIV diagnoses was observed proportional to the number primary HIV infections diagnosed in each San Diego region (P < .001). Molecular network analyses also showed that transmission chains were more likely to terminate in regions where the program was marketed (P = .002). Although, individuals in these zip codes had infection diagnosed earlier (P = .08), they were not treated earlier (P = .83). Conclusions. These findings suggests that early HIV diagnoses by this primary infection screening program probably contributed to the observed decrease in new HIV diagnoses in San Diego, and they support the expansion and evaluation of similar programs. PMID:27174704
Relationships between Digestive, Circulatory, and Urinary Systems in Portuguese Primary Textbooks
ERIC Educational Resources Information Center
Carvalho, Graça S.; Clèment, Pierre
2007-01-01
In this study, 63 Portuguese primary schoolbooks (1920-2005) were analyzed. The analysis focused on text information (reference to blood absorption and association of the digestive system to other human systems) and on information from images (presence or absence of image "confusion" (when the sequence of the digestive tract is not…
Multiple primary cancers of breast and cervix uteri: An epidemiological approach to analysis
Prior, P.; Waterhouse, J. A. H.
1981-01-01
Index sites of breast and cervix uteri were selected from populationbased data held at the West Midlands and Birmingham Regional Cancer Registry, and the expected numbers of second primary cancers in cervix and breast were computed (sequence analyses). In the breast series (17,756 patients) a small deficit of cervical tumours was observed (O = 16, E = 2·119, O/E = 0·76, P > 0·05), while in the cervix series (4817 patients) a small excess of breast tumours was found (O = 29, E = 23·38, O/E = 1·24, P > 0·05) over a period of 15 years. A theoretical statement of the combined risk of the 2 tumours occurring in the same individual of a general population was developed and was compared with the practical approach of summing the sequence analyses (complementary analysis). Complementary analysis indicated that there was no excess of women with the 2 primary tumours (O = 45, E = 44·57, O/E = 1·01) and that cancers of the breast and cervix uteri are not aetiologically related. PMID:7248147
Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.
Ning, Juan; Wang, Minxiao; Li, Chaolun; Sun, Song
2013-01-01
Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs) that provide a resource for gene function studies. Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.
Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J
2016-10-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley
2016-01-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Molecular analysis of the AGXT gene in Italian patients with primary hyperoxaluria type 1 (PH1).
Ferrettini, C; Pirulli, D; Cosseddu, D; Marangella, M; Petrarulo, M; Mazzola, G; Vatta, S; Amoroso, A
1998-01-01
Specimens were collected from 22 Italian patients with primary hyperoxaluria type 1 (PH1). Ten of them had already been analyzed by molecular biology. To clarify the molecular characteristics of the AGXT gene disease responsible for PH1, DNA samples were examined for known mutations by hybridisation of PCR products with Sequence Specific Oligonucleotides (PCR-SSO). We planned to identify new mutations of the AGXT gene by heteroduplex analysis followed by direct sequencing. We had already standardized a) the conditions for the amplification of the 11 exons of AGXT, b) the PCR-SSO technique and c) the heteroduplex analysis of amplified products. Preliminary results demonstrated that the AGXT mutations described in previous studies were found only in 40% of the examined Italian patients with PH1. The remaining 60% of mutations should be characterised in future studies.
La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto
2016-03-01
The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.
Software for Analyzing Sequences of Flow-Related Images
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2004-01-01
Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.
An integrated expression atlas of miRNAs and their promoters in human and mouse
de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.
2018-01-01
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer
Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.
Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.
JPRS Report, Science and Technology USSR: Life Sciences.
1990-07-16
4 1 VETERINARY MEDICINE Primary Structure of RNA Polymerase Gene of Foot-and-Mouth Disease Virus ( FMDV ...neering were used to obtain cDNA corresponding to the Primary Structure of RNA Polymerase Gene of RNA polymerase gene to FMDV A 2 2 , with a map of the...Foot-and-Mouth Disease Virus ( FMDV ) A22 primary nucleotide sequence of the cDNA provided. 18400538F Moscow BIOORGANICHESKA YA Analysis of the data
Ali, M A; Al-Hemaid, F M; Lee, J; Hatamleh, A A; Gyulai, G; Rahman, M O
2015-10-02
The present study explored the systematic inventory of Echinops L. (Asteraceae) of Saudi Arabia, with special reference to the molecular typing of Echinops abuzinadianus Chaudhary, an endemic species to Saudi Arabia, based on the internal transcribed spacer (ITS) sequences (ITS1-5.8S-ITS2) of nuclear ribosomal DNA. A sequence similarity search using BLAST and a phylogenetic analysis of the ITS sequence of E. abuzinadianus revealed a high level of sequence similarity with E. glaberrimus DC. (section Ritropsis). The novel primary sequence and the secondary structure of ITS2 of E. abuzinadianus could potentially be used for molecular genotyping.
Profiles of Brain Metastases: Prioritization of Therapeutic Targets.
Ferguson, Sherise D; Zheng, Siyuan; Xiu, Joanne; Zhou, Shouhao; Khasraw, Mustafa; Brastianos, Priscilla K; Kesari, Santosh; Hu, Jethro; Rudnick, Jeremy; Salacz, Michael E; Piccioni, David; Huang, Suyun; Davies, Michael A; Glitza, Isabella C; Heymach, John V; Zhang, Jianjun; Ibrahim, Nuhad K; DeGroot, John F; McCarty, Joseph; O'Brien, Barbara J; Sawaya, Raymond; Verhaak, Roeland G W; Reddy, Sandeep K; Priebe, Waldemar; Gatalica, Zoran; Spetzler, David; Heimberger, Amy B
2018-06-19
We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of non-small cell lung cancer, breast cancer, and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry), and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification, and mutations among brain metastases, extracranial metastases, and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8178 non-small cell lung cancers (5098 primaries; 2787 systemic metastases; 293 brain metastases), 7064 breast cancers (3496 primaries; 3469 systemic metastases; 99 brain metastases), and 1757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1, and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication, and/or repair. This article is protected by copyright. All rights reserved. © 2018 UICC.
Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma.
Huang, Xiaobo; Li, Miaoling; Guo, Xiangming; Li, Shiqiang; Xiao, Xueshan; Jia, Xiaoyun; Liu, Xing; Zhang, Qingjiong
2014-05-13
To evaluate mutations in the MYOC, WDR36, OPTN, OPA1, NTF4, CYP1B1, and LTBP2 genes in a cohort of Chinese patients with primary glaucoma. Genomic DNA was prepared from 683 unrelated patients, including 50 with primary congenital glaucoma, 104 with juvenile open-angle glaucoma (JOAG), 186 with primary open-angle glaucoma (POAG), and 343 with primary angle-closure glaucoma (PACG). Mutations in the seven genes in 257 patients (36 with JOAG, 89 with POAG, and 132 with PACG) were initially analyzed by exome sequencing and then confirmed by Sanger sequencing. In addition, Sanger sequencing was used to detect MYOC mutations in the remaining 426 patients. Exome sequencing identified 19 mutations (6 in MYOC, 9 in WDR36, 3 in OPA1, and 1 in OPTN) in 20 of 257 patients, including 4 patients with JOAG, 8 patients with POAG, and 8 patients with PACG. No mutation was detected in the other three genes. In addition, Sanger sequencing detected additional MYOC mutations in 5 of the remaining 426 patients, including 3 patients with JOAG and 2 patients with POAG. Twenty-two mutations in MYOC, WDR36, OPA1, and OPTN were detected in 25 of the 683 patients with primary glaucoma, including nine MYOC mutations in 11 patients, nine WDR36 mutations in 11 patients, three OPA1 mutations in 3 patients, and one OPTN mutation in a patient who also carried a MYOC mutation. Eight mutations in MYOC, WDR36, and OPA1 in 8 of the 343 PACG patients are of uncertain significance and need to be analyzed further. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Mehta, Sanjay R; Murrell, Ben; Anderson, Christy M; Kosakovsky Pond, Sergei L; Wertheim, Joel O; Young, Jason A; Freitas, Lorri; Richman, Douglas D; Mathews, W Chris; Scheffler, Konrad; Little, Susan J; Smith, Davey M
2016-07-01
Because recently infected individuals disproportionately contribute to the spread of human immunodeficiency virus (HIV), we evaluated the impact of a primary HIV screening program (the Early Test) implemented in San Diego. The Early Test program used combined nucleic acid and serology testing to screen for primary infection targeting local high-risk individuals. Epidemiologic, HIV sequence, and geographic data were obtained from the San Diego County Department of Public Health and the Early Test program. Poisson regression analysis was performed to determine whether the Early Test program was temporally and geographically associated with changes in incident HIV diagnoses. Transmission chains were inferred by phylogenetic analysis of sequence data. Over time, a decrease in incident HIV diagnoses was observed proportional to the number primary HIV infections diagnosed in each San Diego region (P < .001). Molecular network analyses also showed that transmission chains were more likely to terminate in regions where the program was marketed (P = .002). Although, individuals in these zip codes had infection diagnosed earlier (P = .08), they were not treated earlier (P = .83). These findings suggests that early HIV diagnoses by this primary infection screening program probably contributed to the observed decrease in new HIV diagnoses in San Diego, and they support the expansion and evaluation of similar programs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Hayden, Eric J
2016-08-15
RNA molecules provide a realistic but tractable model of a genotype to phenotype relationship. This relationship has been extensively investigated computationally using secondary structure prediction algorithms. Enzymatic RNA molecules, or ribozymes, offer access to genotypic and phenotypic information in the laboratory. Advancements in high-throughput sequencing technologies have enabled the analysis of sequences in the lab that now rivals what can be accomplished computationally. This has motivated a resurgence of in vitro selection experiments and opened new doors for the analysis of the distribution of RNA functions in genotype space. A body of computational experiments has investigated the persistence of specific RNA structures despite changes in the primary sequence, and how this mutational robustness can promote adaptations. This article summarizes recent approaches that were designed to investigate the role of mutational robustness during the evolution of RNA molecules in the laboratory, and presents theoretical motivations, experimental methods and approaches to data analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Sequence Alignment to Predict Across Species Susceptibility ...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev
Historical Analysis of Portuguese Primary School Textbooks (1920-2005) on the Topic of Digestion
ERIC Educational Resources Information Center
Carvalho, Graca S.; Silva, Rui; Clement, Pierre
2007-01-01
Our previous studies have shown that Portuguese primary school pupils and teachers have three main difficulties in the representation of the digestion process: the sequence of the digestive tract, blood absorption, and the relationship of the digestive function with other human functions. In this study we analysed the topic of digestion in 63…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew
GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level, the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of PRA methodologies to conduct a mechanistic source term (MST) analysis for event sequences that could result in the release ofmore » radionuclides. The MST analysis seeks to realistically model and assess the transport, retention, and release of radionuclides from the reactor to the environment. The MST methods developed during this project seek to satisfy the requirements of the Mechanistic Source Term element of the ASME/ANS Non-LWR PRA standard. The MST methodology consists of separate analysis approaches for risk-significant and non-risk significant event sequences that may result in the release of radionuclides from the reactor. For risk-significant event sequences, the methodology focuses on a detailed assessment, using mechanistic models, of radionuclide release from the fuel, transport through and release from the primary system, transport in the containment, and finally release to the environment. The analysis approach for non-risk significant event sequences examines the possibility of large radionuclide releases due to events such as re-criticality or the complete loss of radionuclide barriers. This paper provides details on the MST methodology, including the interface between the MST analysis and other elements of the PRA, and provides a simplified example MST calculation for a sodium fast reactor.« less
Kelsen, Judith R.; Dawany, Noor; Moran, Christopher J.; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S.; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F.; Daly, Mark; Sullivan, Kathleen E.; Baldassano, Robert N.; Devoto, Marcella
2016-01-01
Background & Aims Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed ≤5 y of age, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Methods Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (ages 3 weeks to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by post-processing and variant calling. Following functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency <0.1%, and scaled combined annotation dependent depletion scores ≤10. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n=45) or adult-onset Crohn's disease (n=20) and healthy individuals (controls, n=145) were obtained from the University of Kiel, Germany and used as control groups. Results Four-hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling > 1 Mbp of coding sequence, were selected from the whole exome data. Our analysis revealed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. Conclusions In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants. PMID:26193622
DeBoever, Christopher; Reid, Erin G.; Smith, Erin N.; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A.
2013-01-01
Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples. PMID:24023918
RefSeq microbial genomes database: new representation and annotation strategy.
Tatusova, Tatiana; Ciufo, Stacy; Fedorov, Boris; O'Neill, Kathleen; Tolstoy, Igor
2014-01-01
The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.
Al-Shahrani, Sarah A; Alajmi, Reem A; Ayaad, Tahany H; Al-Shahrani, Mohammed A; Shaurub, El-Sayed H
2017-10-01
The present work aimed at investigating the genetic diversity of the head louse Pediculus humanus capitis (P. humanus capitis) among infested primary school girls at Bisha governorate, Saudi Arabia, based on the sequence of mitochondrial cytochrome b (mt cyt b) gene of 121 P. humanus capitis adults. Additionally, the prevalence of pediculosis capitis was surveyed. The results of sequencing were compared with the sequence of human head lice that are genotyped previously. Phylogenetic tree analysis showed the presence of 100% identity (n = 26) of louse specimens with clade A (prevalent worldwide) of the GenBank data base. Louse individuals (n = 50) showed 99.8% similarity with the same clade A reference having a single base pair difference. Also, a number of 22 louse individuals revealed 99.8% identity with clade B reference (prevalent in North and Central Americas, Europe, and Australia) with individual diversity in two base pairs. Moreover, 14 louse individual sequences revealed 99.4% identity with three base pair differences. It was concluded that moderate pediculosis (~13%) prevailed among the female students of the primary schools. It was age-and hair texture (straight or curly)-dependent. P. humanus capitis prevalence diversity is of clades A and B genotyping.
Darville, Lancia N F; Merchant, Mark E; Maccha, Venkata; Siddavarapu, Vivekananda Reddy; Hasan, Azeem; Murray, Kermit K
2012-02-01
Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35kDa protein was ~98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates. Copyright © 2011 Elsevier Inc. All rights reserved.
Using random forests for assistance in the curation of G-protein coupled receptor databases.
Shkurin, Aleksei; Vellido, Alfredo
2017-08-18
Biology is experiencing a gradual but fast transformation from a laboratory-centred science towards a data-centred one. As such, it requires robust data engineering and the use of quantitative data analysis methods as part of database curation. This paper focuses on G protein-coupled receptors, a large and heterogeneous super-family of cell membrane proteins of interest to biology in general. One of its families, Class C, is of particular interest to pharmacology and drug design. This family is quite heterogeneous on its own, and the discrimination of its several sub-families is a challenging problem. In the absence of known crystal structure, such discrimination must rely on their primary amino acid sequences. We are interested not as much in achieving maximum sub-family discrimination accuracy using quantitative methods, but in exploring sequence misclassification behavior. Specifically, we are interested in isolating those sequences showing consistent misclassification, that is, sequences that are very often misclassified and almost always to the same wrong sub-family. Random forests are used for this analysis due to their ensemble nature, which makes them naturally suited to gauge the consistency of misclassification. This consistency is here defined through the voting scheme of their base tree classifiers. Detailed consistency results for the random forest ensemble classification were obtained for all receptors and for all data transformations of their unaligned primary sequences. Shortlists of the most consistently misclassified receptors for each subfamily and transformation, as well as an overall shortlist including those cases that were consistently misclassified across transformations, were obtained. The latter should be referred to experts for further investigation as a data curation task. The automatic discrimination of the Class C sub-families of G protein-coupled receptors from their unaligned primary sequences shows clear limits. This study has investigated in some detail the consistency of their misclassification using random forest ensemble classifiers. Different sub-families have been shown to display very different discrimination consistency behaviors. The individual identification of consistently misclassified sequences should provide a tool for quality control to GPCR database curators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutscher, J.; Pevec, B.; Beyreuther, K.
1986-10-21
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolyptic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system,more » HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction. The site of ATP-dependent phosphorylation in HPr of S faecalis has now been determined. (/sup 32/P)P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, they obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, they isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-. Thus, the site of ATP-dependent phosphorylation was determined to be Ser-46 within the primary structure of HPr.« less
Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie
2017-05-15
B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.
TaxI: a software tool for DNA barcoding using distance methods
Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel
2005-01-01
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755
Bierzynska, Agnieszka; McCarthy, Hugh J; Soderquest, Katrina; Sen, Ethan S; Colby, Elizabeth; Ding, Wen Y; Nabhan, Marwa M; Kerecuk, Larissa; Hegde, Shivram; Hughes, David; Marks, Stephen; Feather, Sally; Jones, Caroline; Webb, Nicholas J A; Ognjanovic, Milos; Christian, Martin; Gilbert, Rodney D; Sinha, Manish D; Lord, Graham M; Simpson, Michael; Koziell, Ania B; Welsh, Gavin I; Saleem, Moin A
2017-04-01
Steroid Resistant Nephrotic Syndrome (SRNS) in children and young adults has differing etiologies with monogenic disease accounting for 2.9-30% in selected series. Using whole exome sequencing we sought to stratify a national population of children with SRNS into monogenic and non-monogenic forms, and further define those groups by detailed phenotypic analysis. Pediatric patients with SRNS were identified via a national United Kingdom Renal Registry. Whole exome sequencing was performed on 187 patients, of which 12% have a positive family history with a focus on the 53 genes currently known to be associated with nephrotic syndrome. Genetic findings were correlated with individual case disease characteristics. Disease causing variants were detected in 26.2% of patients. Most often this occurred in the three most common SRNS-associated genes: NPHS1, NPHS2, and WT1 but also in 14 other genes. The genotype did not always correlate with expected phenotype since mutations in OCRL, COL4A3, and DGKE associated with specific syndromes were detected in patients with isolated renal disease. Analysis by primary/presumed compared with secondary steroid resistance found 30.8% monogenic disease in primary compared with none in secondary SRNS permitting further mechanistic stratification. Genetic SRNS progressed faster to end stage renal failure, with no documented disease recurrence post-transplantation within this cohort. Primary steroid resistance in which no gene mutation was identified had a 47.8% risk of recurrence. In this unbiased pediatric population, whole exome sequencing allowed screening of all current candidate genes. Thus, deep phenotyping combined with whole exome sequencing is an effective tool for early identification of SRNS etiology, yielding an evidence-based algorithm for clinical management. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Yu, Hui; Zhang, Victor Wei; Stray-Pedersen, Asbjørg; Hanson, Imelda Celine; Forbes, Lisa R; de la Morena, M Teresa; Chinn, Ivan K; Gorman, Elizabeth; Mendelsohn, Nancy J; Pozos, Tamara; Wiszniewski, Wojciech; Nicholas, Sarah K; Yates, Anne B; Moore, Lindsey E; Berge, Knut Erik; Sorte, Hanne; Bayer, Diana K; ALZahrani, Daifulah; Geha, Raif S; Feng, Yanming; Wang, Guoli; Orange, Jordan S; Lupski, James R; Wang, Jing; Wong, Lee-Jun
2016-10-01
Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (<20× read depth) or high sequence homology (pseudogenes) are complemented by amplicon-based sequencing with specific primers to ensure 100% coverage of all targeted regions. Analysis of 20 patient samples with low T-cell receptor excision circle numbers on newborn screening or a positive family history or clinical suspicion of SCID or other severe PIDD identified deleterious mutations in 14 of them. Identified pathogenic variants included both single nucleotide variants and exonic copy number variants, such as hemizygous nonsense, frameshift, and missense changes in IL2RG; compound heterozygous changes in ATM, RAG1, and CIITA; homozygous changes in DCLRE1C and IL7R; and a heterozygous nonsense mutation in CHD7. High-throughput deep sequencing analysis with complete clinical validation greatly increases the diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Genetic analysis of familial non-syndromic primary failure of eruption
Frazier-Bowers, S.; Simmons, D; Koehler, K; Zhou, J
2009-01-01
Objectives While some eruption disorders occur as part of a medical syndrome, primary failure of eruption (PFE) – defined as a localized failure of secondary tooth eruption -exists without systemic involvement. Recent studies support that heredity may play an important role in the pathogenesis of PFE. The objective of our human genetic study is to investigate the genetic contribution to PFE. Materials and Methods Four candidate genes POSTN, RUNX2, AMELX, and AMBN) were investigated due to their relationship to tooth eruption or putative relationship to each other. Families and individuals were ascertained based on the clinical diagnosis of PFE. Pedigrees were constructed and analyzed by inspection to determine the mode of inheritance in 4 families. The candidate genes were directly sequenced for both unrelated affected individuals and unaffected individuals. A genome wide scan using 500 microsatellite markers followed by linkage analysis was carried out for one family. Results Pedigree analysis of families suggests an autosomal dominant inheritance pattern with complete penetrance and variable expressivity. Sequence analysis revealed 2 non-functional polymorphisms in the POSTN gene and no other sequence variations in the remaining candidate genes. Genotyping and linkage analysis of one family yielded a LOD score of 1.51 for markers D13S272; D15S118 and D17S831 on chromosomes 13, 15 and 17 respectively. Conclusions While LOD scores were not significant evidence of linkage, extension of current pedigrees and novel SNP chip technology holds great promise for identification of a causative locus for PFE. Clinical Relevance When the process of normal tooth eruption fails, it may result in a clinically guarded or hopeless prognosis. Our studies aim to understand the etiological basis of Primary Failure of Eruption (PFE) toward the development of future orthodontic or pharmocologic interventions that will successfully treat this problem. PMID:19419450
Mueller, Jennifer J; Schlappe, Brooke A; Kumar, Rahul; Olvera, Narciso; Dao, Fanny; Abu-Rustum, Nadeem; Aghajanian, Carol; DeLair, Deborah; Hussein, Yaser R; Soslow, Robert A; Levine, Douglas A; Weigelt, Britta
2018-05-21
Mucinous ovarian cancer (MOC) is a rare type of epithelial ovarian cancer resistant to standard chemotherapy regimens. We sought to characterize the repertoire of somatic mutations in MOCs and to define the contribution of massively parallel sequencing to the classification of tumors diagnosed as primary MOCs. Following gynecologic pathology and chart review, DNA samples obtained from primary MOCs and matched normal tissues/blood were subjected to whole-exome (n = 9) or massively parallel sequencing targeting 341 cancer genes (n = 15). Immunohistochemical analysis of estrogen receptor, progesterone receptor, PTEN, ARID1A/BAF250a, and the DNA mismatch (MMR) proteins MSH6 and PMS2 was performed for all cases. Mutational frequencies of MOCs were compared to those of high-grade serous ovarian cancers (HGSOCs) and mucinous tumors from other sites. MOCs were heterogeneous at the genetic level, frequently harboring TP53 (75%) mutations, KRAS (71%) mutations and/or CDKN2A/B homozygous deletions/mutations (33%). Although established criteria for diagnosis were employed, four cases harbored mutational and immunohistochemical profiles similar to those of endometrioid carcinomas, and one case for colorectal or endometrioid carcinoma. Significant differences in the frequencies of KRAS, TP53, CDKN2A, FBXW7, PIK3CA and/or APC mutations between the confirmed primary MOCs (n = 19) and HGSOCs, mucinous gastric and/or mucinous colorectal carcinomas were found, whereas no differences in the 341 genes studied between MOCs and mucinous pancreatic carcinomas were identified. Our findings suggest that the assessment of mutations affecting TP53, KRAS, PIK3CA, ARID1A and POLE, and DNA MMR protein expression may be used to further aid the diagnosis and treatment decision-making of primary MOC. Copyright © 2018 Elsevier Inc. All rights reserved.
Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella
2015-11-01
Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Zhang, Ling-Ling; Wu, Mao; Hu, Bang-Chuan; Chen, Hua-Liang; Pan, Jin-Ren; Ruan, Wei; Yao, Li-Nong
2018-05-08
Naegleria fowleri (N. fowleri) is the only Naegleria spp. known to cause an acute, fulminant, and rapidly fatal central nervous system infection called primary amebic meningoencephalitis (PAM) in human. In 2016, a suspected PAM patient was found in Zhejiang Province of China. The pathogen was identified by microscopic examination and PCR. The positive PCR products were sequenced and the sequences were aligned using NCBI BLAST programme. The homologous and phylogenetic analysis was conducted using the MEGA 6 programme. Under the microscopy, the motile cells with pseudopodia were observed in the direct smear, the motion characteristics of pseudopodia as well as the cell morphology suggested that the pathogen were amoeba trophozoites. The smears stained with Wright-Giemsa showed amoeba trophozoites with various sharps, which were measured of 10-25μm and characterized by the prominent, centrally placed nucleolus and the vacuolated cytoplasm. The PCR showed negative for E. histolytica and E. dispar, while positive for Naegleria spp.and N. fowleri. The nucleotide sequences acquired from this study were submitted to the Genbank with accession numbers of KX909928 and KX909927, respectively. The Blast analysis revealed that the sequences of KX909928 and KX909927 have 100% similarity with the sequence of N. fowleri gene (KT375442.1). Sequence alignment and phylogenetic tree reavealed that N. fowleri collected from this study was classified as genotype 2 and had a closest relative with N. lovaniensis. This study confirms N. fowleri as the agent responsible for this patient, however, PAM normally progresses fast and universally fatal within a week, so the patient still died at two weeks after the onset of symptoms. Copyright © 2018. Published by Elsevier Ltd.
Longitudinal Metagenomic Analysis of Hospital Air Identifies Clinically Relevant Microbes.
King, Paula; Pham, Long K; Waltz, Shannon; Sphar, Dan; Yamamoto, Robert T; Conrad, Douglas; Taplitz, Randy; Torriani, Francesca; Forsyth, R Allyn
2016-01-01
We describe the sampling of sixty-three uncultured hospital air samples collected over a six-month period and analysis using shotgun metagenomic sequencing. Our primary goals were to determine the longitudinal metagenomic variability of this environment, identify and characterize genomes of potential pathogens and determine whether they are atypical to the hospital airborne metagenome. Air samples were collected from eight locations which included patient wards, the main lobby and outside. The resulting DNA libraries produced 972 million sequences representing 51 gigabases. Hierarchical clustering of samples by the most abundant 50 microbial orders generated three major nodes which primarily clustered by type of location. Because the indoor locations were longitudinally consistent, episodic relative increases in microbial genomic signatures related to the opportunistic pathogens Aspergillus, Penicillium and Stenotrophomonas were identified as outliers at specific locations. Further analysis of microbial reads specific for Stenotrophomonas maltophilia indicated homology to a sequenced multi-drug resistant clinical strain and we observed broad sequence coverage of resistance genes. We demonstrate that a shotgun metagenomic sequencing approach can be used to characterize the resistance determinants of pathogen genomes that are uncharacteristic for an otherwise consistent hospital air microbial metagenomic profile.
MIPS: analysis and annotation of proteins from whole genomes
Mewes, H. W.; Amid, C.; Arnold, R.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.; Pagel, P.; Strack, N.; Stümpflen, V.; Warfsmann, J.; Ruepp, A.
2004-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein–protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:14681354
MIPS: analysis and annotation of proteins from whole genomes.
Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A
2004-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).
Signal peptide discrimination and cleavage site identification using SVM and NN.
Kazemian, H B; Yusuf, S A; White, K
2014-02-01
About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.
Bystrykh, L V; Vonck, J; van Bruggen, E F; van Beeumen, J; Samyn, B; Govorukhina, N I; Arfman, N; Duine, J A; Dijkhuizen, L
1993-01-01
The quaternary protein structure of two methanol:N,N'-dimethyl-4-nitrosoaniline (NDMA) oxidoreductases purified from Amycolatopsis methanolica and Mycobacterium gastri MB19 was analyzed by electron microscopy and image processing. The enzymes are decameric proteins (displaying fivefold symmetry) with estimated molecular masses of 490 to 500 kDa based on their subunit molecular masses of 49 to 50 kDa. Both methanol:NDMA oxidoreductases possess a tightly but noncovalently bound NADP(H) cofactor at an NADPH-to-subunit molar ratio of 0.7. These cofactors are redox active toward alcohol and aldehyde substrates. Both enzymes contain significant amounts of Zn2+ and Mg2+ ions. The primary amino acid sequences of the A. methanolica and M. gastri MB19 methanol:NDMA oxidoreductases share a high degree of identity, as indicated by N-terminal sequence analysis (63% identity among the first 27 N-terminal amino acids), internal peptide sequence analysis, and overall amino acid composition. The amino acid sequence analysis also revealed significant similarity to a decameric methanol dehydrogenase of Bacillus methanolicus C1. Images PMID:8449887
Application of the MIDAS approach for analysis of lysine acetylation sites.
Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M
2013-01-01
Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemmer, D.E.; Kumar, N.V.; Metrione, R.M.
Toxin II from Radianthus paumotensis (Rp/sub II/) has been investigated by high-resolution NMR and chemical sequencing methods. Resonance assignments have been obtained for this protein by the sequential approach. NMR assignments could not be made consistent with the previously reported primary sequence for this protein, and chemical methods have been used to determine a sequence with which the NMR data are consistent. Analysis of the 2D NOE spectra shows that the protein secondary structure is comprised of two sequences of ..beta..-sheet, probably joined into a distorted continuous sheet, connected by turns and extended loops, without any regular ..cap alpha..-helical segments.more » The residues previously implicated in activity in this class of proteins, D8 and R13, occur in a loop region.« less
Acyl carrier protein structural classification and normal mode analysis
Cantu, David C; Forrester, Michael J; Charov, Katherine; Reilly, Peter J
2012-01-01
All acyl carrier protein primary and tertiary structures were gathered into the ThYme database. They are classified into 16 families by amino acid sequence similarity, with members of the different families having sequences with statistically highly significant differences. These classifications are supported by tertiary structure superposition analysis. Tertiary structures from a number of families are very similar, suggesting that these families may come from a single distant ancestor. Normal vibrational mode analysis was conducted on experimentally determined freestanding structures, showing greater fluctuations at chain termini and loops than in most helices. Their modes overlap more so within families than between different families. The tertiary structures of three acyl carrier protein families that lacked any known structures were predicted as well. PMID:22374859
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.
Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L
2016-11-04
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/ .
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics
Deutsch, Eric W.; Sun, Zhi; Campbell, David S.; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S.; Moritz, Robert L.
2016-01-01
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances – a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ~20,000 primary isoforms plus contaminants to a very large database that includes almost all non-redundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/. PMID:27577934
Polymorphism in the Eruption Sequence of Primary Dentition: A Cross-sectional Study
Bhojraj, Nandlal; Narayanappa
2017-01-01
Introduction Primary teeth have shown wide variations in their eruption time among different population. Population specific eruption ages are provided as mean with standard deviations or median ages with its percentile range. This alone will be insufficient for prediction of tooth eruption sequence because they provide no information on the frequency of sequence variation within the pairs of teeth. Norms of polymorphic variation in the eruption sequence can be more useful. Aim This study aims at providing norms for the sequence polymorphism in primary teeth among the children of Mysore population. Materials and Methods A cross-sectional study was designed with 1392 children, recruited from December 2015 to June 2016 by simple random sampling method. Tooth was recorded as present or absent. Across the entire possible intra quadrant tooth pair, cases of present-present, absent-absent, present-absent and absent-present and were counted and computed as percentages. Results Sequence polymorphisms were more common in 82-84 pairs of teeth. Significant polymorphic reverse sequence was observed in 52-54 (9%), 82-84 (35%) in males and 82-84 (18%) in females. There was no polymorphism in maxillary arch in females. Conclusion The present study provides the baseline data values for sequence variation in primary teeth eruption. To the best of investigators knowledge, there are no previous studies describing the sequence polymorphism in primary teeth in Indian population. The results of this study helps in assessment of eruption sequence problems in paediatric dentistry and in evaluation and prediction of tooth eruption sequence in individual child. PMID:28658912
Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert
2017-01-01
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665
Brentassi, María Eugenia; Franco, Ernesto; Balatti, Pedro; Medina, Rocío; Bernabei, Franco; Marino de Remes Lenicov, Ana M
2017-05-01
In this study, we surveyed the bacteriome-associated microbiota of the corn leafhopper Dalbulus maidis by means of histological, ultrastructural, and molecular analyses. Amplification and sequencing of 16S rDNA genes revealed that the endosymbiont "Candidatus Sulcia muelleri" (Phylum Bacteroidetes) resides in bacteriomes of D. maidis. Phylogenetic analysis showed that the sequence was closely allied to others found in representatives of the subfamily Deltocephalinae. We failed to amplify other sequences as "Candidatus Nasuia deltocephalinicola," a co-primary symbiont frequently associated to deltocephaline leafhoppers. In addition, a metagenetic analysis carried out in order to investigate the presence of other bacteriome-associated bacteria of D. maidis showed that the sequence of Sulcia accounted for 98.56 % of all the sequences. Histological and ultrastructural observations showed that microorganisms harbored in bacteriomes (central syncytium and cytoplasm of uninucleate bacteriocytes) look like others Sulcia described in hemipteran species and they were transovarially transmitted from mother to offspring which is typical of obligate endosymbionts. The only presence of Sulcia in the bacteriomes of D. maidis was discussed.
Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery
NASA Astrophysics Data System (ADS)
Sen, K. Ilker; Tang, Wilfred H.; Nayak, Shruti; Kil, Yong J.; Bern, Marshall; Ozoglu, Berk; Ueberheide, Beatrix; Davis, Darryl; Becker, Christopher
2017-05-01
Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests.
Kelsen, Judith R; Dawany, Noor; Martinez, Alejandro; Martinez, Alejuandro; Grochowski, Christopher M; Maurer, Kelly; Rappaport, Eric; Piccoli, David A; Baldassano, Robert N; Mamula, Petar; Sullivan, Kathleen E; Devoto, Marcella
2015-11-18
Children with very early-onset inflammatory bowel disease (VEO-IBD), those diagnosed at less than 5 years of age, are a unique population. A subset of these patients present with a distinct phenotype and more severe disease than older children and adults. Host genetics is thought to play a more prominent role in this young population, and monogenic defects in genes related to primary immunodeficiencies are responsible for the disease in a small subset of patients with VEO-IBD. We report a child who presented at 3 weeks of life with very early-onset inflammatory bowel disease (VEO-IBD). He had a complicated disease course and remained unresponsive to medical and surgical therapy. The refractory nature of his disease, together with his young age of presentation, prompted utilization of whole exome sequencing (WES) to detect an underlying monogenic primary immunodeficiency and potentially target therapy to the identified defect. Copy number variation analysis (CNV) was performed using the eXome-Hidden Markov Model. Whole exome sequencing revealed 1,380 nonsense and missense variants in the patient. Plausible candidate variants were not detected following analysis of filtered variants, therefore, we performed CNV analysis of the WES data, which led us to identify a de novo whole gene deletion in XIAP. This is the first reported whole gene deletion in XIAP, the causal gene responsible for XLP2 (X-linked lymphoproliferative Disease 2). XLP2 is a syndrome resulting in VEO-IBD and can increase susceptibility to hemophagocytic lymphohistocytosis (HLH). This identification allowed the patient to be referred for bone marrow transplantation, potentially curative for his disease and critical to prevent the catastrophic sequela of HLH. This illustrates the unique etiology of VEO-IBD, and the subsequent effects on therapeutic options. This cohort requires careful and thorough evaluation for monogenic defects and primary immunodeficiencies.
Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M
1991-06-01
Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.
Diossy, M; Reiniger, L; Sztupinszki, Z; Krzystanek, M; Timms, K M; Neff, C; Solimeno, C; Pruss, D; Eklund, A C; Tóth, E; Kiss, O; Rusz, O; Cserni, G; Zombori, T; Székely, B; Tímár, J; Csabai, I; Szallasi, Z
2018-06-18
Based on its mechanism of action, PARP inhibitor therapy is expected to benefit mainly tumor cases with homologous recombination deficiency (HRD). Therefore, identification of tumor types with increased HRD is important for the optimal use of this class of therapeutic agents. HRD levels can be estimated using various mutational signatures from next generation sequencing data and we used this approach to determine whether breast cancer brain metastases show altered levels of HRD scores relative to their corresponding primary tumor. We used a previously published next generation sequencing dataset of twenty-one matched primary breast cancer/brain metastasis pairs to derive the various mutational signatures/HRD scores strongly associated with HRD. We also performed the myChoice HRD analysis on an independent cohort of seventeen breast cancer patients with matched primary/brain metastasis pairs. All of the mutational signatures indicative of HRD showed a significant increase in the brain metastases relative to their matched primary tumor in the previously published whole exome sequencing dataset. In the independent validation cohort the myChoice HRD assay showed an increased level in 87.5% of the brain metastases relative to the primary tumor, with 56% of brain metastases being HRD positive according to the myChoice criteria. The consistent observation that brain metastases of breast cancer tend to have higher HRD measures may raise the possibility that brain metastases may be more sensitive to PARP inhibitor treatment. This observation warrants further investigation to assess whether this increase is common to other metastatic sites as well, and whether clinical trials should adjust their strategy in the application of HRD measures for the prioritization of patients for PARP inhibitor therapy.
Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma.
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah; Liu, Yang; Maron, Steven; Islam, Mirazul; Alpert, Lindsay; Kwak, Heewon; Kindler, Hedy; Polite, Blase; Sharma, Manish R; Allen, Kenisha; O'Day, Emily; Lomnicki, Samantha; Maranto, Melissa; Kanteti, Rajani; Fitzpatrick, Carrie; Weber, Christopher; Setia, Namrata; Xiao, Shu-Yuan; Hart, John; Nagy, Rebecca J; Kim, Kyoung-Mee; Choi, Min-Gew; Min, Byung-Hoon; Nason, Katie S; O'Keefe, Lea; Watanabe, Masayuki; Baba, Hideo; Lanman, Rick; Agoston, Agoston T; Oh, David J; Dunford, Andrew; Thorner, Aaron R; Ducar, Matthew D; Wollison, Bruce M; Coleman, Haley A; Ji, Yuan; Posner, Mitchell C; Roggin, Kevin; Turaga, Kiran; Chang, Paul; Hogarth, Kyle; Siddiqui, Uzma; Gelrud, Andres; Ha, Gavin; Freeman, Samuel S; Rhoades, Justin; Reed, Sarah; Gydush, Greg; Rotem, Denisse; Davison, Jon; Imamura, Yu; Adalsteinsson, Viktor; Lee, Jeeyun; Bass, Adam J; Catenacci, Daniel V
2018-01-01
Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential reason for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy. Significance: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1); 37-48. ©2017 AACR. See related commentary by Sundar and Tan, p. 14 See related article by Janjigian et al., p. 49 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.
Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis
Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita
2015-01-01
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403
Kosushkin, S A; Borodulina, O R; Solov'eva, E N; Grechko, V V
2008-01-01
We have isolated and characterised sequences of a SINE family specific for squamate reptiles from a genome of lacertid lizard that we called Squam1. Copies are 360-390 bp in length and share a significant similarity with tRNA gene sequence on its 5'-end. This family was also detected by us in DNA of representatives of varanids, iguanids (anolis), gekkonids, and snakes. No signs of it were found in DNA of mammals, birds, amphibians, and crocodiles. Detailed analysis of primary structure of the retroposons obtained by us from genomic libraries or GenBank sequences was carried out. Most taxa possess 2-3 subfamilies of the SINE in their genomes with specific diagnostic features in their primary structure. Individual variability of copies in different families is about 85% and is just slightly lower on the genera level. Comparison of consensus sequences on family level reveals a high degree of structural similarity with a number of specific apomorphic features which makes it a useful marker of phylogeny for this group of reptiles. Snakes do not show specific affinity to varanids when compared to other lizards, as it was suggested earlier.
He, Yingbo; Yao, Xiang; Taylor, Natalie; Bai, Yuchen; Lovenberg, Timothy; Bhattacharya, Anindya
2018-05-22
Microglia play key roles in neuron-glia interaction, neuroinflammation, neural repair, and neurotoxicity. Currently, various microglial in vitro models including primary microglia derived from distinct isolation methods and immortalized microglial cell lines are extensively used. However, the diversity of these existing models raises difficulty in parallel comparison across studies since microglia are sensitive to environmental changes, and thus, different models are likely to show widely varied responses to the same stimuli. To better understand the involvement of microglia in pathophysiological situations, it is critical to establish a reliable microglial model system. With postnatal mouse brains, we isolated microglia using three general methods including shaking, mild trypsinization, and CD11b magnetic-associated cell sorting (MACS) and applied RNA sequencing to compare transcriptomes of the isolated cells. Additionally, we generated a genome-wide dataset by RNA sequencing of immortalized BV2 microglial cell line to compare with primary microglia. Furthermore, based on the outcomes of transcriptional analysis, we compared cellular functions between primary microglia and BV2 cells including immune responses to LPS by quantitative RT-PCR and Luminex Multiplex Assay, TGFβ signaling probed by Western blot, and direct migration by chemotaxis assay. We found that although the yield and purity of microglia were comparable among the three isolation methods, mild trypsinization drove microglia in a relatively active state, evidenced by high amount of amoeboid microglia, enhanced expression of microglial activation genes, and suppression of microglial quiescent genes. In contrast, CD11b MACS was the most reliable and consistent method, and microglia isolated by this method maintained a relatively resting state. Transcriptional and functional analyses revealed that as compared to primary microglia, BV2 cells remain most of the immune functions such as responses to LPS but showed limited TGFβ signaling and chemotaxis upon chemoattractant C5a. Collectively, we determined the optimal isolation methods for quiescent microglia and characterized the limitations of BV2 cells as an alternative of primary microglia. Considering transcriptional and functional differences, caution should be taken when extrapolating data from various microglial models. In addition, our RNA sequencing database serves as a valuable resource to provide novel insights for appropriate application of microglia as in vitro models.
Bagwell, Christopher E; Liu, Xuaduan; Wu, Liyou; Zhou, Jizhong
2006-03-01
The impact of legacy nuclear waste on the compositional diversity and distribution of sulfate-reducing bacteria in a heavily contaminated subsurface aquifer was examined. dsrAB clone libraries were constructed and restriction fragment length polymorphism (RFLP) analysis used to evaluate genetic variation between sampling wells. Principal component analysis identified nickel, nitrate, technetium, and organic carbon as the primary variables contributing to well-to-well geochemical variability, although comparative sequence analysis showed the sulfate-reducing bacteria community structure to be consistent throughout contaminated and uncontaminated regions of the aquifer. Only 3% of recovered dsrAB gene sequences showed apparent membership to the Deltaproteobacteria. The remainder of recovered sequences may represent novel, deep-branching lineages that, to our knowledge, do not presently contain any cultivated members; although corresponding phylotypes have recently been reported from several different marine ecosystems. These findings imply resiliency and adaptability of sulfate-reducing bacteria to extremes in environmental conditions, although the possibility for horizontal transfer of dsrAB is also discussed.
