Schaeffer, E; Sninsky, J J
1984-01-01
Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835
Diossy, M; Reiniger, L; Sztupinszki, Z; Krzystanek, M; Timms, K M; Neff, C; Solimeno, C; Pruss, D; Eklund, A C; Tóth, E; Kiss, O; Rusz, O; Cserni, G; Zombori, T; Székely, B; Tímár, J; Csabai, I; Szallasi, Z
2018-06-18
Based on its mechanism of action, PARP inhibitor therapy is expected to benefit mainly tumor cases with homologous recombination deficiency (HRD). Therefore, identification of tumor types with increased HRD is important for the optimal use of this class of therapeutic agents. HRD levels can be estimated using various mutational signatures from next generation sequencing data and we used this approach to determine whether breast cancer brain metastases show altered levels of HRD scores relative to their corresponding primary tumor. We used a previously published next generation sequencing dataset of twenty-one matched primary breast cancer/brain metastasis pairs to derive the various mutational signatures/HRD scores strongly associated with HRD. We also performed the myChoice HRD analysis on an independent cohort of seventeen breast cancer patients with matched primary/brain metastasis pairs. All of the mutational signatures indicative of HRD showed a significant increase in the brain metastases relative to their matched primary tumor in the previously published whole exome sequencing dataset. In the independent validation cohort the myChoice HRD assay showed an increased level in 87.5% of the brain metastases relative to the primary tumor, with 56% of brain metastases being HRD positive according to the myChoice criteria. The consistent observation that brain metastases of breast cancer tend to have higher HRD measures may raise the possibility that brain metastases may be more sensitive to PARP inhibitor treatment. This observation warrants further investigation to assess whether this increase is common to other metastatic sites as well, and whether clinical trials should adjust their strategy in the application of HRD measures for the prioritization of patients for PARP inhibitor therapy.
Robot Sequencing and Visualization Program (RSVP)
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C
2013-01-01
The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
Effects of Sequences of Cognitions on Group Performance Over Time
Molenaar, Inge; Chiu, Ming Ming
2017-01-01
Extending past research showing that sequences of low cognitions (low-level processing of information) and high cognitions (high-level processing of information through questions and elaborations) influence the likelihoods of subsequent high and low cognitions, this study examines whether sequences of cognitions are related to group performance over time; 54 primary school students (18 triads) discussed and wrote an essay about living in another country (32,375 turns of talk). Content analysis and statistical discourse analysis showed that within each lesson, groups with more low cognitions or more sequences of low cognition followed by high cognition added more essay words. Groups with more high cognitions, sequences of low cognition followed by low cognition, or sequences of high cognition followed by an action followed by low cognition, showed different words and sequences, suggestive of new ideas. The links between cognition sequences and group performance over time can inform facilitation and assessment of student discussions. PMID:28490854
Effects of Sequences of Cognitions on Group Performance Over Time.
Molenaar, Inge; Chiu, Ming Ming
2017-04-01
Extending past research showing that sequences of low cognitions (low-level processing of information) and high cognitions (high-level processing of information through questions and elaborations) influence the likelihoods of subsequent high and low cognitions, this study examines whether sequences of cognitions are related to group performance over time; 54 primary school students (18 triads) discussed and wrote an essay about living in another country (32,375 turns of talk). Content analysis and statistical discourse analysis showed that within each lesson, groups with more low cognitions or more sequences of low cognition followed by high cognition added more essay words. Groups with more high cognitions, sequences of low cognition followed by low cognition, or sequences of high cognition followed by an action followed by low cognition, showed different words and sequences, suggestive of new ideas. The links between cognition sequences and group performance over time can inform facilitation and assessment of student discussions.
Sequencing and Graphic Novels with Primary-Grade Students
ERIC Educational Resources Information Center
Chase, Maggie; Son, Eun Hye; Steiner, Stan
2014-01-01
The authors discuss the burgeoning number of graphic novels being published for young readers (approximately PK-3) and suggest a new term for identifying this format and audience: primary graphic novels (PGNs), for primary level students. They go on to describe a series of lessons they conducted with a class of 1st and 2nd graders to capitalize on…
Social Studies Program Guide, K-3: Primary Grades.
ERIC Educational Resources Information Center
Spokane School District 81, WA.
This curriculum guide is the first of four guides which identify the scope, sequence, goals, and resources for the social studies program of the Spokane public schools. Suggested are social studies materials, resources, and activities for kindergarten and primary grade levels. Emphasizing social studies knowledge and skill development, the guide…
el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H
1990-07-01
Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.
Sequence Alignment to Predict Across Species Susceptibility ...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev
Weiss, Eric R.; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L.; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa
2016-01-01
ABSTRACT The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro. The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. PMID:27733645
Weiss, Eric R; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Luzuriaga, Katherine
2017-01-01
The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. Copyright © 2016 American Society for Microbiology.
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
An integrated expression atlas of miRNAs and their promoters in human and mouse
de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.
2018-01-01
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439
Kosushkin, S A; Borodulina, O R; Solov'eva, E N; Grechko, V V
2008-01-01
We have isolated and characterised sequences of a SINE family specific for squamate reptiles from a genome of lacertid lizard that we called Squam1. Copies are 360-390 bp in length and share a significant similarity with tRNA gene sequence on its 5'-end. This family was also detected by us in DNA of representatives of varanids, iguanids (anolis), gekkonids, and snakes. No signs of it were found in DNA of mammals, birds, amphibians, and crocodiles. Detailed analysis of primary structure of the retroposons obtained by us from genomic libraries or GenBank sequences was carried out. Most taxa possess 2-3 subfamilies of the SINE in their genomes with specific diagnostic features in their primary structure. Individual variability of copies in different families is about 85% and is just slightly lower on the genera level. Comparison of consensus sequences on family level reveals a high degree of structural similarity with a number of specific apomorphic features which makes it a useful marker of phylogeny for this group of reptiles. Snakes do not show specific affinity to varanids when compared to other lizards, as it was suggested earlier.
Leong, Wai-Mun; Ripen, Adiratna Mat; Mirsafian, Hoda; Mohamad, Saharuddin Bin; Merican, Amir Feisal
2018-06-07
High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type. Copyright © 2018 Elsevier Inc. All rights reserved.
MYST: a comprehensive high-level AO control tool for GeMS
NASA Astrophysics Data System (ADS)
Rigaut, F.; Neichel, B.; Bec, M.; Garcia-Rissman, A.
2010-07-01
Myst is the Gemini MCAO System (GeMS) high level control GUI. It is written in yorick, python and C. In this paper, we review the software architecture of Myst and its primary purposes, which are many: Real-time display, high level diagnostics, calibrations, and executor/sequencer of high level actions (closing the loop, coordinating dithers, etc).
Ali, M A; Al-Hemaid, F M; Lee, J; Hatamleh, A A; Gyulai, G; Rahman, M O
2015-10-02
The present study explored the systematic inventory of Echinops L. (Asteraceae) of Saudi Arabia, with special reference to the molecular typing of Echinops abuzinadianus Chaudhary, an endemic species to Saudi Arabia, based on the internal transcribed spacer (ITS) sequences (ITS1-5.8S-ITS2) of nuclear ribosomal DNA. A sequence similarity search using BLAST and a phylogenetic analysis of the ITS sequence of E. abuzinadianus revealed a high level of sequence similarity with E. glaberrimus DC. (section Ritropsis). The novel primary sequence and the secondary structure of ITS2 of E. abuzinadianus could potentially be used for molecular genotyping.
Delatorre, Edson; Miranda, Milene; Tschoeke, Diogo A; Carvalho de Sequeira, Patrícia; Alves Sampaio, Simone; Barbosa-Lima, Giselle; Rangel Vieira, Yasmine; Leomil, Luciana; Bozza, Fernando A; Cerbino-Neto, José; Bozza, Patricia T; Ribeiro Nogueira, Rita Maria; Brasil, Patrícia; Thompson, Fabiano L; de Filippis, Ana M B; Souza, Thiago Moreno L
2018-05-17
Descriptive clinical data help to reveal factors that may provoke Zika virus (ZIKV) neuropathology. The case of a 24-year-old female with a ZIKV-associated severe acute neurological disorder was studied. The levels of ZIKV in the cerebrospinal fluid (CSF) were 50 times higher than the levels in other compartments. An acute anti-flavivirus IgG, together with enhanced TNF-alpha levels, may have contributed to ZIKV invasion in the CSF, whereas the unbiased genome sequencing [obtained by next-generation sequencing (NGS)] of the CSF revealed that no virus mutations were associated with the anatomic compartments (CSF, serum, saliva and urine).
Härtl, Katja; Kalinowski, Gregor; Hoffmann, Thomas; Preuss, Anja; Schwab, Wilfried
2017-05-01
RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O-methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down-regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3' direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down-regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.
1998-01-01
The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (<20 m) in this supposedly ice-free world because Eocene sequence boundaries also appear to correlate with minor ??18O increases. Subsidence estimates (backstripping) indicate amplitudes of short-term (million-year scale) lowerings that are consistent with estimates derived from ??18O studies (25-50 m in the Oligocene-middle Miocene and 10-20 m in the Eocene) and a long-term lowering of 150-200 m over the past 65 myr, consistent with estimates derived from volume changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist of basal transgressive sands overlain by regressive highstand silts and quartz sands; and (2) although slope lithofacies variations are subdued, reworked sediments constitute lowstand deposits, causing the strongest, most extensive seismic reflections. Despite a primary eustatic control on sequence boundaries, New Jersey sequences were also influenced by changes in tectonics, sediment supply, and climate. During the early to middle Eocene, low siliciclastic and high pelagic input associated with warm climates resulted in widespread carbonate deposition and thin sequences. Late middle Eocene and earliest Oligocene cooling events curtailed carbonate deposition in the coastal plain and slope, respectively, resulting in a switch to siliciclastic sedimentation. In onshore areas, Oligocene sequences are thin owing to low siliciclastic and pelagic input, and their distribution is patchy, reflecting migration or progradation of depocenters; in contrast, Miocene onshore sequences are thicker, reflecting increased sediment supply, and they are more complete downdip owing to simple tectonics. We conclude that the New Jersey margin provides a natural laboratory for unraveling complex interactions of eustasy, tectonics, changes in sediment supply, and climate change.
Azab, Marwa Mohamed; Fayyad, Dalia Mukhtar
2018-01-01
The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department) using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials. PMID:29849646
Mycofier: a new machine learning-based classifier for fungal ITS sequences.
Delgado-Serrano, Luisa; Restrepo, Silvia; Bustos, Jose Ricardo; Zambrano, Maria Mercedes; Anzola, Juan Manuel
2016-08-11
The taxonomic and phylogenetic classification based on sequence analysis of the ITS1 genomic region has become a crucial component of fungal ecology and diversity studies. Nowadays, there is no accurate alignment-free classification tool for fungal ITS1 sequences for large environmental surveys. This study describes the development of a machine learning-based classifier for the taxonomical assignment of fungal ITS1 sequences at the genus level. A fungal ITS1 sequence database was built using curated data. Training and test sets were generated from it. A Naïve Bayesian classifier was built using features from the primary sequence with an accuracy of 87 % in the classification at the genus level. The final model was based on a Naïve Bayes algorithm using ITS1 sequences from 510 fungal genera. This classifier, denoted as Mycofier, provides similar classification accuracy compared to BLASTN, but the database used for the classification contains curated data and the tool, independent of alignment, is more efficient and contributes to the field, given the lack of an accurate classification tool for large data from fungal ITS1 sequences. The software and source code for Mycofier are freely available at https://github.com/ldelgado-serrano/mycofier.git .
Quantification of pilot workload via instrument scan
NASA Technical Reports Server (NTRS)
Tole, J. R.; Stephens, A. T.; Harris, R. L., Sr.; Ephrath, A.
1982-01-01
The use of visual scanning behavior as an indicator of pilot workload is described. The relationship between level of performance on a constant piloting task under simulated IFR conditions, the skill of the pilot the level of mental workload induced by an additional verbal task imposed on the basic control task, and visual scanning behavior is investigated. An increase in fixation dwell times, especially on the primary instrument with increased mental loading is indicated. Skilled subjects 'stared' less under increased loading than did novice pilots. Sequences of instrument fixations were also examined. The percentage occurrence of the subject's most used sequences decreased with increased task difficulty for novice subjects but not for highly skilled subjects. Entropy rate (bits/sec) of the sequence of fixations was also used to quantify the scan pattern. It consistently decreased for most subjects as the four loading levels used increased.
Clifford, Jacob; Adami, Christoph
2015-09-02
Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.
Chatterjee, Aniruddha; Stockwell, Peter A; Ahn, Antonio; Rodger, Euan J; Leichter, Anna L; Eccles, Michael R
2017-01-01
Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis. PMID:28030832
Application of single-cell sequencing in human cancer.
Rantalainen, Mattias
2017-11-02
Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.
Microbes in a bottle: Where model organisms and analog systems meet
NASA Astrophysics Data System (ADS)
Hamilton, T. L.; Weber, M.; Lott, C.; Havig, J. R.; Clark, C.; Bird, L. R.; de Beer, D.; Dron, A.; Freeman, K. H.; Macalady, J. L.
2015-12-01
Understanding the evolution of the Earth's surface chemistry is one of the most exciting challenges in modern geoscience. The Great Oxidation Event occurred ~2.5 Ga, when the concentration of oxygen in the atmosphere increased from <0.001% of the present atmospheric level (PAL) to within 1-10%. Following the initial rise, concentrations of O2 in the atmosphere and oceans remained well below present-day atmospheric levels through the Proterozoic until a second rise ~0.6 Ga to levels around those observed today. Thus, for much of Earth's history, deep oceans probably remained oxygen-poor until the most recent increase in atmospheric O2. In addition to low levels of O2, at least portions of the oceans were euxinic (sulfide-rich) with H2S often reaching the photic zone. Oxygenic photosynthesis is the largest source of O2 in the atmosphere. Primary productivity and the remineralization of organic matter are intimately linked to planetary redox and thus to levels of O2. As a result, biologic carbon isotope fractionation and other biomarkers (i.e. hopanoids) facilitate our interpretation of biogeochemical cycling during the Proterozoic Eon. Here, we describe the isolation and characterization of two photoautotrophs—the dominant primary producers—from a Proterozoic Ocean analog. We examined the 13C fractionation in the microbial mat and employed in situ microcosms to estimate primary productivity. In addition, we deployed diver-operated microsensors to determine oxygen production and sulfide consumption over a 24-hour cycle and sequenced total RNA from 4 time points. Using these data, we examined primary production in pure cultures of the dominant Cyanobacteria and green sulfur bacteria from the mat under conditions that mimic those observed in situ. We use this information to begin to build a model of oxygen production and organic carbon burial in a Proterozoic-like environment where Cyanobacteria can contribute to primary productivity in the absence of oxygen production. Furthermore, we examined the differences between 13C fractionation in cultures maintained under "ideal" conditions compared to those observed in situ. Collectively, the RNA sequencing data, the in situ primary productivity data and pure culture information were necessary to interpret the 13C signal from the mats.
Curriculum for the Intellectually Disabled Trainable.
ERIC Educational Resources Information Center
Magnolia Special Education Center, Orlando, FL.
The curriculum guide presents a developmental sequence of learning activities to achieve specific goals for primary, intermediate, and secondary age level trainable mentally retarded students. Six major areas of learning are covered: self care (bathroom, grooming, food, clothing, safety), body usage (gross motor, health, fitness, eye-hand…
EMR Behavioral Curriculum and Student Record.
ERIC Educational Resources Information Center
Hartnett, John J.
Intended for use as a curriculum guide, a source for objectives for the individualized educational plan, and an evaluation instrument to measure handicapped students' learning, the guide lists sequences of developmental tasks. Tasks are outlined for primary, intermediate, and secondary levels in the following areas (sample subskills in…
ERIC Educational Resources Information Center
Adams, Yvonne H.; And Others
In this guide for teaching science in the Duval County Public Schools, Jacksonville, Florida, the following items are included for each grade level from one to six: (1) county-adopted resources; (2) supplementary resources; (3) scope and sequence; (4) primary ideas, secondary ideas, and performance objectives; and (5) correlation with…
Weiss, Eric R; Lamers, Susanna L; Henderson, Jennifer L; Melnikov, Alexandre; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Nusbaum, Chad; Luzuriaga, Katherine
2018-01-15
Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time ( P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence ( P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection. IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection. Copyright © 2018 American Society for Microbiology.
Amemiya, Kenji; Hirotsu, Yosuke; Goto, Taichiro; Nakagomi, Hiroshi; Mochizuki, Hitoshi; Oyama, Toshio; Omata, Masao
2016-12-01
Identifying genetic alterations in tumors is critical for molecular targeting of therapy. In the clinical setting, formalin-fixed paraffin-embedded (FFPE) tissue is usually employed for genetic analysis. However, DNA extracted from FFPE tissue is often not suitable for analysis because of its low levels and poor quality. Additionally, FFPE sample preparation is time-consuming. To provide early treatment for cancer patients, a more rapid and robust method is required for precision medicine. We present a simple method for genetic analysis, called touch imprint cytology combined with massively paralleled sequencing (touch imprint cytology [TIC]-seq), to detect somatic mutations in tumors. We prepared FFPE tissues and TIC specimens from tumors in nine lung cancer patients and one patient with breast cancer. We found that the quality and quantity of TIC DNA was higher than that of FFPE DNA, which requires microdissection to enrich DNA from target tissues. Targeted sequencing using a next-generation sequencer obtained sufficient sequence data using TIC DNA. Most (92%) somatic mutations in lung primary tumors were found to be consistent between TIC and FFPE DNA. We also applied TIC DNA to primary and metastatic tumor tissues to analyze tumor heterogeneity in a breast cancer patient, and showed that common and distinct mutations among primary and metastatic sites could be classified into two distinct histological subtypes. TIC-seq is an alternative and feasible method to analyze genomic alterations in tumors by simply touching the cut surface of specimens to slides. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.
Shahi, Payam; Kim, Samuel C; Haliburton, John R; Gartner, Zev J; Abate, Adam R
2017-03-14
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding
NASA Astrophysics Data System (ADS)
Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.
2017-03-01
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding
Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.
2017-01-01
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing. PMID:28290550
Implications of Secondary Aftershocks for Failure Processes
NASA Astrophysics Data System (ADS)
Gross, S. J.
2001-12-01
When a seismic sequence with more than one mainshock or an unusually large aftershock occurs, there is a compound aftershock sequence. The secondary aftershocks need not have exactly the same decay as the primary sequence, with the differences having implications for the failure process. When the stress step from the secondary mainshock is positive but not large enough to cause immediate failure of all the remaining primary aftershocks, failure processes which involve accelerating slip will produce secondary aftershocks that decay more rapidly than primary aftershocks. This is because the primary aftershocks are an accelerated version of the background seismicity, and secondary aftershocks are an accelerated version of the primary aftershocks. Real stress perturbations may be negative, and heterogeneities in mainshock stress fields mean that the real world situation is quite complicated. I will first describe and verify my picture of secondary aftershock decay with reference to a simple numerical model of slipping faults which obeys rate and state dependent friction and lacks stress heterogeneity. With such a model, it is possible to generate secondary aftershock sequences with perturbed decay patterns, quantify those patterns, and develop an analysis technique capable of correcting for the effect in real data. The secondary aftershocks are defined in terms of frequency linearized time s(T), which is equal to the number of primary aftershocks expected by a time T, $ s ≡ ∫ t=0T n(t) dt, where the start time t=0 is the time of the primary aftershock, and the primary aftershock decay function n(t) is extrapolated forward to the times of the secondary aftershocks. In the absence of secondary sequences the function s(T)$ re-scales the time so that approximately one event occurs per new time unit; the aftershock sequence is gone. If this rescaling is applied in the presence of a secondary sequence, the secondary sequence is shaped like a primary aftershock sequence, and can be fit by the same modeling techniques applied to simple sequences. The later part of the presentation will concern the decay of Hector Mine aftershocks as influenced by the Landers aftershocks. Although attempts to predict the abundance of Hector aftershocks based on stress overlap analysis are not very successful, the analysis does do a good job fitting the decay of secondary sequences.
Detection of MPL mutations by a novel allele-specific PCR-based strategy.
Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L
2013-11-01
MPL mutation testing is recommended in patients with suspected primary myelofibrosis or essential thrombocythemia who lack the JAK2 V617F mutation. MPL mutations can occur at allelic levels below 15%, which may escape detection by commonly used mutation screening methods such as Sanger sequencing. We developed a novel multiplexed allele-specific PCR assay capable of detecting most recurrent MPL exon 10 mutations associated with primary myelofibrosis and essential thrombocythemia (W515L, W515K, W515A, and S505N) down to a sensitivity of 2.5% mutant allele. Test results were reviewed from 15 reference cases and 1380 consecutive specimens referred to our laboratory for testing. Assay performance was compared to Sanger sequencing across a series of 58 specimens with MPL mutations. Positive cases consisted of 45 with W515L, 6 with S505N, 5 with W515K, 1 with W515A, and 1 with both W515L and S505N. Seven cases had mutations below 5% that were undetected by Sanger sequencing. Ten additional cases had mutation levels between 5% and 15% that were not consistently detected by sequencing. All results were easily interpreted in the allele-specific test. This assay offers a sensitive and reliable solution for MPL mutation testing. Sanger sequencing appears insufficiently sensitive for robust MPL mutation detection. Our data also suggest the relative frequency of S505N mutations may be underestimated, highlighting the necessity for inclusion of this mutation in MPL test platforms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Domenice, S; Latronico, A C; Brito, V N; Arnhold, I J; Kok, F; Mendonca, B B
2001-09-01
Primary adrenal insufficiency is a rare condition in pediatric age, and its association with precocious sexual development is very uncommon. We report a 2-yr-old Brazilian boy with DAX1 gene mutation whose first clinical manifestation was isosexual gonadotropin-independent precocious puberty. He presented with pubic hair, enlarged penis and testes, and advanced bone age. T levels were elevated, whereas basal and GnRH-stimulated LH levels were compatible with a prepubertal pattern. Chronic GnRH agonist therapy did not reduce T levels, supporting the diagnosis of gonadotropin-independent precocious puberty. Testotoxicosis was ruled out after normal sequencing of exon 11 of the LH receptor gene. At age 3 yr he developed clinical and hormonal features of severe primary adrenal insufficiency. The entire coding region of the DAX1 gene was analyzed through direct sequencing. A nucleotide G insertion between nucleotides 430 and 431 in exon 1, resulting in a novel frameshift mutation and a premature stop codon at position 71 of DAX-1, was identified. Surprisingly, steroid replacement therapy induced a clear decrease in testicular size and T levels to the prepubertal range. These findings suggest that chronic excessive ACTH levels resulting from adrenal insufficiency may stimulate Leydig cells and lead to gonadotropin-independent precocious puberty in some boys with DAX1 gene mutations.