APPLICATION OF DNA MICROARRAYS TO REPRODUCTIVE TOXICOLOGY AND THE DEVELOPMENT OF A TESTIS ARRAY
With the advent of sequence information for entire mammalian genomes, it is now possible to analyze gene expression and gene polymorphisms on a genomic scale. The primary tool for analysis of gene expression is the DNA microarray. We have used commercially available cDNA micro...
With the advent of sequence information for entire eukaryotic genomes, it is now possible to analyze gene expression on a genomic scale. The primary tool for genomic analysis of gene expression is the gene microarray. We have used commercially available and custom cDNA microarray...
Scaling of Theory-of-Mind Tasks
ERIC Educational Resources Information Center
Wellman, Henry M.; Liu, David
2004-01-01
Two studies address the sequence of understandings evident in preschoolers' developing theory of mind. The first, preliminary study provides a meta-analysis of research comparing different types of mental state understandings (e.g., desires vs. beliefs, ignorance vs. false belief). The second, primary study tests a theory-of-mind scale for…
Border Disease Virus among Chamois, Spain
Rosell, Rosa; Cabezón, Oscar; Mentaberre, Gregorio; Casas, Encarna; Velarde, Roser; Lavín, Santiago
2009-01-01
Approximately 3,000 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) died in northeastern Spain during 2005–2007. Border disease virus infection was identified by reverse transcription–PCR and sequencing analysis. These results implicate this virus as the primary cause of death, similar to findings in the previous epizootic in 2001. PMID:19239761
USDA-ARS?s Scientific Manuscript database
The analysis of DNA sequences from fungal pathogens obtained from cadavers of the small hive beetle (SHB) collected from several apiaries in Florida revealed a mixture of saprobes and two potential primary entomopathogens, Metarhizium anisopliae and Beauveria bassiana. Spray tower bioassays indicate...
Goto, Taichiro; Hirotsu, Yosuke; Mochizuki, Hitoshi; Nakagomi, Takahiro; Shikata, Daichi; Yokoyama, Yujiro; Oyama, Toshio; Amemiya, Kenji; Okimoto, Kenichiro; Omata, Masao
2017-05-09
In cases of multiple lung cancers, individual tumors may represent either a primary lung cancer or both primary and metastatic lung cancers. Treatment selection varies depending on such features, and this discrimination is critically important in predicting prognosis. The present study was undertaken to determine the efficacy and validity of mutation analysis as a means of determining whether multiple lung cancers are primary or metastatic in nature. The study involved 12 patients who underwent surgery in our department for multiple lung cancers between July 2014 and March 2016. Tumor cells were collected from formalin-fixed paraffin-embedded tissues of the primary lesions by using laser capture microdissection, and targeted sequencing of 53 lung cancer-related genes was performed. In surgically treated patients with multiple lung cancers, the driver mutation profile differed among the individual tumors. Meanwhile, in a case of a solitary lung tumor that appeared after surgery for double primary lung cancers, gene mutation analysis using a bronchoscopic biopsy sample revealed a gene mutation profile consistent with the surgically resected specimen, thus demonstrating that the tumor in this case was metastatic. In cases of multiple lung cancers, the comparison of driver mutation profiles clarifies the clonal origin of the tumors and enables discrimination between primary and metastatic tumors.
NASA Astrophysics Data System (ADS)
Nicolardi, Simone; Giera, Martin; Kooijman, Pieter; Kraj, Agnieszka; Chervet, Jean-Pierre; Deelder, André M.; van der Burgt, Yuri E. M.
2013-12-01
Particularly in the field of middle- and top-down peptide and protein analysis, disulfide bridges can severely hinder fragmentation and thus impede sequence analysis (coverage). Here we present an on-line/electrochemistry/ESI-FTICR-MS approach, which was applied to the analysis of the primary structure of oxytocin, containing one disulfide bridge, and of hepcidin, containing four disulfide bridges. The presented workflow provided up to 80 % (on-line) conversion of disulfide bonds in both peptides. With minimal sample preparation, such reduction resulted in a higher number of peptide backbone cleavages upon CID or ETD fragmentation, and thus yielded improved sequence coverage. The cycle times, including electrode recovery, were rapid and, therefore, might very well be coupled with liquid chromatography for protein or peptide separation, which has great potential for high-throughput analysis.
Vassy, Jason L; Davis, J Kelly; Kirby, Christine; Richardson, Ian J; Green, Robert C; McGuire, Amy L; Ubel, Peter A
2018-06-01
Genomics will play an increasingly prominent role in clinical medicine. To describe how primary care physicians (PCPs) discuss and make clinical recommendations about genome sequencing results. Qualitative analysis. PCPs and their generally healthy patients undergoing genome sequencing. Patients received clinical genome reports that included four categories of results: monogenic disease risk variants (if present), carrier status, five pharmacogenetics results, and polygenic risk estimates for eight cardiometabolic traits. Patients' office visits with their PCPs were audio-recorded, and summative content analysis was used to describe how PCPs discussed genomic results. For each genomic result discussed in 48 PCP-patient visits, we identified a "take-home" message (recommendation), categorized as continuing current management, further treatment, further evaluation, behavior change, remembering for future care, or sharing with family members. We analyzed how PCPs came to each recommendation by identifying 1) how they described the risk or importance of the given result and 2) the rationale they gave for translating that risk into a specific recommendation. Quantitative analysis showed that continuing current management was the most commonly coded recommendation across results overall (492/749, 66%) and for each individual result type except monogenic disease risk results. Pharmacogenetics was the most common result type to prompt a recommendation to remember for future care (94/119, 79%); carrier status was the most common type prompting a recommendation to share with family members (45/54, 83%); and polygenic results were the most common type prompting a behavior change recommendation (55/58, 95%). One-fifth of recommendation codes associated with monogenic results were for further evaluation (6/24, 25%). Rationales for these recommendations included patient context, family context, and scientific/clinical limitations of sequencing. PCPs distinguish substantive differences among categories of genome sequencing results and use clinical judgment to justify continuing current management in generally healthy patients with genomic results.
Naganeeswaran, Sudalaimuthu Asari; Subbian, Elain Apshara; Ramaswamy, Manimekalai
2012-01-01
Phytophthora megakarya, the causative agent of cacao black pod disease in West African countries causes an extensive loss of yield. In this study we have analyzed 4 libraries of ESTs derived from Phytophthora megakarya infected cocoa leaf and pod tissues. Totally 6379 redundant sequences were retrieved from ESTtik database and EST processing was performed using seqclean tool. Clustering and assembling using CAP3 generated 3333 non-redundant (907 contigs and 2426 singletons) sequences. The primary sequence analysis of 3333 non-redundant sequences showed that the GC percentage was 42.7 and the sequence length ranged from 101 - 2576 nucleotides. Further, functional analysis (Blast, Interproscan, Gene ontology and KEGG search) were executed and 1230 orthologous genes were annotated. Totally 272 enzymes corresponding to 114 metabolic pathways were identified. Functional annotation revealed that most of the sequences are related to molecular function, stress response and biological processes. The annotated enzymes are aldehyde dehydrogenase (E.C: 1.2.1.3), catalase (E.C: 1.11.1.6), acetyl-CoA C-acetyltransferase (E.C: 2.3.1.9), threonine ammonia-lyase (E.C: 4.3.1.19), acetolactate synthase (E.C: 2.2.1.6), O-methyltransferase (E.C: 2.1.1.68) which play an important role in amino acid biosynthesis and phenyl propanoid biosynthesis. All this information was stored in MySQL database management system to be used in future for reconstruction of biotic stress response pathway in cocoa.
Anticipatory activity in primary motor cortex codes memorized movement sequences.
Lu, Xiaofeng; Ashe, James
2005-03-24
Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.
A one-page summary report of genome sequencing for the healthy adult.
Vassy, Jason L; McLaughlin, Heather M; McLaughlin, Heather L; MacRae, Calum A; Seidman, Christine E; Lautenbach, Denise; Krier, Joel B; Lane, William J; Kohane, Isaac S; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C
2015-01-01
As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to nongeneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from 10 healthy participants in a study of genome sequencing in primary care. © 2015 S. Karger AG, Basel.
A One-Page Summary Report of Genome Sequencing for the Healthy Adult
Vassy, Jason L.; McLaughlin, Heather M.; MacRae, Calum A.; Seidman, Christine E.; Lautenbach, Denise; Krier, Joel B.; Lane, William J.; Kohane, Isaac S.; Murray, Michael F.; McGuire, Amy L.; Rehm, Heidi L.; Green, Robert C.
2015-01-01
As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to non-geneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from ten healthy patient participants in a study of genome sequencing in primary care. PMID:25612602
Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.
Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J
2017-08-01
Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known type 1/type 2 strains are demonstrated, and a novel classification of EBNA1 and the BART miRNAs is proposed. Copyright © 2017 Correia et al.
Visualizing conserved gene location across microbe genomes
NASA Astrophysics Data System (ADS)
Shaw, Chris D.
2009-01-01
This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.
Zhu, Dan-Tong; Xia, Wen-Qiang; Rao, Qiong; Liu, Shu-Sheng; Ghanim, Murad; Wang, Xiao-Wei
2016-08-01
The whitefly, Bemisia tabaci, harbors the primary symbiont 'Candidatus Portiera aleyrodidarum' and a variety of secondary symbionts. Among these secondary symbionts, Rickettsia is the only one that can be detected both inside and outside the bacteriomes. Infection with Rickettsia has been reported to influence several aspects of the whitefly biology, such as fitness, sex ratio, virus transmission and resistance to pesticides. However, mechanisms underlying these differences remain unclear, largely due to the lack of genomic information of Rickettsia. In this study, we sequenced the genome of two Rickettsia strains isolated from the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex in China and Israel. Both Rickettsia genomes were of high coding density and AT-rich, containing more than 1000 coding sequences, much larger than that of the coexisted primary symbiont, Portiera. Moreover, the two Rickettsia strains isolated from China and Israel shared most of the genes with 100% identity and only nine genes showed sequence differences. The phylogenetic analysis using orthologs shared in the genus, inferred the proximity of Rickettsia in MEAM1 and Rickettsia bellii. Functional analysis revealed that Rickettsia was unable to synthesize amino acids required for complementing the whitefly nutrition. Besides, a type IV secretion system and a number of virulence-related genes were detected in the Rickettsia genome. The presence of virulence-related genes might benefit the symbiotic life of the bacteria, and hint on potential effects of Rickettsia on whiteflies. The genome sequences of Rickettsia provided a basis for further understanding the function of Rickettsia in whiteflies. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Pal Choudhury, Pabitra
2017-01-01
Periplasmic c7 type cytochrome A (PpcA) protein is determined in Geobacter sulfurreducens along with its other four homologs (PpcB-E). From the crystal structure viewpoint the observation emerges that PpcA protein can bind with Deoxycholate (DXCA), while its other homologs do not. But it is yet to be established with certainty the reason behind this from primary protein sequence information. This study is primarily based on primary protein sequence analysis through the chemical basis of embedded amino acids. Firstly, we look for the chemical group specific score of amino acids. Along with this, we have developed a new methodology for the phylogenetic analysis based on chemical group dissimilarities of amino acids. This new methodology is applied to the cytochrome c7 family members and pinpoint how a particular sequence is differing with others. Secondly, we build a graph theoretic model on using amino acid sequences which is also applied to the cytochrome c7 family members and some unique characteristics and their domains are highlighted. Thirdly, we search for unique patterns as subsequences which are common among the group or specific individual member. In all the cases, we are able to show some distinct features of PpcA that emerges PpcA as an outstanding protein compared to its other homologs, resulting towards its binding with deoxycholate. Similarly, some notable features for the structurally dissimilar protein PpcD compared to the other homologs are also brought out. Further, the five members of cytochrome family being homolog proteins, they must have some common significant features which are also enumerated in this study. PMID:28362850
Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K
1987-09-01
Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.
Niazi, Sadia Ambreen; Al Kharusi, Hana Suleiman; Patel, Shanon; Bruce, Kenneth; Beighton, David; Foschi, Federico; Mannocci, Francesco
2016-11-01
The presence of opportunistic pathogens such as Propionibacterium acnes (P. acnes) may contribute to the endodontic pathology. The presence of P. acnes may be influenced by different endodontic conditions. The aims of the study were firstly, to identify P. acnes within the whole cultivable microbiota of primary endodontic infections, to investigate which P. acnes phylotypes predominate in such infections and secondly to determine if the presence of an "open" communication (e.g. a sinus) can be associated with the isolation of P. acnes from the root canal. The predominant cultivable microbiota of 15 primary endodontic lesions (7 without communication with the oral environment and 8 with an open communication) were identified using partial 16S ribosomal RNA (rRNA) gene sequence analysis. The identification of the organism was determined by interrogating the Human Oral Microbiome Database. The P. acnes isolates were typed on the basis of the recA gene sequence comparison. A neighbor-joining tree was constructed using MEGA 4.1 with the inclusion of known recA sequences. There was no difference in the number of species identified from lesions without communication (5.86 ± 3.7) and those with communication (5.37 ± 3.6) (P > 0.05). PCR-based 16S rRNA gene sequencing revealed P. acnes as the most prevalent isolate recovered from lesions with communication. recA gene sequencing revealed two phylogenetic lineages present in lesion with communication, with mainly type I (further split into type IA and type IB) and type II. The presence of P. acnes as opportunistic pathogens has been confirmed and may sustain the traits observed in specific clinical presentations. Clinical management of open lesions may require further disinfection to eliminate opportunistic bacteria.
NASA Technical Reports Server (NTRS)
1972-01-01
The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.
Plant centromeres: structure and control.
Richards, E J; Dawe, R K
1998-04-01
Recent work has led to a better understanding of the molecular components of plant centromeres. Conservation of at least some centromere protein constituents between plant and non-plant systems has been demonstrated. The identity and organization of plant centromeric DNA sequences are also beginning to yield to analysis. While there is little primary DNA sequence conservation among the characterized plant centromeres and their non-plant counterparts, some parallels in centromere genomic organisation can be seen across species. Finally, the emerging idea that centromere activity is controlled epigenetically finds support in an examination of the plant centromere literature.
Major histocompatibility complex variation in the endangered Przewalski's horse.
Hedrick, P W; Parker, K M; Miller, E L; Miller, P S
1999-01-01
The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594
Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1
Jabbari, Neda; Reddy, Panga Jaipal; Hood, Leroy
2018-01-01
Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain. PMID:29889842
Vassy, Jason L; Christensen, Kurt D; Slashinski, Melody J; Lautenbach, Denise M; Raghavan, Sridharan; Robinson, Jill Oliver; Blumenthal-Barby, Jennifer; Feuerman, Lindsay Zausmer; Lehmann, Lisa Soleymani; Murray, Michael F; Green, Robert C; McGuire, Amy L
2015-01-01
Aim To describe practicing physicians’ perceived clinical utility of genome sequencing. Materials & methods We conducted a mixed-methods analysis of data from 18 primary care physicians and cardiologists in a study of the clinical integration of whole-genome sequencing. Physicians underwent brief genomics continuing medical education before completing surveys and semi-structured interviews. Results Physicians described sequencing as currently lacking clinical utility because of its uncertain interpretation and limited impact on clinical decision-making, but they expressed the idea that its clinical integration was inevitable. Potential clinical uses for sequencing included complementing other clinical information, risk stratification, motivating patient behavior change and pharmacogenetics. Conclusion Physicians given genomics continuing medical education use the language of both evidence-based and personalized medicine in describing the utility of genome-wide testing in patient care. PMID:25642274
Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C
2012-01-01
The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).
Structure-related statistical singularities along protein sequences: a correlation study.
Colafranceschi, Mauro; Colosimo, Alfredo; Zbilut, Joseph P; Uversky, Vladimir N; Giuliani, Alessandro
2005-01-01
A data set composed of 1141 proteins representative of all eukaryotic protein sequences in the Swiss-Prot Protein Knowledge base was coded by seven physicochemical properties of amino acid residues. The resulting numerical profiles were submitted to correlation analysis after the application of a linear (simple mean) and a nonlinear (Recurrence Quantification Analysis, RQA) filter. The main RQA variables, Recurrence and Determinism, were subsequently analyzed by Principal Component Analysis. The RQA descriptors showed that (i) within protein sequences is embedded specific information neither present in the codes nor in the amino acid composition and (ii) the most sensitive code for detecting ordered recurrent (deterministic) patterns of residues in protein sequences is the Miyazawa-Jernigan hydrophobicity scale. The most deterministic proteins in terms of autocorrelation properties of primary structures were found (i) to be involved in protein-protein and protein-DNA interactions and (ii) to display a significantly higher proportion of structural disorder with respect to the average data set. A study of the scaling behavior of the average determinism with the setting parameters of RQA (embedding dimension and radius) allows for the identification of patterns of minimal length (six residues) as possible markers of zones specifically prone to inter- and intramolecular interactions.
Chen, Yong; Wang, Lijuan; Xu, Hexiang; Liu, Xingxiang; Zhao, Yingren
2013-10-01
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the third primary cause of cancer-related mortality worldwide. The molecular mechanisms underlying the initiation and formation of HCC remain obscure. In the present study, we performed exome sequencing using tumor and normal tissues from 3 hepatitis B virus (HBV)-positive BCLC stage A HCC patients. Bioinformatic analysis was performed to find candidate protein-altering somatic mutations. Eighty damaging mutations were validated and 59 genes were reported to be mutated in HBV-related HCCs for the first time here. Further analysis using whole genome sequencing (WGS) data of 88 HBV-related HCC patients from the European Genome-phenome Archive database showed that mutations in 33 of the 59 genes were also detected in other samples. Variants of two newly found genes, ZNF717 and PARP4, were detected in more than 10% of the WGS samples. Several other genes, such as FLNA and CNTN2, are also noteworthy. Thus, the exome sequencing analysis of three BCLC stage A patients provides new insights into the molecular events governing the early steps of HBV-induced HCC tumorigenesis.
NASA Astrophysics Data System (ADS)
Rauf, Muhammad; Saeed, Nasir A.; Habib, Imran; Ahmed, Moddassir; Shahzad, Khurram; Mansoor, Shahid; Ali, Rashid
2017-02-01
Structure prediction can provide information about function and active sites of protein which helps to design new functional proteins. H+-pyrophosphatase is transmembrane protein involved in establishing proton motive force for active transport of Na+ across membrane by Na+/H+ antiporters. A full length novel H+-pyrophosphatase gene was isolated from halophytic grass Leptochloa fusca using RT-PCR and RACE method. Full length LfVP1 gene sequence of 2292 nucleotides encodes protein of 764 amino acids. DNA and protein sequences were used for characterization using bioinformatics tools. Various important potential sites were predicted by PROSITE webserver. Primary structural analysis showed LfVP1 as stable protein and Grand average hydropathy (GRAVY) indicated that LfVP1 protein has good hydrosolubility. Secondary structure analysis showed that LfVP1 protein sequence contains significant proportion of alpha helix and random coil. Protein membrane topology suggested the presence of 14 transmembrane domains and presence of catalytic domain in TM3. Three dimensional structure from LfVP1 protein sequence also indicated the presence of 14 transmembrane domains and hydrophobicity surface model showed amino acid hydrophobicity. Ramachandran plot showed that 98% amino acid residues were predicted in the favored region.
Mutation detection in the human HSP70B′ gene by denaturing high-performance liquid chromatography
Hecker, Karl H.; Asea, Alexzander; Kobayashi, Kaoru; Green, Stacy; Tang, Dan; Calderwood, Stuart K.
2000-01-01
Variances, particularly single nucleotide polymorphisms (SNP), in the genomic sequence of individuals are the primary key to understanding gene function as it relates to differences in the susceptibility to disease, environmental influences, and therapy. In this report, the HSP70B′ gene is the target sequence for mutation detection in biopsy samples from human prostate cancer patients undergoing combined hyperthermia and radiation therapy at the Dana-Farber Cancer Institute, using temperature-modulated heteroduplex analysis (TMHA). The underlying principles of TMHA for mutation detection using DHPLC technology are discussed. The procedures involved in amplicon design for mutation analysis by DHPLC are detailed. The melting behavior of the complete coding sequence of the target gene is characterized using WAVEMAKERTM software. Four overlapping amplicons, which span the complete coding region of the HSP70B′ gene, amenable to mutation detection by DHPLC were identified based on the software-predicted melting profile of the target sequence. TMHA was performed on PCR products of individual amplicons of the HSP70B′ gene on the WAVE® Nucleic Acid Fragment Analysis System. The criteria for mutation calling by comparing wild-type and mutant chromatographic patterns are discussed. PMID:11189446
Mutation detection in the human HSP7OB' gene by denaturing high-performance liquid chromatography.
Hecker, K H; Asea, A; Kobayashi, K; Green, S; Tang, D; Calderwood, S K
2000-11-01
Variances, particularly single nucleotide polymorphisms (SNP), in the genomic sequence of individuals are the primary key to understanding gene function as it relates to differences in the susceptibility to disease, environmental influences, and therapy. In this report, the HSP70B' gene is the target sequence for mutation detection in biopsy samples from human prostate cancer patients undergoing combined hyperthermia and radiation therapy at the Dana-Farber Cancer Institute, using temperature-modulated heteroduplex analysis (TMHA). The underlying principles of TMHA for mutation detection using DHPLC technology are discussed. The procedures involved in amplicon design for mutation analysis by DHPLC are detailed. The melting behavior of the complete coding sequence of the target gene is characterized using WAVEMAKER software. Four overlapping amplicons, which span the complete coding region of the HSP70B' gene, amenable to mutation detection by DHPLC were identified based on the software-predicted melting profile of the target sequence. TMHA was performed on PCR products of individual amplicons of the HSP70B' gene on the WAVE Nucleic Acid Fragment Analysis System. The criteria for mutation calling by comparing wild-type and mutant chromatographic patterns are discussed.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Classification of viral zoonosis through receptor pattern analysis.
Bae, Se-Eun; Son, Hyeon Seok
2011-04-13
Viral zoonosis, the transmission of a virus from its primary vertebrate reservoir species to humans, requires ubiquitous cellular proteins known as receptor proteins. Zoonosis can occur not only through direct transmission from vertebrates to humans, but also through intermediate reservoirs or other environmental factors. Viruses can be categorized according to genotype (ssDNA, dsDNA, ssRNA and dsRNA viruses). Among them, the RNA viruses exhibit particularly high mutation rates and are especially problematic for this reason. Most zoonotic viruses are RNA viruses that change their envelope proteins to facilitate binding to various receptors of host species. In this study, we sought to predict zoonotic propensity through the analysis of receptor characteristics. We hypothesized that the major barrier to interspecies virus transmission is that receptor sequences vary among species--in other words, that the specific amino acid sequence of the receptor determines the ability of the viral envelope protein to attach to the cell. We analysed host-cell receptor sequences for their hydrophobicity/hydrophilicity characteristics. We then analysed these properties for similarities among receptors of different species and used a statistical discriminant analysis to predict the likelihood of transmission among species. This study is an attempt to predict zoonosis through simple computational analysis of receptor sequence differences. Our method may be useful in predicting the zoonotic potential of newly discovered viral strains.
Microbial analysis in primary and persistent endodontic infections by using pyrosequencing.
Hong, Bo-Young; Lee, Tae-Kwon; Lim, Sang-Min; Chang, Seok Woo; Park, Joonhong; Han, Seung Hyun; Zhu, Qiang; Safavi, Kamran E; Fouad, Ashraf F; Kum, Kee Yeon
2013-09-01
The aim of this study was to investigate the bacterial community profile of intracanal microbiota in primary and persistent endodontic infections associated with asymptomatic chronic apical periodontitis by using GS-FLX Titanium pyrosequencing. The null hypothesis was that there is no difference in diversity of overall bacterial community profiles between primary and persistent infections. Pyrosequencing analysis from 10 untreated and 8 root-filled samples was conducted. Analysis from 18 samples yielded total of 124,767 16S rRNA gene sequences (with a mean of 6932 reads per sample) that were taxonomically assigned into 803 operational taxonomic units (3% distinction), 148 genera, and 10 phyla including unclassified. Bacteroidetes was the most abundant phylum in both primary and persistent infections. There were no significant differences in bacterial diversity between the 2 infection groups (P > .05). The bacterial community profile that was based on dendrogram showed that bacterial population in both infections was not significantly different in their structure and composition (P > .05). The present pyrosequencing study demonstrates that persistent infections have as diverse bacterial community as primary infections. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Shahinyan, Grigor; Margaryan, Armine; Panosyan, Hovik; Trchounian, Armen
2017-05-02
Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5-70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98-99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. Newly isolated bacilli strains could be prospective source for thermostable lipases and their genes.
HD 143 418 - An Interacting Binary with a Subsynchronously Rotating Primary
NASA Astrophysics Data System (ADS)
Mikulášek, Z.; Zverko, J.; Žižňovský, J.; Krtička, J.; Iliev, I. Kh.; Kudryavtsev, D. O.; Gráf, T.; Zejda, M.
2010-12-01
HD 143418 is a non-eclipsing double-lined close binary with orbital period Porb=2.282520 d. The photometrically and spectroscopically dominant primary component is a normal A5V star in the middle of its stay on the main sequence with extremely slow, subsynchronous rotation (Prot being about 14 days!). Its photometric monitoring since 1982 revealed orbitally modulated variations with changing form and amplitude. The advanced principal component analysis (APCA) disentangling extract-ed a steady part of light curves obviously caused by the ellipticity of the primary. Seasonal components of the light curves may be related to an expected incidence of circumstellar matter ejected from the tidally spinning up primary component. A possible scenario of the synchronisation process is also briefly discussed.
StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics
Ramirez-Gonzalez, Ricardo H.; Leggett, Richard M.; Waite, Darren; Thanki, Anil; Drou, Nizar; Caccamo, Mario; Davey, Robert
2014-01-01
Modern sequencing platforms generate enormous quantities of data in ever-decreasing amounts of time. Additionally, techniques such as multiplex sequencing allow one run to contain hundreds of different samples. With such data comes a significant challenge to understand its quality and to understand how the quality and yield are changing across instruments and over time. As well as the desire to understand historical data, sequencing centres often have a duty to provide clear summaries of individual run performance to collaborators or customers. We present StatsDB, an open-source software package for storage and analysis of next generation sequencing run metrics. The system has been designed for incorporation into a primary analysis pipeline, either at the programmatic level or via integration into existing user interfaces. Statistics are stored in an SQL database and APIs provide the ability to store and access the data while abstracting the underlying database design. This abstraction allows simpler, wider querying across multiple fields than is possible by the manual steps and calculation required to dissect individual reports, e.g. ”provide metrics about nucleotide bias in libraries using adaptor barcode X, across all runs on sequencer A, within the last month”. The software is supplied with modules for storage of statistics from FastQC, a commonly used tool for analysis of sequence reads, but the open nature of the database schema means it can be easily adapted to other tools. Currently at The Genome Analysis Centre (TGAC), reports are accessed through our LIMS system or through a standalone GUI tool, but the API and supplied examples make it easy to develop custom reports and to interface with other packages. PMID:24627795
Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K
2018-03-01
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Identification of two allelic IgG1 C(H) coding regions (Cgamma1) of cat.
Kanai, T H; Ueda, S; Nakamura, T
2000-01-31
Two types of cDNA encoding IgG1 heavy chain (gamma1) were isolated from a single domestic short-hair cat. Sequence analysis indicated a higher level of similarity of these Cgamma1 sequences to human Cgamma1 sequence (76.9 and 77.0%) than to mouse sequence (70.0 and 69.7%) at the nucleotide level. Predicted primary structures of both the feline Cgamma1 genes, designated as Cgamma1a and Cgamma1b, were similar to that of human Cgamma1 gene, for instance, as to the size of constant domains, the presence of six conserved cysteine residues involved in formation of the domain structure, and the location of a conserved N-linked glycosylation site. Sequence comparison between the two alleles showed that 7 out of 10 nucleotide differences were within the C(H)3 domain coding region, all leading to nonsynonymous changes in amino acid residues. Partial sequence analysis of genomic clones showed three nucleotide substitutions between the two Cgamma1 alleles in the intron between the CH2 and C(H)3 domain coding regions. In 12 domestic short-hair cats used in this study, the frequency of Cgamma1a allele (62.5%) was higher than that of the Cgamma1b allele (37.5%).
Venom characterization of the Amazonian scorpion Tityus metuendus.
Batista, C V F; Martins, J G; Restano-Cassulini, R; Coronas, F I V; Zamudio, F Z; Procópio, R; Possani, L D
2018-03-01
The soluble venom from the scorpion Tityus metuendus was characterized by various methods. In vivo experiments with mice showed that it is lethal. Extended electrophysiological recordings using seven sub-types of human voltage gated sodium channels (hNav1.1 to 1.7) showed that it contains both α- and β-scorpion toxin types. Fingerprint analysis by mass spectrometry identified over 200 distinct molecular mass components. At least 60 sub-fractions were recovered from HPLC separation. Five purified peptides were sequenced by Edman degradation, and their complete primary structures were determined. Additionally, three other peptides have had their N-terminal amino acid sequences determined by Edman degradation and reported. Mass spectrometry analysis of tryptic digestion of the soluble venom permitted the identification of the amino acid sequence of 111 different peptides. Search for similarities of the sequences found indicated that they probably are: sodium and potassium channel toxins, metalloproteinases, hyaluronidases, endothelin and angiotensin-converting enzymes, bradykinin-potentiating peptide, hypothetical proteins, allergens, other enzymes, other proteins and peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frey, Beat; Bühler, Lukas; Schmutz, Stefan; Zumsteg, Anita; Furrer, Gerhard
2013-03-01
Recently deglaciated areas are ideal environments to study soil formation and primary microbial succession where phototrophic microorganisms may play a role as primary producers. The aim of our study was to investigate the cyanobacterial and green algal community composition in three different successional stages of the Damma glacier forefield in the Swiss Alps using 16S rDNA and ITS rDNA clone libraries. Cyanobacterial target sequences varied along the glacier forefield, with the highest cyanobacterial 16S rRNA gene copies found in sparsely vegetated soils. Sequence analysis revealed that the phototrophic communities were distinct in each of the three soil environments. The majority of the cyanobacterial sequences retrieved from barren soils were related to the Oscillatoriales. The diversity in sparsely vegetated soils was low, and sequences closely related to Nostoc sp. dominated. The majority of the algal phylotypes are related to members of the Trebouxiophyceae known to live as symbiotic partners in lichens. We conclude that the community composition appears to shift markedly along the chronosequence, indicating that each soil environment selects for its phototrophic community. When cyanobacteria occur together with eukaryotic microalgae, they form a rich source of organic matter and may be important contributors of carbon in nutrient-deficient deglaciated soils.
Single-molecule Protein Unfolding in Solid State Nanopores
Talaga, David S.; Li, Jiali
2009-01-01
We use single silicon nitride nanopores to study folded, partially folded and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of β-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore when translocation stalls due to the primary charge sequence. Our analysis suggests that the majority of the protein molecules were linear or looped during translocation and that the electrical forces present under physiologically relevant potentials can unfold proteins. Our results show that the nanopore translocation signals are sensitive enough to distinguish the folding state of a protein and distinguish between proteins based on the excluded volume of a local segment of the polypeptide chain that transiently stalls in the nanopore due to the primary sequence of charges. PMID:19530678
Ruan, Yi Jun; Wei, Chia Lin; Ee, Ai Ling; Vega, Vinsensius B; Thoreau, Herve; Su, Se Thoe Yun; Chia, Jer-Ming; Ng, Patrick; Chiu, Kuo Ping; Lim, Landri; Zhang, Tao; Peng, Chan Kwai; Lin, Ean Oon Lynette; Lee, Ng Mah; Yee, Sin Leo; Ng, Lisa F P; Chee, Ren Ee; Stanton, Lawrence W; Long, Philip M; Liu, Edison T
2003-05-24
The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus. Whole genome sequence analysis of various isolates might provide an indication of potential strain differences of this new virus. Moreover, mutation analysis will help to develop effective vaccines. We sequenced the entire SARS viral genome of cultured isolates from the index case (SIN2500) presenting in Singapore, from three primary contacts (SIN2774, SIN2748, and SIN2677), and one secondary contact (SIN2679). These sequences were compared with the isolates from Canada (TOR2), Hong Kong (CUHK-W1 and HKU39849), Hanoi (URBANI), Guangzhou (GZ01), and Beijing (BJ01, BJ02, BJ03, BJ04). We identified 129 sequence variations among the 14 isolates, with 16 recurrent variant sequences. Common variant sequences at four loci define two distinct genotypes of the SARS virus. One genotype was linked with infections originating in Hotel M in Hong Kong, the second contained isolates from Hong Kong, Guangzhou, and Beijing with no association with Hotel M (p<0.0001). Moreover, other common sequence variants further distinguished the geographical origins of the isolates, especially between Singapore and Beijing. Despite the recent onset of the SARS epidemic, genetic signatures are emerging that partition the worldwide SARS viral isolates into groups on the basis of contact source history and geography. These signatures can be used to trace sources of infection. In addition, a common variant associated with a non-conservative aminoacid change in the S1 region of the spike protein, suggests that immunological pressures might be starting to influence the evolution of the SARS virus in human populations.
Tung, Emily W.Y.; Peshdary, Vian; Gagné, Remi; Rowan-Carroll, Andrea; Yauk, Carole L.; Boudreau, Adéle
2017-01-01
Background: Exposure to flame retardants has been associated with negative health outcomes including metabolic effects. As polybrominated diphenyl ether flame retardants were pulled from commerce, human exposure to new flame retardants such as Firemaster® 550 (FM550) has increased. Although previous studies in murine systems have shown that FM550 and its main components increase adipogenesis, the effects of FM550 in human models have not been elucidated. Objectives: The objectives of this study were to determine if FM550 and its components are active in human preadipocytes, and to further investigate their mode of action. Methods: Human primary preadipocytes were differentiated in the presence of FM550 and its components. Differentiation was assessed by lipid accumulation and expression of peroxisome proliferator-activated receptor γ (PPARG), fatty acid binding protein (FABP) 4 and lipoprotein lipase (LPL). mRNA was collected for Poly (A) RNA sequencing and was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. Results: FM550 triphenyl phosphate (TPP) and isopropylated triphenyl phosphates (IPTP), increased adipogenesis in human primary preadipocytes as assessed by lipid accumulation and mRNA expression of regulators of adipogenesis such as PPARγ, CCAAT enhancer binding protein (C/EBP) α and sterol regulatory element binding protein (SREBP) 1 as well as the adipogenic markers FABP4 LPL and perilipin. Poly (A) RNA sequencing analysis revealed potential modes of action including liver X receptor/retinoid X receptor (LXR/RXR) activation, thyroid receptor (TR)/RXR, protein kinase A, and nuclear receptor subfamily 1 group H members activation. Conclusions: We found that FM550, and two of its components, induced adipogenesis in human primary preadipocytes. Further, using global gene expression analysis we showed that both TPP and IPTP likely exert their effects through PPARG to induce adipogenesis. In addition, IPTP perturbed signaling pathways that were not affected by TPP. https://doi.org/10.1289/EHP1318 PMID:28934090
Margot, Nicolas A; Kitrinos, Kathryn M; Fordyce, Marshall; McCallister, Scott; Miller, Michael D; Callebaut, Christian
2016-03-01
Tenofovir alafenamide (TAF), a novel prodrug of the NtRTI tenofovir (TFV), delivers TFV-diphosphate (TFV-DP) to target cells more efficiently than the current prodrug, tenofovir disoproxil fumarate (TDF), with a 90% reduction in TFV plasma exposure. TAF, within the fixed dose combination of elvitegravir /cobicistat / emtricitabine (FTC)/TAF (E/C/F/TAF), has been evaluated in one Phase 2 and two Phase 3 randomized, double-blinded studies in HIV-infected treatment-naive patients, comparing E/C/F/TAF to E/C/F/TDF. In these studies, the TAF-containing group demonstrated non-inferior efficacy to the TDF-containing comparator group with 91.9% of E/C/F/TAF patients having <50 copies/mL of HIV-1 RNA at week 48. An integrated resistance analysis across these three studies was conducted, including HIV-1 genotypic analysis at screening, and genotypic/phenotypic analysis for patients with HIV-1 RNA>400 copies/mL at virologic failure. Pre-existing primary resistance-associated mutations (RAMs) were observed at screening among the 1903 randomized and treated patients: 7.5% had NRTI-RAMs, 18.2% had NNRTI-RAMs, and 3.4% had primary PI-RAMs. Pre-treatment RAMs did not influence treatment response at Week 48. In the E/C/F/TAF group, resistance development was rare; seven patients (0.7%, 7/978) developed NRTI-RAMs, five of whom (0.5%, 5/978) also developed primary INSTI-RAMs. In the E/C/F/TDF group, resistance development was also rare; seven patients (0.8%, 7/925) developed NRTI-RAMs, four of whom (0.4%, 4/925) also developed primary INSTI-RAMs. An additional analysis by deep sequencing in virologic failures revealed minimal differences compared to population sequencing. Overall, resistance development was rare in E/C/F/TAF-treated patients, and the pattern of emergent mutations was similar to E/C/F/TDF.
Feliu, Neus; Kohonen, Pekka; Ji, Jie; Zhang, Yuning; Karlsson, Hanna L; Palmberg, Lena; Nyström, Andreas; Fadeel, Bengt
2015-01-27
Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.
Formulaic Sequences Used by Native English Speaking Teachers in a Thai Primary School
ERIC Educational Resources Information Center
Steyn, Sunee; Jaroongkhongdach, Woravut
2016-01-01
The use of formulaic sequences in English as a Foreign Language (EFL) lessons plays an integral role in language teaching and learning, but it seems still widely neglected in the Thai school context. To call attention to this issue, this study aims at identifying formulaic sequences used in a Thai primary school. The data were taken from three…
Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers.
Grüning, Björn A; Rasche, Eric; Rebolledo-Jaramillo, Boris; Eberhard, Carl; Houwaart, Torsten; Chilton, John; Coraor, Nate; Backofen, Rolf; Taylor, James; Nekrutenko, Anton
2017-05-01
What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.
NASA Astrophysics Data System (ADS)
McMahon, Kendra
2012-07-01
By developing two case studies of expert teaching in action, this study aimed to develop knowledge of talk in whole-class teaching in UK primary science lessons and understand this in relation to both the teachers' interpretations and sociocultural theoretical frameworks. Lessons were observed and video-recorded and the teachers engaged in video-stimulated-reflective dialogue to capture participants' reflections upon their own pedagogic purposes and interactions in the classroom. The analytic framework was developed at three levels: sequence of lessons, lesson, and episode. For each episode, the 'communicative approach' and teaching purposes were recorded. Transcripts were developed for fine grain analysis of selected episodes and a quantitative analysis was undertaken of the use of communicative approaches. Findings exemplify how different communicative approaches were used by the case-study teachers for different pedagogical purposes at different points in the sequence of lessons, contributing to primary teachers' repertoire for planning and practice. The initial elicitation of children's ideas can be understood as pooling them to enhance multivoicedness and develop a shared resource for future dialogues. Whole-class talk can support univocality by rehearsing procedural knowledge and exploring the meanings of scientific terminology. Identifying salient features of phenomena in the context of the whole-class marks them as significant as shared knowledge but valuing other observations extends the multivoicedness of the discourse.
Genomic Evolution of Breast Cancer Metastasis and Relapse
Yates, Lucy R.; Knappskog, Stian; Wedge, David; ...
2017-08-14
Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancermore » genes than early drivers. Lastly, these include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.« less
Genomic Evolution of Breast Cancer Metastasis and Relapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Lucy R.; Knappskog, Stian; Wedge, David
Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancermore » genes than early drivers. Lastly, these include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.« less
Chang, Vivian Y.; Federman, Noah; Martinez-Agosto, Julian; Tatishchev, Sergei F.; Nelson, Stanley F.
2014-01-01
Background Gastric adenocarcinoma is a rare diagnosis in childhood. A 14-year old male patient presented with metastatic gastric adenocarcinoma, and a strong family history of colon cancer. Clinical sequencing of CDH1 and APC were negative. Whole exome sequencing was therefore applied to capture the majority of protein-coding regions for the identification of single-nucleotide variants, small insertion/deletions, and copy number abnormalities in the patient’s germline as well as primary tumor. Materials and Methods DNA was extracted from the patient’s blood, primary tumor, and the unaffected mother’s blood. DNA libraries were constructed and sequenced on Illumina HiSeq2000. Data were post-processed using Picard and Samtools, then analyzed with the Genome Analysis Toolkit. Variants were annotated using an in-house Ensembl-based program. Copy number was assessed using ExomeCNV. Results Each sample was sequenced to a mean depth of coverage of greater than 120×. A rare non-synonymous coding SNV in TP53 was identified in the germline. There were 10 somatic cancer protein-damaging variants that were not observed in the unaffected mother genome. ExomeCNV comparing tumor to the patient’s germline, identified abnormal copy number, spanning 6,946 genes. Conclusion We present an unusual case of Li-Fraumeni detected by whole exome sequencing. There were also likely driver somatic mutations in the gastric adenocarcinoma. These results highlight the need for more thorough and broad scale germline and cancer analyses to accurately inform patients of inherited risk to cancer and to identify somatic mutations. PMID:23015295
Gao, Bo; Shao, Qin; Choudhry, Hani; Marcus, Victoria; Dong, Kung; Ragoussis, Jiannis; Gao, Zu-Hua
2016-09-01
Approximately 9% of cancer-related deaths are caused by colorectal cancer (CRC). CRC patients are prone to liver metastasis, which is the most important cause for the high CRC mortality rate. Understanding the molecular mechanism of CRC liver metastasis could help us to find novel targets for the effective treatment of this deadly disease. Using weighted gene co-expression network analysis on the sequencing data of CRC with and with metastasis, we identified 5 colorectal cancer liver metastasis related modules which were labeled as brown, blue, grey, yellow and turquoise. In the brown module, which represents the metastatic tumor in the liver, gene ontology (GO) analysis revealed functions including the G-protein coupled receptor protein signaling pathway, epithelial cell differentiation and cell surface receptor linked signal transduction. In the blue module, which represents the primary CRC that has metastasized, GO analysis showed that the genes were mainly enriched in GO terms including G-protein coupled receptor protein signaling pathway, cell surface receptor linked signal transduction, and negative regulation of cell differentiation. In the yellow and turquoise modules, which represent the primary non-metastatic CRC, 13 downregulated CRC liver metastasis-related candidate miRNAs were identified (e.g. hsa-miR-204, hsa-miR-455, etc.). Furthermore, analyzing the DrugBank database and mining the literature identified 25 and 12 candidate drugs that could potentially block the metastatic processes of the primary tumor and inhibit the progression of metastatic tumors in the liver, respectively. Data generated from this study not only furthers our understanding of the genetic alterations that drive the metastatic process, but also guides the development of molecular-targeted therapy of colorectal cancer liver metastasis.