Desmarchelier, Alaric; Coeffard, Vincent; Moreau, Xavier; Greck, Christine
2012-10-08
Primary amine-catalyzed direct conversion of α,α-disubstituted aldehydes into 3-pyrrolines with a quaternary stereocenter is reported. The one-pot enantioselective sequence is based on a α-amination, an aza-Michael addition of hydrazine, an aldol condensation dehydratation and proceeds with good yields and excellent levels of enantioselectivity. Synthetically attractive applications including the formation of aziridinopyrrolidine or epoxypyrrolidine derivatives with good yields and selectivities are also described. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brannon, A Rose; Vakiani, Efsevia; Sylvester, Brooke E; Scott, Sasinya N; McDermott, Gregory; Shah, Ronak H; Kania, Krishan; Viale, Agnes; Oschwald, Dayna M; Vacic, Vladimir; Emde, Anne-Katrin; Cercek, Andrea; Yaeger, Rona; Kemeny, Nancy E; Saltz, Leonard B; Shia, Jinru; D'Angelica, Michael I; Weiser, Martin R; Solit, David B; Berger, Michael F
2014-08-28
Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.
Polymorphism in the Eruption Sequence of Primary Dentition: A Cross-sectional Study
Bhojraj, Nandlal; Narayanappa
2017-01-01
Introduction Primary teeth have shown wide variations in their eruption time among different population. Population specific eruption ages are provided as mean with standard deviations or median ages with its percentile range. This alone will be insufficient for prediction of tooth eruption sequence because they provide no information on the frequency of sequence variation within the pairs of teeth. Norms of polymorphic variation in the eruption sequence can be more useful. Aim This study aims at providing norms for the sequence polymorphism in primary teeth among the children of Mysore population. Materials and Methods A cross-sectional study was designed with 1392 children, recruited from December 2015 to June 2016 by simple random sampling method. Tooth was recorded as present or absent. Across the entire possible intra quadrant tooth pair, cases of present-present, absent-absent, present-absent and absent-present and were counted and computed as percentages. Results Sequence polymorphisms were more common in 82-84 pairs of teeth. Significant polymorphic reverse sequence was observed in 52-54 (9%), 82-84 (35%) in males and 82-84 (18%) in females. There was no polymorphism in maxillary arch in females. Conclusion The present study provides the baseline data values for sequence variation in primary teeth eruption. To the best of investigators knowledge, there are no previous studies describing the sequence polymorphism in primary teeth in Indian population. The results of this study helps in assessment of eruption sequence problems in paediatric dentistry and in evaluation and prediction of tooth eruption sequence in individual child. PMID:28658912
Statistical Knowledge for Teaching: Exploring it in the Classroom
ERIC Educational Resources Information Center
Burgess, Tim
2009-01-01
This paper first reports on the methodology of a study of teacher knowledge for statistics, conducted in a classroom at the primary school level. The methodology included videotaping of a sequence of lessons that involved students in investigating multivariate data sets, followed up by audiotaped interviews with each teacher. These stimulated…
Senior 4 Western Civilization: An Historical Review of Its Development. Interim Curriculum Document.
ERIC Educational Resources Information Center
Manitoba Dept. of Education and Training, Winnipeg. School Programs Div.
This guide complements the two other social studies documents at the Senior 4 level for the social studies curriculum sequence for schools in Manitoba, Canada. The primary focus of this document is to explore the impact made by significant historical developments, movements, and individuals that shaped and influenced Western Civilization…
Caswell, Deborah R; Swanton, Charles
2017-07-18
The advent of rapid and inexpensive sequencing technology allows scientists to decipher heterogeneity within primary tumours, between primary and metastatic sites, and between metastases. Charting the evolutionary history of individual tumours has revealed drivers of tumour heterogeneity and highlighted its impact on therapeutic outcomes. Scientists are using improved sequencing technologies to characterise and address the challenge of tumour heterogeneity, which is a major cause of resistance to therapy and relapse. Heterogeneity may fuel metastasis through the selection of rare, aggressive, somatically altered cells. However, extreme levels of chromosomal instability, which contribute to intratumour heterogeneity, are associated with improved patient outcomes, suggesting a delicate balance between high and low levels of genome instability. We review evidence that intratumour heterogeneity influences tumour evolution, including metastasis, drug resistance, and the immune response. We discuss the prevalence of tumour heterogeneity, and how it can be initiated and sustained by external and internal forces. Understanding tumour evolution and metastasis could yield novel therapies that leverage the immune system to control emerging tumour neo-antigens.
DNA hypomethylation of individual sequences in aborted cloned bovine fetuses.
Chen, Tao; Jiang, Yan; Zhang, Yan-Ling; Liu, Jing-He; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan
2005-09-01
Cloned bovines have a much higher abortion rate than those derived in vivo. Available evidence indicates that inappropriate epigenetic reprogramming of donor nuclei is the primary cause of cloning failure. To gain a better understanding of the DNA methylation changes associated with the high abortion rate of cloned bovines, we examined the DNA methylation status of a repeated sequence (satellite I) and the promoter regions of two single-copy genes (interleukin 3/cytokeratin) in aborted cloned fetuses, aborted fetuses derived from artificial insemination (AI), cloned adults and AI adults by bisulfite sequencing and restriction enzyme analysis. Two of four aborted cloned fetuses show very low methylation levels in the two single-copy gene promoter regions. One of the two fetuses also showed undermethylated status in the satellite I sequence. The other two aborted cloned fetuses have similar methylation levels to those of aborted AI fetuses. However, no difference in methylation was observed between cloned adults and AI adults. Our results demonstrate for the first time the undermethylated status of individual sequences in aborted cloned fetuses. These findings suggest that aberrant DNA methylation may contribute to the developmental failure of cloned bovine fetuses.
Identification of two allelic IgG1 C(H) coding regions (Cgamma1) of cat.
Kanai, T H; Ueda, S; Nakamura, T
2000-01-31
Two types of cDNA encoding IgG1 heavy chain (gamma1) were isolated from a single domestic short-hair cat. Sequence analysis indicated a higher level of similarity of these Cgamma1 sequences to human Cgamma1 sequence (76.9 and 77.0%) than to mouse sequence (70.0 and 69.7%) at the nucleotide level. Predicted primary structures of both the feline Cgamma1 genes, designated as Cgamma1a and Cgamma1b, were similar to that of human Cgamma1 gene, for instance, as to the size of constant domains, the presence of six conserved cysteine residues involved in formation of the domain structure, and the location of a conserved N-linked glycosylation site. Sequence comparison between the two alleles showed that 7 out of 10 nucleotide differences were within the C(H)3 domain coding region, all leading to nonsynonymous changes in amino acid residues. Partial sequence analysis of genomic clones showed three nucleotide substitutions between the two Cgamma1 alleles in the intron between the CH2 and C(H)3 domain coding regions. In 12 domestic short-hair cats used in this study, the frequency of Cgamma1a allele (62.5%) was higher than that of the Cgamma1b allele (37.5%).
miRBase: integrating microRNA annotation and deep-sequencing data.
Kozomara, Ana; Griffiths-Jones, Sam
2011-01-01
miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.
Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T
2017-01-01
A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.
Anticipatory activity in primary motor cortex codes memorized movement sequences.
Lu, Xiaofeng; Ashe, James
2005-03-24
Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.
A one-page summary report of genome sequencing for the healthy adult.
Vassy, Jason L; McLaughlin, Heather M; McLaughlin, Heather L; MacRae, Calum A; Seidman, Christine E; Lautenbach, Denise; Krier, Joel B; Lane, William J; Kohane, Isaac S; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C
2015-01-01
As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to nongeneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from 10 healthy participants in a study of genome sequencing in primary care. © 2015 S. Karger AG, Basel.
A One-Page Summary Report of Genome Sequencing for the Healthy Adult
Vassy, Jason L.; McLaughlin, Heather M.; MacRae, Calum A.; Seidman, Christine E.; Lautenbach, Denise; Krier, Joel B.; Lane, William J.; Kohane, Isaac S.; Murray, Michael F.; McGuire, Amy L.; Rehm, Heidi L.; Green, Robert C.
2015-01-01
As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to non-geneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from ten healthy patient participants in a study of genome sequencing in primary care. PMID:25612602
Yalaza, Cem; Ak, Handan; Cagli, Mehmet Sedat; Ozgiray, Erkin; Atay, Sevcan; Aydin, Hikmet Hakan
2017-05-01
Glioblastoma multiforme (GBM) is the most common form of primary brain tumors. Although mutations in isocitrate dehydrogenase-1 (IDH1) have been identified in a number of cancers, their role in tumor development has not been fully elucidated. In this study, we aimed to investigate the association between IDH1 mutations, tumor tissue HIF-1 alpha, and serum VEGF levels in patients with primary GBM for the first time. 32 patients (mean age, years: 58±14.0) diagnosed with primary glioblastoma multiforme were screened for IDH1 mutations (R132H, R132S, R132C and R132L) by direct sequencing. Serum VEGF and tumor tissue HIF1-alpha levels were measured by enzyme-linked immunosorbent assay. Associations between categoric variables were determined using chi-square tests. Differences between two groups were compared with t test for continuous variables. Six percent of patients were found to be heterozygous for R132H mutation. Tumor HIF1-alpha and serum VEGF levels were found to be significantly increased in IDH1 -mutated tumor tissues ( p <0.0001 and p =0.0454, respectively). Our results suggest that mutated IDH1 may contribute to carcinogenesis via induction of HIF-1 alpha pathway in primary GBM. © 2017 by the Association of Clinical Scientists, Inc.
Collins, Colin C; Volik, Stanislav V; Lapuk, Anna V; Wang, Yuwei; Gout, Peter W; Wu, Chunxiao; Xue, Hui; Cheng, Hongwei; Haegert, Anne; Bell, Robert H; Brahmbhatt, Sonal; Anderson, Shawn; Fazli, Ladan; Hurtado-Coll, Antonio; Rubin, Mark A.; Demichelis, Francesca; Beltran, Himisha; Hirst, Martin; Marra, Marco; Maher, Christopher A.; Chinnaiyan, Arul M.; Gleave, Martin; Bertino, Joseph R.; Lubin, Martin; Wang, Yuzhuo
2013-01-01
Castrate resistant prostate cancer (CRPC) and neuroendocrine carcinoma of the prostate are invariably fatal diseases for which only palliative therapies exist. As part of a prostate tumour sequencing program, a patient tumour was analyzed using Illumina genome sequencing and a matched renal capsule tumour xenograft was generated. Both tumour and xenograft had a homozygous 9p21 deletion spanning the MTAP, CDKN2 and ARF genes. It is rare for this deletion to occur in primary prostate tumours yet approximately 10% express decreased levels of MTAP mRNA. Decreased MTAP expression is a prognosticator for poor outcome. Moreover, it appears that this deletion is more common in CRPC than in primary prostate cancer. We show for the first time that treatment with methylthioadenosine and high dose 6-thioguanine causes marked inhibition of a patient derived neuroendocrine xenograft growth while protecting the host from 6-thioguanine toxicity. This therapeutic approach can be applied to other MTAP-deficient human cancers since deletion or hypermethylation of the MTAP gene occurs in a broad spectrum of tumours at high frequency. The combination of genome sequencing and patient-derived xenografts can identify candidate therapeutic agents and evaluate them for personalized oncology. PMID:22252602
Popov, Sergey W; Moldenhauer, Gerhard; Wotschke, Beate; Brüderlein, Silke; Barth, Thomas F; Dorsch, Karola; Ritz, Olga; Möller, Peter; Leithäuser, Frank
2007-07-15
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) in activated B lymphocytes and is potentially implicated in genomic instability of B-cell malignancies. For unknown reasons, B-cell neoplasms often lack SHM and CSR in spite of high AID expression. Here, we show that primary mediastinal B-cell lymphoma (PMBL), an immunoglobulin (Ig)-negative lymphoma that possesses hypermutated, class-switched Ig genes, expresses high levels of AID with an intact primary structure but does not do CSR in 14 of 16 cases analyzed. Absence of CSR coincided with low Ig germ-line transcription, whereas high level germ-line transcription was observed only in those two cases with active CSR. Interleukin-4/CD40L costimulation induced CSR and a marked up-regulation of germ-line transcription in the PMBL-derived cell line MedB-1. In the PMBL cell line Karpas 1106P, CSR was not inducible and germ-line transcription remained low on stimulation. However, Karpas 1106P, but not MedB-1, had ongoing SHM of the Ig gene and BCL6. These genes were transcribed in Karpas 1106P, whereas transcription was undetectable or low in MedB-1 cells. Thus, accessibility of the target sequences seems to be a major limiting factor for AID-dependent somatic gene diversification in PMBL.
Wollersheim Shervey, Sarah; Sandilos, Lia E; DiPerna, James C; Lei, Pui-Wa
2017-09-01
The purpose of this study was to examine the social validity of the Social Skills Improvement System-Classwide Intervention Program (SSIS-CIP) for teachers in the primary grades. Participants included 45 first and second grade teachers who completed a 16-item social validity questionnaire during each year of the SSIS-CIP efficacy trial. Findings indicated that teachers generally perceived the SSIS-CIP as a socially valid and feasible intervention for primary grades; however, teachers' ratings regarding ease of implementation and relevance and sequence demonstrated differences across grade levels in the second year of implementation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.
Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing
2016-12-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1
Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing
2016-01-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880
The Representation of Prediction Error in Auditory Cortex
Rubin, Jonathan; Ulanovsky, Nachum; Tishby, Naftali
2016-01-01
To survive, organisms must extract information from the past that is relevant for their future. How this process is expressed at the neural level remains unclear. We address this problem by developing a novel approach from first principles. We show here how to generate low-complexity representations of the past that produce optimal predictions of future events. We then illustrate this framework by studying the coding of ‘oddball’ sequences in auditory cortex. We find that for many neurons in primary auditory cortex, trial-by-trial fluctuations of neuronal responses correlate with the theoretical prediction error calculated from the short-term past of the stimulation sequence, under constraints on the complexity of the representation of this past sequence. In some neurons, the effect of prediction error accounted for more than 50% of response variability. Reliable predictions often depended on a representation of the sequence of the last ten or more stimuli, although the representation kept only few details of that sequence. PMID:27490251
Sedimentary facies and depositional history of the Swan Islands, Honduras
NASA Astrophysics Data System (ADS)
Ivey, Marvin L.; Breyer, John A.; Britton, Joseph C.
1980-10-01
Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence. The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.
Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.
Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M
2010-06-01
Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. Copyright 2010 Elsevier Inc. All rights reserved.
Giesecke, Claudia; Meyer, Tim; Durek, Pawel; Maul, Jochen; Preiß, Jan; Jacobs, Joannes F M; Thiel, Andreas; Radbruch, Andreas; Ullrich, Reiner; Dörner, Thomas
2018-06-15
There are currently limited insights into the progression of human primary humoral immunity despite numerous studies in experimental models. In this study, we analyzed a primary and related secondary parenteral keyhole limpet hemocyanin (KLH) immunization in five human adults. The primary challenge elicited discordant KLH-specific serum and blood effector B cell responses (i.e., dominant serum KLH-specific IgG and IgM levels versus dominant KLH-specific IgA plasmablast frequencies). Single-cell IgH sequencing revealed early appearance of highly (>15 mutations) mutated circulating KLH-specific plasmablasts 2 wk after primary KLH immunization, with simultaneous KLH-specific plasmablasts carrying non- and low-mutated IgH sequences. The data suggest that the highly mutated cells might originate from cross-reactive memory B cells (mBCs) rather than from the naive B cell repertoire, consistent with previous reported mutation rates and the presence of KLH-reactive mBCs in naive vaccinees prior to immunization. Whereas upon secondary immunization, serum Ab response kinetics and plasmablast mutation loads suggested the exclusive reactivation of KLH-specific mBCs, we, however, detected only little clonal overlap between the peripheral KLH-specific secondary plasmablast IgH repertoire and the primary plasmablast and mBC repertoire, respectively. Our data provide novel mechanistic insights into human humoral immune responses and suggest that primary KLH immunization recruits both naive B cells and cross-reactive mBCs, whereas secondary challenge exclusively recruits from a memory repertoire, with little clonal overlap with the primary response. Copyright © 2018 by The American Association of Immunologists, Inc.
Hong, Gi-Youn; Shin, Byung-Cheul; Park, Seong-Nam; Gu, Yun-Hee; Kim, Nam-Gyun; Park, Kyoung-Jun; Kim, Soo-Yeon; Shin, Yong-Il
2016-04-01
To evaluate the efficacy and safety of low-level light therapy in women with primary dysmenorrhea. A multicenter prospective, randomized, double-blind, placebo-controlled clinical trial including patients 18-35 years of age with primary dysmenorrhea was undertaken at two university hospitals in South Korea between October 2011 and September 2012. Patients were randomized using a computer-generated sequence to receive low-level light therapy using the Color DNA-WSF device or to receive placebo treatment with a dummy device. The severity of menstrual pain, assessed using a visual analog scale, was the primary outcome and was evaluated at baseline and during every menstrual cycle for 3 months following treatment. Patients who received more than one application of treatment (with a Color DNA-WSF or placebo device) were included in analyses. Patients and investigators were masked to the treatment assignments. Overall, 44 patients were assigned to each group. At the final study visit, the reduction in scores using a visual analog scale was significantly greater in patients who received low-level light therapy (n=41; 4.34±2.22) than among those in the control group (n=38; 1.79±1.73; P<0.001 when adjusted for age) No serious adverse events occurred. Low-level light therapy could be an effective, safe treatment modality for women with primary dysmenorrhea. Clinical Trials.gov: NCT02026206. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Andersen, J C; Gwiazdowski, R A; Gdanetz, K; Gruwell, M E
2015-02-01
Armored scale insects and their primary bacterial endosymbionts show nearly identical patterns of co-diversification when viewed at the family level, though the persistence of these patterns at the species level has not been explored in this group. Therefore we investigated genealogical patterns of co-diversification near the species level between the primary endosymbiont Uzinura diaspidicola and its hosts in the Chionaspis pinifoliae-Chionaspis heterophyllae species complex. To do this we generated DNA sequence data from three endosymbiont loci (rspB, GroEL, and 16S) and analyzed each locus independently using statistical parsimony network analyses and as a concatenated dataset using Bayesian phylogenetic reconstructions. We found that for two endosymbiont loci, 16S and GroEL, sequences from U. diaspidicola were broadly associated with host species designations, while for rspB this pattern was less clear as C. heterophyllae (species S1) shared haplotypes with several other Chionaspis species. We then compared the topological congruence of the phylogenetic reconstructions generated from a concatenated dataset of endosymbiont loci (including all three loci, above) to that from a concatenated dataset of armored scale hosts, using published data from two nuclear loci (28S and EF1α) and one mitochondrial locus (COI-COII) from the armored scale hosts. We calculated whether the two topologies were congruent using the Shimodaira-Hasegawa test. We found no significant differences (P = 0.4892) between the topologies suggesting that, at least at this level of resolution, co-diversification of U. diaspidicola with its armored scale hosts also occurs near the species level. This is the first such study of co-speciation at the species level between U. diaspidicola and a group of armored scale insects.
Formulaic Sequences Used by Native English Speaking Teachers in a Thai Primary School
ERIC Educational Resources Information Center
Steyn, Sunee; Jaroongkhongdach, Woravut
2016-01-01
The use of formulaic sequences in English as a Foreign Language (EFL) lessons plays an integral role in language teaching and learning, but it seems still widely neglected in the Thai school context. To call attention to this issue, this study aims at identifying formulaic sequences used in a Thai primary school. The data were taken from three…
FlyBase: genes and gene models
Drysdale, Rachel A.; Crosby, Madeline A.
2005-01-01
FlyBase (http://flybase.org) is the primary repository of genetic and molecular data of the insect family Drosophilidae. For the most extensively studied species, Drosophila melanogaster, a wide range of data are presented in integrated formats. Data types include mutant phenotypes, molecular characterization of mutant alleles and aberrations, cytological maps, wild-type expression patterns, anatomical images, transgenic constructs and insertions, sequence-level gene models and molecular classification of gene product functions. There is a growing body of data for other Drosophila species; this is expected to increase dramatically over the next year, with the completion of draft-quality genomic sequences of an additional 11 Drosphila species. PMID:15608223
ERIC Educational Resources Information Center
Granberg, Grace, Ed.
The primary objective of the guide is to help teachers and administrators identify scope and plan for sequence in learning experiences in teaching consumer aspects of personal and family money management in grades 7-12. Behavioral outcomes and principles at the beginning (you), intermediate (your family), and advanced (your future) levels of…
Mueller, Jennifer J; Schlappe, Brooke A; Kumar, Rahul; Olvera, Narciso; Dao, Fanny; Abu-Rustum, Nadeem; Aghajanian, Carol; DeLair, Deborah; Hussein, Yaser R; Soslow, Robert A; Levine, Douglas A; Weigelt, Britta
2018-05-21
Mucinous ovarian cancer (MOC) is a rare type of epithelial ovarian cancer resistant to standard chemotherapy regimens. We sought to characterize the repertoire of somatic mutations in MOCs and to define the contribution of massively parallel sequencing to the classification of tumors diagnosed as primary MOCs. Following gynecologic pathology and chart review, DNA samples obtained from primary MOCs and matched normal tissues/blood were subjected to whole-exome (n = 9) or massively parallel sequencing targeting 341 cancer genes (n = 15). Immunohistochemical analysis of estrogen receptor, progesterone receptor, PTEN, ARID1A/BAF250a, and the DNA mismatch (MMR) proteins MSH6 and PMS2 was performed for all cases. Mutational frequencies of MOCs were compared to those of high-grade serous ovarian cancers (HGSOCs) and mucinous tumors from other sites. MOCs were heterogeneous at the genetic level, frequently harboring TP53 (75%) mutations, KRAS (71%) mutations and/or CDKN2A/B homozygous deletions/mutations (33%). Although established criteria for diagnosis were employed, four cases harbored mutational and immunohistochemical profiles similar to those of endometrioid carcinomas, and one case for colorectal or endometrioid carcinoma. Significant differences in the frequencies of KRAS, TP53, CDKN2A, FBXW7, PIK3CA and/or APC mutations between the confirmed primary MOCs (n = 19) and HGSOCs, mucinous gastric and/or mucinous colorectal carcinomas were found, whereas no differences in the 341 genes studied between MOCs and mucinous pancreatic carcinomas were identified. Our findings suggest that the assessment of mutations affecting TP53, KRAS, PIK3CA, ARID1A and POLE, and DNA MMR protein expression may be used to further aid the diagnosis and treatment decision-making of primary MOC. Copyright © 2018 Elsevier Inc. All rights reserved.