1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters
NASA Astrophysics Data System (ADS)
Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.
New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.
Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis
Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu
2014-01-01
The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318
Santos, Sara; Bastos, Estela; Baptista, Cláudia S.; Sá, Daniela; Caloustian, Christophe; Guedes-Pinto, Henrique; Gärtner, Fátima; Gut, Ivo G.; Chaves, Raquel
2012-01-01
The human ERBB2 proto-oncogene is widely considered a key gene involved in human breast cancer onset and progression. Among spontaneous tumors, mammary tumors are the most frequent cause of cancer death in cats and second most frequent in humans. In fact, naturally occurring tumors in domestic animals, more particularly cat mammary tumors, have been proposed as a good model for human breast cancer, but critical genetic and molecular information is still scarce. The aims of this study include the analysis of the cat ERBB2 gene partial sequences (between exon 17 and 20) in order to characterize a normal and a mammary lesion heterogeneous populations. Cat genomic DNA was extracted from normal frozen samples (n = 16) and from frozen and formalin-fixed paraffin-embedded mammary lesion samples (n = 41). We amplified and sequenced two cat ERBB2 DNA fragments comprising exons 17 to 20. It was possible to identify five sequence variants and six haplotypes in the total population. Two sequence variants and two haplotypes show to be specific for cat mammary tumor samples. Bioinformatics analysis predicts that four of the sequence variants can produce alternative transcripts or activate cryptic splicing sites. Also, a possible association was identified between clinicopathological traits and the variant haplotypes. As far as we know, this is the first attempt to examine ERBB2 genetic variations in cat mammary genome and its possible association with the onset and progression of cat mammary tumors. The demonstration of a possible association between primary tumor size (one of the two most important prognostic factors) and the number of masses with the cat ERBB2 variant haplotypes reveal the importance of the analysis of this gene in veterinary medicine. PMID:22489125
Geiss, K T; Abbas, G M; Makaroff, C A
1994-04-01
The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.
Update on Genomic Databases and Resources at the National Center for Biotechnology Information.
Tatusova, Tatiana
2016-01-01
The National Center for Biotechnology Information (NCBI), as a primary public repository of genomic sequence data, collects and maintains enormous amounts of heterogeneous data. Data for genomes, genes, gene expressions, gene variation, gene families, proteins, and protein domains are integrated with the analytical, search, and retrieval resources through the NCBI website, text-based search and retrieval system, provides a fast and easy way to navigate across diverse biological databases.Comparative genome analysis tools lead to further understanding of evolution processes quickening the pace of discovery. Recent technological innovations have ignited an explosion in genome sequencing that has fundamentally changed our understanding of the biology of living organisms. This huge increase in DNA sequence data presents new challenges for the information management system and the visualization tools. New strategies have been designed to bring an order to this genome sequence shockwave and improve the usability of associated data.
Boldt, Lynda; Yellowlees, David; Leggat, William
2012-01-01
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences. PMID:23112815
SBLOCA outside containment at Browns Ferry Unit One: accident sequence analysis. [Small break
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condon, W.A.; Harrington, R.M.; Greene, S.R.
1982-11-01
This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to a postulated small-break loss-of-coolant accident outside of the primary containment. The break has been assumed to occur in the scram discharge volume piping immediately following a reactor scram that cannot be reset. The events before core uncovering are discussed for both the worst-case accident sequence without operator action and for the more likely sequences with operator action. Without operator action, the events after core uncovering would include core meltdown and subsequent containment failure, and this event sequence has been determined through use of themore » MARCH code. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report.« less
Asgari, Samira; McLaren, Paul J; Peake, Jane; Wong, Melanie; Wong, Richard; Bartha, Istvan; Francis, Joshua R; Abarca, Katia; Gelderman, Kyra A; Agyeman, Philipp; Aebi, Christoph; Berger, Christoph; Fellay, Jacques; Schlapbach, Luregn J
2016-01-01
One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa ( P. aeruginosa ) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B . This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs.
Asgari, Samira; McLaren, Paul J.; Peake, Jane; Wong, Melanie; Wong, Richard; Bartha, Istvan; Francis, Joshua R.; Abarca, Katia; Gelderman, Kyra A.; Agyeman, Philipp; Aebi, Christoph; Berger, Christoph; Fellay, Jacques; Schlapbach, Luregn J.; Posfay-Barbe, Klara
2016-01-01
One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B. This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs. PMID:27703454
Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael
2005-02-01
The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.
Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.
Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin
2011-08-21
Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk
2018-06-11
In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.
Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.
2015-01-01
RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Mycofier: a new machine learning-based classifier for fungal ITS sequences.
Delgado-Serrano, Luisa; Restrepo, Silvia; Bustos, Jose Ricardo; Zambrano, Maria Mercedes; Anzola, Juan Manuel
2016-08-11
The taxonomic and phylogenetic classification based on sequence analysis of the ITS1 genomic region has become a crucial component of fungal ecology and diversity studies. Nowadays, there is no accurate alignment-free classification tool for fungal ITS1 sequences for large environmental surveys. This study describes the development of a machine learning-based classifier for the taxonomical assignment of fungal ITS1 sequences at the genus level. A fungal ITS1 sequence database was built using curated data. Training and test sets were generated from it. A Naïve Bayesian classifier was built using features from the primary sequence with an accuracy of 87 % in the classification at the genus level. The final model was based on a Naïve Bayes algorithm using ITS1 sequences from 510 fungal genera. This classifier, denoted as Mycofier, provides similar classification accuracy compared to BLASTN, but the database used for the classification contains curated data and the tool, independent of alignment, is more efficient and contributes to the field, given the lack of an accurate classification tool for large data from fungal ITS1 sequences. The software and source code for Mycofier are freely available at https://github.com/ldelgado-serrano/mycofier.git .
NASA Astrophysics Data System (ADS)
He, Lidong; Anderson, Lissa C.; Barnidge, David R.; Murray, David L.; Hendrickson, Christopher L.; Marshall, Alan G.
2017-05-01
With the rapid growth of therapeutic monoclonal antibodies (mAbs), stringent quality control is needed to ensure clinical safety and efficacy. Monoclonal antibody primary sequence and post-translational modifications (PTM) are conventionally analyzed with labor-intensive, bottom-up tandem mass spectrometry (MS/MS), which is limited by incomplete peptide sequence coverage and introduction of artifacts during the lengthy analysis procedure. Here, we describe top-down and middle-down approaches with the advantages of fast sample preparation with minimal artifacts, ultrahigh mass accuracy, and extensive residue cleavages by use of 21 tesla FT-ICR MS/MS. The ultrahigh mass accuracy yields an RMS error of 0.2-0.4 ppm for antibody light chain, heavy chain, heavy chain Fc/2, and Fd subunits. The corresponding sequence coverages are 81%, 38%, 72%, and 65% with MS/MS RMS error 4 ppm. Extension to a monoclonal antibody in human serum as a monoclonal gammopathy model yielded 53% sequence coverage from two nano-LC MS/MS runs. A blind analysis of five therapeutic monoclonal antibodies at clinically relevant concentrations in human serum resulted in correct identification of all five antibodies. Nano-LC 21 T FT-ICR MS/MS provides nonpareil mass resolution, mass accuracy, and sequence coverage for mAbs, and sets a benchmark for MS/MS analysis of multiple mAbs in serum. This is the first time that extensive cleavages for both variable and constant regions have been achieved for mAbs in a human serum background.
Al-Romaih, Khaldoun I.; Genovese, Giulio; Al-Mojalli, Hamad; Al-Othman, Saleh; Al-Manea, Hadeel; Al-Suleiman, Mohammed; Al-Jondubi, Mohammed; Atallah, Nourah; Al-Rodhyan, Maha; Weins, Astrid; Pollak, Martin R.; Adra, Chaker N.
2011-01-01
Background Accurate diagnosis of the primary cause of an individual’s kidney disease can be essential for proper management. Some kidney diseases have overlapping histopathological features despite being caused by defects in different genes. In this report we describe two consanguineous Saudi Arabian families in which individuals presented with kidney failure and mixed clinical and histological features initially thought consistent with focal segmental glomerulosclerosis. Study Design Case series. Setting and participants We studied members of two apparently unrelated families from Saudi Arabia with kidney disease. Measurements Whole-genome single-nucleotide polymorphism analysis followed by targeted isolation and sequencing of exons using genomic DNA samples from affected members of these families, followed by additional focused genotyping and sequence analysis. Results The two apparently unrelated families shared a region of homozygosity on chromosome 2q13. Exome sequence from the affected individuals lacked any sequence reads from the NPHP1 gene, which is located within this homozygous region. Additional PCR based genotyping confirmed that affected individuals had NPHP1 deletions, rather than defects in a known FSGS-associated gene. Limitations The methods used here may not result in a clear genetic diagnosis in many cases of apparent familial kidney disease. Conclusions This analysis demonstrates the power of new high-throughput genotyping and sequencing technologies to aid in the rapid genetic diagnosis of individuals with an inherited form of kidney disease. We believe it is likely that such tools may become useful clinical genetic tools and alter the manner in which diagnoses are made in nephrology. PMID:21658830
Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease
Braun, Terry A.; Mullins, Robert F.; Wagner, Alex H.; Andorf, Jeaneen L.; Johnston, Rebecca M.; Bakall, Benjamin B.; Deluca, Adam P.; Fishman, Gerald A.; Lam, Byron L.; Weleber, Richard G.; Cideciyan, Artur V.; Jacobson, Samuel G.; Sheffield, Val C.; Tucker, Budd A.; Stone, Edwin M.
2013-01-01
Mutations in ABCA4 cause Stargardt disease and other blinding autosomal recessive retinal disorders. However, sequencing of the complete coding sequence in patients with clinical features of Stargardt disease sometimes fails to detect one or both mutations. For example, among 208 individuals with clear clinical evidence of ABCA4 disease ascertained at a single institution, 28 had only one disease-causing allele identified in the exons and splice junctions of the primary retinal transcript of the gene. Haplotype analysis of these 28 probands revealed 3 haplotypes shared among ten families, suggesting that 18 of the 28 missing alleles were rare enough to be present only once in the cohort. We hypothesized that mutations near rare alternate splice junctions in ABCA4 might cause disease by increasing the probability of mis-splicing at these sites. Next-generation sequencing of RNA extracted from human donor eyes revealed more than a dozen alternate exons that are occasionally incorporated into the ABCA4 transcript in normal human retina. We sequenced the genomic DNA containing 15 of these minor exons in the 28 one-allele subjects and observed five instances of two different variations in the splice signals of exon 36.1 that were not present in normal individuals (P < 10−6). Analysis of RNA obtained from the keratinocytes of patients with these mutations revealed the predicted alternate transcript. This study illustrates the utility of RNA sequence analysis of human donor tissue and patient-derived cell lines to identify mutations that would be undetectable by exome sequencing. PMID:23918662
Simons, S O; van der Laan, T; Mulder, A; van Ingen, J; Rigouts, L; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D
2014-10-01
There is an urgent need for rapid and accurate diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis (MDR-TB). No diagnostic algorithm has been validated in this population. We hypothesized that pncA sequencing added to rpoB mutation analysis can accurately identify patients with pyrazinamide-resistant MDR-TB. We identified from the Dutch national database (2007-11) patients with a positive Mycobacterium tuberculosis culture containing a mutation in the rpoB gene. In these cases, we prospectively sequenced the pncA gene. Results from the rpoB and pncA mutation analysis (pncA added to rpoB) were compared with phenotypic susceptibility testing results to rifampicin, isoniazid and pyrazinamide (reference standard) using the Mycobacterial Growth Indicator Tube 960 system. We included 83 clinical M. tuberculosis isolates containing rpoB mutations in the primary analysis. Rifampicin resistance was seen in 72 isolates (87%), isoniazid resistance in 73 isolates (88%) and MDR-TB in 65 isolates (78%). Phenotypic reference testing identified pyrazinamide-resistant MDR-TB in 31 isolates (48%). Sensitivity of pncA sequencing added to rpoB mutation analysis for detecting pyrazinamide-resistant MDR-TB was 96.8%, the specificity was 94.2%, the positive predictive value was 90.9%, the negative predictive value was 98.0%, the positive likelihood was 16.8 and the negative likelihood was 0.03. In conclusion, pyrazinamide-resistant MDR-TB can be accurately detected using pncA sequencing added to rpoB mutation analysis. We propose to include pncA sequencing in every isolate with an rpoB mutation, allowing for stratification of MDR-TB treatment according to pyrazinamide susceptibility. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Farcy, Emilie; Serpentini, Antoine; Fiévet, Bruno; Lebel, Jean-Marc
2007-04-01
Heat-shock proteins are a multigene family of proteins whose expression is induced by a variety of stress factors. This work reports the cloning and sequencing of HSP70 and HSP90 cDNAs in the gastropod Haliotis tuberculata. The deduced amino acid sequences of both HSP70 and HSP90 from H. tuberculata shared a high degree of homology with their homologues in other species, including typical eukaryotic HSP70 and HSP90 signature sequences. We examined their transcription expression pattern in abalone hemocytes exposed to thermal stress. Real-time PCR analysis indicated that both HSP70 and HSP90 mRNA were expressed in control animals but rapidly increased after heat-shock.
Smith, Hadley Stevens; Swint, J Michael; Lalani, Seema R; Yamal, Jose-Miguel; de Oliveira Otto, Marcia C; Castellanos, Stephan; Taylor, Amy; Lee, Brendan H; Russell, Heidi V
2018-05-14
Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Patiño, Liliana Catherine; Beau, Isabelle; Carlosama, Carolina; Buitrago, July Constanza; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Delemer, Brigitte; Young, Jacques; Binart, Nadine; Laissue, Paul
2017-07-01
Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. This is a retrospective cohort study performed on 69 women affected by POI. WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
USDA-ARS?s Scientific Manuscript database
The spore-forming anaerobic Clostridium perfringens (CP) is the primary etiological agent of necrotic enteritis (NE) disease, one of priority enteric diseases in chickens which is responsible for annual losses of $6 billion in the US poultry industry. Our long term goal is to develop a recombinant v...
Ceballos, Ana; Andreani, Guadalupe; Ripamonti, Chiara; Dilernia, Dario; Mendez, Ramiro; Rabinovich, Roberto D; Cárdenas, Patricia Coll; Zala, Carlos; Cahn, Pedro; Scarlatti, Gabriella; Martínez Peralta, Liliana
2008-11-01
Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) as described for women with an established infection is, in most cases, associated with the transmission of few maternal variants. This study analysed virus variability in four cases of maternal primary infection occurring during pregnancy and/or breastfeeding. Estimated time of seroconversion was at 4 months of pregnancy for one woman (early seroconversion) and during the last months of pregnancy and/or breastfeeding for the remaining three (late seroconversion). The C2V3 envelope region was analysed in samples of mother-child pairs by molecular cloning and sequencing. Comparisons of nucleotide and amino acid sequences as well as phylogenetic analysis were performed. The results showed low variability in the virus population of both mother and child. Maximum-likelihood analysis showed that, in the early pregnancy seroconversion case, a minor viral variant with further evolution in the child was transmitted, which could indicate a selection event in MTCT or a stochastic event, whereas in the late seroconversion cases, the mother's and child's sequences were intermingled, which is compatible with the transmission of multiple viral variants from the mother's major population. These results could be explained by the less pronounced selective pressure exerted by the immune system in the early stages of the mother's infection, which could play a role in MTCT of HIV-1.
Lim, Huat C; Montesion, Meagan; Botton, Thomas; Collisson, Eric A; Umetsu, Sarah E; Behr, Spencer C; Gordan, John D; Stephens, Phil J; Kelley, Robin K
2018-04-05
Biliary tract cancers such as cholangiocarcinoma represent a heterogeneous group of cancers that can be difficult to diagnose. Recent comprehensive genomic analyses in large cholangiocarcinoma cohorts have defined important molecular subgroups within cholangiocarcinoma that may relate to anatomic location and etiology [1-4] and may predict responsiveness to targeted therapies in development [5-7]. These emerging data highlight the potential for tumor genomics to inform diagnosis and treatment options in this challenging tumor type. We report the case of a patient with a germline BRCA1 mutation who presented with a cholangiocarcinoma driven by the novel YWHAZ-BRAF fusion. Hybrid capture-based DNA sequencing and copy number analysis performed as part of clinical care demonstrated that two later-occurring tumors were clonally derived from the primary cholangiocarcinoma rather than distinct new primaries, revealing an unusual pattern of late metachronous metastasis. We discuss the clinical significance of these genetic alterations and their relevance to therapeutic strategies. Hybrid capture-based next-generation DNA sequencing assays can provide diagnostic clarity in patients with unusual patterns of metastasis and recurrence in which the pathologic diagnosis is ambiguous.To our knowledge, this is the first reported case of a YWHAZ-BRAF fusion in pancreaticobiliary cancer, and a very rare case of cholangiocarcinoma in the setting of a germline BRCA1 mutation.The patient's BRCA1 mutation and YWHAZ-BRAF fusion constitute potential targets for future therapy. © AlphaMed Press 2018.
The spectrum of genomic signatures: from dinucleotides to chaos game representation.
Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila
2005-02-14
In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.
Pervin, Hasina M; Batstone, Damien J; Bond, Philip L
2013-06-01
Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.
Monico, Carla G; Rossetti, Sandro; Schwanz, Heidi A; Olson, Julie B; Lundquist, Patrick A; Dawson, D Brian; Harris, Peter C; Milliner, Dawn S
2007-06-01
Mutations in AGXT, a locus mapped to 2q37.3, cause deficiency of liver-specific alanine:glyoxylate aminotransferase (AGT), the metabolic error in type 1 primary hyperoxaluria (PH1). Genetic analysis of 55 unrelated probands with PH1 from the Mayo Clinic Hyperoxaluria Center, to date the largest with availability of complete sequencing across the entire AGXT coding region and documented hepatic AGT deficiency, suggests that a molecular diagnosis (identification of two disease alleles) is feasible in 96% of patients. Unique to this PH1 population was the higher frequency of G170R, the most common AGXT mutation, accounting for 37% of alleles, and detection of a new 3' end deletion (Ex 11_3'UTR del). A described frameshift mutation (c.33_34insC) occurred with the next highest frequency (11%), followed by F152I and G156R (frequencies of 6.3 and 4.5%, respectively), both surpassing the frequency (2.7%) of I244T, the previously reported third most common pathogenic change. These sequencing data indicate that AGXT is even more variable than formerly believed, with 28 new variants (21 mutations and seven polymorphisms) detected, with highest frequencies on exons 1, 4, and 7. When limited to these three exons, molecular analysis sensitivity was 77%, compared with 98% for whole-gene sequencing. These are the first data in support of comprehensive AGXT analysis for the diagnosis of PH1, obviating a liver biopsy in most well-characterized patients. Also reported here is previously unavailable evidence for the pathogenic basis of all AGXT missense variants, including evolutionary conservation data in a multisequence alignment and use of a normal control population.
RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans
Shamseldin, Hanan; Alazami, Anas M.; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A. Micheil; Parboosingh, Jillian S.; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P.; Alkuraya, Fowzan S.
2015-01-01
Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963∗] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. PMID:26608784
Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook
2008-06-01
Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.
Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.
2016-01-01
Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805
Daher, Tamas; Tur, Mehmet Kemal; Brobeil, Alexander; Etschmann, Benjamin; Witte, Biruta; Engenhart-Cabillic, Rita; Krombach, Gabriele; Blau, Wolfgang; Grimminger, Friedrich; Seeger, Werner; Klussmann, Jens Peter; Bräuninger, Andreas; Gattenlöhner, Stefan
2018-06-01
In head and neck squamous cell carcinoma (HNSCC), the occurrence of concurrent lung malignancies poses a significant diagnostic challenge because metastatic HNSCC is difficult to discern from second primary lung squamous cell carcinoma (SCC). However, this differentiation is crucial because the recommended treatments for metastatic HNSCC and second primary lung SCC differ profoundly. We analyzed the origin of lung tumors in 32 patients with HNSCC using human papillomavirus (HPV) typing and targeted next generation sequencing of all coding exons of tumor protein 53 (TP53). Lung tumors were clearly identified as HNSCC metastases or second primary tumors in 29 patients, thus revealing that 16 patients had received incorrect diagnoses based on clinical and morphological data alone. The HPV typing and mutation analysis of all TP53 coding exons is a valuable diagnostic tool in patients with HNSCC and concurrent lung SCC, which can help to ensure that patients receive the most suitable treatment. © 2018 Wiley Periodicals, Inc.
Macher, Hada C; Martinez-Broca, Maria A; Rubio-Calvo, Amalia; Leon-Garcia, Cristina; Conde-Sanchez, Manuel; Costa, Alzenira; Navarro, Elena; Guerrero, Juan M
2012-01-01
The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.
Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip
2015-01-01
Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and primagraft. PMID:25365311
Tong, Chun-Rong; Liu, Hong-Xing; Xie, Jian-Jun; Wang, Fang; Cai, Peng; Wang, Hui; Zhu, Juan; Teng, Wen; Zhang, Xian; Yang, Jun-Fang; Zhang, Ya-Li; Fei, Xin-Hong; Zhao, Jie; Yin, Yu-Ming; Wu, Tong; Wang, Jing-Bo; Sun, Yuan; Liu, Rong; Shi, Xiao-Dong; Lu, Dao-Pei
2011-04-01
To study the type and corresponding clinical characteristics of primary hemophagocytic lymphohistiocytosis (HLH) associated immune gene mutations in the refractory virus infection or HLH of unknown causes. From December 2009 to July 2010, the patients with refractory virus infection or HLH of unknown causes were screened for the primary HLH associated immune genes mutations by DNA sequence analysis, including PRF1, UNC13D, STX11, STXBP2, SH2D1A and XIAP. The clinical characteristics and outcomes were followed up. Totally 25 patients with refractory virus infection or HLH of unknown causes were investigated for the 6 genes and 13 cases were found carrying gene mutations, composing of 6 of PRF1 mutation, 3 of UNC13D, and each one of STX11, XIAP, SH2D1A and STXBP2, respectively. Among the 13 cases with gene mutations, 5 suffered from Epstein-Barr virus associated HLH (EBV-HLH), 1 human herpes virus 7 associated HLH (HHV7-HLH), 1 HLH without causes, 4 chronic activated EB virus infection (CAEBV) with 1 progressing to Hodgkin's lymphoma carrying abnormal chromosome of t(15;17) (q22;q25) and hyperdiploid, 2 EBV associated lymphoma. Among the other 12 patients without gene mutation, 4 suffered from EBV-HLH with 1 progressing to peripheral T lymphoma, 8 suffered from CAEBV. Primary HLH associated immune gene mutations are critical causes of refractory virus infection of unknown causes, most patients manifest as HLH, some cases appear in CAEBV and EBV associated lymphoma. DNA sequence analysis is helpful to early diagnosis and correct decision-making for treatment.
Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B
2015-01-01
A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.
Kim, Seung Tae; Kim, Sun Young; Kim, Nayoung K.D.; Jang, Jiryeon; Kang, Mihyun; Jang, Hyojin; Ahn, Soomin; Kim, Seok Hyeong; Park, Yoona; Cho, Yong Beom; Heo, Jeong Wook; Lee, Woo Yong; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Park, Woong-Yang; Lee, Jeeyun; Kim, Hee Cheol
2016-01-01
Background We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. Results In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Methods Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Oncology Biomarker study. The PDC culture protocol was performed for all eligible patients. All of the primary tumors from the 112 patients who provided written informed consent were genomically sequenced with targeted sequencing. In parallel, PDC establishment was attempted for all sequenced tumors. Conclusions We have prospectively sequenced a CRC cohort of 105 patients and successfully established 62 PDC in parallel. Each genomically characterized PDCs can be used as a preclinical model especially in rare genomic alteration event. PMID:26909603
Santos, Paulo C J L; Pereira, Alexandre C; Cançado, Rodolfo D; Schettert, Isolmar T; Sobreira, Tiago J P; Oliveira, Paulo S L; Hirata, Rosario D C; Hirata, Mario H; Figueiredo, Maria Stella; Chiattone, Carlos S; Krieger, Jose E; Guerra-Shinohara, Elvira M
2010-12-15
Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and β2-microglobulin (β2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. Copyright © 2010 Elsevier Inc. All rights reserved.
Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci
Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.
2000-01-01
The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes. PMID:11092850
Nakada, Satoko; Minato, Hiroshi; Takegami, Tsutomu; Kurose, Nozomu; Ikeda, Hiroko; Kobayashi, Masako; Sasagawa, Yasuo; Akai, Takuya; Kato, Takashi; Yamamoto, Norio; Nojima, Takayuki
2015-10-01
We present two cases of meningeal solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) with immunohistochemistry of STAT6 and analysis of NAB2-STAT6 fusion genes. Case 1 was a 37-year-old male with a left middle fossa tumor; case 2 was a 68-year-old female with a cerebellar tumor. They showed late metastasis to the lung or bone 8 or 13 years, respectively, after the first surgery. Histology of both primary and metastatic tumors showed a cellular hemangiopericytomatous pattern with nuclear atypia. The primary tumors showed nuclear staining of STAT6, but both metastatic tumors showed nuclear and cytoplasmic STAT6. DNA sequencing revealed two kinds of NAB2-STAT6 fusion genes. One consisted of exon 6 of NAB2, intron 6 of NAB2, and the middle of exon 17 of STAT6 (observed in the primary and metastatic tumors of case 1); the other consisted of exon 6 of NAB2 and the beginning of exon 17 of STAT6 (observed in the metastatic tumor of case 2). The primary tumor of case 2 had both fusion genes. To the best of our knowledge, we are the first to report NAB2-STAT6 fusion gene analysis in primary and metastatic meningeal SFT/HPCs and a case showed different fusion gene status in the metastatic tumor.
Santamaría-Arrieta, Gorka; Brizuela-Velasco, Aritza; Fernández-González, Felipe J.; Chávarri-Prado, David; Chento-Valiente, Yelko; Solaberrieta, Eneko; Diéguez-Pereira, Markel; Yurrebaso-Asúa, Jaime
2016-01-01
Background This study evaluated the influence of implant site preparation depth on primary stability measured by insertion torque and resonance frequency analysis (RFA). Material and Methods Thirty-two implant sites were prepared in eight veal rib blocks. Sixteen sites were prepared using the conventional drilling sequence recommended by the manufacturer to a working depth of 10mm. The remaining 16 sites were prepared using an oversize drilling technique (overpreparation) to a working depth of 12mm. Bone density was determined using cone beam computerized tomography (CBCT). The implants were placed and primary stability was measured by two methods: insertion torque (Ncm), and RFA (implant stability quotient [ISQ]). Results The highest torque values were achieved by the conventional drilling technique (10mm). The ANOVA test confirmed that there was a significant correlation between torque and drilling depth (p<0.05). However, no statistically significant differences were obtained between ISQ values at 10 or 12 mm drilling depths (p>0.05) at either measurement direction (cortical and medullar). No statistical relation between torque and ISQ values was identified, or between bone density and primary stability (p >0.05). Conclusions Vertical overpreparation of the implant bed will obtain lower insertion torque values, but does not produce statistically significant differences in ISQ values. Key words:Implant stability quotient, overdrilling, primary stability, resonance frequency analysis, torque. PMID:27398182
Genes encoding calmodulin-binding proteins in the Arabidopsis genome
NASA Technical Reports Server (NTRS)
Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.
2002-01-01
Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.
Chen, Tsute; Yu, Wen-Han; Izard, Jacques; Baranova, Oxana V.; Lakshmanan, Abirami; Dewhirst, Floyd E.
2010-01-01
The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org PMID:20624719
Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y; Lim, Bing; Tan, Min-Han; Hillmer, Axel M
2017-09-15
Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3 , FBXW7 and ERBB2 . In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions.
Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.
2017-01-01
Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.
2004-08-06
The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayedmore » embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less
Vougidou, C; Sandalakis, V; Psaroulaki, A; Petridou, E; Ekateriniadou, L
2013-04-20
Mannheimia haemolytica is the aetiological agent of pneumonic pasteurellosis in small ruminants. The primary virulence factor of the bacterium is a leukotoxin (LktA), which induces apoptosis in susceptible cells via mitochondrial targeting. It has been previously shown that certain lktA alleles are associated either with cattle or sheep. The objective of the present study was to investigate lktA sequence variation among ovine and caprine M haemolytica strains isolated from pneumonic lungs, revealing any potential adaptation for the caprine host, for which there is no available data. Furthermore, we investigated amino acid variation in the N-terminal part of the sequences and its effect on targeting mitochondria. Data analysis showed that the prevalent caprine genotype differed at a single non-synonymous site from a previously described uncommon bovine allele, whereas the ovine sequences represented new, distinct alleles. N-terminal sequence differences did not affect the mitochondrial targeting ability of the isolates; interestingly enough in one case, mitochondrial matrix targeting was indicated rather than membrane association, suggesting an alternative LktA trafficking pattern.
Fabrication of a New Lineage of Artificial Luciferases from Natural Luciferase Pools.
Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji
2017-09-11
The fabrication of artificial luciferases (ALucs) with unique optical properties has a fundamental impact on bioassays and molecular imaging. In this study, we developed a new lineage of ALucs with unique substrate preferences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools. The primary sequence was first created with a sequence logo generator resulting in a total of 11 sibling sequences. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases, and from a prior series of ALucs produced by our laboratory using a smaller basis set. The new lineage of ALucs were strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. A single-residue-level comparison of the C-terminal sequences of new ALucs reveals that some amino acids in the C-terminal ends are greatly influential on the optical intensities but limited in the color variance. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.
Woznica, Arielle; Haeussler, Maximilian; Starobinska, Ella; Jemmett, Jessica; Li, Younan; Mount, David; Davidson, Brad
2012-08-01
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification. Copyright © 2012 Elsevier Inc. All rights reserved.
Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Yu, Yeisoo; Yang, Kiwoung; Choi, Beom-Soon; Koh, Hee-Jong; Waminal, Nomar Espinosa; Choi, Hong-Il; Kim, Nam-Hoon; Jang, Woojong; Park, Hyun-Seung; Lee, Jonghoon; Lee, Hyun Oh; Joh, Ho Jun; Lee, Hyeon Ju; Park, Jee Young; Perumal, Sampath; Jayakodi, Murukarthick; Lee, Yun Sun; Kim, Backki; Copetti, Dario; Kim, Soonok; Kim, Sunggil; Lim, Ki-Byung; Kim, Young-Dong; Lee, Jungho; Cho, Kwang-Su; Park, Beom-Seok; Wing, Rod A.; Yang, Tae-Jin
2015-01-01
Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis. PMID:26506948
NASA Technical Reports Server (NTRS)
Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)
1992-01-01
The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.
Loss of DHR sequences at Browns Ferry Unit One - accident-sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.H.; Grene, S.R.; Harrington, R.M.
1983-05-01
This study describes the predicted response of Unit One at the Browns Ferry Nuclear Plant to a postulated loss of decay heat removal (DHR) capability following scram from full power with the power conversion system unavailable. In accident sequences without DHR capability, the residual heat removal (RHR) system functions of pressure suppression pool cooling and reactor vessel shutdown cooling are unavailable. Consequently, all decay heat energy is stored in the pressure suppression pool with a concomitant increase in pool temperature and primary containment pressure. With the assumption that DHR capability is not regained during the lengthy course of this accidentmore » sequence, the containment ultimately fails by overpressurization. Although unlikely, this catastrophic failure might lead to loss of the ability to inject cooling water into the reactor vessel, causing subsequent core uncovery and meltdown. The timing of these events and the effective mitigating actions that might be taken by the operator are discussed in this report.« less
Sequence of Radiotherapy and Chemotherapy in Breast Cancer After Breast-Conserving Surgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jobsen, Jan J., E-mail: J.Jobsen@mst.nl; Palen, Job van der; Department of Research Methodology, Measurement and Data Analysis, Faculty of Behavioural Science, University of Twente
2012-04-01
Purpose: The optimal sequence of radiotherapy and chemotherapy in breast-conserving therapy is unknown. Methods and Materials: From 1983 through 2007, a total of 641 patients with 653 instances of breast-conserving therapy (BCT), received both chemotherapy and radiotherapy and are the basis of this analysis. Patients were divided into three groups. Groups A and B comprised patients treated before 2005, Group A radiotherapy first and Group B chemotherapy first. Group C consisted of patients treated from 2005 onward, when we had a fixed sequence of radiotherapy first, followed by chemotherapy. Results: Local control did not show any differences among the threemore » groups. For distant metastasis, no difference was shown between Groups A and B. Group C, when compared with Group A, showed, on univariate and multivariate analyses, a significantly better distant metastasis-free survival. The same was noted for disease-free survival. With respect to disease-specific survival, no differences were shown on multivariate analysis among the three groups. Conclusion: Radiotherapy, as an integral part of the primary treatment of BCT, should be administered first, followed by adjuvant chemotherapy.« less
Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie
2017-01-01
GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.
Pérez Sirkin, Daniela I.; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M.; Vissio, Paula G.; Dufour, Sylvie
2017-01-01
GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation. PMID:28878737
NASA Astrophysics Data System (ADS)
Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen
2017-01-01
Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.
The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.
Schnitzler, P; Handermann, M; Szépe, O; Darai, G
1991-06-01
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
Sato, T; Oeller, P W; Theologis, A
1991-02-25
The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.
Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro
2010-11-05
Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less
Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.
2005-01-01
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085
Santagata, Sandro; Cahill, Daniel P.; Taylor-Weiner, Amaro; Jones, Robert T.; Van Allen, Eliezer M.; Lawrence, Michael S.; Horowitz, Peleg M.; Cibulskis, Kristian; Ligon, Keith L.; Tabernero, Josep; Seoane, Joan; Martinez-Saez, Elena; Curry, William T.; Dunn, Ian F.; Paek, Sun Ha; Park, Sung-Hye; McKenna, Aaron; Chevalier, Aaron; Rosenberg, Mara; Barker, Frederick G.; Gill, Corey M.; Van Hummelen, Paul; Thorner, Aaron R.; Johnson, Bruce E.; Hoang, Mai P.; Choueiri, Toni K.; Signoretti, Sabina; Sougnez, Carrie; Rabin, Michael S.; Lin, Nancy U.; Winer, Eric P.; Stemmer-Rachamimov, Anat; Meyerson, Matthew; Garraway, Levi; Gabriel, Stacey; Lander, Eric S.; Beroukhim, Rameen; Batchelor, Tracy T.; Baselga, Jose; Louis, David N.
2016-01-01
Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. PMID:26410082
Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.
2010-01-01
The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069
Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T
2015-04-01
Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.
Molecular Evidence for a Natural Primary Triple Hybrid in Plants Revealed from Direct Sequencing
Kaplan, Zdenek; Fehrer, Judith
2007-01-01
Background and Aims Molecular evidence for natural primary hybrids composed of three different plant species is very rarely reported. An investigation was therefore carried out into the origin and a possible scenario for the rise of a sterile plant clone showing a combination of diagnostic morphological features of three separate, well-defined Potamogeton species. Methods The combination of sequences from maternally inherited cytoplasmic (rpl20-rps12) and biparentally inherited nuclear ribosomal DNA (ITS) was used to identify the exact identity of the putative triple hybrid. Key Results Direct sequencing showed ITS variants of three parental taxa, P. gramineus, P. lucens and P. perfoliatus, whereas chloroplast DNA identified P. perfoliatus as the female parent. A scenario for the rise of the triple hybrid through a fertile binary hybrid P. gramineus × P. lucens crossed with P. perfoliatus is described. Conclusions Even though the triple hybrid is sterile, it possesses an efficient strategy for its existence and became locally successful even in the parental environment, perhaps as a result of heterosis. The population investigated is the only one known of this hybrid, P. × torssanderi, worldwide. Isozyme analysis indicated the colony to be genetically uniform. The plants studied represented a single clone that seems to have persisted at this site for a long time. PMID:17478544
Improving protein complex classification accuracy using amino acid composition profile.
Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok
2013-09-01
Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans.
Shamseldin, Hanan; Alazami, Anas M; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A Micheil; Parboosingh, Jillian S; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P; Alkuraya, Fowzan S
2015-12-03
Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Tzanetakis, Giorgos N; Azcarate-Peril, M Andrea; Zachaki, Sophia; Panopoulos, Panos; Kontakiotis, Evangelos G; Madianos, Phoebus N; Divaris, Kimon
2015-08-01
Elucidating the microbial ecology of endodontic infections (EIs) is a necessary step in developing effective intracanal antimicrobials. The aim of the present study was to investigate the bacterial composition of symptomatic and asymptomatic primary and persistent infections in a Greek population using high-throughput sequencing methods. 16S amplicon pyrosequencing of 48 root canal bacterial samples was conducted, and sequencing data were analyzed using an oral microbiome-specific and a generic (Greengenes) database. Bacterial abundance and diversity were examined by EI type (primary or persistent), and statistical analysis was performed by using non-parametric and parametric tests accounting for clustered data. Bacteroidetes was the most abundant phylum in both infection groups. Significant, albeit weak associations of bacterial diversity were found, as measured by UniFrac distances with infection type (analyses of similarity, R = 0.087, P = .005) and symptoms (analyses of similarity, R = 0.055, P = .047). Persistent infections were significantly enriched for Proteobacteria and Tenericutes compared with primary ones; at the genus level, significant differences were noted for 14 taxa, including increased enrichment of persistent infections for Lactobacillus, Streptococcus, and Sphingomonas. More but less abundant phyla were identified using the Greengenes database; among those, Cyanobacteria (0.018%) and Acidobacteria (0.007%) were significantly enriched among persistent infections. Persistent infections showed higher phylogenetic diversity (PD) (asymptomatic: PD = 9.2, standard error [SE] = 1.3; symptomatic: PD = 8.2, SE = 0.7) compared with primary infections (asymptomatic: PD = 5.9, SE = 0.8; symptomatic: PD = 7.4, SE = 1.0). The present study revealed a high bacterial diversity of EI and suggests that persistent infections may have more diverse bacterial communities than primary infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Kebschull, Moritz; Fittler, Melanie Julia; Demmer, Ryan T; Papapanou, Panos N
2017-01-01
Today, -omics analyses, including the systematic cataloging of messenger RNA and microRNA sequences or DNA methylation patterns in a cell population, organ, or tissue sample, allow for an unbiased, comprehensive genome-level analysis of complex diseases, offering a large advantage over earlier "candidate" gene or pathway analyses. A primary goal in the analysis of these high-throughput assays is the detection of those features among several thousand that differ between different groups of samples. In the context of oral biology, our group has successfully utilized -omics technology to identify key molecules and pathways in different diagnostic entities of periodontal disease.A major issue when inferring biological information from high-throughput -omics studies is the fact that the sheer volume of high-dimensional data generated by contemporary technology is not appropriately analyzed using common statistical methods employed in the biomedical sciences.In this chapter, we outline a robust and well-accepted bioinformatics workflow for the initial analysis of -omics data generated using microarrays or next-generation sequencing technology using open-source tools. Starting with quality control measures and necessary preprocessing steps for data originating from different -omics technologies, we next outline a differential expression analysis pipeline that can be used for data from both microarray and sequencing experiments, and offers the possibility to account for random or fixed effects. Finally, we present an overview of the possibilities for a functional analysis of the obtained data.
Phi, Ji Hoon; Park, Ae Kyung; Lee, Semin; Choi, Seung Ah; Baek, In-Pyo; Kim, Pora; Kim, Eun-Hye; Park, Hee Chul; Kim, Byung Chul; Bhak, Jong; Park, Sung-Hye; Lee, Ji Yeoun; Wang, Kyu-Chang; Kim, Dong-Seok; Shim, Kyu Won; Kim, Se Hoon; Kim, Chae-Yong; Kim, Seung-Ki
2018-06-01
Despite great advances in understanding of molecular pathogenesis and achievement of a high cure rate in medulloblastoma, recurrent medulloblastomas are still dismal. Additionally, misidentification of secondary malignancies due to histological ambiguity leads to misdiagnosis and eventually to inappropriate treatment. Nevertheless, the genomic characteristics of recurrent medulloblastomas are poorly understood, largely due to a lack of matched primary and recurrent tumor tissues. We performed a genomic analysis of recurrent tumors from 17 pediatric medulloblastoma patients. Whole transcriptome sequencing revealed that a subset of recurrent tumors initially diagnosed as locally recurrent medulloblastomas are secondary glioblastomas after radiotherapy, showing high similarity to the non-G-CIMP proneural subtype of glioblastoma. Further analysis, including whole exome sequencing, revealed missense mutations or complex gene fusion events in PDGFRA with augmented expression in the secondary glioblastomas after radiotherapy, implicating PDGFRA as a putative driver in the development of secondary glioblastomas after treatment exposure. This result provides insight into the possible application of PDGFRA-targeted therapy in these second malignancies. Furthermore, genomic alterations of TP53 including 17p loss or germline/somatic mutations were also found in most of the secondary glioblastomas after radiotherapy, indicating a crucial role of TP53 alteration in the process. On the other hand, analysis of recurrent medulloblastomas revealed that the most prevalent alterations are the loss of 17p region including TP53 and gain of 7q region containing EZH2 which already exist in primary tumors. The 7q gain events are frequently accompanied by high expression levels of EZH2 in both primary and recurrent medulloblastomas, which provides a clue to a new therapeutic target to prevent recurrence. Considering the fact that it is often challenging to differentiate between recurrent medulloblastomas and secondary glioblastomas after radiotherapy, our findings have major clinical implications both for correct diagnosis and for potential therapeutic interventions in these devastating diseases.
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2015-01-01
Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM). Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.
NASA Astrophysics Data System (ADS)
Zhao, Cui; Zhang, Xiaojun; Liu, Chengzhang; Huan, Pin; Li, Fuhua; Xiang, Jianhai; Huang, Chao
2012-05-01
Little is known about the genome of Pacific white shrimp ( Litopenaeus vannamei). To address this, we conducted BAC (bacterial artificial chromosome) end sequencing of L. vannamei. We selected and sequenced 7 812 BAC clones from the BAC library LvHE from the two ends of the inserts by Sanger sequencing. After trimming and quality filtering, 11 279 BAC end sequences (BESs) including 4 609 pairedends BESs were obtained. The total length of the BESs was 4 340 753 bp, representing 0.18% of the L. vannamei haploid genome. The lengths of the BESs ranged from 100 bp to 660 bp with an average length of 385 bp. Analysis of the BESs indicated that the L. vannamei genome is AT-rich and that the primary repeats patterns were simple sequence repeats (SSRs) and low complexity sequences. Dinucleotide and hexanucleotide repeats were the most common SSR types in the BESs. The most abundant transposable element was gypsy, which may contribute to the generation of the large genome size of L. vannamei. We successfully annotated 4 519 BESs by BLAST searching, including genes involved in immunity and sex determination. Our results provide an important resource for functional gene studies, map construction and integration, and complete genome assembly for this species.
Barkan, A; Mertz, J E
1981-02-01
The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.