Yamazaki, M; Kitamura, R; Kusano, S; Eda, H; Sato, S; Okawa-Takatsuji, M; Aotsuka, S; Yanagi, K
2005-03-01
Associations of Epstein-Barr virus (EBV) and autoimmune diseases have been hypothesized. We have analysed IgG antibodies to EBV nuclear antigen (EBNA)-2 in sera from Japanese patients with autoimmune systemic connective tissue diseases (CTD), exemplified by systemic lupus erythematosus (SLE), primary Sjogren's syndrome (SS), rheumatoid arthritis (RA), systemic sclerosis (SSc) and secondary SS (classical CTDs complicated with SS). An enzyme-linked immunosorbent assay (ELISA) which uses glutathione-S-transferase polypeptides fused to EBV nuclear antigen (EBNA)-2 and EBNA-1 was developed. Ratios of IgG antibody reactivity to whole IgG concentrations of sera were calculated to normalize EBNA-2 and EBNA-1 antibody levels to the hypergammaglobulinaemia that occurs in CTD. The ELISA optical density OD(450) readings of IgG antibodies to both the amino-terminal aa 1-116 of EBNA-2 and carboxyl-terminal aa 451-641 of EBNA-1 were elevated significantly in patients with SLE, primary SS, RA, SSc and secondary SS when compared to EBNA-1. The OD readings were divided by serum IgG concentrations to normalize for the hypergammaglobulinaemia. The specific levels of IgG antibodies to the amino-terminal region of EBNA-2 were elevated in patients with SLE, primary SS or RA, as well as those with secondary SS complicated with SLE or RA. The EBNA-2 amino-terminal region contains a polyproline tract and a proline-rich sequence and has considerable amino acid sequence homology with many cellular proline-rich proteins. High ratios of EBNA-2 aa 1-116 to EBNA-1 aa 451-641 IgG antibody levels which probably suggest reactivation of EBV latent infection were associated significantly with pulmonary involvement in SS patients. These results are consistent with the hypothesis that the sequence similarity between the amino-terminal region of EBNA-2 and proline-rich cellular proteins is associated with pathogenesis in a subpopulation of CTD patients, possibly by the molecular mimicry-epitope shift mechanism.
Odorico, D M; Miller, D J
1997-01-01
Since both internal (class-level) and external relationships of the Cnidaria remain unclear on the basis of analyses of 18S and (partial) 16S rDNA sequence data, we examined the informativeness of the 5'-end of the 23S-like rDNA. Here we describe analyses of both primary and predicted secondary structure data for this region from the ctenophore Bolinopsis sp., the placozoan Trichoplax adhaerens, the sponge Hymeniacidon heliophila, and representatives of all four cnidarian classes. Primary sequence analyses clearly resolved the Cnidaria from other lower Metazoa, supported sister group relationships between the Scyphozoa and Cubozoa and between the Ctenophora and the Placozoa, and confirmed the basal status of the Anthozoa within the Cnidaria. Additionally, in the ctenophore, placozoan and sponge, non-canonical base pairing is required to maintain the secondary structure of the B12 region, whereas amongst the Cnidaria this is not the case. Although the phylogenetic significance of this molecular character is unclear, our analyses do not support the close relationship between Cnidaria and Placozoa suggested by previous studies. PMID:9061962
Novel division level bacterial diversity in a Yellowstone hot spring.
Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R
1998-01-01
A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.
Unravelling biology and shifting paradigms in cancer with single-cell sequencing.
Baslan, Timour; Hicks, James
2017-08-24
The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.
Kim, Richard; Schell, Michael J; Teer, Jamie K; Greenawalt, Danielle M; Yang, Mingli; Yeatman, Timothy J
2015-01-01
Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution.
Kim, Richard; Schell, Michael J.; Teer, Jamie K.; Greenawalt, Danielle M.; Yang, Mingli; Yeatman, Timothy J.
2015-01-01
Introduction Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. Methods 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. Results An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Conclusions Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution. PMID:25974029
Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip
2015-01-01
Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and primagraft. PMID:25365311
Pre-lithification tectonic foliation development in a clastic sedimentary sequence
NASA Astrophysics Data System (ADS)
Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John
2016-04-01
The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.
cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism
NASA Astrophysics Data System (ADS)
Cong, F.; Li, J.
2016-12-01
The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence stratigraphic framework. Results show that high average organic carbon contents in the study interval are mainly attributed to high primary production. The results also show a good correlation between high organic carbon accumulation and intervals of transgression.
Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y; Lim, Bing; Tan, Min-Han; Hillmer, Axel M
2017-09-15
Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3 , FBXW7 and ERBB2 . In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions.
Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.
2017-01-01
Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093
Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.
2006-01-01
We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.
Fabrication of a New Lineage of Artificial Luciferases from Natural Luciferase Pools.
Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji
2017-09-11
The fabrication of artificial luciferases (ALucs) with unique optical properties has a fundamental impact on bioassays and molecular imaging. In this study, we developed a new lineage of ALucs with unique substrate preferences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools. The primary sequence was first created with a sequence logo generator resulting in a total of 11 sibling sequences. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases, and from a prior series of ALucs produced by our laboratory using a smaller basis set. The new lineage of ALucs were strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. A single-residue-level comparison of the C-terminal sequences of new ALucs reveals that some amino acids in the C-terminal ends are greatly influential on the optical intensities but limited in the color variance. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.
Quiet aircraft design and operational characteristics
NASA Technical Reports Server (NTRS)
Hodge, Charles G.
1991-01-01
The application of aircraft noise technology to the design and operation of aircraft is discussed. Areas of discussion include the setting of target airplane noise levels, operational considerations and their effect on noise, and the sequencing and timing of the design and development process. Primary emphasis is placed on commercial transport aircraft of the type operated by major airlines. Additionally, noise control engineering of other types of aircraft is briefly discussed.
Quigley, Denise D; Predmore, Zachary S; Chen, Alex Y; Hays, Ron D
Patient-centered medical home (PCMH) has gained momentum as a model for primary-care health services reform. We conducted interviews at 14 primary care practices undergoing PCMH transformation in a large urban federally qualified health center in California and used grounded theory to identify common themes and patterns. We found clinics pursued a common sequence of changes in PCMH transformation: Clinics began with National Committee for Quality Assurance (NCQA) level 3 recognition, adding care coordination staff, reorganizing data flow among teams, and integrating with a centralized quality improvement and accountability infrastructure. Next, they realigned to support continuity of care. Then, clinics improved access by adding urgent care, patient portals, or extending hours. Most then improved planning and management of patient visits. Only a handful worked explicitly on improving access with same day slots, scheduling processes, and test result communication. The clinics' changes align with specific NCQA PCMH standards but also include adding physicians and services, culture changes, and improved communication with patients. NCQA PCMH level 3 recognition is only the beginning of a continuous improvement process to become patient centered. Full PCMH transformation took time and effort and relied on a sequential approach, with an early focus on foundational changes that included use of a robust quality improvement strategy before changes to delivery of and access to care.
Active Learning in a Large General Physics Classroom.
NASA Astrophysics Data System (ADS)
Trousil, Rebecca
2008-04-01
In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.
Gruwell, Matthew E; Morse, Geoffrey E; Normark, Benjamin B
2007-07-01
Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes endosymbionts and with other similar sequences identified by BLAST searches. Although the endosymbionts of armored scales are only distantly related to the endosymbionts of the other sternorrhynchan insects, they are closely related to bacteria associated with eriococcid and margarodid scale insects, to cockroach and auchenorrynchan endosymbionts (Blattabacterium and Sulcia), and to male-killing endosymbionts of ladybird beetles. We propose the name "Candidatus Uzinura diaspidicola" for the primary endosymbionts of armored scale insects.
Hailat, N; Keim, D R; Melhem, R F; Zhu, X X; Eckerskorn, C; Brodeur, G M; Reynolds, C P; Seeger, R C; Lottspeich, F; Strahler, J R
1991-01-01
The gene encoding a novel protein designated nm23-H1, which was recently identified as identical to the A subunit of nucleotide diphosphate kinase from human erythrocytes, has been proposed to play a role in tumor metastasis suppression. We report that untreated neuroblastoma tumors contain a cellular polypeptide (Mr = 19,000) designated p19, identified in two-dimensional electrophoretic gels, which occurs at significantly higher levels (P = 0.0001) in primary tumors containing amplified N-myc gene. The partial amino acid sequence obtained for p19 is identical to the sequence of the human nm23-H1 protein. An antibody to the A subunit of erythrocyte nucleotide diphosphate kinase reacted exclusively with p19. In this study, significantly higher levels of p19/nm23 occurred in primary neuroblastoma tumors from patients with advanced stages (III and IV) relative to tumors from patients with limited stages (I and II) of the disease. Even among patients with a single copy of the N-myc gene, tumors from patients with stages III and IV had statistically significantly higher levels of p19/nm23 than tumors from patients with stages I and II. Our findings indicate that, in contrast to a proposed role for nm23-H1 as a tumor metastasis suppressor, increased p19/nm23 protein in neuroblastoma is correlated with features of the disease that are associated with aggressive tumors. Therefore, nm23-H1 may have distinct if not opposite roles in different tumors. Images PMID:2056128
Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad
2016-03-01
The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.
An Autonomous BMP2 Regulatory Element in Mesenchymal Cells
Kruithof, Boudewijn P.T.; Fritz, David T.; Liu, Yijun; Garsetti, Diane E.; Frank, David B.; Pregizer, Steven K.; Gaussin, Vinciane; Mortlock, Douglas P.; Rogers, Melissa B.
2014-01-01
BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3′untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3′UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3′UTR functions independently of promoter, coding region, and 3′UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements. PMID:21268088
Kim, Seung Tae; Kim, Sun Young; Kim, Nayoung K.D.; Jang, Jiryeon; Kang, Mihyun; Jang, Hyojin; Ahn, Soomin; Kim, Seok Hyeong; Park, Yoona; Cho, Yong Beom; Heo, Jeong Wook; Lee, Woo Yong; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Park, Woong-Yang; Lee, Jeeyun; Kim, Hee Cheol
2016-01-01
Background We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. Results In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Methods Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Oncology Biomarker study. The PDC culture protocol was performed for all eligible patients. All of the primary tumors from the 112 patients who provided written informed consent were genomically sequenced with targeted sequencing. In parallel, PDC establishment was attempted for all sequenced tumors. Conclusions We have prospectively sequenced a CRC cohort of 105 patients and successfully established 62 PDC in parallel. Each genomically characterized PDCs can be used as a preclinical model especially in rare genomic alteration event. PMID:26909603
Tzanetakis, Giorgos N; Azcarate-Peril, M Andrea; Zachaki, Sophia; Panopoulos, Panos; Kontakiotis, Evangelos G; Madianos, Phoebus N; Divaris, Kimon
2015-08-01
Elucidating the microbial ecology of endodontic infections (EIs) is a necessary step in developing effective intracanal antimicrobials. The aim of the present study was to investigate the bacterial composition of symptomatic and asymptomatic primary and persistent infections in a Greek population using high-throughput sequencing methods. 16S amplicon pyrosequencing of 48 root canal bacterial samples was conducted, and sequencing data were analyzed using an oral microbiome-specific and a generic (Greengenes) database. Bacterial abundance and diversity were examined by EI type (primary or persistent), and statistical analysis was performed by using non-parametric and parametric tests accounting for clustered data. Bacteroidetes was the most abundant phylum in both infection groups. Significant, albeit weak associations of bacterial diversity were found, as measured by UniFrac distances with infection type (analyses of similarity, R = 0.087, P = .005) and symptoms (analyses of similarity, R = 0.055, P = .047). Persistent infections were significantly enriched for Proteobacteria and Tenericutes compared with primary ones; at the genus level, significant differences were noted for 14 taxa, including increased enrichment of persistent infections for Lactobacillus, Streptococcus, and Sphingomonas. More but less abundant phyla were identified using the Greengenes database; among those, Cyanobacteria (0.018%) and Acidobacteria (0.007%) were significantly enriched among persistent infections. Persistent infections showed higher phylogenetic diversity (PD) (asymptomatic: PD = 9.2, standard error [SE] = 1.3; symptomatic: PD = 8.2, SE = 0.7) compared with primary infections (asymptomatic: PD = 5.9, SE = 0.8; symptomatic: PD = 7.4, SE = 1.0). The present study revealed a high bacterial diversity of EI and suggests that persistent infections may have more diverse bacterial communities than primary infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I
2018-04-14
Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jiang, Yi-Fan; Chou, Chung-Hsi; Lin, En-Chung; Chiu, Chih-Hsien
2011-02-01
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that senses and adapts cells to hypoxic environmental conditions. HIF-1 is composed of an oxygen-regulated α subunit (HIF-1α) and a constitutively expressed β subunit (HIF-1β). Taiwan voles (Microtus kikuchii) are an endemic species in Taiwan, found only in mountainous areas greater than 2000m above sea level. In this study, the full-length HIF-1α cDNA was cloned and sequenced from liver tissues of Taiwan voles. We found that HIF-1α of Taiwan voles had high sequence similarity to HIF-1α of other species. Sequence alignment of HIF-1α functional domains indicated basic helix-loop-helix (bHLH), PER-ARNT-SIM (PAS) and C-terminal transactivation (TAD-C) domains were conserved among species, but sequence variations were found between the oxygen-dependent degradation domains (ODDD). To measure Taiwan vole HIF-1α responses to hypoxia, animals were challenged with cobalt chloride, and HIF-1α mRNA and protein expression in brain, lung, heart, liver, kidney, and muscle was assessed by quantitative RT-PCR and Western blot analysis. Upon induction of hypoxic stress with cobalt chloride, an increase in HIF-1α mRNA levels was detected in lung, heart, kidney, and muscle tissue. In contrast, protein expression levels showed greater variation between individual animals. These results suggest that the regulation of HIF-1α may be important to the Taiwan vole under cobalt chloride treatments. But more details regarding the evolutionary effect of environmental pressure on HIF-1α primary sequence, HIF-1α function and regulation in Taiwan voles remain to be identified. Copyright © 2010 Elsevier Inc. All rights reserved.
The features of mucosa-associated microbiota in primary sclerosing cholangitis.
Torres, J; Bao, X; Goel, A; Colombel, J-F; Pekow, J; Jabri, B; Williams, K M; Castillo, A; Odin, J A; Meckel, K; Fasihuddin, F; Peter, I; Itzkowitz, S; Hu, J
2016-04-01
Little is known about the role of the microbiome in primary sclerosing cholangitis. To explore the mucosa-associated microbiota in primary sclerosing cholangitis (PSC) patients across different locations in the gut, and to compare it with inflammatory bowel disease (IBD)-only patients and healthy controls. Biopsies from the terminal ileum, right colon, and left colon were collected from patients and healthy controls undergoing colonoscopy. Microbiota profiling using bacterial 16S rRNA sequencing was performed on all biopsies. Forty-four patients were recruited: 20 with PSC (19 with PSC-IBD and one with PSC-only), 15 with IBD-only and nine healthy controls. The overall microbiome profile was similar throughout different locations in the gut. No differences in the global microbiome profile were found. However, we observed significant PSC-associated enrichment in Barnesiellaceae at the family level, and in Blautia and an unidentified Barnesiellaceae at the genus level. At the operational taxa unit level, most shifts in PSC were observed in Clostridiales and Bacteroidales orders, with approximately 86% of shifts occurring within the former order. The overall microbiota profile was similar across multiple locations in the gut from the same individual regardless of disease status. In this study, the mucosa associated-microbiota of patients with primary sclerosing cholangitis was characterised by enrichment of Blautia and Barnesiellaceae and by major shifts in operational taxa units within Clostridiales order. © 2016 John Wiley & Sons Ltd.
Tu, Bin; Masaberg, Carly; Hou, Lihua; Behm, Daniel; Brescia, Peter; Cha, Nuri; Kariyawasam, Kanthi; Lee, Jar How; Nong, Thoa; Sells, John; Tausch, Paul; Yang, Ruyan; Ng, Jennifer; Hurley, Carolyn Katovich
2017-02-01
Sanger-based DNA sequencing of exons 2+3 of HLA class I alleles from a heterozygote frequently results in two or more alternative genotypes. This study was undertaken to reduce the time and effort required to produce a single high resolution HLA genotype. Samples were typed in parallel by Sanger sequencing and oligonucleotide probe hybridization. This workflow, together with optimization of analysis software, was tested and refined during the typing of over 42,000 volunteers for an unrelated hematopoietic progenitor cell donor registry. Next generation DNA sequencing (NGS) was applied to over 1000 of these samples to identify the alleles present within the G group designations. Single genotypes at G level resolution were obtained for over 95% of the loci without additional assays. The vast majority of alleles identified (>99%) were the primary allele giving the G groups their name. Only 0.7% of the alleles identified encoded protein variants that were not detected by a focus on the antigen recognition domain (ARD)-encoding exons. Our combined method routinely provides biologically relevant typing resolution at the level of the ARD. It can be applied to both single samples or to large volume typing supporting either bone marrow or solid organ transplantation using technologies currently available in many HLA laboratories. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.
Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David
2016-03-21
Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.
Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.
Sumper, M; Berg, E; Mengele, R; Strobel, I
1990-01-01
The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988). Images PMID:2123862
Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.
Sumper, M; Berg, E; Mengele, R; Strobel, I
1990-12-01
The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988).
Mapping PDB chains to UniProtKB entries.
Martin, Andrew C R
2005-12-01
UniProtKB/SwissProt is the main resource for detailed annotations of protein sequences. This database provides a jumping-off point to many other resources through the links it provides. Among others, these include other primary databases, secondary databases, the Gene Ontology and OMIM. While a large number of links are provided to Protein Data Bank (PDB) files, obtaining a regularly updated mapping between UniProtKB entries and PDB entries at the chain or residue level is not straightforward. In particular, there is no regularly updated resource which allows a UniProtKB/SwissProt entry to be identified for a given residue of a PDB file. We have created a completely automatically maintained database which maps PDB residues to residues in UniProtKB/SwissProt and UniProtKB/trEMBL entries. The protocol uses links from PDB to UniProtKB, from UniProtKB to PDB and a brute-force sequence scan to resolve PDB chains for which no annotated link is available. Finally the sequences from PDB and UniProtKB are aligned to obtain a residue-level mapping. The resource may be queried interactively or downloaded from http://www.bioinf.org.uk/pdbsws/.
NASA Astrophysics Data System (ADS)
Choi, D. H.; Noh, J. H.; Selph, K. E.; Lee, C. M.
2016-02-01
Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of open oligotrophic waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, Prasinophyceae, Bacillariophyceaea, and Pelagophyceae. These distributions were influenced by temperature, salinity, and chlorophyll a and nutrient concentrations.
Golparian, Daniel; Nicholas, Robert; Ohnishi, Makoto; Gallay, Anne; Sednaoui, Patrice
2012-01-01
Recently, the first Neisseria gonorrhoeae strain (H041) highly resistant to the expanded-spectrum cephalosporins (ESCs) ceftriaxone and cefixime, which are the last remaining options for first-line gonorrhea treatment, was isolated in Japan. Here, we confirm and characterize a second strain (F89) with high-level cefixime and ceftriaxone resistance which was isolated in France and most likely caused a treatment failure with cefixime. F89 was examined using six species-confirmatory tests, antibiograms (33 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of known gonococcal resistance determinants (penA, mtrR, penB, ponA, and pilQ). F89 was assigned to MLST sequence type 1901 (ST1901) and NG-MAST ST1407, which is a successful gonococcal clone that has spread globally. F89 has high-level resistance to cefixime (MIC = 4 μg/ml) and ceftriaxone (MIC = 1 to 2 μg/ml) and resistance to most other antimicrobials examined. A novel penA mosaic allele (penA-CI), which was penA-XXXIV with an additional A501P alteration in penicillin-binding protein 2, was the primary determinant for high-level ESC resistance, as determined by transformation into a set of recipient strains. N. gonorrhoeae appears to be emerging as a superbug, and in certain circumstances and settings, gonorrhea may become untreatable. Investigations of the biological fitness and enhanced understanding and monitoring of the ESC-resistant clones and their international transmission are required. Enhanced disease control activities, antimicrobial resistance control and surveillance worldwide, and public health response plans for global (and national) perspectives are also crucial. Nevertheless, new treatment strategies and/or drugs and, ideally, a vaccine are essential to develop for efficacious gonorrhea management. PMID:22155830
Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E
2014-01-01
Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. PMID:24654730
Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E
2014-06-01
Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Molenaar, Inge; Chiu, Ming Ming
2014-01-01
Extending past research showing that regulative activities (metacognitive and relational) can aid learning, this study tests whether sequences of cognitive, metacognitive and relational activities affect subsequent cognition. Scaffolded by a computer avatar, 54 primary school students (working in 18 groups of 3) discussed writing a report about a…
Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K
2018-03-01
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
SeqAPASS: Sequence alignment to predict across-species ...
Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, such as U.S. EPA ToxCast, and application of the adverse outcome pathway (AOP) framework for identifying and defining biological key events triggered upon perturbation of molecular initiating events and leading to adverse outcomes occuring at a level of organization relevant for risk assessment [1]. With these recent initiatives to harness the power of “the pathway” in describing and evaluating toxicity comes the need to extrapolate data beyond the model species. Sequence alignment to predict across-species susceptibilty (SeqAPASS) is a web-based tool that allows the user to begin to understand how broadly HTS data or AOP constructs may plausibly be extrapolated across species, while describing the relative intrinsic susceptibiltiy of different taxa to chemicals with known modes of action (e.g., pharmaceuticals and pesticides). The tool rapidly and strategically assesses available molecular target information to describe protein sequence similarity at the primary amino acid sequence, conserved domain, and individual amino acid residue levels. This in silico approach to species extrapolation was designed to automate and streamline the relatively complex and time-consuming process of co
Ma, Zhengqiang
2013-01-01
Rht-B1c, allelic to the DELLA protein-encoding gene Rht-B1a, is a natural mutation documented in common wheat (Triticum aestivum). It confers variation to a number of traits related to cell and plant morphology, seed dormancy, and photosynthesis. The present study was conducted to examine the sequence variations of Rht-B1c and their functional impacts. The results showed that Rht-B1c was partially dominant or co-dominant for plant height, and exhibited an increased dwarfing effect. At the sequence level, Rht-B1c differed from Rht-B1a by one 2kb Veju retrotransposon insertion, three coding region single nucleotide polymorphisms (SNPs), one 197bp insertion, and four SNPs in the 1kb upstream sequence. Haplotype investigations, association analyses, transient expression assays, and expression profiling showed that the Veju insertion was primarily responsible for the extreme dwarfing effect. It was found that the Veju insertion changed processing of the Rht-B1c transcripts and resulted in DELLA motif primary structure disruption. Expression assays showed that Rht-B1c caused reduction of total Rht-1 transcript levels, and up-regulation of GATA-like transcription factors and genes positively regulated by these factors, suggesting that one way in which Rht-1 proteins affect plant growth and development is through GATA-like transcription factor regulation. PMID:23918966
Langer, Kelly M; Jones, Correy R; Jaworski, Elizabeth A; Rushing, Gabrielle V; Kim, Joo Young; Clark, David G; Colquhoun, Thomas A
2014-07-01
Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis consists of numerous enzymatic and regulatory processes. The initial enzymatic step bridging primary metabolism to secondary metabolism is the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) carried out via 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE (DAHP) synthase. Here, identified, cloned, localized, and functionally characterized were two DAHP synthases from the model plant species Petunia × hybrida cv 'Mitchell Diploid' (MD). Full-length transcript sequences for PhDAHP1 and PhDAHP2 were identified and cloned using cDNA SMART libraries constructed from pooled MD corolla and leaf total RNA. Predicted amino acid sequence of PhDAHP1 and PhDAHP2 proteins were 76% and 80% identical to AtDAHP1 and AtDAHP2 from Arabidopsis, respectively. PhDAHP1 transcript accumulated to relatively highest levels in petal limb and tube tissues, while PhDAHP2 accumulated to highest levels in leaf and stem tissues. Through floral development, PhDAHP1 transcript accumulated to highest levels during open flower stages, and PhDAHP2 transcript remained constitutive throughout. Radiolabeled PhDAHP1 and PhDAHP2 proteins localized to plastids, however, PhDAHP2 localization appeared less efficient. PhDAHP1 RNAi knockdown petunia lines were reduced in total FVBP emission compared to MD, while PhDAHP2 RNAi lines emitted 'wildtype' FVBP levels. These results demonstrate that PhDAHP1 is the principal DAHP synthase protein responsible for the coupling of metabolites from primary metabolism to secondary metabolism, and the ultimate biosynthesis of FVBPs in the MD flower. Copyright © 2014 Elsevier Ltd. All rights reserved.
Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis.
Kure, Elin H; Sæbø, Mona; Stangeland, Astrid M; Hamfjord, Julian; Hytterød, Sigurd; Heggenes, Jan; Lydersen, Espen
2013-08-15
Atlantic salmon (Salmo salar) is among the most sensitive organisms toward acidic, aluminum exposure. Main documented responses to this type of stress are a combination of hypoxia and loss of blood plasma ions. Physiological responses to stress in fish are often grouped into primary, secondary and tertiary responses, where the above mentioned effects are secondary responses, while primary responses include endocrine changes as measurable levels of catecholamines and corticosteroids. In this study we have exposed young (14 months) Atlantic salmon to acid/Al water (pH ≈ 5.6, Al(i) ≈ 80 μg L⁻¹) for 3 days, and obtained clear and consistent decrease of Na⁺ and Cl⁻ ions, and increases of glucose in blood plasma, hematocrit and P(CO₂) in blood. We did not measure plasma cortisol (primary response compound), but analyzed effects on microRNA level (miRNA) in muscle tissue, as this may represent initial markers of primary stress responses. miRNAs regulate diverse biological processes, many are evolutionarily conserved, and hundreds have been identified in various animals, although only in a few fish species. We used a novel high-throughput sequencing (RNA-Seq) method to identify miRNAs in Atlantic salmon and specific miRNAs as potential early markers for stress. A total of 18 miRNAs were significantly differentially expressed (FDR<0.1) in exposed compared to control fish, four down-regulated and 14 up-regulated. An unsupervised hierarchical clustering of significant miRNAs revealed two clusters representing exposed and non-exposed individuals. Utilizing the genome of the zebrafish and bioinformatic tools, we identified 224 unique miRNAs in the Atlantic salmon samples sequenced. Additional laboratory studies focusing on function, stress dose-responses and temporal expression of the identified miRNAs will facilitate their use as initial markers for stress responses. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Kulpecz, A.A.; Miller, K.G.; Sugarman, P.J.; Browning, J.V.
2008-01-01
Paleogeographic, isopach, and deltaic lithofacies mapping of thirteen depositional sequences establish a 35 myr high resolution (> 1 Myr) record of Late Cretaceous wave- and tide-influenced deltaic sedimentation. We integrate sequences defined on the basis of lithologic, biostratigraphic, and Sr-isotope stratigraphy from cores with geophysical log data from 28 wells to further develop and extend methods and calibrations of well-log recognition of sequences and facies variations. This study reveals the northeastward migration of depocenters from the Cenomanian (ca. 98 Ma) through the earliest Danian (ca. 64 Ma) and documents five primary phases of paleodeltaic evolution in response to long-term eustatic changes, variations in sediment supply, the location of two long-lived fluvial axes, and thermoflexural basement subsidence: (1) Cenomanian-early Turonian deltaic facies exhibit marine and nonmarine facies and are concentrated in the central coastal plain; (2) high sediment rates, low sea level, and high accommodation rates in the northern coastal plain resulted in thick, marginal to nonmarine mixed-influenced deltaic facies during the Turonign-Coniacian; (3) comparatively low sediment rates and high long-term sea level in the Santonian resulted in a sediment-starved margin with low deltaic influence; (4) well-developed Campanian deltaic sequences expand to the north and exhibit wave reworking and longshore transport of sands, and (5) low sedimentation rates and high long-term sea level during the Maastrichtian resulted in the deposition of a sediment-starved glauconitic shelf. Our study illustrates the widely known variability of mixed-influence deltaic systems, but also documents the relative stability of deltaic facies systems on the 106-107 yr scale, with long periods of cyclically repeating systems tracts controlled by eustasy. Results from the Late Cretaceous further show that although eustasy provides the template for sequences globally, regional tectonics (rates of subsidence and accommodation), changes in sediment supply, proximity to sediment input, and flexural subsidence from depocenter loading determines the regional to local preservation and facies expression of sequences. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier-Kolthoff, Jan P.; Lu, Megan; Huntemann, Marcel
Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyanmore » blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).« less
2014-01-01
We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838
A Hierarchical Convolutional Neural Network for vesicle fusion event classification.
Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke
2017-09-01
Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns.
Cifola, Ingrid; Lionetti, Marta; Pinatel, Eva; Todoerti, Katia; Mangano, Eleonora; Pietrelli, Alessandro; Fabris, Sonia; Mosca, Laura; Simeon, Vittorio; Petrucci, Maria Teresa; Morabito, Fortunato; Offidani, Massimo; Di Raimondo, Francesco; Falcone, Antonietta; Caravita, Tommaso; Battaglia, Cristina; De Bellis, Gianluca; Palumbo, Antonio; Musto, Pellegrino; Neri, Antonino
2015-07-10
Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.
NemaPath: online exploration of KEGG-based metabolic pathways for nematodes
Wylie, Todd; Martin, John; Abubucker, Sahar; Yin, Yong; Messina, David; Wang, Zhengyuan; McCarter, James P; Mitreva, Makedonka
2008-01-01
Background Nematode.net is a web-accessible resource for investigating gene sequences from parasitic and free-living nematode genomes. Beyond the well-characterized model nematode C. elegans, over 500,000 expressed sequence tags (ESTs) and nearly 600,000 genome survey sequences (GSSs) have been generated from 36 nematode species as part of the Parasitic Nematode Genomics Program undertaken by the Genome Center at Washington University School of Medicine. However, these sequencing data are not present in most publicly available protein databases, which only include sequences in Swiss-Prot. Swiss-Prot, in turn, relies on GenBank/Embl/DDJP for predicted proteins from complete genomes or full-length proteins. Description Here we present the NemaPath pathway server, a web-based pathway-level visualization tool for navigating putative metabolic pathways for over 30 nematode species, including 27 parasites. The NemaPath approach consists of two parts: 1) a backend tool to align and evaluate nematode genomic sequences (curated EST contigs) against the annotated Kyoto Encyclopedia of Genes and Genomes (KEGG) protein database; 2) a web viewing application that displays annotated KEGG pathway maps based on desired confidence levels of primary sequence similarity as defined by a user. NemaPath also provides cross-referenced access to nematode genome information provided by other tools available on Nematode.net, including: detailed NemaGene EST cluster information; putative translations; GBrowse EST cluster views; links from nematode data to external databases for corresponding synonymous C. elegans counterparts, subject matches in KEGG's gene database, and also KEGG Ontology (KO) identification. Conclusion The NemaPath server hosts metabolic pathway mappings for 30 nematode species and is available on the World Wide Web at . The nematode source sequences used for the metabolic pathway mappings are available via FTP , as provided by the Genome Center at Washington University School of Medicine. PMID:18983679
Genotype-Phenotype Correlation in Primary Carnitine Deficiency
Rose, Emily Cornforth; di San Filippo, Cristina Amat; Ndukwe Erlingsson, Uzochi C.; Ardon, Orly; Pasquali, Marzia; Longo, Nicola
2011-01-01
Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women’s than in the symptomatic patients’ fibroblasts (p<0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (p<0.001). Expression of the missense mutations in CHO cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation. PMID:21922592
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S.; Virk, Selene M.; Mikkelsen, Tom; Brat, Daniel J.; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E.; Cohen, Mark L.; Van Meir, Erwin G.; Scarpace, Lisa; Laird, Peter W.; Weinstein, John N.; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S.
2015-01-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. PMID:25650244
Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design.
Rush, A John; Fava, Maurizio; Wisniewski, Stephen R; Lavori, Philip W; Trivedi, Madhukar H; Sackeim, Harold A; Thase, Michael E; Nierenberg, Andrew A; Quitkin, Frederic M; Kashner, T Michael; Kupfer, David J; Rosenbaum, Jerrold F; Alpert, Jonathan; Stewart, Jonathan W; McGrath, Patrick J; Biggs, Melanie M; Shores-Wilson, Kathy; Lebowitz, Barry D; Ritz, Louise; Niederehe, George
2004-02-01
STAR*D is a multisite, prospective, randomized, multistep clinical trial of outpatients with nonpsychotic major depressive disorder. The study compares various treatment options for those who do not attain a satisfactory response with citalopram, a selective serotonin reuptake inhibitor antidepressant. The study enrolls 4000 adults (ages 18-75) from both primary and specialty care practices who have not had either a prior inadequate response or clear-cut intolerance to a robust trial of protocol treatments during the current major depressive episode. After receiving citalopram (level 1), participants without sufficient symptomatic benefit are eligible for randomization to level 2 treatments, which entail four switch options (sertraline, bupropion, venlafaxine, cognitive therapy) and three citalopram augment options (bupropion, buspirone, cognitive therapy). Those who receive cognitive therapy (switch or augment options) at level 2 without sufficient improvement are eligible for randomization to one of two level 2A switch options (venlafaxine or bupropion). Level 2 and 2A participants are eligible for random assignment to two switch options (mirtazapine or nortriptyline) and to two augment options (lithium or thyroid hormone) added to the primary antidepressant (citalopram, bupropion, sertraline, or venlafaxine) (level 3). Those without sufficient improvement at level 3 are eligible for level 4 random assignment to one of two switch options (tranylcypromine or the combination of mirtazapine and venlafaxine). The primary outcome is the clinician-rated, 17-item Hamilton Rating Scale for Depression, administered at entry and exit from each treatment level through telephone interviews by assessors masked to treatment assignments. Secondary outcomes include self-reported depressive symptoms, physical and mental function, side-effect burden, client satisfaction, and health care utilization and cost. Participants with an adequate symptomatic response may enter the 12-month naturalistic follow-up phase with brief monthly and more complete quarterly assessments.
Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.
Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F
1994-10-01
The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.
WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leist, K.J.
1997-11-24
On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack ofmore » installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report.« less
ERIC Educational Resources Information Center
Taylor, Neil; Lucas, Keith B.