Efficient use of unlabeled data for protein sequence classification: a comparative study.
Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir
2009-04-29
Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags-the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably.
Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunzelle, J. S.; Wu, R.; Korolev, S. V.
2004-12-01
Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less
NASA Astrophysics Data System (ADS)
Mumladze, Tea; Wang, Haijun; Graham, Gerhard
2017-04-01
The seismic network that forms the International Monitoring System (IMS) of the Comprehensive Nuclear-test-ban Treaty Organization (CTBTO) will ultimately consist of 170 seismic stations (50 primary and 120 auxiliary) in 76 countries around the world. The Network is still under the development, but currently more than 80% of the network is in operation. The objective of seismic monitoring is to detect and locate underground nuclear explosions. However, the data from the IMS also can be widely used for scientific and civil purposes. In this study we present the results of data analysis of the seismic sequence in 2016 in Central Italy. Several hundred earthquakes were recorded for this sequence by the seismic stations of the IMS. All events were accurately located the analysts of the International Data Centre (IDC) of the CTBTO. In this study we will present the epicentral and magnitude distribution, station recordings and teleseismic phases as obtained from the Reviewed Event Bulletin (REB). We will also present a comparison of the database of the IDC with the databases of the European-Mediterranean Seismological Centre (EMSC) and U.S. Geological Survey (USGS). Present work shows that IMS data can be used for earthquake sequence analyses and can play an important role in seismological research.
Pineda, Sandy S; Chaumeil, Pierre-Alain; Kunert, Anne; Kaas, Quentin; Thang, Mike W C; Le, Lien; Nuhn, Michael; Herzig, Volker; Saez, Natalie J; Cristofori-Armstrong, Ben; Anangi, Raveendra; Senff, Sebastian; Gorse, Dominique; King, Glenn F
2018-03-15
ArachnoServer is a manually curated database that consolidates information on the sequence, structure, function and pharmacology of spider-venom toxins. Although spider venoms are complex chemical arsenals, the primary constituents are small disulfide-bridged peptides that target neuronal ion channels and receptors. Due to their high potency and selectivity, these peptides have been developed as pharmacological tools, bioinsecticides and drug leads. A new version of ArachnoServer (v3.0) has been developed that includes a bioinformatics pipeline for automated detection and analysis of peptide toxin transcripts in assembled venom-gland transcriptomes. ArachnoServer v3.0 was updated with the latest sequence, structure and functional data, the search-by-mass feature has been enhanced, and toxin cards provide additional information about each mature toxin. http://arachnoserver.org. support@arachnoserver.org. Supplementary data are available at Bioinformatics online.
Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina
2011-10-06
Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.
Kodama, T; Mori, K; Kawahara, T; Ringler, D J; Desrosiers, R C
1993-01-01
One rhesus macaque displayed severe encephalomyelitis and another displayed severe enterocolitis following infection with molecularly cloned simian immunodeficiency virus (SIV) strain SIVmac239. Little or no free anti-SIV antibody developed in these two macaques, and they died relatively quickly (4 to 6 months) after infection. Manifestation of the tissue-specific disease in these macaques was associated with the emergence of variants with high replicative capacity for macrophages and primary infection of tissue macrophages. The nature of sequence variation in the central region (vif, vpr, and vpx), the env gene, and the nef long terminal repeat (LTR) region in brain, colon, and other tissues was examined to see whether specific genetic changes were associated with SIV replication in brain or gut. Sequence analysis revealed strong conservation of the intergenic central region, nef, and the LTR. However, analysis of env sequences in these two macaques and one other revealed significant, interesting patterns of sequence variation. (i) Changes in env that were found previously to contribute to the replicative ability of SIVmac for macrophages in culture were present in the tissues of these animals. (ii) The greatest variability was located in the regions between V1 and V2 and from "V3" through C3 in gp120, which are different in location from the variable regions observed previously in animals with strong antibody responses and long-term persistent infection. (iii) The predominant sequence change of D-->N at position 385 in C3 is most surprising, since this change in both SIV and human immunodeficiency virus type 1 has been associated with dramatically diminished affinity for CD4 and replication in vitro. (iv) The nature of sequence changes at some positions (146, 178, 345, 385, and "V3") suggests that viral replication in brain and gut may be facilitated by specific sequence changes in env in addition to those that impart a general ability to replicate well in macrophages. These results demonstrate that complex selective pressures, including immune responses and varying cell and tissue specificity, can influence the nature of sequence changes in env. Images PMID:8411355
Ebbie: automated analysis and storage of small RNA cloning data using a dynamic web server
Ebhardt, H Alexander; Wiese, Kay C; Unrau, Peter J
2006-01-01
Background DNA sequencing is used ubiquitously: from deciphering genomes[1] to determining the primary sequence of small RNAs (smRNAs) [2-5]. The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products. Recently we completed a smRNA cloning project involving tobacco plants, where analysis was required for ~700 smRNA sequences[6]. Finding no easily accessible research tool to enter and analyze smRNA sequences we developed Ebbie to assist us with our study. Results Ebbie is a semi-automated smRNA cloning data processing algorithm, which initially searches for any substring within a DNA sequencing text file, which is flanked by two constant strings. The substring, also termed smRNA or insert, is stored in a MySQL and BlastN database. These inserts are then compared using BlastN to locally installed databases allowing the rapid comparison of the insert to both the growing smRNA database and to other static sequence databases. Our laboratory used Ebbie to analyze scores of DNA sequencing data originating from an smRNA cloning project[6]. Through its built-in instant analysis of all inserts using BlastN, we were able to quickly identify 33 groups of smRNAs from ~700 database entries. This clustering allowed the easy identification of novel and highly expressed clusters of smRNAs. Ebbie is available under GNU GPL and currently implemented on Conclusion Ebbie was designed for medium sized smRNA cloning projects with about 1,000 database entries [6-8].Ebbie can be used for any type of sequence analysis where two constant primer regions flank a sequence of interest. The reliable storage of inserts, and their annotation in a MySQL database, BlastN[9] comparison of new inserts to dynamic and static databases make it a powerful new tool in any laboratory using DNA sequencing. Ebbie also prevents manual mistakes during the excision process and speeds up annotation and data-entry. Once the server is installed locally, its access can be restricted to protect sensitive new DNA sequencing data. Ebbie was primarily designed for smRNA cloning projects, but can be applied to a variety of RNA and DNA cloning projects[2,3,10,11]. PMID:16584563
Amino acid sequence of tyrosinase from Neurospora crassa.
Lerch, K
1978-01-01
The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279
Burzynski, Grzegorz M.; Reed, Xylena; Taher, Leila; Stine, Zachary E.; Matsui, Takeshi; Ovcharenko, Ivan; McCallion, Andrew S.
2012-01-01
Illuminating the primary sequence encryption of enhancers is central to understanding the regulatory architecture of genomes. We have developed a machine learning approach to decipher motif patterns of hindbrain enhancers and identify 40,000 sequences in the human genome that we predict display regulatory control that includes the hindbrain. Consistent with their roles in hindbrain patterning, MEIS1, NKX6-1, as well as HOX and POU family binding motifs contributed strongly to this enhancer model. Predicted hindbrain enhancers are overrepresented at genes expressed in hindbrain and associated with nervous system development, and primarily reside in the areas of open chromatin. In addition, 77 (0.2%) of these predictions are identified as hindbrain enhancers on the VISTA Enhancer Browser, and 26,000 (60%) overlap enhancer marks (H3K4me1 or H3K27ac). To validate these putative hindbrain enhancers, we selected 55 elements distributed throughout our predictions and six low scoring controls for evaluation in a zebrafish transgenic assay. When assayed in mosaic transgenic embryos, 51/55 elements directed expression in the central nervous system. Furthermore, 30/34 (88%) predicted enhancers analyzed in stable zebrafish transgenic lines directed expression in the larval zebrafish hindbrain. Subsequent analysis of sequence fragments selected based upon motif clustering further confirmed the critical role of the motifs contributing to the classifier. Our results demonstrate the existence of a primary sequence code characteristic to hindbrain enhancers. This code can be accurately extracted using machine-learning approaches and applied successfully for de novo identification of hindbrain enhancers. This study represents a critical step toward the dissection of regulatory control in specific neuronal subtypes. PMID:22759862
KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.
2016-12-01
Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S.; Virk, Selene M.; Mikkelsen, Tom; Brat, Daniel J.; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E.; Cohen, Mark L.; Van Meir, Erwin G.; Scarpace, Lisa; Laird, Peter W.; Weinstein, John N.; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S.
2015-01-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. PMID:25650244
Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project
Horton, Roger; Gibson, Richard; Coggill, Penny; Miretti, Marcos; Allcock, Richard J.; Almeida, Jeff; Forbes, Simon; Gilbert, James G. R.; Halls, Karen; Harrow, Jennifer L.; Hart, Elizabeth; Howe, Kevin; Jackson, David K.; Palmer, Sophie; Roberts, Anne N.; Sims, Sarah; Stewart, C. Andrew; Traherne, James A.; Trevanion, Steve; Wilming, Laurens; Rogers, Jane; de Jong, Pieter J.; Elliott, John F.; Sawcer, Stephen; Todd, John A.; Trowsdale, John
2008-01-01
The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. PMID:18193213
Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.
Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F
1994-10-01
The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.
Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi
2018-01-01
Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.
Paterson, Andrew H.; Wang, Xuelin; Xu, Yiqing; Wu, Dongyang; Qu, Yanshu; Jiang, Anna; Ye, Qiaolin
2016-01-01
Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb) in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense) than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants. PMID:27847816
Shenoy, Archana; Blelloch, Robert
2009-09-11
The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.
Mackey, D; Howell, N
1992-01-01
The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the ophthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences. PMID:1463007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, D.; Howell, N.
1992-12-01
The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the opthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined formore » representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences. 29 refs., 3 figs., 3 tabs.« less
ERIC Educational Resources Information Center
Taylor, Neil; Lucas, Keith B.
2000-01-01
Describes a teaching sequence on gaseous pressure implemented in a group of pre-service primary teachers in Fiji that provides subjects with a strong visual model of particle behavior which they then applied to a series of collaborative science activities for which they attempted to construct explanations. Suggests that this teaching sequence…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.
2004-08-06
Background The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. Results We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene,more » and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Conclusions Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less
Luft, F; Klaes, R; Nees, M; Dürst, M; Heilmann, V; Melsheimer, P; von Knebel Doeberitz, M
2001-04-01
Human papillomavirus (HPV) genomes usually persist as episomal molecules in HPV associated preneoplastic lesions whereas they are frequently integrated into the host cell genome in HPV-related cancers cells. This suggests that malignant conversion of HPV-infected epithelia is linked to recombination of cellular and viral sequences. Due to technical limitations, precise sequence information on viral-cellular junctions were obtained only for few cell lines and primary lesions. In order to facilitate the molecular analysis of genomic HPV integration, we established a ligation-mediated PCR assay for the detection of integrated papillomavirus sequences (DIPS-PCR). DIPS-PCR was initially used to amplify genomic viral-cellular junctions from HPV-associated cervical cancer cell lines (C4-I, C4-II, SW756, and HeLa) and HPV-immortalized keratinocyte lines (HPKIA, HPKII). In addition to junctions already reported in public data bases, various new fusion fragments were identified. Subsequently, 22 different viral-cellular junctions were amplified from 17 cervical carcinomas and 1 vulval intraepithelial neoplasia (VIN III). Sequence analysis of each junction revealed that the viral E1 open reading frame (ORF) was fused to cellular sequences in 20 of 22 (91%) cases. Chromosomal integration loci mapped to chromosomes 1 (2n), 2 (3n), 7 (2n), 8 (3n), 10 (1n), 14 (5n), 16 (1n), 17 (2n), and mitochondrial DNA (1n), suggesting random distribution of chromosomal integration sites. Precise sequence information obtained by DIPS-PCR was further used to monitor the monoclonal origin of 4 cervical cancers, 1 case of recurrent premalignant lesions and 1 lymph node metastasis. Therefore, DIPS-PCR might allow efficient therapy control and prediction of relapse in patients with HPV-associated anogenital cancers. Copyright 2001 Wiley-Liss, Inc.
Robot Sequencing and Visualization Program (RSVP)
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C
2013-01-01
The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.
Mammary Cancer and Activation of Transposable Elements
2015-03-01
regularly hold meetings. • Completed Y1 4-6 6. • Preliminary Methyl-MAPS analysis of pilot virgin samples • This material was never received. Based...construct the libraries for sequencing. A strategic decision was made to hold the material for validation, rather than attempt library construction. Y2 10...derived adipo- cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We
Subclonal diversification of primary breast cancer revealed by multiregion sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less
Subclonal diversification of primary breast cancer revealed by multiregion sequencing
Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...
2015-06-22
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less
Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.
Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija
2017-01-01
A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of rare cancer (stem) cells.
Zhang, Xinxin; Ma, Dehua; Zou, Wei; Ding, Yibing; Zhu, Chengchu; Min, Haiyan; Zhang, Bin; Wang, Wei; Chen, Baofu; Ye, Minhua; Cai, Minghui; Pan, Yanqing; Cao, Lei; Wan, Yueming; Jin, Yu; Gao, Qian; Yi, Long
2016-05-27
Primary spontaneous pneumothorax (PSP) or pulmonary cysts is one of the manifestations of Birt-Hogg-Dube syndrome (BHDS) that is caused by heterozygous mutations in FLCN gene. Most of the mutations are SNVs and small indels, and there are also approximately 10 % large intragenic deletions and duplications of the mutations. These molecular findings are generally obtained by disparate methods including Sanger sequencing and Multiple Ligation-dependent Probe Amplification in the clinical laboratory. In addition, as a genetically heterogeneous disorder, PSP may be caused by mutations in multiple genes include FBN1, COL3A1, CBS, SERPINA1 and TSC1/TSC2 genes. For differential diagnosis, these genes should also be screened which makes the diagnostic procedure more time-consuming and labor-intensive. Forty PSP patients were divided into 2 groups. Nineteen patients with different pathogenic mutations of FLCN previously identified by conventional Sanger sequencing and MLPA were included in test group, 21 random PSP patients without any genetic screening were included in blinded sample group. 7 PSP genes including FLCN, FBN1, COL3A1, CBS, SERPINA1 and TSC1/TSC2 were designed and enriched by Haloplex system, sequenced on a Miseq platform and analyzed in the 40 patients to evaluate the performance of the targeted-NGS method. We demonstrated that the full spectrum of genes associated with pneumothorax including FLCN gene mutations can be identified simultaneously in multiplexed sequence data. Noteworthy, by our in-house copy number analysis of the sequence data, we could not only detect intragenic deletions, but also determine approximate deletion junctions simultaneously. NGS based Haloplex target enrichment technology is proved to be a rapid and cost-effective screening strategy for the comprehensive molecular diagnosis of BHDS in PSP patients, as it can replace Sanger sequencing and MLPA by simultaneously detecting exonic and intronic SNVs, small indels, large intragenic deletions and determining deletion junctions in PSP-related genes.
Busslinger, M; Portmann, R; Irminger, J C; Birnstiel, M L
1980-01-01
The DNA sequences of the entire structural H4, H3, H2A and H2B genes and of their 5' flanking regions have been determined in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. In clone h19 the polarity of transcription and the relative arrangement of the histone genes is identical to that in clone h22 of the same species. The histone proteins encoded by h19 DNA differ in their primary structure from those encoded by clone h22 and have been compared to histone protein sequences of other sea urchin species as well as other eukaryotes. A comparative analysis of the 5' flanking DNA sequences of the structural histone genes in both clones revealed four ubiquitous sequence motifs; a pentameric element GATCC, followed at short distance by the Hogness box GTATAAATAG, a conserved sequence PyCATTCPu, in or near which the 5' ends of the mRNAs map in h22 DNA and lastly a sequence A, containing the initiation codon. These sequences are also found, sometimes in modified version, in front of other eukaryotic genes transcribed by polymerase II. When prelude sequences of isocoding histone genes in clone h19 and h22 are compared areas of homology are seen to extend beyond the ubiquitous sequence motifs towards the divergent AT-rich spacer and terminate between approximately 140 and 240 nucleotides away from the structural gene. These prelude regions contain quite large conservative sequence blocks which are specific for each type of histone genes. Images PMID:7443547
DNA hypomethylation of individual sequences in aborted cloned bovine fetuses.
Chen, Tao; Jiang, Yan; Zhang, Yan-Ling; Liu, Jing-He; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan
2005-09-01
Cloned bovines have a much higher abortion rate than those derived in vivo. Available evidence indicates that inappropriate epigenetic reprogramming of donor nuclei is the primary cause of cloning failure. To gain a better understanding of the DNA methylation changes associated with the high abortion rate of cloned bovines, we examined the DNA methylation status of a repeated sequence (satellite I) and the promoter regions of two single-copy genes (interleukin 3/cytokeratin) in aborted cloned fetuses, aborted fetuses derived from artificial insemination (AI), cloned adults and AI adults by bisulfite sequencing and restriction enzyme analysis. Two of four aborted cloned fetuses show very low methylation levels in the two single-copy gene promoter regions. One of the two fetuses also showed undermethylated status in the satellite I sequence. The other two aborted cloned fetuses have similar methylation levels to those of aborted AI fetuses. However, no difference in methylation was observed between cloned adults and AI adults. Our results demonstrate for the first time the undermethylated status of individual sequences in aborted cloned fetuses. These findings suggest that aberrant DNA methylation may contribute to the developmental failure of cloned bovine fetuses.
NASA Technical Reports Server (NTRS)
Lee, W. Y.; Brune, D. C.; LoBrutto, R.; Blankenship, R. E.
1995-01-01
Rubredoxin is a small nonheme iron protein that serves as an electron carrier in bacterial systems. Rubredoxin has now been isolated and characterized from the strictly anaerobic phototroph, Heliobacillus mobilis. THe molecular mass (5671.3 Da from the amino acid sequence) was confirmed and partial formylation of the N-terminal methionyl residue was established by matrix-assisted laser desorption mass spectroscopy. The complete 52-amino-acid sequence was determined by a combination of N-terminal sequencing by Edman degradation and C-terminal sequencing by a novel method using carboxypeptidase treatment in conjunction with amino acid analysis and laser desorption time of flight mass spectrometry. The molar absorption coefficient of Hc. mobilis rubredoxin at 490 nm is 6.9 mM-1 cm-1 and the midpoint redox potential at pH 8.0 is -46 mV. The EPR spectrum of the oxidized form shows resonances at g = 9.66 and 4.30 due to a high-spin ferric iron. The amino acid sequence is homologous to those of rubredoxins from other species, in particular, the gram-positive bacteria, and the phototrophic green sulfur bacteria, and the evolutionary implications of this are discussed.
Lagkouvardos, Ilias; Joseph, Divya; Kapfhammer, Martin; Giritli, Sabahattin; Horn, Matthias; Haller, Dirk; Clavel, Thomas
2016-09-23
The SRA (Sequence Read Archive) serves as primary depository for massive amounts of Next Generation Sequencing data, and currently host over 100,000 16S rRNA gene amplicon-based microbial profiles from various host habitats and environments. This number is increasing rapidly and there is a dire need for approaches to utilize this pool of knowledge. Here we created IMNGS (Integrated Microbial Next Generation Sequencing), an innovative platform that uniformly and systematically screens for and processes all prokaryotic 16S rRNA gene amplicon datasets available in SRA and uses them to build sample-specific sequence databases and OTU-based profiles. Via a web interface, this integrative sequence resource can easily be queried by users. We show examples of how the approach allows testing the ecological importance of specific microorganisms in different hosts or ecosystems, and performing targeted diversity studies for selected taxonomic groups. The platform also offers a complete workflow for de novo analysis of users' own raw 16S rRNA gene amplicon datasets for the sake of comparison with existing data. IMNGS can be accessed at www.imngs.org.
Nishiyama, Kazusa; Takakusagi, Yoichi; Kusayanagi, Tomoe; Matsumoto, Yuki; Habu, Shiori; Kuramochi, Kouji; Sugawara, Fumio; Sakaguchi, Kengo; Takahashi, Hideyo; Natsugari, Hideaki; Kobayashi, Susumu
2009-01-01
Here, we report on the identification of trimannoside-recognizing peptide sequences from a T7 phage display screen using a quartz-crystal microbalance (QCM) device. A trimannoside derivative that can form a self-assembled monolayer (SAM) was synthesized and used for immobilization on the gold electrode surface of a QCM sensor chip. After six sets of one-cycle affinity selection, T7 phage particles displaying PSVGLFTH (8-mer) and SVGLGLGFSTVNCF (14-mer) were found to be enriched at a rate of 17/44, 9/44, respectively, suggesting that these peptides specifically recognize trimannoside. Binding checks using the respective single T7 phage and synthetic peptide also confirmed the specific binding of these sequences to the trimannoside-SAM. Subsequent analysis revealed that these sequences correspond to part of the primary amino acid sequence found in many mannose- or hexose-related proteins. Taken together, these results demonstrate the effectiveness of our T7 phage display environment for affinity selection of binding peptides. We anticipate this screening result will also be extremely useful in the development of inhibitors or drug delivery systems targeting polysaccharides as well as further investigations into the function of carbohydrates in vivo.
Kleinschmidt, T; Braunitzer, G
1980-01-01
The dimeric hemoglobin CTT VIIA (erythrocruorin) was isolated from the hemolymph of the larva from Chironomus thummi thummi and purified by preparative polyacrylamide gel electrophoresis. Peptides obtained by limited tryptical digestion were sequenced by automatic Edman degradation. For the elucidation of the sequence in the C-terminal region of the chain, additional cleavages with proteinase of Staphylococcus aureus and chymotrypsin were necessary. CTT VIIA is compared with human beta-chains and other hemoglobins of Chironomus. The amino acid residues in the pocket are especially discussed. Most of them are invariant in all Chironomus hemoglobins, independent of the size of the heme pocket, which is normal in some components and enlarged in others.
de Bruin, Christiaan; Mericq, Verónica; Andrew, Shayne F.; van Duyvenvoorde, Hermine A.; Verkaik, Nicole S.; Losekoot, Monique; Porollo, Aleksey; Garcia, Hernán; Kuang, Yi; Hanson, Dan; Clayton, Peter; van Gent, Dik C.; Wit, Jan M.; Hwa, Vivian
2015-01-01
Context: Severe short stature can be caused by defects in numerous biological processes including defects in IGF-1 signaling, centromere function, cell cycle control, and DNA damage repair. Many syndromic causes of short stature are associated with medical comorbidities including hypogonadism and microcephaly. Objective: To identify an underlying genetic etiology in two siblings with severe short stature and gonadal failure. Design: Clinical phenotyping, genetic analysis, complemented by in vitro functional studies of the candidate gene. Setting: An academic pediatric endocrinology clinic. Patients or Other Participants: Two adult siblings (male patient [P1] and female patient 2 [P2]) presented with a history of severe postnatal growth failure (adult heights: P1, −6.8 SD score; P2, −4 SD score), microcephaly, primary gonadal failure, and early-onset metabolic syndrome in late adolescence. In addition, P2 developed a malignant gastrointestinal stromal tumor at age 28. Intervention(s): Single nucleotide polymorphism microarray and exome sequencing. Results: Combined microarray analysis and whole exome sequencing of the two affected siblings and one unaffected sister identified a homozygous variant in XRCC4 as the probable candidate variant. Sanger sequencing and mRNA studies revealed a splice variant resulting in an in-frame deletion of 23 amino acids. Primary fibroblasts (P1) showed a DNA damage repair defect. Conclusions: In this study we have identified a novel pathogenic variant in XRCC4, a gene that plays a critical role in non-homologous end-joining DNA repair. This finding expands the spectrum of DNA damage repair syndromes to include XRCC4 deficiency causing severe postnatal growth failure, microcephaly, gonadal failure, metabolic syndrome, and possibly tumor predisposition. PMID:25742519
The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects.
Kamola, Piotr J; Nakano, Yuko; Takahashi, Tomoko; Wilson, Paul A; Ui-Tei, Kumiko
2015-12-01
RNA interference (RNAi) is a powerful tool for post-transcriptional gene silencing. However, the siRNA guide strand may bind unintended off-target transcripts via partial sequence complementarity by a mechanism closely mirroring micro RNA (miRNA) silencing. To better understand these off-target effects, we investigated the correlation between sequence features within various subsections of siRNA guide strands, and its corresponding target sequences, with off-target activities. Our results confirm previous reports that strength of base-pairing in the siRNA seed region is the primary factor determining the efficiency of off-target silencing. However, the degree of downregulation of off-target transcripts with shared seed sequence is not necessarily similar, suggesting that there are additional auxiliary factors that influence the silencing potential. Here, we demonstrate that both the melting temperature (Tm) in a subsection of siRNA non-seed region, and the GC contents of its corresponding target sequences, are negatively correlated with the efficiency of off-target effect. Analysis of experimentally validated miRNA targets demonstrated a similar trend, indicating a putative conserved mechanistic feature of seed region-dependent targeting mechanism. These observations may prove useful as parameters for off-target prediction algorithms and improve siRNA 'specificity' design rules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert DeSalle
2004-09-10
This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less
Stavropoulos, Dimitri J; Merico, Daniele; Jobling, Rebekah; Bowdin, Sarah; Monfared, Nasim; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Yuen, Ryan K C; Szego, Michael J; Hayeems, Robin Z; Shaul, Randi Zlotnik; Brudno, Michael; Girdea, Marta; Frey, Brendan; Alipanahi, Babak; Ahmed, Sohnee; Babul-Hirji, Riyana; Porras, Ramses Badilla; Carter, Melissa T; Chad, Lauren; Chaudhry, Ayeshah; Chitayat, David; Doust, Soghra Jougheh; Cytrynbaum, Cheryl; Dupuis, Lucie; Ejaz, Resham; Fishman, Leona; Guerin, Andrea; Hashemi, Bita; Helal, Mayada; Hewson, Stacy; Inbar-Feigenberg, Michal; Kannu, Peter; Karp, Natalya; Kim, Raymond H; Kronick, Jonathan; Liston, Eriskay; MacDonald, Heather; Mercimek-Mahmutoglu, Saadet; Mendoza-Londono, Roberto; Nasr, Enas; Nimmo, Graeme; Parkinson, Nicole; Quercia, Nada; Raiman, Julian; Roifman, Maian; Schulze, Andreas; Shugar, Andrea; Shuman, Cheryl; Sinajon, Pierre; Siriwardena, Komudi; Weksberg, Rosanna; Yoon, Grace; Carew, Chris; Erickson, Raith; Leach, Richard A; Klein, Robert; Ray, Peter N; Meyn, M Stephen; Scherer, Stephen W; Cohn, Ronald D; Marshall, Christian R
2016-01-01
The standard of care for first-tier clinical investigation of the aetiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy-number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion–deletions (indels) and single-nucleotide variant (SNV) mutations. Whole-genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilised WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a fourfold increase in diagnostic rate over CMA (8%; P value=1.42E−05) alone and more than twofold increase in CMA plus targeted gene sequencing (13%; P value=0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harbouring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counselling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis. PMID:28567303
Stavropoulos, Dimitri J; Merico, Daniele; Jobling, Rebekah; Bowdin, Sarah; Monfared, Nasim; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Yuen, Ryan K C; Szego, Michael J; Hayeems, Robin Z; Shaul, Randi Zlotnik; Brudno, Michael; Girdea, Marta; Frey, Brendan; Alipanahi, Babak; Ahmed, Sohnee; Babul-Hirji, Riyana; Porras, Ramses Badilla; Carter, Melissa T; Chad, Lauren; Chaudhry, Ayeshah; Chitayat, David; Doust, Soghra Jougheh; Cytrynbaum, Cheryl; Dupuis, Lucie; Ejaz, Resham; Fishman, Leona; Guerin, Andrea; Hashemi, Bita; Helal, Mayada; Hewson, Stacy; Inbar-Feigenberg, Michal; Kannu, Peter; Karp, Natalya; Kim, Raymond; Kronick, Jonathan; Liston, Eriskay; MacDonald, Heather; Mercimek-Mahmutoglu, Saadet; Mendoza-Londono, Roberto; Nasr, Enas; Nimmo, Graeme; Parkinson, Nicole; Quercia, Nada; Raiman, Julian; Roifman, Maian; Schulze, Andreas; Shugar, Andrea; Shuman, Cheryl; Sinajon, Pierre; Siriwardena, Komudi; Weksberg, Rosanna; Yoon, Grace; Carew, Chris; Erickson, Raith; Leach, Richard A; Klein, Robert; Ray, Peter N; Meyn, M Stephen; Scherer, Stephen W; Cohn, Ronald D; Marshall, Christian R
2016-01-13
The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.I.; Wirth, D.F.
1988-06-01
The 5' ends of Leishmania mRNAs contain an identical 35-nucleotide sequence termed the spliced leader (SL) or 5' mini-exon. The SL sequence is at the 5' end of an 85-nucleotide primary transcript that contains a consensus eucaryotic 5' intron-exon splice junction immediately 3' to the SL. The SL is added to protein-coding genes immediately 3' to a consensus eucaryotic 3' intron-exon splice junction. The authors' previous work demonstrated possible intermediates in discontinuous mRNA processing that contain the 50 nucleotides of the SL primary transcript 3' to the SL, the SL intron sequence (SLIS). These RNAs have a 5' terminus atmore » the splice junction of the SL and the SLIS. The authors examined a Leishmania nuclear extract for these RNAs in ribonucleoprotein (RNP) particles. Density centrifugation analysis showed that the SL RNA is predominately in RNP complexes at 60S, while the SLIS-containing RNAs are in complexes at 40S. They also demonstrated that the SLIS can be released from polyadenylated RNA by incubation with a HeLa cell extract containing debranching enzymatic activity. These data suggested that Leishmania enriettii mRNAs are assembled by bimolecular or trans splicing as has been recently demonstrated for Trypanosoma brucei. Furthermore, they determined the partial sequence of the Leishmania U2 equivalent RNA and demonstrated that it cosediments with the SL RNA at 60S in a nuclear extract. These RNP particles may be analogous to so-called spliceosomes that have been demonstrated in other systems.« less
Suen, Garret; Holt, Carson; Abouheif, Ehab; Bornberg-Bauer, Erich; Bouffard, Pascal; Caldera, Eric J.; Cash, Elizabeth; Cavanaugh, Amy; Denas, Olgert; Elhaik, Eran; Favé, Marie-Julie; Gadau, Jürgen; Gibson, Joshua D.; Graur, Dan; Grubbs, Kirk J.; Hagen, Darren E.; Harkins, Timothy T.; Helmkampf, Martin; Hu, Hao; Johnson, Brian R.; Kim, Jay; Marsh, Sarah E.; Moeller, Joseph A.; Muñoz-Torres, Mónica C.; Murphy, Marguerite C.; Naughton, Meredith C.; Nigam, Surabhi; Overson, Rick; Rajakumar, Rajendhran; Reese, Justin T.; Scott, Jarrod J.; Smith, Chris R.; Tao, Shu; Tsutsui, Neil D.; Viljakainen, Lumi; Wissler, Lothar; Yandell, Mark D.; Zimmer, Fabian; Taylor, James; Slater, Steven C.; Clifton, Sandra W.; Warren, Wesley C.; Elsik, Christine G.; Smith, Christopher D.; Weinstock, George M.; Gerardo, Nicole M.; Currie, Cameron R.
2011-01-01
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses. PMID:21347285
Cheng, Fu Bo; Ozelius, Laurie J; Wan, Xin Hua; Feng, Jia Chun; Ma, Ling Yan; Yang, Ying Mai; Wang, Lin
2012-02-01
Mutations in the THAP1 gene were recently identified as the cause of DYT6 primary dystonia. More than 40 mutations in this gene have been described in different populations. However, no previous report has identified sequence variations that affect the transcript process of the THAP1 gene. In addition, the mutation frequency in Chinese early-onset primary dystonia has not been well characterized. One hundred and two unrelated patients with non-DYT1 early-onset primary dystonia (age at onset <26 years), family members of participants with mutations, and 200 neurologically normal controls were screened for THAP1 gene mutations. The effects of the identified mutations on RNA expression were analyzed using semi-quantitative real-time PCR. Seven sequence variants (c.63_66del TTTC, c.161G>T, c.224A>T, c.267G>A, c.339T>C, c.449A>C, and c.539T>C) were identified in this group of patients (6.9%). In this cohort, 15 subjects (seven unrelated patients and eight family members) were detected to have THAP1 sequence variants. Among these 15 subjects, 11 were manifested (penetrance of DYT6 was 73.3%) and seven presented with craniocervical involvement (63.6%). However, one patient manifested paroxysmal headshake, and one presented with essential hand tremor. Semi-quantitative real-time PCR indicated that a novel silent mutation (c.267G>A) decreased the expression of THAP1 in human lymphocytes. Our findings indicated that THAP1 sequence variants are not common in non-DYT1 early-onset primary dystonia in China and that the clinical manifestation may vary. One silent mutation (c.267G>A) was shown to affect THAP1 expression.
Irla, Marta; Neshat, Armin; Brautaset, Trygve; Rückert, Christian; Kalinowski, Jörn; Wendisch, Volker F
2015-02-14
Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5'-ends. Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5'-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5'-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerer, E.J.; Threlkeld, L.
1995-08-01
ZFY-like genes have been observed in a variety of vertebrate species. Although originally implicated as the primary testis-determining gene in humans and other placental mammals, more recent evidence indicates a role(s) outside that of testis determination. In this study, DNA from five species of fish, Carasius auratus, Rivulus marmoratus, Xiphophorus maculatus, X. milleri, and X. nigrensis was subjected to Southern blot analysis using a PCR-amplified fragment of mouse ZFY-like sequence as a probe. Restriction fragment patterns were not polymorphic between sexes in any one species but showed a different pattern for each species. With one exception, Rivulus, a 3.1-kb bandmore » from the EcoRI digestion was common to all. Sequence and open reading frame analysis of this fragment showed a strong homology to other known vertebrate ZFY-like genes. Of particular interest in this gene is a novel third finger domain similar to one human and one alligator ZFY-like gene. Our studies and others provide evidence for a family of vertebrate ZFY genes, with those having this novel third finger being representative of the ancestral condition. 30 refs., 3 figs., 3 tabs.« less
2014-01-01
We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838
The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nylund, Stian; Karlsen, Marius; Nylund, Are
2008-03-30
The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses,more » which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae.« less
A Hierarchical Convolutional Neural Network for vesicle fusion event classification.
Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke
2017-09-01
Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Loher, Phillipe; Londin, Eric R.; Rigoutsos, Isidore
2014-01-01
For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a ‘static’ and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more ‘dynamic’ and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different ‘seed’ sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway. PMID:25229428
Isolation and partial characterization of Brazilian samples of feline immunodeficiency virus.
Teixeira, B M; Logan, N; Samman, A; Miyashiro, S I; Brandão, P E; Willett, B J; Hosie, M J; Hagiwara, M K
2011-09-01
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in São Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline × human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of FIV. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested. Copyright © 2011 Elsevier B.V. All rights reserved.
Loher, Phillipe; Londin, Eric R; Rigoutsos, Isidore
2014-09-30
For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a 'static' and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more 'dynamic' and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different 'seed' sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway.
AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.
2016-03-15
Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙}more » and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.« less
Shinshi, H.; Wenzler, H.; Neuhaus, J.-M.; Felix, G.; Hofsteenge, J.; Meins, F.
1988-01-01
Tobacco glucan endo-1,3-β-glucosidase (β-1,3-glucanase; 1,3-β-D-glucan glucanohydrolase; EC 3.2.1.39) exhibits complex hormonal and developmental regulation and is induced when plants are infected with pathogens. We determined the primary structure of this enzyme from the nucleotide sequence of five partial cDNA clones and the amino acid sequence of five peptides covering a total of 70 residues. β-1,3-Glucanase is produced as a 359-residue preproenzyme with an N-terminal hydrophobic signal peptide of 21 residues and a C-terminal extension of 22 residues containing a putative N-glycosylation site. The results of pulse-chase experiments with tunicamycin provide evidence that the first step in processing is loss of the signal peptide and addition of an oligosaccharide side chain. The glycosylated intermediate is further processed with the loss of the oligosaccharide side chain and C-terminal extension to give the mature enzyme. Heterogeneity in the sequences of cDNA clones and of mature protein and in Southern blot analysis of restriction endonuclease fragments indicates that tobacco β-1,3-glucanase is encoded by a small gene family. Two or three members of this family appear to have their evolutionary origin in each of the progenitors of tobacco, Nicotiana sylvestris and Nicotiana tomentosiformis. Images PMID:16593965
Brown, David; Smeets, Dominiek; Székely, Borbála; Larsimont, Denis; Szász, A. Marcell; Adnet, Pierre-Yves; Rothé, Françoise; Rouas, Ghizlane; Nagy, Zsófia I.; Faragó, Zsófia; Tőkés, Anna-Mária; Dank, Magdolna; Szentmártoni, Gyöngyvér; Udvarhelyi, Nóra; Zoppoli, Gabriele; Pusztai, Lajos; Piccart, Martine; Kulka, Janina; Lambrechts, Diether; Sotiriou, Christos; Desmedt, Christine
2017-01-01
Several studies using genome-wide molecular techniques have reported various degrees of genetic heterogeneity between primary tumours and their distant metastases. However, it has been difficult to discern patterns of dissemination owing to the limited number of patients and available metastases. Here, we use phylogenetic techniques on data generated using whole-exome sequencing and copy number profiling of primary and multiple-matched metastatic tumours from ten autopsied patients to infer the evolutionary history of breast cancer progression. We observed two modes of disease progression. In some patients, all distant metastases cluster on a branch separate from their primary lesion. Clonal frequency analyses of somatic mutations show that the metastases have a monoclonal origin and descend from a common ‘metastatic precursor’. Alternatively, multiple metastatic lesions are seeded from different clones present within the primary tumour. We further show that a metastasis can be horizontally cross-seeded. These findings provide insights into breast cancer dissemination. PMID:28429735
Lionel, Anath C; Costain, Gregory; Monfared, Nasim; Walker, Susan; Reuter, Miriam S; Hosseini, S Mohsen; Thiruvahindrapuram, Bhooma; Merico, Daniele; Jobling, Rebekah; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Sung, Wilson W L; Wang, Zhuozhi; Bikangaga, Peter; Boelman, Cyrus; Carter, Melissa T; Cordeiro, Dawn; Cytrynbaum, Cheryl; Dell, Sharon D; Dhir, Priya; Dowling, James J; Heon, Elise; Hewson, Stacy; Hiraki, Linda; Inbar-Feigenberg, Michal; Klatt, Regan; Kronick, Jonathan; Laxer, Ronald M; Licht, Christoph; MacDonald, Heather; Mercimek-Andrews, Saadet; Mendoza-Londono, Roberto; Piscione, Tino; Schneider, Rayfel; Schulze, Andreas; Silverman, Earl; Siriwardena, Komudi; Snead, O Carter; Sondheimer, Neal; Sutherland, Joanne; Vincent, Ajoy; Wasserman, Jonathan D; Weksberg, Rosanna; Shuman, Cheryl; Carew, Chris; Szego, Michael J; Hayeems, Robin Z; Basran, Raveen; Stavropoulos, Dimitri J; Ray, Peter N; Bowdin, Sarah; Meyn, M Stephen; Cohn, Ronald D; Scherer, Stephen W; Marshall, Christian R
2018-01-01
Purpose Genetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use. Methods We prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing. Results WGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24% P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A. Conclusion WGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort. PMID:28771251
Efficient use of unlabeled data for protein sequence classification: a comparative study
Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir
2009-01-01
Background Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags–the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Results Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. Conclusion The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably. PMID:19426450
Lionel, Anath C; Costain, Gregory; Monfared, Nasim; Walker, Susan; Reuter, Miriam S; Hosseini, S Mohsen; Thiruvahindrapuram, Bhooma; Merico, Daniele; Jobling, Rebekah; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Sung, Wilson W L; Wang, Zhuozhi; Bikangaga, Peter; Boelman, Cyrus; Carter, Melissa T; Cordeiro, Dawn; Cytrynbaum, Cheryl; Dell, Sharon D; Dhir, Priya; Dowling, James J; Heon, Elise; Hewson, Stacy; Hiraki, Linda; Inbar-Feigenberg, Michal; Klatt, Regan; Kronick, Jonathan; Laxer, Ronald M; Licht, Christoph; MacDonald, Heather; Mercimek-Andrews, Saadet; Mendoza-Londono, Roberto; Piscione, Tino; Schneider, Rayfel; Schulze, Andreas; Silverman, Earl; Siriwardena, Komudi; Snead, O Carter; Sondheimer, Neal; Sutherland, Joanne; Vincent, Ajoy; Wasserman, Jonathan D; Weksberg, Rosanna; Shuman, Cheryl; Carew, Chris; Szego, Michael J; Hayeems, Robin Z; Basran, Raveen; Stavropoulos, Dimitri J; Ray, Peter N; Bowdin, Sarah; Meyn, M Stephen; Cohn, Ronald D; Scherer, Stephen W; Marshall, Christian R
2018-04-01
PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.
Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe
2018-06-01
We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.
Favero, F.; McGranahan, N.; Salm, M.; Birkbak, N. J.; Sanborn, J. Z.; Benz, S. C.; Becq, J.; Peden, J. F.; Kingsbury, Z.; Grocok, R. J.; Humphray, S.; Bentley, D.; Spencer-Dene, B.; Gutteridge, A.; Brada, M.; Roger, S.; Dietrich, P.-Y.; Forshew, T.; Gerlinger, M.; Rowan, A.; Stamp, G.; Eklund, A. C.; Szallasi, Z.; Swanton, C.
2015-01-01
Background Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. Methods We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. Results We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. Conclusion This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success. PMID:25732040
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S; Virk, Selene M; Mikkelsen, Tom; Brat, Daniel J; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E; Cohen, Mark L; Van Meir, Erwin G; Scarpace, Lisa; Laird, Peter W; Weinstein, John N; Lander, Eric S; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S; Verhaak, Roel G W
2015-03-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. © 2015 Kim et al.; Published by Cold Spring Harbor Laboratory Press.
Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.
Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L
2005-01-01
The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.
Woebken, Dagmar; Burow, Luke C.; Prufert-Bebout, Leslie; ...
2012-01-12
N 2 fixation is a key process in photosynthetic microbial mats to support the nitrogen demands associated with primary production. Despite its importance, groups that actively fix N 2 and contribute to the input of organic N in these ecosystems still remain largely unclear. To investigate the active diazotrophic community in microbial mats from the Elkhorn Slough estuary, Monterey Bay, CA, USA, we conducted an extensive combined approach, including biogeochemical, molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. Detailed analysis of dinitrogenase reductase (nifH) transcript clone libraries from mat samples that fixed N 2 at night indicated that cyanobacterialmore » nifH transcripts were abundant and formed a novel monophyletic lineage. Independent NanoSIMS analysis of 15N2-incubated samples revealed significant incorporation of 15N into small, non-heterocystous cyanobacterial filaments. Mat-derived enrichment cultures yielded a unicyanobacterial culture with similar filaments (named Elkhorn Slough Filamentous Cyanobacterium-1 (ESFC-1)) that contained nifH gene sequences grouping with the novel cyanobacterial lineage identified in the transcript clone libraries, displaying up to 100% amino-acid sequence identity. The 16S rRNA gene sequence recovered from this enrichment allowed for the identification of related sequences from Elkhorn Slough mats and revealed great sequence diversity in this cluster. Furthermore, by combining 15N 2 tracer experiments, fluorescence in situ hybridization and NanoSIMS, in situ N 2 fixation activity by the novel ESFC-1 group was demonstrated, suggesting that this group may be the most active cyanobacterial diazotroph in the Elkhorn Slough mat. Pyrotag sequences affiliated with ESFC-1 were recovered from mat samples throughout 2009, demonstrating the prevalence of this group. Here, this work illustrates that combining standard and single-cell analyses can link phylogeny and function to identify previously unknown key functional groups in complex ecosystems.« less
DeLario, Melissa R; Sheehan, Andrea M; Ataya, Ramona; Bertuch, Alison A; Vega, Carlos; Webb, C Renee; Lopez-Terrada, Dolores; Venkateswaran, Lakshmi
2012-05-01
Primary myelofibrosis is a chronic myeloproliferative neoplasm characterized by cytopenias, leukoerythroblastosis, extramedullary hematopoiesis, hepatosplenomegaly and bone marrow fibrosis. Primary myelofibrosis is a rare disorder in adults; children are even less commonly affected by this entity, with the largest pediatric case series reporting on three patients. Most literature suggests spontaneous resolution of myelofibrosis without long term complications in the majority of affected children. We describe the clinical, pathologic, and molecular characteristics and outcomes of nineteen children with primary myelofibrosis treated in our center from 1984 to 2011. Most patients had cytopenia significant enough to require supportive therapy. No child developed malignant transformation and only five of the 19 children (26%) had spontaneous resolution of disease. Sequence analyses for JAK2V617F and MPLW515L mutations were performed on bone marrow samples from 17 and six patients, respectively, and the results were negative. In conclusion, analysis of this large series of pediatric patients with primary myelofibrosis demonstrates distinct clinical, hematologic, bone marrow, and molecular features from adult patients. Copyright © 2012 Wiley Periodicals, Inc.
Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn
2014-04-02
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.
Wiestler, Tobias; Waters-Metenier, Sheena
2014-01-01
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723
Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, D.H.; Batzer, M.A.; Deininger, P.L.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome.more » However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.« less
Du, Wuying; Hu, Fengyu; Yang, Yabo; Hu, Dong; Hu, Xuchu; Yu, Xinbing; Xu, Jin; Dai, Jialin; Liao, Xinjiang; Huang, Jiang
2011-09-01
Two novel genes encoding lactate dehydrogenase A (LDHA) and B (LDHB) homologues, respectively, were identified from the cDNA libraries of adult Taenia solium (T. solium). The two deduced amino acid sequences both show more than 50% identity to the homologues for Danio rerio, Xenopus laevis, Schistosoma japonicum, Sus scrofa, Homo sapiens, et al. The identity of the amino acid sequence between TsLDHA and TsLDHB is 57.4%, and that of the nucleotide sequence is 61.5%. Recombinant TsLDHA homologue (rTsLDHA) and TsLDHB homologue (rTsLDHB) were expressed in Escherichia coli BL21/DE3 and purified. Though there were some differences in the sequence, the two LDH isozyme homologues show similarity in the conserved LDH domain, topological structure, primary immunological traits, localization on the tegument of T. solium adult, and partial physicochemical properties. The linear B-cell epitope analysis of TsLDHA and TsLDHB discovered a TsLDHA specific epitope. The purified rTsLDHA and rTsLDHB could be recognized by rat immuno-sera, serum from swine, or a patient infected with T. solium, respectively, but Western blot analysis showed cross-reactions, not only between these two LDH members but also with other common human tapeworms or helminths. The results suggested that the two LDH homologues are similar in the characteristics of LDH family, and they are not specific antigens for immunodiagnosis.
The 1000 Genomes Project: data management and community access.
Clarke, Laura; Zheng-Bradley, Xiangqun; Smith, Richard; Kulesha, Eugene; Xiao, Chunlin; Toneva, Iliana; Vaughan, Brendan; Preuss, Don; Leinonen, Rasko; Shumway, Martin; Sherry, Stephen; Flicek, Paul
2012-04-27
The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.
Molecular Heterogeneity in Glioblastoma: Potential Clinical Implications
Parker, Nicole Renee; Khong, Peter; Parkinson, Jonathon Fergus; Howell, Viive Maarika; Wheeler, Helen Ruth
2015-01-01
Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed. PMID:25785247
NASA Technical Reports Server (NTRS)
Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)
1999-01-01
The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.
Nagara, Majdi; Tiar, Afaf; Ben Halim, Nizar; Ben Rhouma, Faten; Messaoud, Olfa; Bouyacoub, Yosra; Kefi, Rym; Hassayoun, Saida; Zouari, Noura; Ben Ammar, Mohamed Slim; Abdelhak, Sonia; Chemli, Jalel
2013-09-15
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited metabolic disease, characterized by progressive kidney failure due to renal deposition of calcium oxalate. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine glyoxylate aminotransferase, are responsible for the disease. We aimed to determine the mutational spectrum causing PH1 and to provide an accurate tool for diagnosis as well as for prenatal diagnosis in the affected families. Direct sequencing was used to detect mutations in the AGXT gene in DNA samples from 13 patients belonging to 12 Tunisian families. Molecular analysis revealed five mutations causing PH1 in Tunisia. The mutations were identified along exons 1, 2, 4, 5 and 7. The most predominant mutations were the Maghrebian "p.I244T" and the Arabic "p.G190R". Furthermore, three other mutations characteristic of different ethnic groups were found in our study population. These results confirm the mutational heterogeneity related to PH1 in Tunisian population. All the mutations are in a homozygous state, reflecting the high impact of endogamy in our population. Mutation analysis through DNA sequencing can provide a useful first line investigation for PH1. This identification could provide an accurate tool for prenatal diagnosis, genetic counseling and screen for potential presymptomatic individuals. © 2013 Elsevier B.V. All rights reserved.
Transformation of temporal sequences in the zebra finch auditory system
Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J
2016-01-01
This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971
Härtl, Katja; Kalinowski, Gregor; Hoffmann, Thomas; Preuss, Anja; Schwab, Wilfried
2017-05-01
RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O-methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down-regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3' direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down-regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Bate-Eya, Laurel T; Ebus, Marli E; Koster, Jan; den Hartog, Ilona J M; Zwijnenburg, Danny A; Schild, Linda; van der Ploeg, Ida; Dolman, M Emmy M; Caron, Huib N; Versteeg, Rogier; Molenaar, Jan J
2014-02-01
Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models. Copyright © 2013 Elsevier Ltd. All rights reserved.
SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer.
Zeller, Constanze; Hinzmann, Bernd; Seitz, Susanne; Prokoph, Helmuth; Burkhard-Goettges, Elke; Fischer, Jörg; Jandrig, Burkhard; Schwarz, Lope-Estevez; Rosenthal, André; Scherneck, Siegfried
2003-05-15
Loss of heterozygosity (LOH) and in silico expression analysis were applied to identify genes significantly downregulated in breast cancer within the genomic interval 6q23-25. Systematic comparison of candidate EST sequences with genomic sequences from this interval revealed the genomic structure of a potential target gene on 6q24.3, which we called SAM and SH3 domain containing 1 (SASH1). Loss of the gene-internal marker D6S311, found in 30% of primary breast cancer, was significantly correlated with poor survival and increase in tumor size. Two SASH1 transcripts of approximately 4.4 and 7.5 kb exist and are predominantly transcribed in the human breast, lung, thyroid, spleen, placenta and thymus. In breast cancer cell lines, SASH1 is only expressed at low levels. SASH1 is downregulated in the majority (74%) of breast tumors in comparison with corresponding normal breast epithelial tissues. In addition, SASH1 is also downregulated in tumors of the lung and thyroid. Analysis of the protein domain structure revealed that SASH1 is a member of a recently described family of SH3/SAM adapter molecules and thus suggests a role in signaling pathways. We assume that SASH1 is a new tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers. We were unable to find mutations in the coding region of the gene in primary breast cancers showing LOH within the critical region. We therefore hypothesize that other mechanisms as for instance methylation of the promoter region of SASH1 are responsible for the loss of expression of SASH1 in primary and metastatic breast cancer.
An overview of the role of genotyping in the diagnosis of the primary hyperoxalurias.
Rumsby, Gill
2005-11-01
The aim of this paper is to give an overview of our current state of knowledge with respect to genotyping for the primary hyperoxalurias and the role of molecular genetics alongside the more traditional biochemical and enzymatic tests for the diagnosis and prognosis of these disorders. The published literature was reviewed to establish the frequency of different mutations and thus the value of testing for a limited number of these mutations in patients with clinical suspicion of primary hyperoxaluria (PH). This approach was compared with whole gene sequencing of the AGXT and GRHPR genes. A limited genetic screen can provide a first line test for PH1 and PH2 in symptomatic patients and can provide a full diagnosis in approximately a third of cases. Molecular genetic analysis is essential for carrier testing and prenatal diagnosis. The value of molecular genetics in prognosis requires a wider evidence base.
Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Duchaineau, M; Goldgof, D B
2001-05-14
This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less
Rôças, I N; Siqueira, J F
2005-12-01
Recent evidence from molecular genetic studies has revealed that oral Treponema species are involved in infections of endodontic origin. This study assessed the occurrence of two newly named oral treponemes - Treponema parvum and Treponema putidum - in primary endodontic infections using a culture-independent identification technique. Genomic DNA was isolated directly from clinical samples, and a 16S rRNA gene-based nested polymerase chain reaction (PCR) assay was used to determine the presence of T. parvum and T. putidum. Species-specific primer pairs were developed by aligning closely related 16S rRNA gene sequences. The specificity for each primer pair was validated by running PCR against a panel of oral bacteria and by sequence analysis of PCR products from positive clinical samples. T. parvum was detected in 52% of the root canals associated with chronic apical periodontitis, in 20% of the cases diagnosed as acute apical periodontitis, and in no abscessed case. In general, T. parvum was detected in 26% of the samples from primary endodontic infections. T. putidum was found in only one case of acute apical periodontitis (2% of the total number of cases investigated). The devised nested PCR protocol was able to identify both T. parvum and T. putidum directly in clinical samples and demonstrated that these two treponemes can take part in endodontic infections.
SSMART: Sequence-structure motif identification for RNA-binding proteins.
Munteanu, Alina; Mukherjee, Neelanjan; Ohler, Uwe
2018-06-11
RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized. We developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3'UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP. Availability: SSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/. Supplementary data are available at Bioinformatics online.
Assessment of an automated capillary system for Plasmodium vivax microsatellite genotyping.
Manrique, Paulo; Hoshi, Mari; Fasabi, Manuel; Nolasco, Oscar; Yori, Pablo; Calderón, Martiza; Gilman, Robert H; Kosek, Margaret N; Vinetz, Joseph M; Gamboa, Dionicia
2015-08-21
Several platforms have been used to generate the primary data for microsatellite analysis of malaria parasite genotypes. Each has relative advantages but share a limitation of being time- and cost-intensive. A commercially available automated capillary gel cartridge system was assessed in the microsatellite analysis of Plasmodium vivax diversity in the Peruvian Amazon. The reproducibility and accuracy of a commercially-available automated capillary system, QIAxcel, was assessed using a sequenced PCR product of 227 base pairs. This product was measured 42 times, then 27 P. vivax samples from Peruvian Amazon subjects were analyzed with this instrument using five informative microsatellites. Results from the QIAxcel system were compared with a Sanger-type sequencing machine, the ABI PRISM(®) 3100 Genetic Analyzer. Significant differences were seen between the sequenced amplicons and the results from the QIAxcel instrument. Different runs, plates and cartridges yielded significantly different results. Additionally, allele size decreased with each run by 0.045, or 1 bp, every three plates. QIAxcel and ABI PRISM systems differed in giving different values than those obtained by ABI PRISM, and too many (i.e. inaccurate) alleles per locus were also seen with the automated instrument. While P. vivax diversity could generally be estimated using an automated capillary gel cartridge system, the data demonstrate that this system is not sufficiently precise for reliably identifying parasite strains via microsatellite analysis. This conclusion reached after systematic analysis was due both to inadequate precision and poor reproducibility in measuring PCR product size.
Aquino, Ruth; Gonzáles, Emely; Samaniego, Sol; Rivera, Juan; Cedeño, Virna; Urbina, Yrene; Diringer, Benoit
2017-01-01
To molecularly characterize the pathogenic bacteria of the respiratory tract isolated from patients with cystic fibrosis (CF) in Peru. Bacterial communities cultured from sputum samples of pediatric and adult patients with CF admitted to the Edgardo Rebagliati Martins National Hospital and the National Institute of Child Health were characterized. Standard microbiological techniques were used for bacterial culture, and gene sequencing of 16S rRNA and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and tandem MALDI-TOF mass spectrometry (MALDI TOF/TOF) were used for molecular characterization. Seventeen bacterial strains were characterized by 16S rRNA sequencing, and the identified pathogenic bacteria were Pseudomonas aeruginosa (31.5%), Staphylococcus aureus (12.6%), Pseudomonas spp. (11.8%), and Klebsiella oxytoca (3.1%). MALDI-TOF analysis generated a series of spectra representative of each isolated bacterial species, whereas MALDI TOF/TOF analysis identified the peptides and proteins of the most common strains and provided data on pathogenicity and sensitivity to antibiotics. The primary pathogenic microorganisms found in the respiratory tract of patients with CF in Peru were the same as those found in other countries. This study is the first to perform 16S rRNA sequencing as well as MALDI-TOF and MALDI-TOF/TOF analysis of the bacterial pathogens circulating in Peru. The inclusion of proteomic analysis further allowed for the identification of native microorganisms involved in CF.
Sudoyo, Herawati; Widodo, Putut T; Suryadi, Helena; Lie, Yuliana S; Safari, Dodi; Widjajanto, Agung; Kadarmo, D Aji; Hidayat, Soegeng; Marzuki, Sangkot
2008-06-01
We report the strategy that we employed to identify the perpetrator of a suicide car bombing in front of the Australian Embassy in Jakarta, Indonesia, on 9 September 2004. The bomb was so massive that only small tissue pieces of the perpetrator could be recovered, preventing conventional approach to the identification of the bomber, necessitating the introduction of DNA analysis as the primary means for perpetrator identification. Crime scene investigation revealed the trajectory of the bomb blast, which was used to guide the collection of charred tissue fragments of the perpetrator. Mitochondrial DNA analysis was first conducted on 17 tissue fragments, recovered over large areas of the trajectory to, (a) confirm that they are of a common source, i.e. the perpetrator, and thus (b) establish the mtDNA HV1 sequence profile of the perpetrator. The mtDNA of the perpetrator matches that of a maternally related family member of one of four suspects. Standard autosomal STR analysis confirmed the identification. This case is of interest as an illustration of a successful application of DNA analysis as the primary means of disaster perpetrator identification.
Huber, R; Huber, H; Stetter, K O
2000-12-01
Ecological studies have shown that water-containing terrestrial, subterranean and submarine high-temperature environments harbor a great diversity of hyperthermophilic prokaryotes, growing fastest at temperatures of 80 degrees C or above. The investigations included cultivation, isolation and detailed analysis of these hyperthermophiles as well as in situ 16S rRNA gene sequence analysis and in situ hybridization studies. For a safe and fast isolation of novel hyperthermophiles from mixed cultures, a new, plating-independent isolation technique was developed, based on the use of a laser microscope ('optical tweezers'). This method, combined with 16S rRNA gene sequence analysis and whole-cell hybridization using fluorescently labelled oligonucleotide probes, even allows the recovery of pure cultures of phylogenetically predicted organisms harboring novel 16S rRNA gene sequences. In their natural habitats, hyperthermophiles form complex food webs, consisting of primary producers and consumers of organic material. Their metabolic potential includes various types of aerobic and anaerobic respiration and different modes of fermentation. In hydrothermal and geothermal environments, hyperthermophiles have important ecological functions in biogeochemical processes. Members of the Sulfolobales are able to mobilize heavy metals from sulfidic ores like pyrite or chalcopyrite. Biomineralization processes of hyperthermophiles include the formation of magnetite from iron or the precipitation of arsenate as realgar, a reaction performed by a novel hyperthermophile that was isolated from Pisciarelli Solfatara, Naples, Italy.
Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C
1987-12-01
Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene.
Wang, Xinsheng; Zhao, Xiangzhong; Wang, Xiaoling; Yao, Jian; Zhang, Feifei; Lang, Yanhua; Tuffery-Giraud, Sylvie; Bottillo, Irene; Shao, Leping
2015-01-01
Twenty-six HOGA1 mutations have been reported in primary hyperoxaluria (PH) type 3 (PH3) patients with c.700 + 5G>T accounting for about 50% of the total alleles. However, PH3 has never been described in Asians. A Chinese child with early-onset nephrolithiasis was suspected of having PH. We searched for AGXT, GRHPR and HOGA1 gene mutations in this patient and his parents. All coding regions, including intron-exon boundaries, were analyzed using PCR followed by direct sequence analysis. Two heterozygous mutations not previously described in the literature about HOGA1 were identified (compound heterozygous). One mutation was a successive 2 bp substitution at the last nucleotide of exon 6 and at the first nucleotide of intron 6, respectively (c.834_834 + 1GG>TT), while the other one was a guanine to adenine substitution of the last nucleotide of exon 6 (c.834G>A). Direct sequencing analysis failed to find these mutations in 100 unrelated healthy subjects and the functional role on splicing of both variants found in this study was confirmed by a minigene assay based on the pSPL3 exon trapping vector. In addition, we found a SNP in this family (c.715G>A, p.V239I). There were no mutations detected in AGXT and GRHPR. Two novel HOGA1 mutations were identified in association with PH3. This is the first description and investigation on mutant gene analysis of PH3 in an Asian. © 2015 S. Karger AG, Basel
Kiriake, Aya; Madokoro, Mihoko; Shiomi, Kazuo
2014-08-01
Lionfish are representative venomous fish, having venomous glandular tissues in dorsal, pelvic and anal spines. Some properties and primary structures of proteinaceous toxins from the venoms of three species of lionfish, Pterois antennata, Pterois lunulata and Pterois volitans, have so far been clarified. Our recent survey established the presence of hyaluronidase, presumably a toxin-spreading factor, in the venoms of P. antennata and P. volitans. This prompted us to examine enzymatic properties and primary structures of lionfish hyaluronidases. The hyaluronidases of P. antennata and P. volitans were shown to be optimally active at pH 6.6, 37°C and 0.1 M NaCl and specifically active against hyaluronan. These enzymatic properties are almost the same as those of stonefish hyaluronidases. The primary structures (483 amino acid residues) of the lionfish hyaluronidases were elucidated by a cDNA cloning strategy using degenerate primers designed from the reported amino acid sequences of the stonefish hyaluronidases. Both lionfish hyaluronidases share as high as 99.6% of sequence identity with each other and also considerably high identities (72-77%) with the stonefish hyaluronidases but rather low identities (25-40%) with other hyaluronidases from mammals and venomous animals. In consistent with this, phylogenetic tree analysis revealed that the lionfish hyaluronidases, together with the stonefish hyaluronidases, form a cluster independently of other hyaluronidases. Nevertheless, the lionfish hyaluronidases as well as the stonefish hyaluronidases almost maintain structural features (active site, glyco_hydro_56 domain and cysteine location) observed in other hyaluronidases.
FANTOM5 CAGE profiles of human and mouse samples.
Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-Ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A; Babina, Magda; Baillie, J Kenneth; Barnett, Timothy C; Beckhouse, Anthony G; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J; Clevers, Hans C; Davis, Carrie A; Detmar, Michael; Dohi, Taeko; Edge, Albert S B; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C; Faulkner, Geoffrey J; Ferrai, Carmelo; Fisher, Malcolm E; Forrester, Lesley M; Fujita, Rie; Furusawa, Jun-Ichi; Geijtenbeek, Teunis B; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J; Hume, David A; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I; Kempfle, Judith S; Kenna, Tony J; Kere, Juha; Khachigian, Levon M; Kitamura, Toshio; Klein, Sarah; Klinken, S Peter; Knox, Alan J; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-Sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J; Motohashi, Hozumi; Mummery, Christine L; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A; Winteringham, Louise N; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide
2017-08-29
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
FANTOM5 CAGE profiles of human and mouse samples
Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide
2017-01-01
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities. PMID:28850106
An unusual osteomyelitis caused by Moraxella osloensis: A case report.
Alkhatib, Nidal J; Younis, Manaf H; Alobaidi, Ahmad S; Shaath, Nebal M
2017-01-01
Moraxella osloensis is a gram-negative coccobacillus, that is saprophytic on skin and mucosa, and rarely causing human infections. Reported cases of human infections usually occur in immunocompromised patients. We report the second case of M. osloensis-caused-osteomyelitis in literature, occurring in a young healthy man. The organism was identified by sequencing analysis of the 16S ribosomal RNA gene. Our patient was treated successfully with surgical debridement and intravenous third-generation cephalosporins. M. osloensis has been rarely reported to cause local or invasive infections. Our case report is the second case in literature and it is different from the previously reported case in that our patient has no chronic medical problems, no history of trauma, with unique presentation and features on the MRI and intraoperative finding. Proper diagnosis is essential for appropriate treatment of osteomyelitis. RNA gene sequence analysis is the primary method of M. osloensis diagnosis. M. osloensis is usually susceptible to simple antibiotics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sequence analysis and molecular characterization of Wnt4 gene in metacestodes of Taenia solium.
Hou, Junling; Luo, Xuenong; Wang, Shuai; Yin, Cai; Zhang, Shaohua; Zhu, Xueliang; Dou, Yongxi; Cai, Xuepeng
2014-04-01
Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.
Sequence Learning and Selection Difficulty
ERIC Educational Resources Information Center
Rowland, Lee A.; Shanks, David R.
2006-01-01
The authors studied the role of attention as a selection mechanism in implicit learning by examining the effect on primary sequence learning of performing a demanding target-selection task. Participants were trained on probabilistic sequences in a novel version of the serial reaction time (SRT) task, with dual- and triple-stimulus participants…
Frequency, Contingency and Online Processing of Multiword Sequences: An Eye-Tracking Study
ERIC Educational Resources Information Center
Yi, Wei; Lu, Shiyi; Ma, Guojie
2017-01-01
Frequency and contingency are two primary statistical factors that drive the acquisition and processing of language. This study explores the role of phrasal frequency and contingency (the co-occurrence probability/statistical association of the constituent words in multiword sequences) during online processing of multiword sequences. Meanwhile, it…
The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...
Aymerich, T; Holo, H; Håvarstein, L S; Hugas, M; Garriga, M; Nes, I F
1996-01-01
A new bacteriocin has been isolated from an Enterococcus faecium strain. The bacteriocin, termed enterocin A, was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and mass spectrometry analysis. By combining the data obtained from amino acid and DNA sequencing, the primary structure of enterocin A was determined. It consists of 47 amino acid residues, and the molecular weight was calculated to be 4,829, assuming that the four cysteine residues form intramolecular disulfide bridges. This molecular weight was confirmed by mass spectrometry analysis. The amino acid sequence of enterocin A shared significant homology with a group of bacteriocins (now termed pediocin-like bacteriocins) isolated from a variety of lactic acid-producing bacteria, which include members of the genera Lactobacillus, Pediococcus, Leuconostoc, and Carnobacterium. Sequencing of the structural gene of enterocin A, which is located on the bacterial chromosome, revealed an N-terminal leader sequence of 18 amino acid residues, which was removed during the maturation process. The enterocin A leader belongs to the double-glycine leaders which are found among most other small nonlantibiotic bacteriocins, some lantibiotics, and colicin V. Downstream of the enterocin A gene was located a second open reading frame, encoding a putative protein of 103 amino acid residues. This gene may encode the immunity factor of enterocin A, and it shares 40% identity with a similar open reading frame in the operon of leucocin AUL 187, another pediocin-like bacteriocin. PMID:8633865
Whole-exome/genome sequencing and genomics.
Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne
2013-12-01
As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.
Ahdesmäki, Miika J; Gray, Simon R; Johnson, Justin H; Lai, Zhongwu
2016-01-01
Grafting of cell lines and primary tumours is a crucial step in the drug development process between cell line studies and clinical trials. Disambiguate is a program for computationally separating the sequencing reads of two species derived from grafted samples. Disambiguate operates on DNA or RNA-seq alignments to the two species and separates the components at very high sensitivity and specificity as illustrated in artificially mixed human-mouse samples. This allows for maximum recovery of data from target tumours for more accurate variant calling and gene expression quantification. Given that no general use open source algorithm accessible to the bioinformatics community exists for the purposes of separating the two species data, the proposed Disambiguate tool presents a novel approach and improvement to performing sequence analysis of grafted samples. Both Python and C++ implementations are available and they are integrated into several open and closed source pipelines. Disambiguate is open source and is freely available at https://github.com/AstraZeneca-NGS/disambiguate.
High-resolution characterization of a hepatocellular carcinoma genome.
Totoki, Yasushi; Tatsuno, Kenji; Yamamoto, Shogo; Arai, Yasuhito; Hosoda, Fumie; Ishikawa, Shumpei; Tsutsumi, Shuichi; Sonoda, Kohtaro; Totsuka, Hirohiko; Shirakihara, Takuya; Sakamoto, Hiromi; Wang, Linghua; Ojima, Hidenori; Shimada, Kazuaki; Kosuge, Tomoo; Okusaka, Takuji; Kato, Kazuto; Kusuda, Jun; Yoshida, Teruhiko; Aburatani, Hiroyuki; Shibata, Tatsuhiro
2011-05-01
Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.
Activity Catalog Tool (ACT) user manual, version 2.0
NASA Technical Reports Server (NTRS)
Segal, Leon D.; Andre, Anthony D.
1994-01-01
This report comprises the user manual for version 2.0 of the Activity Catalog Tool (ACT) software program, developed by Leon D. Segal and Anthony D. Andre in cooperation with NASA Ames Aerospace Human Factors Research Division, FLR branch. ACT is a software tool for recording and analyzing sequences of activity over time that runs on the Macintosh platform. It was designed as an aid for professionals who are interested in observing and understanding human behavior in field settings, or from video or audio recordings of the same. Specifically, the program is aimed at two primary areas of interest: human-machine interactions and interactions between humans. The program provides a means by which an observer can record an observed sequence of events, logging such parameters as frequency and duration of particular events. The program goes further by providing the user with a quantified description of the observed sequence, through application of a basic set of statistical routines, and enables merging and appending of several files and more extensive analysis of the resultant data.
Barik, Sailen
2018-01-01
The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.
Microbial dextran-hydrolyzing enzymes: fundamentals and applications.
Khalikova, Elvira; Susi, Petri; Korpela, Timo
2005-06-01
Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.
Simple diazonium chemistry to develop specific gene sensing platforms.
Revenga-Parra, M; García-Mendiola, T; González-Costas, J; González-Romero, E; Marín, A García; Pau, J L; Pariente, F; Lorenzo, E
2014-02-27
A simple strategy for covalent immobilizing DNA sequences, based on the formation of stable diazonized conducting platforms, is described. The electrochemical reduction of 4-nitrobenzenediazonium salt onto screen-printed carbon electrodes (SPCE) in aqueous media gives rise to terminal grafted amino groups. The presence of primary aromatic amines allows the formation of diazonium cations capable to react with the amines present at the DNA capture probe. As a comparison a second strategy based on the binding of aminated DNA capture probes to the developed diazonized conducting platforms through a crosslinking agent was also employed. The resulting DNA sensing platforms were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and spectroscopic ellipsometry. The hybridization event with the complementary sequence was detected using hexaamineruthenium (III) chloride as electrochemical indicator. Finally, they were applied to the analysis of a 145-bp sequence from the human gene MRP3, reaching a detection limit of 210 pg μL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Tomita, Toshio; Mizumachi, Yoshihiro; Chong, Kang; Ogawa, Kanako; Konishi, Norihide; Sugawara-Tomita, Noriko; Dohmae, Naoshi; Hashimoto, Yohichi; Takio, Koji
2004-12-24
Flammutoxin (FTX), a 31-kDa pore-forming cytolysin from Flammulina velutipes, is specifically expressed during the fruiting body formation. We cloned and expressed the cDNA encoding a 272-residue protein with an identical N-terminal sequence with that of FTX but failed to obtain hemolytically active protein. This, together with the presence of multiple FTX family proteins in the mushroom, prompted us to determine the complete primary structure of FTX by protein sequence analysis. The N-terminal 72 and C-terminal 107 residues were sequenced by Edman degradation of the fragments generated from the alkylated FTX by enzymatic digestions with Achromobacter protease I or Staphylococcus aureus V8 protease and by chemical cleavages with CNBr, hydroxylamine, or 1% formic acid. The central part of FTX was sequenced with a surface-adhesive 7-kDa fragment, which was generated by a tryptic digestion of FTX and recovered by rinsing the wall of a test tube with 6 M guanidine HCl. The 7-kDa peptide was cleaved with 12 M HCl, thermolysin, or S. aureus V8 protease to produce smaller peptides for sequence analysis. As a result, FTX consisted of 251 residues, and protein and nucleotide sequences were in accord except for the lack of the initial Met and the C-terminal 20 residues in protein. Recombinant FTX (rFTX) with or without the C-terminal 20 residues (rFTX271 or rFTX251, respectively) was prepared to study the maturation process of FTX. Like natural FTX, rFTX251 existed as a monomer in solution and assembled into an SDS-stable, ring-shaped pore complex on human erythrocytes, causing hemolysis. In contrast, rFTX271, existing as a dimer in solution, bound to the cells but failed to form pore complex. The dimeric rFTX271 was converted to hemolytically active monomers upon the cleavage between Lys(251) and Met(252) by trypsin.
Golumbeanu, Monica; Cristinelli, Sara; Rato, Sylvie; Munoz, Miguel; Cavassini, Matthias; Beerenwinkel, Niko; Ciuffi, Angela
2018-04-24
Despite effective treatment, HIV can persist in latent reservoirs, which represent a major obstacle toward HIV eradication. Targeting and reactivating latent cells is challenging due to the heterogeneous nature of HIV-infected cells. Here, we used a primary model of HIV latency and single-cell RNA sequencing to characterize transcriptional heterogeneity during HIV latency and reactivation. Our analysis identified transcriptional programs leading to successful reactivation of HIV expression. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
König, Caroline; Cárdenas, Martha I; Giraldo, Jesús; Alquézar, René; Vellido, Alfredo
2015-09-29
The characterization of proteins in families and subfamilies, at different levels, entails the definition and use of class labels. When the adscription of a protein to a family is uncertain, or even wrong, this becomes an instance of what has come to be known as a label noise problem. Label noise has a potentially negative effect on any quantitative analysis of proteins that depends on label information. This study investigates class C of G protein-coupled receptors, which are cell membrane proteins of relevance both to biology in general and pharmacology in particular. Their supervised classification into different known subtypes, based on primary sequence data, is hampered by label noise. The latter may stem from a combination of expert knowledge limitations and the lack of a clear correspondence between labels that mostly reflect GPCR functionality and the different representations of the protein primary sequences. In this study, we describe a systematic approach, using Support Vector Machine classifiers, to the analysis of G protein-coupled receptor misclassifications. As a proof of concept, this approach is used to assist the discovery of labeling quality problems in a curated, publicly accessible database of this type of proteins. We also investigate the extent to which physico-chemical transformations of the protein sequences reflect G protein-coupled receptor subtype labeling. The candidate mislabeled cases detected with this approach are externally validated with phylogenetic trees and against further trusted sources such as the National Center for Biotechnology Information, Universal Protein Resource, European Bioinformatics Institute and Ensembl Genome Browser information repositories. In quantitative classification problems, class labels are often by default assumed to be correct. Label noise, though, is bound to be a pervasive problem in bioinformatics, where labels may be obtained indirectly through complex, many-step similarity modelling processes. In the case of G protein-coupled receptors, methods capable of singling out and characterizing those sequences with consistent misclassification behaviour are required to minimize this problem. A systematic, Support Vector Machine-based method has been proposed in this study for such purpose. The proposed method enables a filtering approach to the label noise problem and might become a support tool for database curators in proteomics.
Dubinett - Targeted Sequencing 2012 — EDRN Public Portal
we propose to use targeted massively parallel DNA sequencing to identify somatic alterations within mutational hotspots in matched sets of primary lung tumors, premalignant lesions, and adjacent,histologically normal lung tissue.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.
Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing
2016-12-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1
Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing
2016-01-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880
Connor, Ashton A; Denroche, Robert E; Jang, Gun Ho; Timms, Lee; Kalimuthu, Sangeetha N; Selander, Iris; McPherson, Treasa; Wilson, Gavin W; Chan-Seng-Yue, Michelle A; Borozan, Ivan; Ferretti, Vincent; Grant, Robert C; Lungu, Ilinca M; Costello, Eithne; Greenhalf, William; Palmer, Daniel; Ghaneh, Paula; Neoptolemos, John P; Buchler, Markus; Petersen, Gloria; Thayer, Sarah; Hollingsworth, Michael A; Sherker, Alana; Durocher, Daniel; Dhani, Neesha; Hedley, David; Serra, Stefano; Pollett, Aaron; Roehrl, Michael H A; Bavi, Prashant; Bartlett, John M S; Cleary, Sean; Wilson, Julie M; Alexandrov, Ludmil B; Moore, Malcolm; Wouters, Bradly G; McPherson, John D; Notta, Faiyaz; Stein, Lincoln D; Gallinger, Steven
2017-06-01
Outcomes for patients with pancreatic ductal adenocarcinoma (PDAC) remain poor. Advances in next-generation sequencing provide a route to therapeutic approaches, and integrating DNA and RNA analysis with clinicopathologic data may be a crucial step toward personalized treatment strategies for this disease. To classify PDAC according to distinct mutational processes, and explore their clinical significance. We performed a retrospective cohort study of resected PDAC, using cases collected between 2008 and 2015 as part of the International Cancer Genome Consortium. The discovery cohort comprised 160 PDAC cases from 154 patients (148 primary; 12 metastases) that underwent tumor enrichment prior to whole-genome and RNA sequencing. The replication cohort comprised 95 primary PDAC cases that underwent whole-genome sequencing and expression microarray on bulk biospecimens. Somatic mutations accumulate from sequence-specific processes creating signatures detectable by DNA sequencing. Using nonnegative matrix factorization, we measured the contribution of each signature to carcinogenesis, and used hierarchical clustering to subtype each cohort. We examined expression of antitumor immunity genes across subtypes to uncover biomarkers predictive of response to systemic therapies. The discovery cohort was 53% male (n = 79) and had a median age of 67 (interquartile range, 58-74) years. The replication cohort was 50% male (n = 48) and had a median age of 68 (interquartile range, 60-75) years. Five predominant mutational subtypes were identified that clustered PDAC into 4 major subtypes: age related, double-strand break repair, mismatch repair, and 1 with unknown etiology (signature 8). These were replicated and validated. Signatures were faithfully propagated from primaries to matched metastases, implying their stability during carcinogenesis. Twelve of 27 (45%) double-strand break repair cases lacked germline or somatic events in canonical homologous recombination genes-BRCA1, BRCA2, or PALB2. Double-strand break repair and mismatch repair subtypes were associated with increased expression of antitumor immunity, including activation of CD8-positive T lymphocytes (GZMA and PRF1) and overexpression of regulatory molecules (cytotoxic T-lymphocyte antigen 4, programmed cell death 1, and indolamine 2,3-dioxygenase 1), corresponding to higher frequency of somatic mutations and tumor-specific neoantigens. Signature-based subtyping may guide personalized therapy of PDAC in the context of biomarker-driven prospective trials.
Domain architecture conservation in orthologs
2011-01-01
Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the notion that orthologs are functionally more similar than other types of homologs at the same evolutionary distance. PMID:21819573
Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing.
Demeulemeester, Jonas; Kumar, Parveen; Møller, Elen K; Nord, Silje; Wedge, David C; Peterson, April; Mathiesen, Randi R; Fjelldal, Renathe; Zamani Esteki, Masoud; Theunis, Koen; Fernandez Gallardo, Elia; Grundstad, A Jason; Borgen, Elin; Baumbusch, Lars O; Børresen-Dale, Anne-Lise; White, Kevin P; Kristensen, Vessela N; Van Loo, Peter; Voet, Thierry; Naume, Bjørn
2016-12-09
Single-cell micro-metastases of solid tumors often occur in the bone marrow. These disseminated tumor cells (DTCs) may resist therapy and lay dormant or progress to cause overt bone and visceral metastases. The molecular nature of DTCs remains elusive, as well as when and from where in the tumor they originate. Here, we apply single-cell sequencing to identify and trace the origin of DTCs in breast cancer. We sequence the genomes of 63 single cells isolated from six non-metastatic breast cancer patients. By comparing the cells' DNA copy number aberration (CNA) landscapes with those of the primary tumors and lymph node metastasis, we establish that 53% of the single cells morphologically classified as tumor cells are DTCs disseminating from the observed tumor. The remaining cells represent either non-aberrant "normal" cells or "aberrant cells of unknown origin" that have CNA landscapes discordant from the tumor. Further analyses suggest that the prevalence of aberrant cells of unknown origin is age-dependent and that at least a subset is hematopoietic in origin. Evolutionary reconstruction analysis of bulk tumor and DTC genomes enables ordering of CNA events in molecular pseudo-time and traced the origin of the DTCs to either the main tumor clone, primary tumor subclones, or subclones in an axillary lymph node metastasis. Single-cell sequencing of bone marrow epithelial-like cells, in parallel with intra-tumor genetic heterogeneity profiling from bulk DNA, is a powerful approach to identify and study DTCs, yielding insight into metastatic processes. A heterogeneous population of CNA-positive cells is present in the bone marrow of non-metastatic breast cancer patients, only part of which are derived from the observed tumor lineages.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.
Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa
2016-01-01
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991
Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa
2016-01-01
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.
Pruitt, Wendy M.; Robinson, Lucy C.
2008-01-01
Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of bioinformatics tools and molecular biology and genetic approaches while carrying out original research. Students were required to present their hypotheses, experiments, and results in a comprehensive lab report. The lab project concerned the yeast casein kinase 1 (CK1) protein kinase Yck2. CK1 protein kinases are present in all organisms and are well conserved in primary structure. These enzymes display sequence features that differ from other protein kinase subfamilies. Students identified such sequences within the CK1 subfamily, chose a sequence to analyze, used available structural data to determine possible functions for their sequences, and designed mutations within the sequences. After generating the mutant alleles, these were expressed in yeast and tested for function by using two growth assays. The student response to the project was positive, both in terms of knowledge and skills increases and interest in research, and several students are continuing the analysis of mutant alleles as summer projects. PMID:19047427
Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.
Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem
2015-01-01
The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.
Williams, Emma; Rumsby, Gill
2007-07-01
Definitive diagnosis of primary hyperoxaluria type 1 (PH1) requires analysis of alanine:glyoxylate aminotransferase (AGT) activity in the liver. We have previously shown that targeted screening for the 3 most common mutations in the AGXT gene (c.33_34insC, c.508G>A, and c.731T>C) can provide a molecular diagnosis in 34.5% of PH1 patients, eliminating the need for a liver biopsy. Having reviewed the distribution of all AGXT mutations, we have evaluated a diagnostic strategy that uses selected exon sequencing for the molecular diagnosis of PH1. We sequenced exons 1, 4, and 7 for 300 biopsy-confirmed PH1 patients and expressed the identified missense mutations in vitro. Our identification of at least 1 mutation in 224 patients (75%) and 2 mutations in 149 patients increased the diagnostic sensitivity to 50%. We detected 29 kinds of sequence changes, 15 of which were novel. Four of these mutations were in exon 1 (c.2_3delinsAT, c.30_32delCC, c.122G>A, c.126delG), 7 were in exon 4 (c.447_454delGCTGCTGT, c.449T>C, c.473C>T, c.481G>A, c.481G>T, c.497T>C, c.424-2A>G), and 4 were in exon 7 (c.725insT, c.737G>A, c.757T>C, c.776 + 1G>A). The missense changes were associated with severely decreased AGT catalytic activity and negative immunoreactivity when expressed in vitro. Missense mutation c.26C>A, previously described as a pathological mutation, had activity similar to that of the wild-type enzyme. Selective exon sequencing can allow a definitive diagnosis in 50% of PH1 patients. The test offers a rapid turnaround time (15 days) with minimal risk to the patient. Demonstration of the expression of missense changes is essential to demonstrate pathogenicity.
Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.
Knowles, Michael R; Ostrowski, Lawrence E; Leigh, Margaret W; Sears, Patrick R; Davis, Stephanie D; Wolf, Whitney E; Hazucha, Milan J; Carson, Johnny L; Olivier, Kenneth N; Sagel, Scott D; Rosenfeld, Margaret; Ferkol, Thomas W; Dell, Sharon D; Milla, Carlos E; Randell, Scott H; Yin, Weining; Sannuti, Aruna; Metjian, Hilda M; Noone, Peadar G; Noone, Peter J; Olson, Christina A; Patrone, Michael V; Dang, Hong; Lee, Hye-Seung; Hurd, Toby W; Gee, Heon Yung; Otto, Edgar A; Halbritter, Jan; Kohl, Stefan; Kircher, Martin; Krischer, Jeffrey; Bamshad, Michael J; Nickerson, Deborah A; Hildebrandt, Friedhelm; Shendure, Jay; Zariwala, Maimoona A
2014-03-15
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.
Leong, Wai-Mun; Ripen, Adiratna Mat; Mirsafian, Hoda; Mohamad, Saharuddin Bin; Merican, Amir Feisal
2018-06-07
High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type. Copyright © 2018 Elsevier Inc. All rights reserved.
Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata.
Schnare, M N; Gray, M W
1982-01-01
In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista. Images PMID:7079176
Somatic mutations affect key pathways in lung adenocarcinoma
Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.
2009-01-01
Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947
Anticipation in a family with primary familial brain calcification caused by an SLC20A2 variant.
Konno, Takuya; Blackburn, Patrick R; Rozen, Todd D; van Gerpen, Jay A; Ross, Owen A; Atwal, Paldeep S; Wszolek, Zbigniew K
2018-04-11
To describe a family with primary familial brain calcification (PFBC) due to SLC20A2 variant showing possible genetic anticipation. We conducted historical, genealogical, clinical, and radiologic studies of a family with PFBC. Clinical evaluations including neurological examination and head computed tomography (CT) scans of a proband and her father were performed. They provided additional information regarding other family members. To identify a causative gene variant, we performed whole-exome sequencing for the proband followed by segregation analysis in other affected members using direct sequencing. In this family, nine affected members were identified over four generations. The proband suffered from chronic daily headache including thunderclap headache. We identified an SLC20A2 (c.509delT, p.(Leu170*)) variant in three affected members over three generations. Interestingly, the age of onset became younger as the disease passed through successive generations, suggestive of genetic anticipation. For clinical purpose, it is important to consider thunderclap headache and genetic anticipation in PFBC caused by SLC20A2 variants. Further investigation is required to validate our observation. Copyright © 2018 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Endogenous Sequential Cortical Activity Evoked by Visual Stimuli
Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael
2015-01-01
Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Pervouchine, Dmitri D
2018-06-15
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
Gentil, Coline A; Gammill, Hilary S; Luu, Christine T; Mayes, Maureen D; Furst, Dan E; Nelson, J Lee
2017-03-07
Specific HLA class II alleles are associated with systemic sclerosis (SSc) risk, clinical characteristics, and autoantibodies. HLA nomenclature initially developed with antibodies as typing reagents defining DRB1 allele groups. However, alleles from different DRB1 allele groups encode the same third hypervariable region (3rd HVR) sequence, the primary T-cell recognition site, and 3rd HVR charge differences can affect interactions with T cells. We considered 3rd HVR sequences (amino acids 67-74) irrespective of the allele group and analyzed parental inheritance considered according to the 3rd HVR charge, comparing SSc patients with controls. In total, 306 families (121 SSc and 185 controls) were HLA genotyped and parental HLA-haplotype origin was determined. Analysis was conducted according to DRβ1 3rd HVR sequence, charge, and parental inheritance. The distribution of 3rd HVR sequences differed in SSc patients versus controls (p = 0.007), primarily due to an increase of specific DRB1*11 alleles, in accord with previous observations. The 3rd HVR sequences were next analyzed according to charge and parental inheritance. Paternal transmission of DRB1 alleles encoding a +2 charge 3rd HVR was significantly reduced in SSc patients compared with maternal transmission (p = 0.0003, corrected for analysis of four charge categories p = 0.001). To a lesser extent, paternal transmission was increased when charge was 0 (p = 0.021, corrected for multiple comparisons p = 0.084). In contrast, paternal versus maternal inheritance was similar in controls. SSc patients differed from controls when DRB1 alleles were categorized according to 3rd HVR sequences. Skewed parental inheritance was observed in SSc patients but not in controls when the DRβ1 3rd HVR was considered according to charge. These observations suggest that epigenetic modulation of HLA merits investigation in SSc.
Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A
2001-06-01
Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.
Sun, Shuwen; Guo, Xia; Zhu, Yiping; Yang, Xue; Li, Qiang; Gao, Ju
2014-10-01
To analyze mutations in a pedigree of familial hemophagocytic lymphohistiocytosis (FHLH) from Sichuan and provide genetic counseling for the family. Clinical data of a case with FHLH diagnosed at West China Second Hospital was retrospectively analyzed. Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Eight candidate genes for primary HLH were amplified with PCR and analyzed by direct sequencing. The proband was diagnosed as HLH based on clinical manifestations of recurrent fever for 2 months, hepatosplenomegaly, lymphadenopathy, pancytopenia, hyperferritinemia, and decreased fibrinogen and hemophagocytosis in bone marrow. Genetic testing for primary HLH was carried out considering the relapse of illness after hormone therapy for 8 weeks and the family history. The results of gene sequencing showed that the proband has carried compound heterozygous mutations in PRF1 gene (c.1349C> T in exon 3 and c.445G> A in exon 2). His father has carried a heterozygous mutation (c.445G> A in exon 2) and nonsense mutation (c.900C> T in exon 3), and his mother carried a heterozygous mutation (c.1349C> T in exon 3). Both c.1349C> T and c.445G> A have been previously reported as pathogenic mutations. The family has been diagnosed as familial HLH type 2 based on clinical and laboratory examinations and molecular genetic testing. Gene sequencing has indicated that is was a recessive type familial HLH.
Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.
Lella, Muralikrishna; Mahalakshmi, Radhakrishnan
2017-06-20
Every amino acid exhibits a different propensity for distinct structural conformations. Hence, decoding how the primary amino acid sequence undergoes the transition to a defined secondary structure and its final three-dimensional fold is presently considered predictable with reasonable certainty. However, protein sequences that defy the first principles of secondary structure prediction (they attain two different folds) have recently been discovered. Such proteins, aptly named metamorphic proteins, decrease the conformational constraint by increasing flexibility in the secondary structure and thereby result in efficient functionality. In this review, we discuss the major factors driving the conformational switch related both to protein sequence and to structure using illustrative examples. We discuss the concept of an evolutionary transition in sequence and structure, the functional impact of the tertiary fold, and the pressure of intrinsic and external factors that give rise to metamorphic proteins. We mainly focus on the major components of protein architecture, namely, the α-helix and β-sheet segments, which are involved in conformational switching within the same or highly similar sequences. These chameleonic sequences are widespread in both cytosolic and membrane proteins, and these folds are equally important for protein structure and function. We discuss the implications of metamorphic proteins and chameleonic peptide sequences in de novo peptide design.
Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W
2015-03-01
We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.
BAYESIAN PROTEIN STRUCTURE ALIGNMENT.
Rodriguez, Abel; Schmidler, Scott C
The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.
Shimizu, Takeo; Kanematsu, Satoko; Yaegashi, Hajime
2018-04-24
Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soil-borne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.
Itoh, S; Abe, Y; Kubo, A; Okuda, M; Shimoji, M; Nakayama, K; Kamataki, T
1997-02-07
An 11.5 kb fragment of the mouse Cyp3a16 gene containing the 5' flanking region was isolated from the lambda DASHII mouse genomic library. A part of the 5' flanking region and the first exon of Cyp3a16 gene were sequenced. S1 mapping analysis showed the presence of two transcriptional initiation sites. The first exon was completely identical to Cyp3a16 cDNA. The identity of 5' flanking sequences between Cyp3a16 and Cyp3a11 genes was about 69%. A typical TATA box and a basic transcription element (BTE) were found as seen with other CYP3A genes from various animal species Moreover, some putative transcriptional regulatory elements were also found in addition to the sequence motif seen for the formation of Z-type DNA. To examine the transcriptional activity of Cyp3a11 gene, DNA fragments in the 5'-flanking region of the gene were inserted front of the luciferase structural gene, and the constructs were transfected in primary hepatocytes. The analysis of the luciferase activity indicated that the region between -146 and -56 was necessary for the transcription of CYP3a16 gene.
He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei
2015-04-18
Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.
Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research
Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John
2010-01-01
Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273
Zhu, Qihui; Smith, Shavannor M; Ayele, Mulu; Yang, Lixing; Jogi, Ansuya; Chaluvadi, Srinivasa R; Bennetzen, Jeffrey L
2012-11-01
Tef (Eragrostis tef) is a major cereal crop in Ethiopia. Lodging is the primary constraint to increasing productivity in this allotetraploid species, accounting for losses of ∼15-45% in yield each year. As a first step toward identifying semi-dwarf varieties that might have improved lodging resistance, an ∼6× fosmid library was constructed and used to identify both homeologues of the dw3 semi-dwarfing gene of Sorghum bicolor. An EMS mutagenized population, consisting of ∼21,210 tef plants, was planted and leaf materials were collected into 23 superpools. Two dwarfing candidate genes, homeologues of dw3 of sorghum and rht1 of wheat, were sequenced directly from each superpool with 454 technology, and 120 candidate mutations were identified. Out of 10 candidates tested, six independent mutations were validated by Sanger sequencing, including two predicted detrimental mutations in both dw3 homeologues with a potential to improve lodging resistance in tef through further breeding. This study demonstrates that high-throughput sequencing can identify potentially valuable mutations in under-studied plant species like tef and has provided mutant lines that can now be combined and tested in breeding programs for improved lodging resistance.
Bennett, Hugh P. J.; Lowry, Philip J.; McMartin, Colin; Scott, Alexander P.
1974-01-01
A melanocyte-stimulating hormone (MSH) has been isolated from extracts of the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias by gel-filtration and ion-exchange chromatography. It had approximately 1% of the potency of mammalian α-MSH on bioassays in vitro on frog skin and dogfish skin. Sequence analysis revealed it to be a hexadecapeptide with the following primary structure: Asp-Gly-Asp-Asp-Tyr-Lys-Phe-Gly-His-Phe-Arg-Trp-Ser-Val-Pro-Leu. It appears to be related to the β-MSH species of mammalian species but has only the sequence -His-Phe-Arg-Trp- in common with the heptapeptide core -Met-Glu-His-Phe-Arg-Trp-Gly- which is characteristic not only of the MSH peptides but also of the adrenocorticotrophins and lipotrophins studied so far. An α-MSH was also isolated, 50% of which was amidated at the C-terminus group. Sequence data from this study taken in conjunction with those from a previous study (Lowry & Chadwick, 1970b) revealed it to be a tridecapeptide which is identical with the N-terminal sequence of dogfish adrenocorticotrophin. PMID:4375978
The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway
Ramos, Irene; Herrera, Mónica; Stamatakis, Konstantinos
2009-01-01
Background Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. Methodology/Principal Findings By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. Conclusions/Significance Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs. PMID:19956591
Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash
2016-01-01
Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499
Structural synthesis: Precursor and catalyst
NASA Technical Reports Server (NTRS)
Schmit, L. A.
1984-01-01
More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.
Germline PARP4 mutations in patients with primary thyroid and breast cancers.
Ikeda, Yuji; Kiyotani, Kazuma; Yew, Poh Yin; Kato, Taigo; Tamura, Kenji; Yap, Kai Lee; Nielsen, Sarah M; Mester, Jessica L; Eng, Charis; Nakamura, Yusuke; Grogan, Raymon H
2016-03-01
Germline mutations in the PTEN gene, which cause Cowden syndrome, are known to be one of the genetic factors for primary thyroid and breast cancers; however, PTEN mutations are found in only a small subset of research participants with non-syndrome breast and thyroid cancers. In this study, we aimed to identify germline variants that may be related to genetic risk of primary thyroid and breast cancers. Genomic DNAs extracted from peripheral blood of 14 PTEN WT female research participants with primary thyroid and breast cancers were analyzed by whole-exome sequencing. Gene-based case-control association analysis using the information of 406 Europeans obtained from the 1000 Genomes Project database identified 34 genes possibly associated with the phenotype with P < 1.0 × 10(-3). Among them, rare variants in the PARP4 gene were detected at significant high frequency (odds ratio = 5.2; P = 1.0 × 10(-5)). The variants, G496V and T1170I, were found in six of the 14 study participants (43%) while their frequencies were only 0.5% in controls. Functional analysis using HCC1143 cell line showed that knockdown of PARP4 with siRNA significantly enhanced the cell proliferation, compared with the cells transfected with siControl (P = 0.02). Kaplan-Meier analysis using Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA) and The Cancer Genome Atlas (TCGA) datasets showed poor relapse-free survival (P < 0.001, Hazard ratio 1.27) and overall survival (P = 0.006, Hazard ratio 1.41) in a PARP4 low-expression group, suggesting that PARP4 may function as a tumor suppressor. In conclusion, we identified PARP4 as a possible susceptibility gene of primary thyroid and breast cancer. © 2016 Society for Endocrinology.
Germline PARP4 mutations in patients with primary thyroid and breast cancers
Ikeda, Yuji; Kiyotani, Kazuma; Yew, Poh Yin; Kato, Taigo; Tamura, Kenji; Yap, Kai-Lee; Nielsen, Sarah M.; Mester, Jessica L; Eng, Charis; Nakamura, Yusuke; Grogan, Raymon H.
2016-01-01
Germline mutations in the PTEN gene, which cause Cowden syndrome (CS), are known to be one of the genetic factors for primary thyroid and breast cancers, however, PTEN mutations are found in only a small subset of research participants with non-syndrome breast and thyroid cancers. In this study, we aimed to identify germline variants that may be related to genetic risk of primary thyroid and breast cancers. Genomic DNAs extracted from peripheral blood of 14 PTEN-wild-type female research participants with primary thyroid and breast cancers were analyzed by whole-exome sequencing. Gene-based case control association analysis using the information of 406 Europeans obtained from the 1000 Genomes Project database identified 34 genes possibly associated with the phenotype with P<1.0×10−3. Among them, rare variants in the PARP4 gene were detected at significant high frequency (odds ratio = 5.2, P = 1.0×10−5). The variants, G496V and T1170I, were found in 6 of the 14 study participants (43%) while their frequencies were only 0.5% in controls. Functional analysis using HCC1143 cell line showed that knockdown of PARP4 with siRNA significantly enhanced the cell proliferation, compared with the cells transfected with siControl (P = 0.02). Kaplan-Meier analysis using GEO, EGA and TCGA datasets showed poor progression-free survival (P = 0.006, Hazard ratio 0.71) and overall survival (P < 0.0001, Hazard ratio 0.79) in a PARP4 low-expression group, suggesting that PARP4 may function as a tumor suppression. In conclusion, we identified PARP4 as a possible susceptibility gene of primary thyroid and breast cancer. PMID:26699384
Di Maro, Antimo; Chambery, Angela; Carafa, Vincenzo; Costantini, Susan; Colonna, Giovanni; Parente, Augusto
2009-03-01
The amino acid sequence and glycan structure of PD-L1, PD-L2 and PD-L3, type 1 ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves, were determined using a combined approach based on peptide mapping, Edman degradation and ESI-Q-TOF MS in precursor ion discovery mode. The comparative analysis of the 261 amino acid residue sequences showed that PD-L1 and PD-L2 have identical primary structure, as it is the case of PD-L3 and PD-L4. Furthermore, the primary structure of PD-Ls 1-2 and PD-Ls 3-4 have 81.6% identity (85.1% similarity). The ESI-Q-TOF MS analysis confirmed that PD-Ls 1-3 were glycosylated at different sites. In particular, PD-L1 contained three glycidic chains with the well known paucidomannosidic structure (Man)(3) (GlcNAc)(2) (Fuc)(1) (Xyl)(1) linked to Asn10, Asn43 and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and PD-L3 was glycosylated only at Asn10. PD-L4 was confirmed to be not glycosylated. Despite an overall high structural similarity, the comparative modeling of PD-L1, PD-L2, PD-L3 and PD-L4 has shown potential influences of the glycidic chains on their adenine polynucleotide glycosylase activity on different substrates.
Processing of an anglerfish somatostatin precursor to a hydroxylysine-containing somatostatin 28.
Spiess, J; Noe, B D
1985-01-01
A novel 28-residue somatostatin (SS) has been isolated from anglerfish pancreatic islets and characterized by complete Edman degradation, peptide mapping, and amino acid analysis. The primary structure of this anglerfish SS-28 (aSS-28) containing hydroxylysine (Hyl) was established to be H-Ser-Val-Asp-Ser-Thr-Asn-Asn-Leu-Pro-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys- Lys-Asn-Phe-Tyr-Trp-Hyl-Gly-Phe-Thr-Ser-Cys-OH. This sequence (with the exception of hydroxylysine-23, which is replaced by lysine) is identical to the sequence of the COOH-terminal 28 residues of prepro-SS II predicted on the basis of cDNA analysis [Hobart, P., Crawford, R., Shen, L., Pictet, R. & Rutter, W. J. (1980) Nature (London) 288, 137-141]. This is the first instance in which hydroxylysine (to date characteristically observed in collagen or collagen-like structures) has been found in a potential regulatory peptide. Chromatographic characterization of peptides, radiolabeled in islet culture, revealed that aSS-28 contained 10-12% of the radioactivity incorporated into the 8000- to 1000-dalton SS-like polypeptides, whereas 88-90% of this radioactivity was detected in anglerfish SS-14. It appears probable that aSS-28 represents the predominant primary cleavage product derived from prepro-SS II by cleavage at the COOH-terminal side of a single arginine. Based on knowledge of the collagen biosynthesis, it is speculated that hydroxylation may take place as an early post-translational event. Images PMID:2857489
Kolondra, Adam; Labedzka-Dmoch, Karolina; Wenda, Joanna M; Drzewicka, Katarzyna; Golik, Pawel
2015-10-21
Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2-3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as "booster" promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms.
Long, Rui-Cai; Li, Ming-Na; Kang, Jun-Mei; Zhang, Tie-Jun; Sun, Yan; Yang, Qing-Chuan
2015-05-01
Small 21- to 24-nucleotide (nt) ribonucleic acids (RNAs), notably the microRNA (miRNA), are emerging as a posttranscriptional regulation mechanism. Salt stress is one of the primary abiotic stresses that cause the crop losses worldwide. In saline lands, root growth and function of plant are determined by the action of environmental salt stress through specific genes that adapt root development to the restrictive condition. To elucidate the role of miRNAs in salt stress regulation in Medicago, we used a high-throughput sequencing approach to analyze four small RNA libraries from roots of Zhongmu-1 (Medicago sativa) and Jemalong A17 (Medicago truncatula), which were treated with 300 mM NaCl for 0 and 8 h. Each library generated about 20 million short sequences and contained predominantly small RNAs of 24-nt length, followed by 21-nt and 22-nt small RNAs. Using sequence analysis, we identified 385 conserved miRNAs from 96 families, along with 68 novel candidate miRNAs. Of all the 68 predicted novel miRNAs, 15 miRNAs were identified to have miRNA*. Statistical analysis on abundance of sequencing read revealed specific miRNA showing contrasting expression patterns between M. sativa and M. truncatula roots, as well as between roots treated for 0 and 8 h. The expression of 10 conserved and novel miRNAs was also quantified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The miRNA precursor and target genes were predicted by bioinformatics analysis. We concluded that the salt stress related conserved and novel miRNAs may have a large variety of target mRNAs, some of which might play key roles in salt stress regulation of Medicago. © 2014 Scandinavian Plant Physiology Society.
HIV-1 diversity, transmission dynamics and primary drug resistance in Angola.
Bártolo, Inês; Zakovic, Suzana; Martin, Francisco; Palladino, Claudia; Carvalho, Patrícia; Camacho, Ricardo; Thamm, Sven; Clemente, Sofia; Taveira, Nuno
2014-01-01
To assess HIV-1 diversity, transmission dynamics and prevalence of transmitted drug resistance (TDR) in Angola, five years after ART scale-up. Population sequencing of the pol gene was performed on 139 plasma samples collected in 2009 from drug-naive HIV-1 infected individuals living in Luanda. HIV-1 subtypes were determined using phylogenetic analysis. Drug resistance mutations were identified using the Calibrated Population Resistance Tool (CPR). Transmission networks were determined using phylogenetic analysis of all Angolan sequences present in the databases. Evolutionary trends were determined by comparison with a similar survey performed in 2001. 47.1% of the viruses were pure subtypes (all except B), 47.1% were recombinants and 5.8% were untypable. The prevalence of subtype A decreased significantly from 2001 to 2009 (40.0% to 10.8%, P = 0.0019) while the prevalence of unique recombinant forms (URFs) increased > 2-fold (40.0% to 83.1%, P < 0.0001). The most frequent URFs comprised untypable sequences with subtypes H (U/H, n = 7, 10.8%), A (U/A, n = 6, 9.2%) and G (G/U, n = 4, 6.2%). Newly identified U/H recombinants formed a highly supported monophyletic cluster suggesting a local and common origin. TDR mutation K103N was found in one (0.7%) patient (1.6% in 2001). Out of the 364 sequences sampled for transmission network analysis, 130 (35.7%) were part of a transmission network. Forty eight transmission clusters were identified; the majority (56.3%) comprised sequences sampled in 2008-2010 in Luanda which is consistent with a locally fuelled epidemic. Very low genetic distance was found in 27 transmission pairs sampled in the same year, suggesting recent transmission events. Transmission of drug resistant strains was still negligible in Luanda in 2009, five years after the scale-up of ART. The dominance of small and recent transmission clusters and the emergence of new URFs are consistent with a rising HIV-1 epidemics mainly driven by heterosexual transmission.
Valtcheva, Nadejda; Lang, Franziska M; Noske, Aurelia; Samartzis, Eleftherios P; Schmidt, Anna-Maria; Bellini, Elisa; Fink, Daniel; Moch, Holger; Rechsteiner, Markus; Dedes, Konstantin J; Wild, Peter J
2017-01-19
Endometrioid adenocarcinoma of the uterus and ovarian endometrioid carcinoma share many morphological and molecular features. Differentiation between simultaneous primary carcinomas and ovarian metastases of an endometrial cancer may be very challenging but is essential for prognostic and therapeutic considerations. In the present case study of a 33 year-old patient we used targeted amplicon next-generation re-sequencing for clarifying the origin of synchronous endometrioid cancer of the corpus uteri and the left ovary. The patient developed a metachronous lung metastasis of an endometrioid adenocarcinoma four years after hyster- and adnexectomy, vaginal brachytherapy and treatment with the synthetic steroid tibolone. Removal of the metastasis and megestrol treatment for seven years led to a complete remission. A total of 409 genes from the Ampliseq Comprehensive Cancer Panel (Ion Torrent, Thermo Fisher) were analysed by next generation sequencing and mutations in 10 genes, including ARID1A, CTNNB1, PIK3CA and PTEN were identified and confirmed by Sanger sequencing. Primary endometrial as well as ovarian cancer showed an identical mutational profile, suggesting the presence of an ovarian metastasis of the endometrial cancer, rather than a simultaneous endometrial and ovarian cancer. The metachronous lung metastasis showed a different mutational profile compared to the primary cancer. Immunohistochemical staining of the corresponding proteins suggested that the tumour development was driven by alterations in the protein function rather than by changes of the protein abundance in the cell. Our results have demonstrated next generation sequencing as a valuable tool in the differentiation of synchronous primary tumours and metastases, which has an important impact on the clinical decision making process. Similar to breast cancer, targeted therapies based on mutational tumour profiling will become increasingly important in endometrial and ovarian cancer. In summary, our results support the usage of next generation sequencing as a supplementary diagnostic tool, assisting in personalized precision medicine.
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy
Barhoumi, Aoune; Halas, Naomi J.
2013-01-01
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.
Barhoumi, Aoune; Halas, Naomi J
2011-12-15
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra
2014-01-01
Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.
Automated quantitative assessment of proteins' biological function in protein knowledge bases.
Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter
2008-01-01
Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.
Microfluidics for genome-wide studies involving next generation sequencing
Murphy, Travis W.; Lu, Chang
2017-01-01
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707
Timing and sequence of primary tooth eruption in children with cleft lip and palate
KOBAYASHI, Tatiana Yuriko; GOMIDE, Márcia Ribeiro; CARRARA, Cleide Felício de Carvalho
2010-01-01
Objective To determine the timing and sequence of eruption of primary teeth in children with complete bilateral cleft lip and palate. Material and Methods This cross-sectional study was conducted at the Hospital for Rehabilitation of Craniofacial Anomalies of the University of São Paulo, Bauru, SP, Brazil, with a sample of 395 children (128 girls and 267 boys) aged 0 to 48 months, with complete bilateral cleft lip and palate Results Children with complete bilateral clefts presented a higher mean age of eruption of all primary teeth for both arches and both genders, compared to children without clefts. This difference was statistically significant for all teeth, except for the maxillary first molar. Mean age of eruption of most teeth was lower for girls compared to boys. The greatest delay was found for the maxillary lateral incisor, which was the eighth tooth of children with clefts of both genders. Analyzing by gender, the maxillary lateral incisor was the eighth tooth to erupt in girls and the last in boys. Conclusion The results suggest an interference of the cleft on the timing and sequence of eruption of primary teeth. PMID:20856997
Crumley, Suzanne M; Pepper, Kristi L; Phan, Alexandria T; Olsen, Randall J; Schwartz, Mary R; Portier, Bryce P
2016-06-01
-Colorectal carcinoma is the third most common cause of cancer death in males and females in the United States. Rectal adenocarcinoma can have distinct therapeutic and surgical management from colonic adenocarcinoma owing to its location and anatomic considerations. -To determine the oncologic driver mutations and better understand the molecular pathogenesis of rectal adenocarcinoma in relation to colon adenocarcinoma. -Next-generation sequencing was performed on 20 cases of primary rectal adenocarcinoma with a paired lymph node or solid organ metastasis by using an amplicon-based assay of more than 2800 Catalogue of Somatic Mutations in Cancer (COSMIC)-identified somatic mutations. -Next-generation sequencing data were obtained on both the primary tumor and metastasis from 16 patients. Most rectal adenocarcinoma cases demonstrated identical mutations in the primary tumor and metastasis (13 of 16, 81%). The mutations identified, listed in order of frequency, included TP53, KRAS, APC, FBXW7, GNAS, FGFR3, BRAF, NRAS, PIK3CA, and SMAD4. -The somatic mutations identified in our rectal adenocarcinoma cohort showed a strong correlation to those previously characterized in colonic adenocarcinoma. In addition, most rectal adenocarcinomas harbored identical somatic mutations in both the primary tumor and metastasis. These findings demonstrate evidence that rectal adenocarcinoma follows a similar molecular pathogenesis as colonic adenocarcinoma and that sampling either the primary or metastatic lesion is valid for initial evaluation of somatic mutations and selection of possible targeted therapy.
Tripathi, Kumar Parijat; Granata, Ilaria; Guarracino, Mario Rosario
2017-10-01
Immortalized cell lines are widely used to study the effectiveness and toxicity of anti cancer drugs as well as to assess the phenotypic characteristics of cancer cells, such as proliferation and migration ability. Unfortunately, cell lines often show extremely different properties than tumor tissues. Also the primary cells, that are deprived of the in vivo environment, might adapt to artificial conditions, and differ from the tissue they should represent. Despite these considerations, cell lines are still one of the most used cancer models due to their availability and capability to expand without limitation, but the clinical relevance of their use is still a big issue in cancer research. Many studies tried to overcome this task, comparing cell lines and tumor samples through the definition of the genomic and transcriptomic differences. To this aim, most of them used nucleotide variation or gene expression data. Here we introduce a different strategy based on alternative splicing detection and integration of DNA and RNA sequencing data, to explore the differences between immortalized and tissue-derived cells at isoforms level. Furthermore, in order to better investigate the heterogeneity of both cell populations, we took advantage of a public available dataset obtained with a new simultaneous omics single cell sequencing methodology. The proposed pipeline allowed us to identify, through a computational and prediction approach, putative mutated and alternative spliced transcripts responsible for the dissimilarity between immortalized and primary hepato carcinoma cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation
So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet
2012-01-01
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341
Bai, Xue; Sakaguchi, Mayo; Yamaguchi, Yuko; Ishihara, Shiori; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku; Nomura, Takaomi; Arai, Ryoichi
2015-08-28
Retreat-maker larvae of Stenopsyche marmorata, one of the major caddisfly species in Japan, produce silk threads and adhesives to build food capture nets and protective nests in water. Research on these underwater adhesive silk proteins potentially leads to the development of new functional biofiber materials. Recently, we identified four major S. marmorata silk proteins (Smsps), Smsp-1, Smsp-2, Smsp-3, and Smsp-4 from silk glands of S. marmorata larvae. In this study, we cloned full-length cDNAs of Smsp-2, Smsp-3, and Smsp-4 from the cDNA library of the S. marmorata silk glands to reveal the primary sequences of Smsps. Homology search results of the deduced amino acid sequences indicate that Smsp-2 and Smsp-4 are novel proteins. The Smsp-2 sequence [167 amino acids (aa)] has an array of GYD-rich repeat motifs and two (SX)4E motifs. The Smsp-4 sequence (132 aa) contains a number of GW-rich repeat motifs and three (SX)4E motifs. The Smsp-3 sequence (248 aa) exhibits high homology with fibroin light chain of other caddisflies. Gene expression analysis of Smsps by real-time PCR suggested that the gene expression of Smsp-1 and Smsp-3 was relatively stable throughout the year, whereas that of Smsp-2 and Smsp-4 varied seasonally. Furthermore, Smsps recombinant protein expression was successfully performed in Escherichia coli. The study provides new molecular insights into caddisfly aquatic silk and its potential for future applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiang, Yanwen; Nie, Kui; Redmond, David; Melnick, Ari M; Tam, Wayne; Elemento, Olivier
2015-12-28
Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.
Zhou, Rongqiong; Xia, Qingyou; Huang, Hancheng; Lai, Min; Wang, Zhenxin
2011-10-01
Toxocara canis is a widespread intestinal nematode parasite of dogs, which can also cause disease in humans. We employed an expressed sequence tag (EST) strategy in order to study gene-expression including development, digestion and reproduction of T. canis. ESTs provided a rapid way to identify genes, particularly in organisms for which we have very little molecular information. In this study, a cDNA library was constructed from a female adult of T. canis and 215 high-quality ESTs from 5'-ends of the cDNA clones representing 79 unigenes were obtained. The titer of the primary cDNA library was 1.83×10(6)pfu/mL with a recombination rate of 99.33%. Most of the sequences ranged from 300 to 900bp with an average length of 656bp. Cluster analysis of these ESTs allowed identification of 79 unique sequences containing 28 contigs and 51 singletons. BLASTX searches revealed that 18 unigenes (22.78% of the total) or 70 ESTs (32.56% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest of the 61 unigenes (77.22% of the total) or 145 ESTs (67.44% of the total) were closely matched to the known genes or sequences deposited in the public databases. These genes were classified into seven groups based on their known or putative biological functions. We also confirmed the gene expression patterns of several immune-related genes using RT-PCR examination. This work will provide a valuable resource for the further investigations in the stage-, sex- and tissue-specific gene transcription or expression. Copyright © 2011. Published by Elsevier Inc.
Fei, Peng; Jiang, Yichao; Jiang, Yan; Yuan, Xiujuan; Yang, Tongxiang; Chen, Junliang; Wang, Ziyuan; Kang, Huaibin; Forsythe, Stephen J.
2017-01-01
Cronobacter sakazakii is an opportunistic pathogen that causes severe infections in neonates and infants through contaminated powdered infant formula (PIF). Therefore, the aim of this study was a large-scale study on determine the prevalence, molecular characterization and antibiotic susceptibility of C. sakazakii isolates from PIF purchased from Chinese retail markets. Two thousand and twenty PIF samples were collected from different institutions. Fifty-six C. sakazakii strains were isolated, and identified using fusA sequencing analysis, giving a contamination rate of 2.8%. Multilocus sequence typing (MLST) was more discriminatory than other genotyping methods. The C. sakazakii isolates were divided into 14 sequence types (STs) by MLST, compared with only seven clusters by ompA and rpoB sequence analysis, and four C. sakazakii serotypes by PCR-based O-antigen serotyping. C. sakazakii ST4 (19/56, 33.9%), ST1 (12/56, 21.4%), and ST64 (11/56, 16.1%) were the dominant sequence types isolated. C. sakazakii serotype O2 (34/56, 60.7%) was the primary serotype, along with ompA6 and rpoB1 as the main allele profiles, respectively. Antibiotic susceptibility testing indicated that all C. sakazakii isolates were susceptible to ampicillin-sulbactam, cefotaxime, ciprofloxacin, meropenem, tetracycline, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. The majority of C. sakazakii strains were susceptible to chloramphenicol and gentamicin (87.5 and 92.9%, respectively). In contrast, 55.4% C. sakazakii strains were resistant to cephalothin. In conclusion, this large-scale study revealed the prevalence and characteristics of C. sakazakii from PIF in Chinese retail markets, demonstrating a potential risk for neonates and infants, and provide a guided to effective control the contamination of C. sakazakii in production process. PMID:29089940
Passive wireless sensor systems can recognize activites of daily living.
Urwyler, Prabitha; Stucki, Reto; Muri, Rene; Mosimann, Urs P; Nef, Tobias
2015-08-01
The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed; Virk, Selene; Mikkelsen, Tom; Brat, Daniel; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew; Cohen, Mark; Van Meir, Erwin; Scarpace, Lisa; Lander, Eric; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill; Verhaak, Roel
2014-01-01
To evaluate evolutionary patterns of GBM recurrence, we analyzed whole genome sequencing (WGS) and multi-sector exome sequencing data from pairs of primary and posttreatment GBM. WGS on ten primary-recurrent pairs detected a median number of 12,214 mutations which we utilized to uncover clonal structures, by analyzing the distribution of mutation cellular frequencies (the fraction of tumor cells harboring a mutation). On average, 41 % of the mutations were shared by primary and recurrence. The majority of shared mutations were clonal in both primary and recurrence, but we also observed many clonal mutations that were uniquely detected in either the primary or the recurrence. This raises the intriguing possibility that major tumor clones in the primary tumor and disease relapse both evolved from a shared ancestral tumor cell population. At least one subclone was identified in the majority of WGS samples, and we observed groups of mutations that were at low cancer cell fractions in both primary and recurrence, suggesting that both subclones evolved from the same ancestral tumor cells separate from the major clone ancestral cells. To address the possibility that the lack of overlap between subsequent tumors was due to intratumoral heterogeneity, we analyzed exome sequencing from a second tumor sector of seven primary and six recurrent tumors. We found that the majority of "second biopsy" mutations were not conserved between time points, suggesting that intratumoral heterogeneity did not explain the large number of mutations uniquely detected in primary and recurrence. The limited overlap of mutations in primary and recurrence provides evidence for ancestral tumor cell populations that could not be eradicated by therapy, while offspring cell populations contained unique mutations, were selectively killed by treatment and could therefore no longer be detected after disease relapse. This study has provided new insights into patterns and dynamics of tumor evolution.
Milgrom, Peter; Horst, Jeremy A; Ludwig, Sharity; Rothen, Marilynn; Chaffee, Benjamin W; Lyalina, Svetlana; Pollard, Katherine S; DeRisi, Joseph L; Mancl, Lloyd
2018-01-01
The Stopping Cavities Trial investigated effectiveness and safety of 38% silver diamine fluoride in arresting caries lesions. The study was a double-blind randomized placebo-controlled superiority trial with 2 parallel groups. The sites were Oregon preschools. Sixty-six preschool children with ≥1 lesion were enrolled. Silver diamine fluoride (38%) or placebo (blue-tinted water), applied topically to the lesion. The primary endpoint was caries arrest (lesion inactivity, Nyvad criteria) 14-21days post intervention. Dental plaque was collected from all children, and microbial composition was assessed by RNA sequencing from 2 lesions and 1 unaffected surface before treatment and at follow-up for 3 children from each group. Average proportion of arrested caries lesions in the silver diamine fluoride group was higher (0.72; 95% CI; 0.55, 0.84) than in the placebo group (0.05; 95% CI; 0.00, 0.16). Confirmatory analysis using generalized estimating equation log-linear regression, based on the number of arrested lesions and accounting for the number of treated surfaces and length of follow-up, indicates the risk of arrested caries was significantly higher in the treatment group (relative risk, 17.3; 95% CI: 4.3 to 69.4). No harms were observed. RNA sequencing analysis identified no consistent changes in relative abundance of caries-associated microbes, nor emergence of antibiotic or metal resistance gene expression. Topical 38% silver diamine fluoride is effective and safe in arresting cavities in preschool children. The treatment is applicable to primary care practice and may reduce the burden of untreated tooth decay in the population. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, J.W.; Elzinga, M.; Tu, A.T.
The primary structure of myotoxin a, a myotoxin protein from the venom of the North American rattlesnake Crotalus viridis viridis, was determined and the position of the disulfide bonds assigned. The toxin was isolated, carboxymethylated, and cleaved by cyanogen bromide, and the resultant peptides were isolated. The cyanogen bromide peptides were subjected to amino acid sequence analysis. In order to assign the positions of the three disulfide bonds, the native toxin was cleaved sequentially with cyanogen bromide and trypsin. A two peptide unit connected by one disulfide bond was isolated and characterized, and a three-peptide unit connected by two disulfidemore » bonds was isolated. One peptide in the three-peptide unit was identified as Cys-Cys-Lys. In order to establish the linkages between the peptides and Cys-Cys-Lys, one cycle of Edman degradation was carried out such that the Cys-Cys bond was cleaved. Upon isolation and analysis of the cleavage products, the disulfide bonds connecting the three peptides were determined. The positions of the disulfide bridges of myotoxin a were determined to be totally different from those of neurotoxins isolated from snake venoms. The sequence of myotoxin a was compared with the sequences of other snake venom toxins using the computer program RELATE to determine whether myotoxin a is similar to any other types of toxins. From the computer analysis, myotoxin a did not show any close relationship to other toxins except crotamine from the South American rattlesnake Crotalus durissus terrificus.« less
Qi, Fengxia; Chen, Ping; Caufield, Page W.
2000-01-01
Previously, we reported isolation and characterization of mutacin III and genetic analysis of mutacin III biosynthesis genes from the group III strain of Streptococcus mutans, UA787 (F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:3880–3887, 1999). During the same process of isolating the mutacin III structural gene, we also cloned the structural gene for mutacin I. In this report, we present purification and biochemical characterization of mutacin I from the group I strain CH43 and compare mutacin I and mutacin III biosynthesis genes. The mutacin I biosynthesis gene locus consists of 14 genes in the order mutR, -A, -A′, -B, -C, -D, -P, -T, -F, -E, -G, orfX, orfY, orfZ. mutA is the structural gene for mutacin I, while mutA′ is not required for mutacin I activity. DNA and protein sequence analysis revealed that mutacins I and III are homologous to each other, possibly arising from a common ancestor. The mature mutacin I is 24 amino acids in size and has a molecular mass of 2,364 Da. Ethanethiol modification and peptide sequencing of mutacin I revealed that it contains six dehydrated serines, four of which are probably involved with thioether bridge formation. Comparison of the primary sequence of mutacin I with that of mutacin III and epidermin suggests that mutacin I likely has the same bridging pattern as epidermin. PMID:10919773
Factors Associated With Surgery Clerkship Performance and Subsequent USMLE Step Scores.
Dong, Ting; Copeland, Annesley; Gangidine, Matthew; Schreiber-Gregory, Deanna; Ritter, E Matthew; Durning, Steven J
2018-03-12
We conducted an in-depth empirical investigation to achieve a better understanding of the surgery clerkship from multiple perspectives, including the influence of clerkship sequence on performance, the relationship between self-logged work hours and performance, as well as the association between surgery clerkship performance with subsequent USMLE Step exams' scores. The study cohort consisted of medical students graduating between 2015 and 2018 (n = 687). The primary measures of interest were clerkship sequence (internal medicine clerkship before or after surgery clerkship), self-logged work hours during surgery clerkship, surgery NBME subject exam score, surgery clerkship overall grade, and Step 1, Step 2 CK, and Step 3 exam scores. We reported the descriptive statistics and conducted correlation analysis, stepwise linear regression analysis, and variable selection analysis of logistic regression to answer the research questions. Students who completed internal medicine clerkship prior to surgery clerkship had better performance on surgery subject exam. The subject exam score explained an additional 28% of the variance of the Step 2 CK score, and the clerkship overall score accounted for an additional 24% of the variance after the MCAT scores and undergraduate GPA were controlled. Our finding suggests that the clerkship sequence does matter when it comes to performance on the surgery NBME subject exam. Performance on the surgery subject exam is predictive of subsequent performance on future USMLE Step exams. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Qi, F; Chen, P; Caufield, P W
2000-08-01
Previously, we reported isolation and characterization of mutacin III and genetic analysis of mutacin III biosynthesis genes from the group III strain of Streptococcus mutans, UA787 (F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:3880-3887, 1999). During the same process of isolating the mutacin III structural gene, we also cloned the structural gene for mutacin I. In this report, we present purification and biochemical characterization of mutacin I from the group I strain CH43 and compare mutacin I and mutacin III biosynthesis genes. The mutacin I biosynthesis gene locus consists of 14 genes in the order mutR, -A, -A', -B, -C, -D, -P, -T, -F, -E, -G, orfX, orfY, orfZ. mutA is the structural gene for mutacin I, while mutA' is not required for mutacin I activity. DNA and protein sequence analysis revealed that mutacins I and III are homologous to each other, possibly arising from a common ancestor. The mature mutacin I is 24 amino acids in size and has a molecular mass of 2, 364 Da. Ethanethiol modification and peptide sequencing of mutacin I revealed that it contains six dehydrated serines, four of which are probably involved with thioether bridge formation. Comparison of the primary sequence of mutacin I with that of mutacin III and epidermin suggests that mutacin I likely has the same bridging pattern as epidermin.
Long, Xigui; Huang, Yanru; Tan, Hu; Li, Zhuo; Zhang, Rui; Linpeng, Siyuan; Lv, Weigang; Cao, Yingxi; Li, Haoxian; Liang, Desheng; Wu, Lingqian
2018-04-26
To detect the underlying pathogenesis of congenital cataract in a four-generation Chinese family. Whole-exome sequencing (WES) of family members (III:4, IV:4, and IV:6) was performed. Sanger sequencing and bioinformatics analysis were subsequently conducted. Full-length WT-MIP or K228fs-MIP fused to HA markers at the N-terminal was transfected into HeLa cells. Next, quantitative real-time PCR, western blotting and immunofluorescence confocal laser scanning were performed. The age of onset for nonsyndromic cataracts in male patients was by 1-year old, earlier than for female patients, who exhibited onset at adulthood. A novel c.682_683delAA (p.K228fs230X) mutation in main intrinsic protein (MIP) cosegregated with the cataract phenotype. The instability index and unfolded states for truncated MIP were predicted to increase by bioinformatics analysis. The mRNA transcription level of K228fs-MIP was reduced compared with that of WT-MIP, and K228fs-MIP protein expression was also lower than that of WT-MIP. Immunofluorescence images showed that WT-MIP principally localized to the plasma membrane, whereas the mutant protein was trapped in the cytoplasm. Our study generated genetic and primary functional evidence for a novel c.682_683delAA mutation in MIP that expands the variant spectrum of MIP and help us better understand the molecular basis of cataract.
Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C
1987-01-01
Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene. Images PMID:2825184
OP17MICRORNA PROFILING USING SMALL RNA-SEQ IN PAEDIATRIC LOW GRADE GLIOMAS
Jeyapalan, Jennie N.; Jones, Tania A.; Tatevossian, Ruth G.; Qaddoumi, Ibrahim; Ellison, David W.; Sheer, Denise
2014-01-01
INTRODUCTION: MicroRNAs regulate gene expression by targeting mRNAs for translational repression or degradation at the post-transcriptional level. In paediatric low-grade gliomas a few key genetic mutations have been identified, including BRAF fusions, FGFR1 duplications and MYB rearrangements. Our aim in the current study is to profile aberrant microRNA expression in paediatric low-grade gliomas and determine the role of epigenetic changes in the aetiology and behaviour of these tumours. METHOD: MicroRNA profiling of tumour samples (6 pilocytic, 2 diffuse, 2 pilomyxoid astrocytomas) and normal brain controls (4 adult normal brain samples and a primary glial progenitor cell-line) was performed using small RNA sequencing. Bioinformatic analysis included sequence alignment, analysis of the number of reads (CPM, counts per million) and differential expression. RESULTS: Sequence alignment identified 695 microRNAs, whose expression was compared in tumours v. normal brain. PCA and hierarchical clustering showed separate groups for tumours and normal brain. Computational analysis identified approximately 400 differentially expressed microRNAs in the tumours compared to matched location controls. Our findings will then be validated and integrated with extensive genetic and epigenetic information we have previously obtained for the full tumour cohort. CONCLUSION: We have identified microRNAs that are differentially expressed in paediatric low-grade gliomas. As microRNAs are known to target genes involved in the initiation and progression of cancer, they provide critical information on tumour pathogenesis and are an important class of biomarkers.
Representations of Pitch and Timbre Variation in Human Auditory Cortex
2017-01-01
Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness—an aspect of timbre or sound quality—allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a distributed code, with no clear anatomical distinctions between auditory cortical regions responsive to changes in either pitch or timbre, but also reveal a population code that can differentiate between changes in either dimension within the same cortical regions. PMID:28025255
Grazing by Zooplankton on Diazotrophs in the Amazon River Plume and Western Tropical North Atlantic
NASA Astrophysics Data System (ADS)
Conroy, B.; Steinberg, D. K.; Song, B.; Foster, R.
2016-02-01
Organisms capable of fixing di-nitrogen (N2), known as diazotrophs, are important primary producers and a potentially significant source for new nitrogen entering the planktonic food web. However, limited evidence exists for zooplankton grazing on diazotrophs compared to other primary producers. In the western tropical North Atlantic Ocean (WTNA), the Amazon River plume creates a niche for symbiotic diatom-diazotroph associations (DDAs) which can form large blooms. In adjacent non-plume-influenced waters, the colonial cyanobacterium Trichodesmium is abundant. In order to reveal zooplankton-diazotroph grazing interactions and determine the fate of newly fixed nitrogen, gut contents of zooplankton captured in these two regions were compared based on quantitative PCR (qPCR) assay of nitrogenase genes (nifH), and their microbiomes compared using next generation sequencing (NGS) analysis of 16S rRNA genes. We sampled individual copepods from discrete depth intervals (0-25m and 25-50m) and in two size classes (0.5-1mm and 1-2mm) for analysis. A modified DNA extraction protocol was developed and 54 extracts were used as templates in nifH qPCR assays for the larger size fraction diazotrophs (>10µm): Trichodesmium, and Hemiaulus or Rhizosolenia (diatoms)-Richelia (diazotroph) associations. Copepod gut content nifH copies ranged from 1.6 to 13.6 copies individual-1 for the assay targeting the Hemiaulus-Richelia DDA and from 1.1 to 3.0 copies individual-1 for Trichodesmium. 16S NGS conducted on 35 extracts with an Ion Torrent PGM and mothur revealed that cyanobacteria sequences accounted for up to 20% of sequences per extract. Our results show that both DDAs and Trichodesmium are prey for zooplankton, and that new nitrogen moves through the food web via these grazing interactions. These interactions should be considered in future explorations of the global ocean nitrogen cycle.
Xie, Guosen; Mo, Zhongxi
2011-01-21
In this article, we introduce three 3D graphical representations of DNA primary sequences, which we call RY-curve, MK-curve and SW-curve, based on three classifications of the DNA bases. The advantages of our representations are that (i) these 3D curves are strictly non-degenerate and there is no loss of information when transferring a DNA sequence to its mathematical representation and (ii) the coordinates of every node on these 3D curves have clear biological implication. Two applications of these 3D curves are presented: (a) a simple formula is derived to calculate the content of the four bases (A, G, C and T) from the coordinates of nodes on the curves; and (b) a 12-component characteristic vector is constructed to compare similarity among DNA sequences from different species based on the geometrical centers of the 3D curves. As examples, we examine similarity among the coding sequences of the first exon of beta-globin gene from eleven species and validate similarity of cDNA sequences of beta-globin gene from eight species. Copyright © 2010 Elsevier Ltd. All rights reserved.
Favero, F; McGranahan, N; Salm, M; Birkbak, N J; Sanborn, J Z; Benz, S C; Becq, J; Peden, J F; Kingsbury, Z; Grocok, R J; Humphray, S; Bentley, D; Spencer-Dene, B; Gutteridge, A; Brada, M; Roger, S; Dietrich, P-Y; Forshew, T; Gerlinger, M; Rowan, A; Stamp, G; Eklund, A C; Szallasi, Z; Swanton, C
2015-05-01
Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
You, Qi; Yan, Hengyu; Liu, Yue; Yi, Xin; Zhang, Kang; Xu, Wenying; Su, Zhen
2017-05-01
The 22-nucleotide non-coding microRNAs (miRNAs) are mostly transcribed by RNA polymerase II and are similar to protein-coding genes. Unlike the clear process from stem-loop precursors to mature miRNAs, the primary transcriptional regulation of miRNA, especially in plants, still needs to be further clarified, including the original transcription start site, functional cis-elements and primary transcript structures. Due to several well-characterized transcription signals in the promoter region, we proposed a systemic approach integrating multidimensional "omics" (including genomics, transcriptomics, and epigenomics) data to improve the genome-wide identification of primary miRNA transcripts. Here, we used the model plant Arabidopsis thaliana to improve the ability to identify candidate promoter locations in intergenic miRNAs and to determine rules for identifying primary transcription start sites of miRNAs by integrating high-throughput omics data, such as the DNase I hypersensitive sites, chromatin immunoprecipitation-sequencing of polymerase II and H3K4me3, as well as high throughput transcriptomic data. As a result, 93% of refined primary transcripts could be confirmed by the primer pairs from a previous study. Cis-element and secondary structure analyses also supported the feasibility of our results. This work will contribute to the primary transcriptional regulatory analysis of miRNAs, and the conserved regulatory pattern may be a suitable miRNA characteristic in other plant species.
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.
Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M
2016-07-01
The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.
Hu, Lujun; Wang, Linlin; Lu, Wenwei; Zhao, Jianxin; Zhang, Hao; Chen, Wei
2017-01-01
A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite) labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated Kd value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5′-primer and 3′-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum, bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum. The assay had a linear range of 104 to 107 cfu/mL (R2 = 0.9834). Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5. PMID:28441340
Genomic analyses of Clostridium perfringens isolates from five toxinotypes.
Hassan, Karl A; Elbourne, Liam D H; Tetu, Sasha G; Melville, Stephen B; Rood, Julian I; Paulsen, Ian T
2015-05-01
Clostridium perfringens can be isolated from a range of environments, including soil, marine and fresh water sediments, and the gastrointestinal tracts of animals and humans. Some C. perfringens strains have attractive industrial applications, e.g., in the degradation of waste products or the production of useful chemicals. However, C. perfringens has been most studied as the causative agent of a range of enteric and soft tissue infections of varying severities in humans and animals. Host preference and disease type in C. perfringens are intimately linked to the production of key extracellular toxins and on this basis toxigenic C. perfringens strains have been classified into five toxinotypes (A-E). To date, twelve genome sequences have been generated for a diverse collection of C. perfringens isolates, including strains associated with human and animal infections, a human commensal strain, and a strain with potential industrial utility. Most of the sequenced strains are classified as toxinotype A. However, genome sequences of representative strains from each of the other four toxinotypes have also been determined. Analysis of this collection of sequences has highlighted a lack of features differentiating toxinotype A strains from the other isolates, indicating that the primary defining characteristic of toxinotype A strains is their lack of key plasmid-encoded extracellular toxin genes associated with toxinotype B to E strains. The representative B-E strains sequenced to date each harbour many unique genes. Additional genome sequences are needed to determine if these genes are characteristic of their respective toxinotypes. Copyright © 2014. Published by Elsevier Masson SAS.
NASA Technical Reports Server (NTRS)
Ake, Thomas B.; Johnson, Hollis R.
1988-01-01
Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.
Walker, J; Tait, A
1997-11-01
A reverse-transcriptase polymerase chain reaction (PCR) procedure was used to isolate an Ostertagia circumcincta partial cDNA encoding a protein with general primary sequence features characteristic of members of the mitochondrial processing peptidase (MPP) subfamily of M16 metallopeptidases. The structural relationships of the predicted protein (Oc MPPX) with MPP subfamily proteins from other species (including the model free-living nematode Caenorhabditis elegans) were examined, and Northern analysis confirmed the expression of the Oc mppx gene in adult nematodes.
Single-cell Transcriptome Study as Big Data
Yu, Pingjian; Lin, Wei
2016-01-01
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720
Mukda, Ekchol; Trachoo, Objoon; Pasomsub, Ekawat; Tiyasirichokchai, Rawiphorn; Iemwimangsa, Nareenart; Sosothikul, Darintr; Chantratita, Wasun; Pakakasama, Samart
2017-08-01
In the present study, we used exome sequencing to analyze PRF1, UNC13D, STX11, and STXBP2, as well as genes associated with primary immunodeficiency disease (RAB27A, LYST, AP3B1, SH2D1A, ITK, CD27, XIAP, and MAGT1) in Thai children with hemophagocytic lymphohistiocytosis (HLH). We performed mutation analysis of HLH-associated genes in 25 Thai children using an exome sequencing method. Genetic variations found within these target genes were compared to exome sequencing data from 133 healthy individuals. Variants identified with minor allele frequencies <5% and novel mutations were confirmed using Sanger sequencing. Exome sequencing data revealed 101 non-synonymous single nucleotide polymorphisms (SNPs) in all subjects. These SNPs were classified as pathogenic (n = 1), likely pathogenic (n = 16), variant of unknown significance (n = 12), or benign variant (n = 72). Homozygous, compound heterozygous, and double-gene heterozygous variants, involving mutations in PRF1 (n = 3), UNC13D (n = 2), STXBP2 (n = 3), LYST (n = 3), XIAP (n = 2), AP3B1 (n = 1), RAB27A (n = 1), and MAGT1 (n = 1), were demonstrated in 12 patients. Novel mutations were found in most patients in this study. In conclusion, exome sequencing demonstrated the ability to identify rare genetic variants in HLH patients. This method is useful in the detection of mutations in multi-gene associated diseases.
Ikemoto, Tadahiro; Park, Min Kyun
2003-10-16
To elucidate the molecular phylogeny and evolution of a particular peptide, one must analyze not the limited primary amino acid sequences of the low molecular weight mature polypeptide, but rather the sequences of the corresponding precursors from various species. Of all the structural variants of gonadotropin-releasing hormone (GnRH), GnRH-II (chicken GnRH-II, or cGnRH-II) is remarkably conserved without any sequence substitutions among vertebrates, but its precursor sequences vary considerably. We have identified and characterized the full-length complementary DNA (cDNA) encoding the GnRH-II precursor and determined its genomic structure, consisting of four exons and three introns, in a reptilian species, the leopard gecko Eublepharis macularius. This is the first report about the GnRH-II precursor cDNA/gene from reptiles. The deduced leopard gecko prepro-GnRH-II polypeptide had the highest identities with the corresponding polypeptides of amphibians. The GnRH-II precursor mRNA was detected in more than half of the tissues and organs examined. This widespread expression is consistent with the previous findings in several species, though the roles of GnRH outside the hypothalamus-pituitary-gonadal axis remain largely unknown. Molecular phylogenetic analysis combined with sequence comparison showed that the leopard gecko is more similar to fishes and amphibians than to eutherian mammals with respect to the GnRH-II precursor sequence. These results strongly suggest that the divergence of the GnRH-II precursor sequences seen in eutherian mammals may have occurred along with amniote evolution.
NASA Astrophysics Data System (ADS)
Serra, Reviewed By Martin J.
2000-01-01
Genomics is one of the most rapidly expanding areas of science. This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics. The text starts with a basic review of the chemical and biological properties of DNA. However, without either a biochemistry background or a supplemental biochemistry text, this chapter and much of the rest of the text would be difficult to digest. The second chapter is designed to put DNA into the context of the larger chromosomal unit. Specialized chromosomal structures and sequences (centromeres, telomeres) are introduced, leading to a section on chromosome organization and purification. The next 4 chapters cover the physical (hybridization, electrophoresis), chemical (polymerase chain reaction), and biological (genetic) techniques that provide the backbone of genomic analysis. These chapters cover in significant detail the fundamental principles underlying each technique and provide a firm background for the remainder of the text. Chapters 79 consider the need and methods for the development of physical maps. Chapter 7 primarily discusses chromosomal localization techniques, including in situ hybridization, FISH, and chromosome paintings. The next two chapters focus on the development of libraries and clones. In particular, Chapter 9 considers the limitations of current mapping and clone production. The current state and future of DNA sequencing is covered in the next three chapters. The first considers the current methods of DNA sequencing - especially gel-based methods of analysis, although other possible approaches (mass spectrometry) are introduced. Much of the chapter addresses the limitations of current methods, including analysis of error in sequencing and current bottlenecks in the sequencing effort. The next chapter describes the steps necessary to scale current technologies for the sequencing of entire genomes. Chapter 12 examines alternate methods for DNA sequencing. Initially, methods of single-molecule sequencing and sequencing by microscopy are introduced; the majority of the chapter is devoted to the development of DNA sequencing methods using chip microarrays and hybridization. The remaining chapters (13-15) consider the uses and analysis of DNA sequence information. The initial focus is on the identification of genes. Several examples are given of the use of DNA sequence information for diagnosis of inherited or infectious diseases. The sequence-specific manipulation of DNA is discussed in Chapter 14. The final chapter deals with the implications of large-scale sequencing, including methods for identifying genes and finding errors in DNA sequences, to the development of computer algorithms for the interpretation of DNA sequence information. The text figures are black and white line drawings that, although clearly done, seem a bit primitive for 1999. While I appreciated the simplicity of the drawings, many students accustomed to more colorful presentations will find them wanting. The four color figures in the center of the text seem an afterthought and add little to the text's clarity. Each chapter has a set of additional reading sources, mostly primary sources. Often, specialized topics are offset into boxes that provide clarification and amplification without cluttering the text. An appendix includes a list of the Web-based database resources. As an undergraduate instructor who has previously taught biochemistry, molecular biology, and a course on the human genome, I found many interesting tidbits and amplifications throughout the text. I would recommend this book as a text for an advanced undergraduate or beginning graduate course in genomics. Although the text works though several examples of genetic and genome analysis, additional problem/homework sets would need to be developed to ensure student comprehension. The text steers clear of the ethical implications of the Human Genome Initiative and remains true to its subtitle The Science and Technology .
Johnstone, E M; Chaney, M O; Norris, F H; Pascual, R; Little, S P
1991-07-01
Neuritic plaque and cerebrovascular amyloid deposits have been detected in the aged monkey, dog, and polar bear and have rarely been found in aged rodents (Biochem. Biophy. Res. Commun., 12 (1984) 885-890; Proc. Natl. Acad. Sci. U.S.A., 82 (1985) 4245-4249). To determine if the primary structure of the 42-43 residue amyloid peptide is conserved in species that accumulate plaques, the region of the amyloid precursor protein (APP) cDNA that encodes the peptide region was amplified by the polymerase chain reaction and sequenced. The deduced amino acid sequence was compared to those species where amyloid accumulation has not been detected. The DNA sequences of dog, polar bear, rabbit, cow, sheep, pig and guinea pig were compared and a phylogenetic tree was generated. We conclude that the amino acid sequence of dog and polar bear and other mammals which may form amyloid plaques is conserved and the species where amyloid has not been detected (mouse, rat) may be evolutionarily a distinct group. In addition, the predicted secondary structure of mouse and rat amyloid that differs from that of amyloid bearing species is its lack of propensity to form a beta sheeted structure. Thus, a cross-species examination of the amyloid peptide may suggest what is essential for amyloid deposition.
McInerney-Leo, A M; Harris, J E; Leo, P J; Marshall, M S; Gardiner, B; Kinning, E; Leong, H Y; McKenzie, F; Ong, W P; Vodopiutz, J; Wicking, C; Brown, M A; Zankl, A; Duncan, E L
2015-12-01
Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were
Jagtap, Pratik; Goslinga, Jill; Kooren, Joel A; McGowan, Thomas; Wroblewski, Matthew S; Seymour, Sean L; Griffin, Timothy J
2013-04-01
Large databases (>10(6) sequences) used in metaproteomic and proteogenomic studies present challenges in matching peptide sequences to MS/MS data using database-search programs. Most notably, strict filtering to avoid false-positive matches leads to more false negatives, thus constraining the number of peptide matches. To address this challenge, we developed a two-step method wherein matches derived from a primary search against a large database were used to create a smaller subset database. The second search was performed against a target-decoy version of this subset database merged with a host database. High confidence peptide sequence matches were then used to infer protein identities. Applying our two-step method for both metaproteomic and proteogenomic analysis resulted in twice the number of high confidence peptide sequence matches in each case, as compared to the conventional one-step method. The two-step method captured almost all of the same peptides matched by the one-step method, with a majority of the additional matches being false negatives from the one-step method. Furthermore, the two-step method improved results regardless of the database search program used. Our results show that our two-step method maximizes the peptide matching sensitivity for applications requiring large databases, especially valuable for proteogenomics and metaproteomics studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast computational methods for predicting protein structure from primary amino acid sequence
Agarwal, Pratul Kumar [Knoxville, TN
2011-07-19
The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.
Timmermans, Marshall L.; Paudel, Yagya P.; Ross, Avena C.
2017-01-01
The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria. PMID:28762997
Zhenilo, S V; Sokolov, A S; Prokhortchouk, E B
2016-01-01
Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS 1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences.
Timmermans, Marshall L; Paudel, Yagya P; Ross, Avena C
2017-08-01
The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.
Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.
Dasenko, Mark A.
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced. PMID:26716693
Mikalová, Lenka; Strouhal, Michal; Oppelt, Jan; Grange, Philippe Alain; Janier, Michel; Benhaddou, Nadjet; Dupin, Nicolas; Šmajs, David
2017-01-01
Background Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). An unusual human TEN 11q/j isolate was obtained from a syphilis-like primary genital lesion from a patient that returned to France from Pakistan. Methodology/Principal findings The TEN 11q/j isolate was characterized using nested PCR followed by Sanger sequencing and/or direct Illumina sequencing. Altogether, 44 chromosomal regions were analyzed. Overall, the 11q/j isolate clustered with TEN strains Bosnia A and Iraq B as expected from previous TEN classification of the 11q/j isolate. However, the 11q/j sequence in a 505 bp-long region at the TP0488 locus was similar to Treponema pallidum subsp. pallidum (TPA) strains, but not to TEN Bosnia A and Iraq B sequences, suggesting a recombination event at this locus. Similarly, the 11q/j sequence in a 613 bp-long region at the TP0548 locus was similar to Treponema pallidum subsp. pertenue (TPE) strains, but not to TEN sequences. Conclusions/Significance A detailed analysis of two recombinant loci found in the 11q/j clinical isolate revealed that the recombination event occurred just once, in the TP0488, with the donor sequence originating from a TPA strain. Since TEN Bosnia A and Iraq B were found to contain TPA-like sequences at the TP0548 locus, the recombination at TP0548 took place in a treponeme that was an ancestor to both TEN Bosnia A and Iraq B. The sequence of 11q/j isolate in TP0548 represents an ancestral TEN sequence that is similar to yaws-causing treponemes. In addition to the importance of the 11q/j isolate for reconstruction of the TEN phylogeny, this case emphasizes the possible role of TEN strains in development of syphilis-like lesions. PMID:28263990
Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology
NASA Astrophysics Data System (ADS)
So, Christopher R.; Fears, Kenan P.; Leary, Dagmar H.; Scancella, Jenifer M.; Wang, Zheng; Liu, Jinny L.; Orihuela, Beatriz; Rittschof, Dan; Spillmann, Christopher M.; Wahl, Kathryn J.
2016-11-01
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.
Naghdi, Mohammad Reza; Smail, Katia; Wang, Joy X; Wade, Fallou; Breaker, Ronald R; Perreault, Jonathan
2017-03-15
The discovery of noncoding RNAs (ncRNAs) and their importance for gene regulation led us to develop bioinformatics tools to pursue the discovery of novel ncRNAs. Finding ncRNAs de novo is challenging, first due to the difficulty of retrieving large numbers of sequences for given gene activities, and second due to exponential demands on calculation needed for comparative genomics on a large scale. Recently, several tools for the prediction of conserved RNA secondary structure were developed, but many of them are not designed to uncover new ncRNAs, or are too slow for conducting analyses on a large scale. Here we present various approaches using the database RiboGap as a primary tool for finding known ncRNAs and for uncovering simple sequence motifs with regulatory roles. This database also can be used to easily extract intergenic sequences of eubacteria and archaea to find conserved RNA structures upstream of given genes. We also show how to extend analysis further to choose the best candidate ncRNAs for experimental validation. Copyright © 2017 Elsevier Inc. All rights reserved.
Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus
Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng
2009-01-01
In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer. PMID:19498077
Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus.
Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng
2009-08-01
In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer.
Pre-lithification tectonic foliation development in a clastic sedimentary sequence
NASA Astrophysics Data System (ADS)
Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John
2016-04-01
The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.
Molecular characterization of southern bluefin tuna myoglobin (Thunnus maccoyii).
Nurilmala, Mala; Ochiai, Yoshihiro
2016-10-01
The primary structure of southern bluefin tuna Thunnus maccoyii Mb has been elucidated by molecular cloning techniques. The cDNA of this tuna encoding Mb contained 776 nucleotides, with an open reading frame of 444 nucleotides encoding 147 amino acids. The nucleotide sequence of the coding region was identical to those of other bluefin tunas (T. thynnus and T. orientalis), thus giving the same amino acid sequences. Based on the deduced amino acid sequence, bioinformatic analysis was performed including phylogenic tree, hydropathy plot and homology modeling. In order to investigate the autoxidation profiles, the isolation of Mb was performed from the dark muscle. The water soluble fraction was subjected to ammonium sulfate fractionation (60-90 % saturation) followed by preparative gel electrophoresis. Autoxidation profiles of Mb were delineated at pH 5.6, 6.5 and 7.4 at temperature 37 °C. The autoxidation rate of tuna Mb was slightly higher than that of horse Mb at all pH examined. These results revealed that tuna myoglobin was unstable than that of horse Mb mainly at acidic pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrander, E.A.; Sprague, G.F. Jr.; Rine, J.
1993-04-01
A large block of simple sequence repeat (SSR) polymorphisms for the dog genome has been isolated and characterized. Screening of primary libraries by conventional hybridization methods as well as by screening of enriched marker-selected libraries led to the isolation of a large number of genomic clones that contained (CA)[sub n] repeats. The sequences of 101 clones showed that the size and complexity of (CA)[sub n] repeats in the dog genome were similar to those reported for these markers in the human genome. Detailed analysis of a representative subset of these markers revealed that most markers were moderately to highly polymorphic,more » with PIC values exceeding 0.70 for 33% of the markers tested. An association between higher PIC values and markers containing longer (CA)[sub n] repeats was observed in these studies, as previously noted for similar markers in the human genome. A list of primer sequences that tag each characterized marker is provided, and a comprehensive system of nomenclature for the dog genome is suggested. 28 refs., 4 figs., 2 tabs.« less
Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.
Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N
2014-03-06
Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.
Microprocessor activity controls differential miRNA biogenesis In Vivo.
Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson
2014-10-23
In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Wozniak, D J; Hsu, L Y; Galloway, D R
1988-01-01
Exotoxin A (ETA) is recognized as the most toxic product associated with the opportunistic pathogen Pseudomonas aeruginosa. Identification of the amino acids in the polypeptide sequence that are required for toxin activity is critical for vaccine development. By defining the nucleotide sequence of the structural gene of a mutant that encodes an enzymatically inactive ETA (CRM 66), we identified an essential amino acid (His-426), which is involved in the ADP-ribosyltransferase activity associated with functional ETA. A monoclonal antibody that inhibits ETA enzymatic activity in vitro fails to react with ETA variants that have a His 426----Tyr substitution. Several mono-ADP-ribosylating toxins, including diphtheria and pertussis toxins, within the primary amino acid sequences carry a histidine residue that is conserved in spacing and in location with respect to other critical residues. Analysis of the three-dimensional structure of ETA revealed that His-426 is not associated with the proposed NAD+ binding site. These findings should be useful for the design and construction of toxin vaccines. Images PMID:3143111
Pea chloroplast tRNA(Lys) (UUU) gene: transcription and analysis of an intron-containing gene.
Boyer, S K; Mullet, J E
1988-07-01
The pea chloroplast trnK gene which encodes tRNA(Lys) (UUU) was sequenced. TrnK is located 210 bp upstream from the promoter of psbA and immediately downstream from the 3'-end of rbcL. The gene is transcribed from the same DNA strand as psbA and rbcL. A 2447 bp intron with class II features is located in the trnK anticodon loop. The intron contains a 506 amino acid open reading frame which could encode an RNA maturase. The primary transcript of trnK is 2.9 kb long; its 5'-end was identified as a site of transcription initiation by in vitro transcription experiments. The 5'-terminus is adjacent to DNA sequences previously identified as transcription promoter elements. The most abundant trnK transcript is 2.5 kb long with termini corresponding to the 5' and 3' ends of the trnK exons. Intron specific RNAs were not detected. This suggests that RNA processing which produces tRNA(Lys) leads to rapid degradation of intron sequences.
Han, Bo W; Wang, Wei; Li, Chengjian; Weng, Zhiping; Zamore, Phillip D
2015-05-15
PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence. Copyright © 2015, American Association for the Advancement of Science.
Kulik, Natallia; Slámová, Kristýna; Ettrich, Rüdiger; Křen, Vladimír
2015-01-28
β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.
Ahram, Dina F.; Grozdanic, Sinisa D.; Kecova, Helga; Henkes, Arjen; Collin, Rob W. J.; Kuehn, Markus H.
2015-01-01
Several dog breeds are susceptible to developing primary angle closure glaucoma (PACG), which suggests a genetic basis for the disease. We have identified a four-generation Basset Hound pedigree with characteristic autosomal recessive PACG that closely recapitulates PACG in humans. Our aim is to utilize gene mapping and whole exome sequencing approaches to identify PACG-causing sequence variants in the Basset. Extensive clinical phenotyping of all pedigree members was conducted. SNP-chip genotyping was carried out in 9 affected and 15 unaffected pedigree members. Two-point and multipoint linkage analyses of genome-wide SNP data were performed using Superlink-Online SNP-1.1 and a locus was mapped to chromosome 19q with a maximum LOD score of 3.24. The locus contains 12 Ensemble predicted canine genes and is syntenic to a region on chromosome 2 in the human genome. Using exome-sequencing analysis, a possibly damaging, non-synonymous variant in the gene Nebulin (NEB) was found to segregate with PACG which alters a phylogenetically conserved Lysine residue. The association of this variants with PACG was confirmed in a secondary cohort of unrelated Basset Hounds (p = 3.4 × 10-4, OR = 15.3 for homozygosity). Nebulin, a protein that promotes the contractile function of sarcomeres, was found to be prominently expressed in the ciliary muscles of the anterior segment. Our findings may provide insight into the molecular mechanisms that underlie PACG. The phenotypic similarities of disease presentation in dogs and humans may enable the translation of findings made in this study to patients with PACG. PMID:25938837
Ahram, Dina F; Grozdanic, Sinisa D; Kecova, Helga; Henkes, Arjen; Collin, Rob W J; Kuehn, Markus H
2015-01-01
Several dog breeds are susceptible to developing primary angle closure glaucoma (PACG), which suggests a genetic basis for the disease. We have identified a four-generation Basset Hound pedigree with characteristic autosomal recessive PACG that closely recapitulates PACG in humans. Our aim is to utilize gene mapping and whole exome sequencing approaches to identify PACG-causing sequence variants in the Basset. Extensive clinical phenotyping of all pedigree members was conducted. SNP-chip genotyping was carried out in 9 affected and 15 unaffected pedigree members. Two-point and multipoint linkage analyses of genome-wide SNP data were performed using Superlink-Online SNP-1.1 and a locus was mapped to chromosome 19q with a maximum LOD score of 3.24. The locus contains 12 Ensemble predicted canine genes and is syntenic to a region on chromosome 2 in the human genome. Using exome-sequencing analysis, a possibly damaging, non-synonymous variant in the gene Nebulin (NEB) was found to segregate with PACG which alters a phylogenetically conserved Lysine residue. The association of this variants with PACG was confirmed in a secondary cohort of unrelated Basset Hounds (p = 3.4 × 10-4, OR = 15.3 for homozygosity). Nebulin, a protein that promotes the contractile function of sarcomeres, was found to be prominently expressed in the ciliary muscles of the anterior segment. Our findings may provide insight into the molecular mechanisms that underlie PACG. The phenotypic similarities of disease presentation in dogs and humans may enable the translation of findings made in this study to patients with PACG.
Macey, J Robert; Papenfuss, Theodore J; Kuehl, Jennifer V; Fourcade, H Mathew; Boore, Jeffrey L
2004-10-01
Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.
Adapted cuing technique: facilitating sequential phoneme production.
Klick, S L
1994-09-01
ACT is a visual cuing technique designed to facilitate dyspraxic speech by highlighting the sequential production of phonemes. In using ACT, cues are presented in such a way as to suggest sequential, coarticulatory movement in an overall pattern of motion. While using ACT, the facilitator's hand moves forward and back along the side of her (or his) own face. Finger movements signal specific speech sounds in formations loosely based on the manual alphabet for the hearing impaired. The best movements suggest the flowing, interactive nature of coarticulated phonemes. The synergistic nature of speech is suggested by coordinated hand motions which tighten and relax, move quickly or slowly, reflecting the motions of the vocal tract at various points during production of phonemic sequences. General principles involved in using ACT include a primary focus on speech-in-motion, the monitoring and fading of cues, and the presentation of stimuli based on motor-task analysis of phonemic sequences. Phonemic sequences are cued along three dimensions: place, manner, and vowel-related mandibular motion. Cuing vowels is a central feature of ACT. Two parameters of vowel production, focal point of resonance and mandibular closure, are cued. The facilitator's hand motions reflect the changing shape of the vocal tract and the trajectory of the tongue that result from the coarticulation of vowels and consonants. Rigid presentation of the phonemes is secondary to the facilitator's primary focus on presenting the overall sequential movement. The facilitator's goal is to self-tailor ACT in response to the changing needs and abilities of the client.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.
2004-05-19
Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement ofmore » Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.« less
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples
Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.
2016-01-01
Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273
Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A
1997-05-01
The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.
Misencik, Michael J.; Grubaugh, Nathan D.; Andreadis, Theodore G.; Ebel, Gregory D.
2016-01-01
Abstract The genus Flavivirus includes a number of newly recognized viruses that infect and replicate only within mosquitoes. To determine whether insect-specific flaviviruses (ISFs) may infect Culiseta (Cs.) melanura mosquitoes, we screened pools of field-collected mosquitoes for virus infection by RT-PCR targeting conserved regions of the NS5 gene. NS5 nucleotide sequences amplified from Cs. melanura pools were genetically similar to other ISFs and most closely matched Calbertado virus from Culex tarsalis, sharing 68.7% nucleotide and 76.1% amino acid sequence identity. The complete genome of one virus isolate was sequenced to reveal a primary open reading frame (ORF) encoding a viral polyprotein characteristic of the genus Flavivirus. Phylogenetic analysis showed that this virus represents a distinct evolutionary lineage that belongs to the classical ISF group. The virus was detected solely in Cs. melanura pools, occurred in sampled populations from Connecticut, New York, New Hampshire, and Maine, and infected both adult and larval stages of the mosquito. Maximum likelihood estimate infection rates (MLE-IR) were relatively stable in overwintering Cs. melanura larvae collected monthly from November of 2012 through May of 2013 (MLE-IR = 0.7–2.1/100 mosquitoes) and in host-seeking females collected weekly from June through October of 2013 (MLE-IR = 3.8–11.5/100 mosquitoes). Phylogenetic analysis of viral sequences revealed limited genetic variation that lacked obvious geographic structure among strains in the northeastern United States. This new virus is provisionally named Culiseta flavivirus on the basis of its host association with Cs. melanura. PMID:26807512
Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J
2010-10-01
Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.
Change of the heterogametic sex from male to female in the frog.
Ogata, M; Ohtani, H; Igarashi, T; Hasegawa, Y; Ichikawa, Y; Miura, I
2003-01-01
Two different types of sex chromosomes, XX/XY and ZZ/ZW, exist in the Japanese frog Rana rugosa. They are separated in two local forms that share a common origin in hybridization between the other two forms (West Japan and Kanto) with male heterogametic sex determination and homomorphic sex chromosomes. In this study, to find out how the different types of sex chromosomes differentiated, particularly the evolutionary reason for the heterogametic sex change from male to female, we performed artificial crossings between the West Japan and Kanto forms and mitochondrial 12S rRNA gene sequence analysis. The crossing results showed male bias using mother frogs with West Japan cytoplasm and female bias using those with Kanto cytoplasm. The mitochondrial genes of ZZ/ZW and XX/XY forms, respectively, were similar in sequence to those of the West Japan and Kanto forms. These results suggest that in the primary ZZ/ZW form, the West Japan strain was maternal and thus male bias was caused by the introgression of the Kanto strain while in the primary XX/XY form and vice versa. We therefore hypothesize that sex ratio bias according to the maternal origin of the hybrid population was a trigger for the sex chromosome differentiation and the change of heterogametic sex. PMID:12807781
Yeakley, J M; Hedjran, F; Morfin, J P; Merillat, N; Rosenfeld, M G; Emeson, R B
1993-01-01
The calcitonin/calcitonin gene-related peptide (CGRP) primary transcript is alternatively spliced in thyroid C cells and neurons, resulting in the tissue-specific production of calcitonin and CGRP mRNAs. Analyses of mutated calcitonin/CGRP transcription units in permanently transfected cell lines have indicated that alternative splicing is regulated by a differential capacity to utilize the calcitonin-specific splice acceptor. The analysis of an extensive series of mutations suggests that tissue-specific regulation of calcitonin mRNA production does not depend on the presence of a single, unique cis-active element but instead appears to be a consequence of suboptimal constitutive splicing signals. While only those mutations that altered constitutive splicing signals affected splice choices, the action of multiple regulatory sequences cannot be formally excluded. Further, we have identified a 13-nucleotide purine-rich element from a constitutive exon that, when placed in exon 4, entirely switches splice site usage in CGRP-producing cells. These data suggest that specific exon recruitment sequences, in combination with other constitutive elements, serve an important function in exon recognition. These results are consistent with the hypothesis that tissue-specific alternative splicing of the calcitonin/CGRP primary transcript is mediated by cell-specific differences in components of the constitutive splicing machinery. Images PMID:8413203
Cladaras, C; Hadzopoulou-Cladaras, M; Nolte, R T; Atkinson, D; Zannis, V I
1986-01-01
We have isolated and sequenced overlapping cDNA clones covering the entire sequence of human apolipoprotein B-100 (apoB-100). DNA sequence analysis and determination of the mRNA transcription initiation site by S1 nuclease mapping showed that the apoB mRNA consists of 14,112 nucleotides including the 5' and 3' untranslated regions which are 128 and 301 nucleotides respectively. The DNA-derived protein sequence shows that apoB-100 is 513,000 daltons and contains 4560 amino acids including a 24-amino-acid-long signal peptide. The mol. wt of apoB-100 implies that there is one apoB molecule per LDL particle. Computer analysis of the predicted secondary structure of the protein showed that some of the potential alpha helical and beta sheet structures are amphipathic, whereas others have non-amphipathic neutral to apolar character. These latter regions may contribute to the formation of the lipid-binding domains of apoB-100. The protein contains 25 cysteines and 20 potential N-glycosylation sites. The majority of cysteines are distributed in the amino terminal portion of the protein. Four of the potential glycosylation sites are in predicted beta turn structures and may represent true glycosylation positions. ApoB lacks the tandem repeats which are characteristic of other apolipoproteins. The mean hydrophobicity the mean value of H1 and helical hydrophobic moment the mean value of microH profiles of apoB showed the presence of several potential helical regions with strong polar character and high hydrophobic moment. The region with the highest hydrophobic moment, between amino acid residues 3352 and 3369, contains five closely spaced, positively charged residues, and has sequence homology to the LDL receptor binding site of apoE. This region is flanked by three neighbouring regions with positively charged amino acids and high hydrophobic moment that are located between residues 3174 and 3681. One or more of these closely spaced apoB sequences may be involved in the formation of the LDL receptor-binding domain of apoB-100. Blotting analysis of intestinal RNA and hybridization of the blots with carboxy apoB cDNA probes produced a single 15-kb hybridization band whereas hybridization with amino terminal probes produced two hybridization bands of 15 and 8 kb. Our data indicate that both forms of apoB mRNA contain common sequences which extend from the amino terminal of apoB-100 to the vicinity of nucleotide residue 6300. These two messages may have resulted from differential splicing of the same primary apoB mRNA transcript. Images Fig. 4. Fig. 6. PMID:3030729
A High-Resolution Enhancer Atlas of the Developing Telencephalon
Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee; McKinsey, Gabriel L.; Pattabiraman, Kartik; Silberberg, Shanni N.; Blow, Matthew J.; Hansen, David V.; Nord, Alex S.; Akiyama, Jennifer A.; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R.; Rubin, Edward M.; Ovcharenko, Ivan; Pennacchio, Len A.; Rubenstein, John L. R.
2013-01-01
Summary The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. While many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified over 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising over 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. PMID:23375746
Measles Outbreak with Unique Virus Genotyping, Ontario, Canada, 2015.
Thomas, Shari; Hiebert, Joanne; Gubbay, Jonathan B; Gournis, Effie; Sharron, Jennifer; Severini, Alberto; Jiaravuthisan, Manisa; Shane, Amanda; Jaeger, Valerie; Crowcroft, Natasha S; Fediurek, Jill; Sander, Beate; Mazzulli, Tony; Schulz, Helene; Deeks, Shelley L
2017-07-01
The province of Ontario continues to experience measles virus transmissions despite the elimination of measles in Canada. We describe an unusual outbreak of measles in Ontario, Canada, in early 2015 that involved cases with a unique strain of virus and no known association among primary case-patients. A total of 18 cases of measles were reported from 4 public health units during the outbreak period (January 25-March 23, 2015); none of these cases occurred in persons who had recently traveled. Despite enhancements to case-patient interview methods and epidemiologic analyses, a source patient was not identified. However, the molecular epidemiologic analysis, which included extended sequencing, strongly suggested that all cases derived from a single importation of measles virus genotype D4. The use of timely genotype sequencing, rigorous epidemiologic investigation, and a better understanding of the gaps in surveillance are needed to maintain Ontario's measles elimination status.
Bezsudnova, Ekaterina Yu; Dibrova, Daria V; Nikolaeva, Alena Yu; Rakitina, Tatiana V; Popov, Vladimir O
2018-04-10
New class IV transaminases with activity towards L-Leu, which is typical of branched-chain amino acid aminotransferases (BCAT), and with activity towards (R)-(+)-1-phenylethylamine ((R)-PEA), which is typical of (R)-selective (R)-amine:pyruvate transaminases, were identified by bioinformatics analysis, obtained in recombinant form, and analyzed. The values of catalytic activities in the reaction with L-Leu and (R)-PEA are comparable to those measured for characteristic transaminases with the corresponding specificity. Earlier, (R)-selective class IV transaminases were found to be active, apart from (R)-PEA, only with some other (R)-primary amines and D-amino acids. Sequences encoding new transaminases with mixed type of activity were found by searching for changes in the conserved motifs of sequences of BCAT by different bioinformatics tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Somatic mitochondrial mutation in gastric cancer.
Burgart, L. J.; Zheng, J.; Shu, Q.; Strickler, J. G.; Shibata, D.
1995-01-01
Likely hot spots for mutations are mitochondrial sequences as there is less repair and more damage by carcinogens compared with nuclear sequences. A somatic 50-bp mitochondrial D-loop deletion was detected in four gastric adenocarcinomas. The deletion included the CSB2 region and was flanked by 9-bp direct repeats. The deletion was more frequent in adenocarcinomas arising from the gastroesophageal junction (4/32, 12.5%) compared with more distal tumors (0/45). Topographical analysis revealed the absence of the deletion from normal tissues except in focal portions of smooth muscle in one case. In two cases, apparent mutant homoplasmy was present throughout two tumors, including their metastases. In the two other cases, the mutation was present in only minor focal portions ( < 5%) of their primary tumors. These findings document the presence of somatic mitochondrial alterations in gastric cancer, which may reflect the environmental and genetic influences operative during tumor progression. Images Figure 3 Figure 4 Figure 5 PMID:7573355
Habenicht, A; Quesada, A; Cerff, R
1997-10-01
A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.
HS 0705+6700: a New Eclipsing sdB Binary
NASA Astrophysics Data System (ADS)
Drechsel, H.; Heber, U.; Napiwotzki, R.; Ostensen, R.; Solheim, J.-E.; Deetjen, J.; Schuh, S.
HS 0705+6700 is a newly discovered eclipsing sdB binary system consisting of an sdB primary and a cool secondary main sequence star. CCD photometry obtained in October and November 2000 with the 2.5m Nordic (NOT) telescope (La Palma, Tenerife) in the B passband and with the 2.2m Calar Alto telescope (CAFOS, R filter) yielded eclipse light curves with complete orbital phase coverage at high time resolution. A periodogram analysis of 12 primary minimum times distributed over the time span from October 2000 to March 2001 allowed to derive the following exact period and linear ephemeris: prim. min. = HJD 2451822.759782(22) + 0.09564665(39) ṡ E A total of 15 spectra taken with the 3.5m Calar Alto telescope (TWIN spectrograph) on March 11-12, 2001, were used to establish the radial velocity curve of the primary star (K1 = 85.8 km/s) , and to determine its basic atmospheric parameters (Teff = 29300 K, log g = 5.47). The B and R light curves were solved using our Wilson-Devinney based light curve analysis code MORO (Drechsel et al. 1995, A&A 294, 723). The best fit solution yielded exact system parameters consistent with the spectroscopic results. Detailed results will be published elsewhere (Drechsel et al. 2001, A&A, in preparation).
Rodingite in Layered Gabbro of the Leka Ophiolite Complex, North-Central Caledonides of Norway
NASA Astrophysics Data System (ADS)
Prestvik, T.; Austrheim, H.
2006-12-01
Both the ultramafic (mantle) and the layered ultramafic to gabbroic (crustal) sequences of the Cambrian (497 Ma) Leka ophiolite are characterized by extensive serpentinization. Rodingite, containing grossular garnet, clinopyroxene, clinozoisite, prehnite, chlorite and preiswerkite, which has been found in the lowermost plagioclase-rich layers of the gabbro sequence seems to represent an unusual (new?) mode of rodingite occurrence compared to the more common rodingitized basaltic dikes described from many ultramafic complexes worldwide. The 5 to 15 cm wide rodingitized plagioclase layers, that alternate with less altered layers of wehrlite, clinopyroxenite, and websterite, are located c. 10 m away from a 10 m wide layer of serpentinized dunite. The whole sequence is cut by numerous fractures oriented almost perpendicular to the layering, and rodingite occurs where the fractures transect the plagioclase layers. In the adjacent lithologies, the fractures can be followed as thin veins filled with grossular, clinopyroxene, amphibole, epidote, and chlorite. These fractures were most likely channelways for the rodingite-forming fluids. Gresen analysis, assuming constant volume, shows that the rodingite formed from the plagioclase-rich layers by addition of c. 22 g of CaO, 6 g of FeO and SiO2 and removal of 10 g of Al2O3 and all (2 g) of Na2O per 100 g of protolith. Microtextures show chlorite and serpentine pseudomorphs after primary clinopyroxene, demonstrating that the alteration took place at constant volume. This reaction is the most likely Ca source for the rodingitization, possibly in addition to the serpentinization of olivine in the dunite layers. Furthermore, Ca-enriched and Al2O3- depleted clinopyroxene of the rodingite - compared to the primary clinopyroxene of the layered sequence - attest to the mobil nature of these elements. While both the protolith and the rodingite are almost K2O-free, one of the plagioclase-rich layers has K2O in the 1.1 to 1.4% range for several meters along strike and has abundant secondary phlogopite. The source for K is not easily accounted for and may suggest large scale transport. LA-ICP-MS analysis of trace elements in grossular garnet shows a strongly LREE depleted pattern with a considerable (10x) positive Eu anomaly. We interpret this as evidence for reduced conditions during formation of the rodingite (or that the garnet inherited the Eu anomaly from primary plagioclase). This first description of rodingite at Leka indicates that serpentinization and rodingitization were related and most likely took place as part of a large scale Cambrian hydrothermal system associated with an oceanic rift. It further implies that the hydrothermal alteration affected rocks at sub-Moho level.
A search for the primary abnormality in adult-onset type II citrullinemia.
Kobayashi, K; Shaheen, N; Kumashiro, R; Tanikawa, K; O'Brien, W E; Beaudet, A L; Saheki, T
1993-11-01
Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, we show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia. We also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus.
Primary structure of the abundant seed albumin of Theobroma cacao by mass spectrometry.
Kochhar, S; Gartenmann, K; Juillerat, M A
2000-11-01
The most abundant albumin present in seeds of Theobroma cacao was purified to apparent homogeneity as judged by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and NH(2)-terminal sequence analysis. Tryptic peptide mass fingerprinting of the purified protein by HPLC/ESI-MS showed the presence of 16 masses that matched the expected tryptic peptides corresponding to 95% of the translated amino acid sequence from the cDNA of the 21 kDa cocoa albumin. Collision-induced dissociation MS/MS analysis of the C-terminal peptide isolated from the CNBr cleavage products provided unequivocal evidence that the mature cocoa albumin protein is nine amino acid residues shorter than expected from the reported cDNA of its corresponding gene. The experimentally determined M(r) value of 20234 was in excellent agreement with the truncated version of the amino acid sequence. The purified cocoa albumin inhibited the catalytic activities of bovine trypsin and chymotrypsin. The inhibition was stoichiometric with 1 mol of trypsin or chymotrypsin being inhibited by 1 mol of inhibitor with apparent dissociation constants (K(i)) of 9.5 x 10(-8) and 2. 3 x 10(-6) M, respectively, for inhibitor binding at pH 8.5 and 37 degrees C. No inhibition of the catalytic activities of subtilisin, papain, pepsin, and cocoa endoproteases was detected under their optimal reaction conditions.
Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia
Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías
2012-01-01
Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962
Finlayson-Trick, Emma C L; Getz, Landon J; Slaine, Patrick D; Thornbury, Mackenzie; Lamoureux, Emily; Cook, Jamie; Langille, Morgan G I; Murray, Lois E; McCormick, Craig; Rohde, John R; Cheng, Zhenyu
2017-01-01
Host diet influences the diversity and metabolic activities of the gut microbiome. Previous studies have shown that the gut microbiome provides a wide array of enzymes that enable processing of diverse dietary components. Because the primary diet of the porcupine, Erethizon dorsatum, is lignified plant material, we reasoned that the porcupine microbiome would be replete with enzymes required to degrade lignocellulose. Here, we report on the bacterial composition in the porcupine microbiome using 16S rRNA sequencing and bioinformatics analysis. We extended this analysis to the microbiomes of 20 additional mammals located in Shubenacadie Wildlife Park (Nova Scotia, Canada), enabling the comparison of bacterial diversity amongst three mammalian taxonomic orders (Rodentia, Carnivora, and Artiodactyla). 16S rRNA sequencing was validated using metagenomic shotgun sequencing on selected herbivores (porcupine, beaver) and carnivores (coyote, Arctic wolf). In the microbiome, functionality is more conserved than bacterial composition, thus we mined microbiome data sets to identify conserved microbial functions across species in each order. We measured the relative gene abundances for cellobiose phosphorylase, endoglucanase, and beta-glucosidase to evaluate the cellulose-degrading potential of select mammals. The porcupine and beaver had higher proportions of genes encoding cellulose-degrading enzymes than the Artic wolf and coyote. These findings provide further evidence that gut microbiome diversity and metabolic capacity are influenced by host diet.
Thornbury, Mackenzie; Lamoureux, Emily; Cook, Jamie; Langille, Morgan G. I.; Murray, Lois E.; McCormick, Craig; Rohde, John R.
2017-01-01
Host diet influences the diversity and metabolic activities of the gut microbiome. Previous studies have shown that the gut microbiome provides a wide array of enzymes that enable processing of diverse dietary components. Because the primary diet of the porcupine, Erethizon dorsatum, is lignified plant material, we reasoned that the porcupine microbiome would be replete with enzymes required to degrade lignocellulose. Here, we report on the bacterial composition in the porcupine microbiome using 16S rRNA sequencing and bioinformatics analysis. We extended this analysis to the microbiomes of 20 additional mammals located in Shubenacadie Wildlife Park (Nova Scotia, Canada), enabling the comparison of bacterial diversity amongst three mammalian taxonomic orders (Rodentia, Carnivora, and Artiodactyla). 16S rRNA sequencing was validated using metagenomic shotgun sequencing on selected herbivores (porcupine, beaver) and carnivores (coyote, Arctic wolf). In the microbiome, functionality is more conserved than bacterial composition, thus we mined microbiome data sets to identify conserved microbial functions across species in each order. We measured the relative gene abundances for cellobiose phosphorylase, endoglucanase, and beta-glucosidase to evaluate the cellulose-degrading potential of select mammals. The porcupine and beaver had higher proportions of genes encoding cellulose-degrading enzymes than the Artic wolf and coyote. These findings provide further evidence that gut microbiome diversity and metabolic capacity are influenced by host diet. PMID:29281673
2011-01-01
Background The bacterial pathogen Edwardsiella ictaluri is a primary cause of mortality in channel catfish raised commercially in aquaculture farms. Additional treatment and diagnostic regimes are needed for this enteric pathogen, motivating the discovery and characterization of bacteriophages specific to E. ictaluri. Results The genomes of three Edwardsiella ictaluri-specific bacteriophages isolated from geographically distant aquaculture ponds, at different times, were sequenced and analyzed. The genomes for phages eiAU, eiDWF, and eiMSLS are 42.80 kbp, 42.12 kbp, and 42.69 kbp, respectively, and are greater than 95% identical to each other at the nucleotide level. Nucleotide differences were mostly observed in non-coding regions and in structural proteins, with significant variability in the sequences of putative tail fiber proteins. The genome organization of these phages exhibit a pattern shared by other Siphoviridae. Conclusions These E. ictaluri-specific phage genomes reveal considerable conservation of genomic architecture and sequence identity, even with considerable temporal and spatial divergence in their isolation. Their genomic homogeneity is similarly observed among E. ictaluri bacterial isolates. The genomic analysis of these phages supports the conclusion that these are virulent phages, lacking the capacity for lysogeny or expression of virulence genes. This study contributes to our knowledge of phage genomic diversity and facilitates studies on the diagnostic and therapeutic applications of these phages. PMID:21214923
Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O
2010-10-01
Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.
Martin, Natalia; Patel, Satyakam; Segre, Julia A.
2004-01-01
Mammalian epidermis provides a permeability barrier between an organism and its environment. Under homeostatic conditions, epidermal cells produce structural proteins, which are cross-linked in an orderly fashion to form a cornified envelope (CE). However, under genetic or environmental stress, specific genes are induced to rapidly build a temporary barrier. Small proline-rich (SPRR) proteins are the primary constituents of the CE. Under stress the entire family of 14 Sprr genes is upregulated. The Sprr genes are clustered within the larger epidermal differentiation complex on mouse chromosome 3, human chromosome 1q21. The clustering of the Sprr genes and their upregulation under stress suggest that these genes may be coordinately regulated. To identify enhancer elements that regulate this stress response activation of the Sprr locus, we utilized bioinformatic tools and classical biochemical dissection. Long-range comparative sequence analysis identified conserved noncoding sequences (CNSs). Clusters of epidermal-specific DNaseI-hypersensitive sites (HSs) mapped to specific CNSs. Increased prevalence of these HSs in barrier-deficient epidermis provides in vivo evidence of the regulation of the Sprr locus by these conserved sequences. Individual components of these HSs were cloned, and one was shown to have strong enhancer activity specific to conditions when the Sprr genes are coordinately upregulated. PMID:15574822
Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri.
Zysset-Burri, Denise C; Müller, Norbert; Beuret, Christian; Heller, Manfred; Schürch, Nadia; Gottstein, Bruno; Wittwer, Matthias
2014-06-19
The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.
Bakal, Tomas; Janata, Jiri; Sabova, Lenka; Grabic, Roman; Zlabek, Vladimir; Najmanova, Lucie
2018-06-16
A robust and widely applicable method for sampling of aquatic microbial biofilm and further sample processing is presented. The method is based on next-generation sequencing of V4-V5 variable regions of 16S rRNA gene and further statistical analysis of sequencing data, which could be useful not only to investigate taxonomic composition of biofilm bacterial consortia but also to assess aquatic ecosystem health. Five artificial materials commonly used for biofilm growth (glass, stainless steel, aluminum, polypropylene, polyethylene) were tested to determine the one giving most robust and reproducible results. The effect of used sampler material on total microbial composition was not statistically significant; however, the non-plastic materials (glass, metal) gave more stable outputs without irregularities among sample parallels. The bias of the method is assessed with respect to the employment of a non-quantitative step (PCR amplification) to obtain quantitative results (relative abundance of identified taxa). This aspect is often overlooked in ecological and medical studies. We document that sequencing of a mixture of three merged primary PCR reactions for each sample and further evaluation of median values from three technical replicates for each sample enables to overcome this bias and gives robust and repeatable results well distinguishing among sampling localities and seasons.
Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree
2018-03-09
The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.
Peraldo-Neia, C; Ostano, P; Cavalloni, G; Pignochino, Y; Sangiolo, D; De Cecco, L; Marchesi, E; Ribero, D; Scarpa, A; De Rose, A M; Giuliani, A; Calise, F; Raggi, C; Invernizzi, P; Aglietta, M; Chiorino, G; Leone, F
2018-06-05
Effective target therapies for intrahepatic cholangiocarcinoma (ICC) have not been identified so far. One of the reasons may be the genetic evolution from primary (PR) to recurrent (REC) tumors. We aim to identify peculiar characteristics and to select potential targets specific for recurrent tumors. Eighteen ICC paired PR and REC tumors were collected from 5 Italian Centers. Eleven pairs were analyzed for gene expression profiling and 16 for mutational status of IDH1. For one pair, deep mutational analysis by Next Generation Sequencing was also carried out. An independent cohort of patients was used for validation. Two class-paired comparison yielded 315 differentially expressed genes between REC and PR tumors. Up-regulated genes in RECs are involved in RNA/DNA processing, cell cycle, epithelial to mesenchymal transition (EMT), resistance to apoptosis, and cytoskeleton remodeling. Down-regulated genes participate to epithelial cell differentiation, proteolysis, apoptotic, immune response, and inflammatory processes. A 24 gene signature is able to discriminate RECs from PRs in an independent cohort; FANCG is statistically associated with survival in the chol-TCGA dataset. IDH1 was mutated in the RECs of five patients; 4 of them displayed the mutation only in RECs. Deep sequencing performed in one patient confirmed the IDH1 mutation in REC. RECs are enriched for genes involved in EMT, resistance to apoptosis, and cytoskeleton remodeling. Key players of these pathways might be considered druggable targets in RECs. IDH1 is mutated in 30% of RECs, becoming both a marker of progression and a target for therapy.
A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency.
Liu, Hongli; Xu, Xiaofei; Han, Ting; Yan, Lei; Cheng, Lei; Qin, Yingying; Liu, Wen; Zhao, Shidou; Chen, Zi-Jiang
2017-12-01
To identify the potential FSHR mutation in a Chinese woman with primary ovarian insufficiency (POI). Genetic and functional studies. University-based reproductive medicine center. A POI patient, her family members, and another 192 control women with regular menstruation. Ovarian biopsy was performed in the patient. Sanger sequencing was carried out for the patient, her sister, and parents. The novel variant identified was further confirmed with the use of control subjects. Sanger sequencing and genotype analysis to identify the potential variant of the FSHR gene; hematoxylin and eosin staining of the ovarian section to observe the follicular development; Western blotting and immunofluorescence to detect FSH receptor (FSHR) expression; and cyclic adenosine monophosphate (cAMP) assay to monitor FSH-induced signaling. Histologic examination of the ovaries in the patient revealed follicular development up to the early antral stage. Mutational screening and genotype analysis of the FSHR gene identified a novel homozygous mutation c.175C>T (p.R59X) in exon 2, which was inherited in the autosomal recessive mode from her heterozygous parents but was absent in her sister and the 192 control women. Functional studies demonstrated that in vitro the nonsense mutation caused the loss of full-length FSHR expression and that p.R59X mutant showed no response to FSH stimulation in the cAMP level. The mutation p.R59X in FSHR is causative for POI by means of arresting folliculogenesis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
SeqDepot: streamlined database of biological sequences and precomputed features.
Ulrich, Luke E; Zhulin, Igor B
2014-01-15
Assembling and/or producing integrated knowledge of sequence features continues to be an onerous and redundant task despite a large number of existing resources. We have developed SeqDepot-a novel database that focuses solely on two primary goals: (i) assimilating known primary sequences with predicted feature data and (ii) providing the most simple and straightforward means to procure and readily use this information. Access to >28.5 million sequences and 300 million features is provided through a well-documented and flexible RESTful interface that supports fetching specific data subsets, bulk queries, visualization and searching by MD5 digests or external database identifiers. We have also developed an HTML5/JavaScript web application exemplifying how to interact with SeqDepot and Perl/Python scripts for use with local processing pipelines. Freely available on the web at http://seqdepot.net/. RESTaccess via http://seqdepot.net/api/v1. Database files and scripts maybe downloaded from http://seqdepot.net/download.
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.
Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation
Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104
Schwientek, Patrick; Neshat, Armin; Kalinowski, Jörn; Klein, Andreas; Rückert, Christian; Schneiker-Bekel, Susanne; Wendler, Sergej; Stoye, Jens; Pühler, Alfred
2014-11-20
Actinoplanes sp. SE50/110 is the producer of the alpha-glucosidase inhibitor acarbose, which is an economically relevant and potent drug in the treatment of type-2 diabetes mellitus. In this study, we present the detection of transcription start sites on this genome by sequencing enriched 5'-ends of primary transcripts. Altogether, 1427 putative transcription start sites were initially identified. With help of the annotated genome sequence, 661 transcription start sites were found to belong to the leader region of protein-coding genes with the surprising result that roughly 20% of these genes rank among the class of leaderless transcripts. Next, conserved promoter motifs were identified for protein-coding genes with and without leader sequences. The mapped transcription start sites were finally used to improve the annotation of the Actinoplanes sp. SE50/110 genome sequence. Concerning protein-coding genes, 41 translation start sites were corrected and 9 novel protein-coding genes could be identified. In addition to this, 122 previously undetermined non-coding RNA (ncRNA) genes of Actinoplanes sp. SE50/110 were defined. Focusing on antisense transcription start sites located within coding genes or their leader sequences, it was discovered that 96 of those ncRNA genes belong to the class of antisense RNA (asRNA) genes. The remaining 26 ncRNA genes were found outside of known protein-coding genes. Four chosen examples of prominent ncRNA genes, namely the transfer messenger RNA gene ssrA, the ribonuclease P class A RNA gene rnpB, the cobalamin riboswitch RNA gene cobRS, and the selenocysteine-specific tRNA gene selC, are presented in more detail. This study demonstrates that sequencing of enriched 5'-ends of primary transcripts and the identification of transcription start sites are valuable tools for advanced genome annotation of Actinoplanes sp. SE50/110 and most probably also for other bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.
Thioesterases: A new perspective based on their primary and tertiary structures
Cantu, David C; Chen, Yingfei; Reilly, Peter J
2010-01-01
Thioesterases (TEs) are classified into EC 3.1.2.1 through EC 3.1.2.27 based on their activities on different substrates, with many remaining unclassified (EC 3.1.2.–). Analysis of primary and tertiary structures of known TEs casts a new light on this enzyme group. We used strong primary sequence conservation based on experimentally proved proteins as the main criterion, followed by verification with tertiary structure superpositions, mechanisms, and catalytic residue positions, to accurately define TE families. At present, TEs fall into 23 families almost completely unrelated to each other by primary structure. It is assumed that all members of the same family have essentially the same tertiary structure; however, TEs in different families can have markedly different folds and mechanisms. Conversely, the latter sometimes have very similar tertiary structures and catalytic mechanisms despite being only slightly or not at all related by primary structure, indicating that they have common distant ancestors and can be grouped into clans. At present, four clans encompass 12 TE families. The new constantly updated ThYme (Thioester-active enzYmes) database contains TE primary and tertiary structures, classified into families and clans that are different from those currently found in the literature or in other databases. We review all types of TEs, including those cleaving CoA, ACP, glutathione, and other protein molecules, and we discuss their structures, functions, and mechanisms. PMID:20506386
Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad
2016-03-01
The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.
A domain-centric solution to functional genomics via dcGO Predictor
2013-01-01
Background Computational/manual annotations of protein functions are one of the first routes to making sense of a newly sequenced genome. Protein domain predictions form an essential part of this annotation process. This is due to the natural modularity of proteins with domains as structural, evolutionary and functional units. Sometimes two, three, or more adjacent domains (called supra-domains) are the operational unit responsible for a function, e.g. via a binding site at the interface. These supra-domains have contributed to functional diversification in higher organisms. Traditionally functional ontologies have been applied to individual proteins, rather than families of related domains and supra-domains. We expect, however, to some extent functional signals can be carried by protein domains and supra-domains, and consequently used in function prediction and functional genomics. Results Here we present a domain-centric Gene Ontology (dcGO) perspective. We generalize a framework for automatically inferring ontological terms associated with domains and supra-domains from full-length sequence annotations. This general framework has been applied specifically to primary protein-level annotations from UniProtKB-GOA, generating GO term associations with SCOP domains and supra-domains. The resulting 'dcGO Predictor', can be used to provide functional annotation to protein sequences. The functional annotation of sequences in the Critical Assessment of Function Annotation (CAFA) has been used as a valuable opportunity to validate our method and to be assessed by the community. The functional annotation of all completely sequenced genomes has demonstrated the potential for domain-centric GO enrichment analysis to yield functional insights into newly sequenced or yet-to-be-annotated genomes. This generalized framework we have presented has also been applied to other domain classifications such as InterPro and Pfam, and other ontologies such as mammalian phenotype and disease ontology. The dcGO and its predictor are available at http://supfam.org/SUPERFAMILY/dcGO including an enrichment analysis tool. Conclusions As functional units, domains offer a unique perspective on function prediction regardless of whether proteins are multi-domain or single-domain. The 'dcGO Predictor' holds great promise for contributing to a domain-centric functional understanding of genomes in the next generation sequencing era. PMID:23514627
Update on Rover Sequencing and Visualization Program
NASA Technical Reports Server (NTRS)
Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos
2005-01-01
The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.
Flanagan, S E; Vairo, F; Johnson, M B; Caswell, R; Laver, T W; Lango Allen, H; Hussain, K; Ellard, S
2017-06-01
Congenital hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or it may present as part of a wider syndrome. For approximately 40%-50% of individuals with this condition, sequence analysis of the known HH genes identifies a causative mutation. Identifying the underlying genetic aetiology in the remaining cases is important as a genetic diagnosis will inform on recurrence risk, may guide medical management and will provide valuable insights into β-cell physiology. We sequenced the exome of a child with persistent diazoxide-responsive HH, mild aortic insufficiency, severe hypotonia, and developmental delay as well as the unaffected parents. This analysis identified a de novo mutation, p.G403D, in the proband's CACNA1D gene. CACNA1D encodes the main L-type voltage-gated calcium channel in the pancreatic β-cell, a key component of the insulin secretion pathway. The p.G403D mutation had been reported previously as an activating mutation in an individual with primary hyper-aldosteronism, neuromuscular abnormalities, and transient hypoglycaemia. Sequence analysis of the CACNA1D gene in 60 further cases with HH did not identify a pathogenic mutation. Identification of an activating CACNA1D mutation in a second patient with congenital HH confirms the aetiological role of CACNA1D mutations in this disorder. A genetic diagnosis is important as treatment with a calcium channel blocker may be an option for the medical management of this patient. © 2017 The Authors. Pediatric Diabetes published by John Wiley & Sons Ltd.
Aoki, Tomohiro; Yamamoto, Kimiko; Fukuda, Miyuki; Shimogonya, Yuji; Fukuda, Shunichi; Narumiya, Shuh
2016-05-09
Enlargement of a pre-existing intracranial aneurysm is a well-established risk factor of rupture. Excessive low wall shear stress concomitant with turbulent flow in the dome of an aneurysm may contribute to progression and rupture. However, how stress conditions regulate enlargement of a pre-existing aneurysm remains to be elucidated. Wall shear stress was calculated with 3D-computational fluid dynamics simulation using three cases of unruptured intracranial aneurysm. The resulting value, 0.017 Pa at the dome, was much lower than that in the parent artery. We loaded wall shear stress corresponding to the value and also turbulent flow to the primary culture of endothelial cells. We then obtained gene expression profiles by RNA sequence analysis. RNA sequence analysis detected hundreds of differentially expressed genes among groups. Gene ontology and pathway analysis identified signaling related with cell division/proliferation as overrepresented in the low wall shear stress-loaded group, which was further augmented by the addition of turbulent flow. Moreover, expression of some chemoattractants for inflammatory cells, including MCP-1, was upregulated under low wall shear stress with concomitant turbulent flow. We further examined the temporal sequence of expressions of factors identified in an in vitro study using a rat model. No proliferative cells were detected, but MCP-1 expression was induced and sustained in the endothelial cell layer. Low wall shear stress concomitant with turbulent flow contributes to sustained expression of MCP-1 in endothelial cells and presumably plays a role in facilitating macrophage infiltration and exacerbating inflammation, which leads to enlargement or rupture.
Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas
2017-11-01
The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Sui, Zhihai; Zhou, Wenqing; Yao, Kaihu; Liu, Li; Zhang, Gang; Yang, Yonghong
2013-01-01
Streptococcus pneumoniae is a primary cause of bacterial infection in humans. Here, we present the complete genome sequence of S. pneumoniae strain A026, which is a multidrug-resistant strain isolated from cerebrospinal fluid. PMID:24336372
Weiss, Eric R.; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L.; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa
2016-01-01
ABSTRACT The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro. The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. PMID:27733645
Weiss, Eric R; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Luzuriaga, Katherine
2017-01-01
The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. Copyright © 2016 American Society for Microbiology.
Brassica ASTRA: an integrated database for Brassica genomic research.
Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David
2005-01-01
Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.
Sequencing and Graphic Novels with Primary-Grade Students
ERIC Educational Resources Information Center
Chase, Maggie; Son, Eun Hye; Steiner, Stan
2014-01-01
The authors discuss the burgeoning number of graphic novels being published for young readers (approximately PK-3) and suggest a new term for identifying this format and audience: primary graphic novels (PGNs), for primary level students. They go on to describe a series of lessons they conducted with a class of 1st and 2nd graders to capitalize on…
Borges, Vítor; Pinheiro, Miguel; Pechirra, Pedro; Guiomar, Raquel; Gomes, João Paulo
2018-06-29
A new era of flu surveillance has already started based on the genetic characterization and exploration of influenza virus evolution at whole-genome scale. Although this has been prioritized by national and international health authorities, the demanded technological transition to whole-genome sequencing (WGS)-based flu surveillance has been particularly delayed by the lack of bioinformatics infrastructures and/or expertise to deal with primary next-generation sequencing (NGS) data. We developed and implemented INSaFLU ("INSide the FLU"), which is the first influenza-oriented bioinformatics free web-based suite that deals with primary NGS data (reads) towards the automatic generation of the output data that are actually the core first-line "genetic requests" for effective and timely influenza laboratory surveillance (e.g., type and sub-type, gene and whole-genome consensus sequences, variants' annotation, alignments and phylogenetic trees). By handling NGS data collected from any amplicon-based schema, the implemented pipeline enables any laboratory to perform multi-step software intensive analyses in a user-friendly manner without previous advanced training in bioinformatics. INSaFLU gives access to user-restricted sample databases and projects management, being a transparent and flexible tool specifically designed to automatically update project outputs as more samples are uploaded. Data integration is thus cumulative and scalable, fitting the need for a continuous epidemiological surveillance during the flu epidemics. Multiple outputs are provided in nomenclature-stable and standardized formats that can be explored in situ or through multiple compatible downstream applications for fine-tuned data analysis. This platform additionally flags samples as "putative mixed infections" if the population admixture enrolls influenza viruses with clearly distinct genetic backgrounds, and enriches the traditional "consensus-based" influenza genetic characterization with relevant data on influenza sub-population diversification through a depth analysis of intra-patient minor variants. This dual approach is expected to strengthen our ability not only to detect the emergence of antigenic and drug resistance variants but also to decode alternative pathways of influenza evolution and to unveil intricate routes of transmission. In summary, INSaFLU supplies public health laboratories and influenza researchers with an open "one size fits all" framework, potentiating the operationalization of a harmonized multi-country WGS-based surveillance for influenza virus. INSaFLU can be accessed through https://insaflu.insa.pt .
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
Diversity of spirochetes in endodontic infections.
Sakamoto, Mitsuo; Siqueira, José F; Rôças, Isabela N; Benno, Yoshimi
2009-05-01
The diversity of spirochetes in primary endodontic infections of teeth with chronic apical periodontitis or acute apical abscesses was investigated using 16S rRNA gene clone library analysis. The prevalences of three common cultivable oral Treponema species were also determined using species-specific nested PCR. All detected spirochetes belonged to the genus Treponema. Overall, 28 different taxa were identified from the 431 clones sequenced: 9 cultivable and validly named species, 1 cultivable as-yet-uncharacterized strain, and 18 as-yet-uncultivated phylotypes, 17 of which were novel. The large majority of clones (94%) were from cultivable named species. The numbers of Treponema species/phylotypes per selected positive sample ranged from 2 to 12. Species-specific nested PCR detected T. denticola, T. socranskii, and T. maltophilum in 59 (66%), 33 (37%), and 26 (29%) of the 90 cases of primary endodontic infections, respectively. Clone library analysis revealed diverse Treponema species/phylotypes as part of the microbiota associated with asymptomatic and symptomatic (abscess) endodontic infections. Although several as-yet-uncultivated Treponema phylotypes were disclosed, including novel taxa, cultivable named species were more abundant and frequently detected.
Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong
2012-02-10
Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.
Wu, Xiumei; Flatt, Patricia M.; Schlörke, Oliver; Zeeck, Axel; Dairi, Tohru
2011-01-01
Sugar Phosphate Cyclases (SPCs) catalyze the cyclization of sugar phosphates to produce a variety of cyclitol intermediates that serve as the building blocks of many primary metabolites, e.g., aromatic amino acids, and clinically relevant secondary metabolites, e.g., aminocyclitol/aminoglycoside and ansamycin antibiotics. Feeding experiments with isotopically-labeled cyclitols revealed that cetoniacytone A, a unique C7N-aminocyclitol antibiotic isolated from an insect endophytic Actinomyces sp., is derived from 2-epi-5-epi-valiolone, a product of SPC. Using heterologous probes from the 2-epi-5-epi-valiolone synthase class of SPCs, an SPC homolog gene, cetA, was isolated from the cetoniacytone producer. CetA is closely related to BE-orf9 found in the BE-40644 biosynthetic gene cluster from Actinoplanes sp. strain A40644. Recombinant expression of cetA and BE-orf9 and biochemical characterization of the gene products confirmed their function as 2-epi-5-epi-valiolone synthases. Further phylogenetic analysis of SPC sequences revealed a new clade of SPCs that may regulate the biosynthesis of a novel set of secondary metabolites. PMID:17195255
Behura, Susanta K.; Severson, David W.
2014-01-01
The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953
Lee, Patricia; Ng, Hwee L.; Yang, Otto O.
2012-01-01
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8+ cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo. PMID:22553319
Proteomic Identification of Monoclonal Antibodies from Serum
2015-01-01
Characterizing the in vivo dynamics of the polyclonal antibody repertoire in serum, such as that which might arise in response to stimulation with an antigen, is difficult due to the presence of many highly similar immunoglobulin proteins, each specified by distinct B lymphocytes. These challenges have precluded the use of conventional mass spectrometry for antibody identification based on peptide mass spectral matches to a genomic reference database. Recently, progress has been made using bottom-up analysis of serum antibodies by nanoflow liquid chromatography/high-resolution tandem mass spectrometry combined with a sample-specific antibody sequence database generated by high-throughput sequencing of individual B cell immunoglobulin variable domains (V genes). Here, we describe how intrinsic features of antibody primary structure, most notably the interspersed segments of variable and conserved amino acid sequences, generate recurring patterns in the corresponding peptide mass spectra of V gene peptides, greatly complicating the assignment of correct sequences to mass spectral data. We show that the standard method of decoy-based error modeling fails to account for the error introduced by these highly similar sequences, leading to a significant underestimation of the false discovery rate. Because of these effects, antibody-derived peptide mass spectra require increased stringency in their interpretation. The use of filters based on the mean precursor ion mass accuracy of peptide-spectrum matches is shown to be particularly effective in distinguishing between “true” and “false” identifications. These findings highlight important caveats associated with the use of standard database search and error-modeling methods with nonstandard data sets and custom sequence databases. PMID:24684310
Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altemus, M.; Murphy, D.L.; Greenberg, B.
1996-07-26
Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less
C/N Ratio Drives Soil Actinobacterial Cellobiohydrolase Gene Diversity
Prendergast-Miller, Miranda T.; Poonpatana, Pabhon; Farrell, Mark; Bissett, Andrew; Macdonald, Lynne M.; Toscas, Peter; Richardson, Alan E.; Thrall, Peter H.
2015-01-01
Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle. PMID:25710367
Świętoń, Edyta; Śmietanka, Krzysztof
2018-06-19
Sixty-five poultry outbreaks and sixty-eight events in wild birds were reported during the highly pathogenic H5N8/H5N5 avian influenza epidemic in Poland in 2016-2017. The analysis of all gene segment sequences of selected strains revealed cocirculation of at least four different genome configurations (genotypes) generated through reassortment of clade 2.3.4.4 H5N8 viruses detected in Russia and China in mid-2016. The geographical and temporal distribution of three H5N8 genotypes indicates separate introductions. Additionally, an H5N5 virus with a different gene configuration was detected in wild birds. The compilation of the results with those from studies on the virus' diversity in Germany, Italy and the Netherlands revealed that Europe was affected by at least eight different H5N8/H5N5 reassortants. Analysis of the HA gene sequence of a larger subset of samples showed its diversification corresponding to the genotype classification. The close relationship between poultry and wild bird strains from the same locations observed in several cases points to wild birds as the primary source of the outbreaks in poultry. © 2018 Blackwell Verlag GmbH.
Mariner 9 mapping science sequence design.
NASA Technical Reports Server (NTRS)
Goldman, A. M., Jr.
1973-01-01
The primary mission of Mariner 9 was to map the Martian surface. This paper discusses in detail the design of the mapping science sequences which were executed by the spacecraft in sixty days and during which over eighty percent of the surface was photographed. The sequence design was influenced by many factors: experimenter scientific objectives, instrument capabilities, spacecraft capabilities, orbit characteristics, and data return rates, which are illustrated graphically. Typical orbits are depicted for each of the three different mapping phases lasting twenty days. Examples of typical orbital sequence plans prepared daily during mission operations are given.
Sequencing technologies - the next generation.
Metzker, Michael L
2010-01-01
Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.
Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli
2016-03-04
The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroh, K.R.
1980-01-01
The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain (FSV) version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are beingmore » used to partially verify the component modeling and dynamic smulation techniques used to predict plant response to postulated accident sequences.« less
USDA-ARS?s Scientific Manuscript database
Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput, method for genome-wide polymorphism discovery and genotyping adjacent to restriction sites. Since 2010, GBS has been applied for the genotyping of over 12,000 grape breeding lines, with a primary focus on identifying markers predictive ...
GSP: a web-based platform for designing genome-specific primers in polyploids
USDA-ARS?s Scientific Manuscript database
The primary goal of this research was to develop a web-based platform named GSP for designing genome-specific primers to distinguish subgenome sequences in the polyploid genome background. GSP uses BLAST to extract homeologous sequences of the subgenomes in the existing databases, performed a multip...
From conditional oughts to qualitative decision theory
NASA Technical Reports Server (NTRS)
Pearl, Judea
1994-01-01
The primary theme of this investigation is a decision theoretic account of conditional ought statements (e.g., 'You ought to do A, if C') that rectifies glaring deficiencies in classical deontic logic. The resulting account forms a sound basis for qualitative decision theory, thus providing a framework for qualitative planning under uncertainty. In particular, we show that adding causal relationships (in the form of a single graph) as part of an epistemic state is sufficient to facilitate the analysis of action sequences, their consequences, their interaction with observations, their expected utilities, and the synthesis of plans and strategies under uncertainty.
Protein classification using sequential pattern mining.
Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I
2006-01-01
Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.
Rover Sequencing and Visualization Program
NASA Technical Reports Server (NTRS)
Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos
2005-01-01
The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.
A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions
Abnousi, Armen; Broschat, Shira L.; Kalyanaraman, Ananth
2016-01-01
Background Identifying conserved regions in protein sequences is a fundamental operation, occurring in numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich regions within proteins, to compute protein clusters, to annotate sequence function, and to compute evolutionary relationships among protein sequences. A number of approaches exist for identifying and characterizing protein families based on their domains, and because domains represent conserved portions of a protein sequence, the primary computation involved in protein family characterization is identification of such conserved regions. However, identifying conserved regions from large collections (millions) of protein sequences presents significant challenges. Methods In this paper we present a new, alignment-free method for detecting conserved regions in protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method exploits the abundance of exact matching short subsequences (k-mers) to quickly detect conserved regions, and the power of machine learning is used to improve the prediction accuracy of detection. We present a parallel implementation of NADDA using the MapReduce framework and show that our method is highly scalable. Results We have compared NADDA with Pfam and InterPro databases. For known domains annotated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with new domains not present in the training set an average accuracy of 63% is achieved when compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability of NADDA to capture conserved regions beyond those present in Pfam. We have also compared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a single processor were 49s, 10,566s, and 456s for NADDA, ADDA, and MKDOM2, respectively, for a data set comprised of approximately 2500 sequences. PMID:27552220
Bastien, Géraldine; Arnal, Grégory; Bozonnet, Sophie; Laguerre, Sandrine; Ferreira, Fernando; Fauré, Régis; Henrissat, Bernard; Lefèvre, Fabrice; Robe, Patrick; Bouchez, Olivier; Noirot, Céline; Dumon, Claire; O'Donohue, Michael
2013-05-14
The metagenomic analysis of gut microbiomes has emerged as a powerful strategy for the identification of biomass-degrading enzymes, which will be no doubt useful for the development of advanced biorefining processes. In the present study, we have performed a functional metagenomic analysis on comb and gut microbiomes associated with the fungus-growing termite, Pseudacanthotermes militaris. Using whole termite abdomens and fungal-comb material respectively, two fosmid-based metagenomic libraries were created and screened for the presence of xylan-degrading enzymes. This revealed 101 positive clones, corresponding to an extremely high global hit rate of 0.49%. Many clones displayed either β-d-xylosidase (EC 3.2.1.37) or α-l-arabinofuranosidase (EC 3.2.1.55) activity, while others displayed the ability to degrade AZCL-xylan or AZCL-β-(1,3)-β-(1,4)-glucan. Using secondary screening it was possible to pinpoint clones of interest that were used to prepare fosmid DNA. Sequencing of fosmid DNA generated 1.46 Mbp of sequence data, and bioinformatics analysis revealed 63 sequences encoding putative carbohydrate-active enzymes, with many of these forming parts of sequence clusters, probably having carbohydrate degradation and metabolic functions. Taxonomic assignment of the different sequences revealed that Firmicutes and Bacteroidetes were predominant phyla in the gut sample, while microbial diversity in the comb sample resembled that of typical soil samples. Cloning and expression in E. coli of six enzyme candidates identified in the libraries provided access to individual enzyme activities, which all proved to be coherent with the primary and secondary functional screens. This study shows that the gut microbiome of P. militaris possesses the potential to degrade biomass components, such as arabinoxylans and arabinans. Moreover, the data presented suggests that prokaryotic microorganisms present in the comb could also play a part in the degradation of biomass within the termite mound, although further investigation will be needed to clarify the complex synergies that might exist between the different microbiomes that constitute the termitosphere of fungus-growing termites. This study exemplifies the power of functional metagenomics for the discovery of biomass-active enzymes and has provided a collection of potentially interesting biocatalysts for further study.
Nilsson, R Henrik; Kristiansson, Erik; Ryberg, Martin; Larsson, Karl-Henrik
2005-07-18
During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi--a field where species identification often is prohibitively complex--and the much used ITS locus were chosen as test bed. A Perl script package called emerencia is presented. On a regular basis, it downloads select sequences from GenBank, separates the identified sequences from those insufficiently identified, and performs BLAST searches between these two datasets, storing all results in an SQL database. On the accompanying web-service http://emerencia.math.chalmers.se, users can monitor the taxonomic progress of insufficiently identified sequences over time, either through active searches or by signing up for e-mail notification upon disclosure of better matches. Other search categories, such as listing all insufficiently identified sequences (and their present best fully identified matches) publication-wise, are also available. The ever-increasing use of DNA sequences for identification purposes largely falls back on the assumption that public sequence databases contain a thorough sampling of taxonomically well-annotated sequences. Taxonomy, held by some to be an old-fashioned trade, has accordingly never been more important. emerencia does not automate the taxonomic process, but it does allow researchers to focus their efforts elsewhere than countless manual BLAST runs and arduous sieving of BLAST hit lists. The emerencia system is available on an open source basis for local installation with any organism and gene group as targets.
Population genetic implications from sequence variation in four Y chromosome genes.
Shen, P; Wang, F; Underhill, P A; Franco, C; Yang, W H; Roxas, A; Sung, R; Lin, A A; Hyman, R W; Vollrath, D; Davis, R W; Cavalli-Sforza, L L; Oefner, P J
2000-06-20
Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5' portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 x 10(-5), 5. 07 x 10(-5), and 8.54 x 10(-5) for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9. 16 x 10(-5) to 14.2 x 10(-5) for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbrück distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to approximately 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals.
Tu, Bin; Masaberg, Carly; Hou, Lihua; Behm, Daniel; Brescia, Peter; Cha, Nuri; Kariyawasam, Kanthi; Lee, Jar How; Nong, Thoa; Sells, John; Tausch, Paul; Yang, Ruyan; Ng, Jennifer; Hurley, Carolyn Katovich
2017-02-01
Sanger-based DNA sequencing of exons 2+3 of HLA class I alleles from a heterozygote frequently results in two or more alternative genotypes. This study was undertaken to reduce the time and effort required to produce a single high resolution HLA genotype. Samples were typed in parallel by Sanger sequencing and oligonucleotide probe hybridization. This workflow, together with optimization of analysis software, was tested and refined during the typing of over 42,000 volunteers for an unrelated hematopoietic progenitor cell donor registry. Next generation DNA sequencing (NGS) was applied to over 1000 of these samples to identify the alleles present within the G group designations. Single genotypes at G level resolution were obtained for over 95% of the loci without additional assays. The vast majority of alleles identified (>99%) were the primary allele giving the G groups their name. Only 0.7% of the alleles identified encoded protein variants that were not detected by a focus on the antigen recognition domain (ARD)-encoding exons. Our combined method routinely provides biologically relevant typing resolution at the level of the ARD. It can be applied to both single samples or to large volume typing supporting either bone marrow or solid organ transplantation using technologies currently available in many HLA laboratories. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tetu, Sasha G; Breakwell, Katy; Elbourne, Liam D H; Holmes, Andrew J; Gillings, Michael R; Paulsen, Ian T
2013-06-01
Beneath Australia's large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as 'slime curtains' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers.
Ryu, Nari; Lee, Seokwon; Park, Hong-Joon; Lee, Byeonghyeon; Kwon, Tae-Jun; Bok, Jinwoong; Park, Chan Ik; Lee, Kyu-Yup; Baek, Jeong-In; Kim, Un-Kyung
2017-09-05
Hereditary hearing loss (HHL) is a common genetically heterogeneous disorder, which follows Mendelian inheritance in humans. Because of this heterogeneity, the identification of the causative gene of HHL by linkage analysis or Sanger sequencing have shown economic and temporal limitations. With recent advances in next-generation sequencing (NGS) techniques, rapid identification of a causative gene via massively parallel sequencing is now possible. We recruited a Korean family with three generations exhibiting autosomal dominant inheritance of hearing loss (HL), and the clinical information about this family revealed that there are no other symptoms accompanied with HL. To identify a causative mutation of HL in this family, we performed whole-exome sequencing of 4 family members, 3 affected and an unaffected. As the result, A novel splicing mutation, c.763+1G>T, in the solute carrier family 17, member 8 (SLC17A8) gene was identified in the patients, and the genotypes of the mutation were co-segregated with the phenotype of HL. Additionally, this mutation was not detected in 100 Koreans with normal hearing. Via NGS, we detected a novel splicing mutation that might influence the hearing ability within the patients with autosomal dominant non-syndromic HL. Our data suggests that this technique is a powerful tool to discover causative genetic factors of HL and facilitate diagnoses of the primary cause of HHL. Copyright © 2017 Elsevier B.V. All rights reserved.