2000-01-01
Describes a teaching sequence on gaseous pressure implemented in a group of pre-service primary teachers in Fiji that provides subjects with a strong visual model of particle behavior which they then applied to a series of collaborative science activities for which they attempted to construct explanations. Suggests that this teaching sequence…
Ortí, G; Meyer, A
1996-04-01
The rate and pattern of DNA evolution of ependymin, a single-copy gene coding for a highly expressed glycoprotein in the brain matrix of teleost fishes, is characterized and its phylogenetic utility for fish systematics is assessed. DNA sequences were determined from catfish, electric fish, and characiforms and compared with published ependymin sequences from cyprinids, salmon, pike, and herring. Among these groups, ependymin amino acid sequences were highly divergent (up to 60% sequence difference), but had surprisingly similar hydropathy profiles and invariant glycosylation sites, suggesting that functional properties of the proteins are conserved. Comparison of base composition at third codon positions and introns revealed AT-rich introns and GC-rich third codon positions, suggesting that the biased codon usage observed might not be due to mutational bias. Phylogenetic information content of third codon positions was surprisingly high and sufficient to recover the most basal nodes of the tree, in spite of the observation that pairwise distances (at third codon positions) were well above the presumed saturation level. This finding can be explained by the high proportion of phylogenetically informative nonsynonymous changes at third codon positions among these highly divergent proteins. Ependymin DNA sequences have established the first molecular evidence for the monophyly of a group containing salmonids and esociforms. In addition, ependymin suggests a sister group relationship of electric fish (Gymnotiformes) and Characiformes, constituting a significant departure from currently accepted classifications. However, relationships among characiform lineages were not completely resolved by ependymin sequences in spite of seemingly appropriate levels of variation among taxa and considerably low levels of homoplasy in the data (consistency index = 0.7). If the diversification of Characiformes took place in an "explosive" manner, over a relatively short period of time this pattern should also be observed using other phylogenetic markers. Poor conservation of ependymin's primary structure hinders the design of efficient primers for PCR that could be used in wide-ranging fish systematic studies. However, alternative methods like PCR amplification from cDNA used here should provide promising comparative sequence data for the resolution of phylogenetic relationships among other basal lineages of teleost fishes.
Subclonal diversification of primary breast cancer revealed by multiregion sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less
Subclonal diversification of primary breast cancer revealed by multiregion sequencing
Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...
2015-06-22
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less
Costa, José Hélio; de Melo, Dirce Fernandes; Gouveia, Zélia; Cardoso, Hélia Guerra; Peixe, Augusto; Arnholdt-Schmitt, Birgit
2009-12-01
'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.
NASA Astrophysics Data System (ADS)
McMahon, Kendra
2012-07-01
By developing two case studies of expert teaching in action, this study aimed to develop knowledge of talk in whole-class teaching in UK primary science lessons and understand this in relation to both the teachers' interpretations and sociocultural theoretical frameworks. Lessons were observed and video-recorded and the teachers engaged in video-stimulated-reflective dialogue to capture participants' reflections upon their own pedagogic purposes and interactions in the classroom. The analytic framework was developed at three levels: sequence of lessons, lesson, and episode. For each episode, the 'communicative approach' and teaching purposes were recorded. Transcripts were developed for fine grain analysis of selected episodes and a quantitative analysis was undertaken of the use of communicative approaches. Findings exemplify how different communicative approaches were used by the case-study teachers for different pedagogical purposes at different points in the sequence of lessons, contributing to primary teachers' repertoire for planning and practice. The initial elicitation of children's ideas can be understood as pooling them to enhance multivoicedness and develop a shared resource for future dialogues. Whole-class talk can support univocality by rehearsing procedural knowledge and exploring the meanings of scientific terminology. Identifying salient features of phenomena in the context of the whole-class marks them as significant as shared knowledge but valuing other observations extends the multivoicedness of the discourse.
Integrative Clinical Genomics of Metastatic Cancer
Robinson, Dan R.; Wu, Yi-Mi; Lonigro, Robert J.; Vats, Pankaj; Cobain, Erin; Everett, Jessica; Cao, Xuhong; Rabban, Erica; Kumar-Sinha, Chandan; Raymond, Victoria; Schuetze, Scott; Alva, Ajjai; Siddiqui, Javed; Chugh, Rashmi; Worden, Francis; Zalupski, Mark M.; Innis, Jeffrey; Mody, Rajen J.; Tomlins, Scott A.; Lucas, David; Baker, Laurence H.; Ramnath, Nithya; Schott, Ann F.; Hayes, Daniel F.; Vijai, Joseph; Offit, Kenneth; Stoffel, Elena M.; Roberts, J. Scott; Smith, David C.; Kunju, Lakshmi P.; Talpaz, Moshe; Cieslik, Marcin; Chinnaiyan, Arul M.
2017-01-01
SUMMARY Metastasis is the primary cause of cancer-related deaths. While The Cancer Genome Atlas (TCGA) has sequenced primary tumor types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here, we perform whole exome and transcriptome sequencing of 500 adult patients with metastatic solid tumors of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing for the identification of gene fusions, pathway activation, and immune profiling. Integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers. PMID:28783718
Beta-globin locus activation regions: conservation of organization, structure, and function.
Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G
1990-01-01
The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034
Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill
2015-01-01
Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080
Cheng, Fu Bo; Ozelius, Laurie J; Wan, Xin Hua; Feng, Jia Chun; Ma, Ling Yan; Yang, Ying Mai; Wang, Lin
2012-02-01
Mutations in the THAP1 gene were recently identified as the cause of DYT6 primary dystonia. More than 40 mutations in this gene have been described in different populations. However, no previous report has identified sequence variations that affect the transcript process of the THAP1 gene. In addition, the mutation frequency in Chinese early-onset primary dystonia has not been well characterized. One hundred and two unrelated patients with non-DYT1 early-onset primary dystonia (age at onset <26 years), family members of participants with mutations, and 200 neurologically normal controls were screened for THAP1 gene mutations. The effects of the identified mutations on RNA expression were analyzed using semi-quantitative real-time PCR. Seven sequence variants (c.63_66del TTTC, c.161G>T, c.224A>T, c.267G>A, c.339T>C, c.449A>C, and c.539T>C) were identified in this group of patients (6.9%). In this cohort, 15 subjects (seven unrelated patients and eight family members) were detected to have THAP1 sequence variants. Among these 15 subjects, 11 were manifested (penetrance of DYT6 was 73.3%) and seven presented with craniocervical involvement (63.6%). However, one patient manifested paroxysmal headshake, and one presented with essential hand tremor. Semi-quantitative real-time PCR indicated that a novel silent mutation (c.267G>A) decreased the expression of THAP1 in human lymphocytes. Our findings indicated that THAP1 sequence variants are not common in non-DYT1 early-onset primary dystonia in China and that the clinical manifestation may vary. One silent mutation (c.267G>A) was shown to affect THAP1 expression.
Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma.
Huang, Xiaobo; Li, Miaoling; Guo, Xiangming; Li, Shiqiang; Xiao, Xueshan; Jia, Xiaoyun; Liu, Xing; Zhang, Qingjiong
2014-05-13
To evaluate mutations in the MYOC, WDR36, OPTN, OPA1, NTF4, CYP1B1, and LTBP2 genes in a cohort of Chinese patients with primary glaucoma. Genomic DNA was prepared from 683 unrelated patients, including 50 with primary congenital glaucoma, 104 with juvenile open-angle glaucoma (JOAG), 186 with primary open-angle glaucoma (POAG), and 343 with primary angle-closure glaucoma (PACG). Mutations in the seven genes in 257 patients (36 with JOAG, 89 with POAG, and 132 with PACG) were initially analyzed by exome sequencing and then confirmed by Sanger sequencing. In addition, Sanger sequencing was used to detect MYOC mutations in the remaining 426 patients. Exome sequencing identified 19 mutations (6 in MYOC, 9 in WDR36, 3 in OPA1, and 1 in OPTN) in 20 of 257 patients, including 4 patients with JOAG, 8 patients with POAG, and 8 patients with PACG. No mutation was detected in the other three genes. In addition, Sanger sequencing detected additional MYOC mutations in 5 of the remaining 426 patients, including 3 patients with JOAG and 2 patients with POAG. Twenty-two mutations in MYOC, WDR36, OPA1, and OPTN were detected in 25 of the 683 patients with primary glaucoma, including nine MYOC mutations in 11 patients, nine WDR36 mutations in 11 patients, three OPA1 mutations in 3 patients, and one OPTN mutation in a patient who also carried a MYOC mutation. Eight mutations in MYOC, WDR36, and OPA1 in 8 of the 343 PACG patients are of uncertain significance and need to be analyzed further. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly
Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng
2012-01-01
Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission. PMID:22745728
Du, Guangsheng; Lv, Jiagao; He, Li; Ma, Yexin
2011-06-01
In order to investigate the influence of silencing soluble epoxide hydrolase (sEH) with double-stranded small interfering RNA (siRNA) on cardiomyocytes apoptosis induced by doxorubicin (DOX), two plasmids containing siRNA sequences specific to sEH were constructed and transfected into the primary cultured cardiomyocytes by using FuGENE HD transfection agents. The mRNA and protein expression levels of sEH were detected by semiquantitative RT-PCR and Western blotting respectively, and the plasmids that silenced sEH most significantly were selected, and renamed EH-R. The plasmids carrying a nonspecific siRNA coding sequence (PCN) served as the negative control. Cardiomyocytes were divided into four groups: control group, DOX group, PCN+DOX group, and EH-R+DOX group. Apoptosis of cardiomyocytes was induced by DOX at a concentration of 1 μmol/L. Apoptosis rate of cardiomyocytes was determined by flow cytometery. The protein expression levels of Bcl-2 and Bax were detected by Western blotting. The results showed that the expression of sEH was down-regulated by EH-R plasmid. The expression levels of sEH mRNA and protein in the EH-R+DOX group were significantly decreased as compared with other groups (P<0.01). As compared with the control group, the apoptosis rate of cardiomyocytes in three DOX-treated groups was obviously increased, the expression levels of Bax increased, and those of Bcl-2 decreased (P<0.01). However, the expression levels of Bax were decreased, those of Bcl-2 increased and the apoptosis rate of cardiomyocytes obviously decreased in EH-R+DOX group when compared with those in the DOX group and the PCN+DOX group (P<0.01 for each). It was concluded that the recombinant plasmids could be successfully constructed, and transfected into the primary cultured cardiomyocytes. They could ameliorate the DOX-induced cardiomyocytes apoptosis by selectively inhibiting the expression of sEH with RNAi and increasing the expression of Bcl-2.
The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor
NASA Astrophysics Data System (ADS)
Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.
2016-12-01
Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.
Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao
2013-10-25
The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway. Copyright © 2013. Published by Elsevier Inc.
Shenoy, Archana; Blelloch, Robert
2009-09-11
The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.
Choi, Dong H; An, Sung M; Chun, Sungjun; Yang, Eun C; Selph, Karen E; Lee, Charity M; Noh, Jae H
2016-02-01
Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of oligotrophic open waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, prasinophytes, Bacillariophyceaea and Pelagophyceae. These distributions were influenced by temperature, salinity and chlorophyll a and nutrient concentrations. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning
2014-01-01
X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S; Virk, Selene M; Mikkelsen, Tom; Brat, Daniel J; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E; Cohen, Mark L; Van Meir, Erwin G; Scarpace, Lisa; Laird, Peter W; Weinstein, John N; Lander, Eric S; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S; Verhaak, Roel G W
2015-03-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. © 2015 Kim et al.; Published by Cold Spring Harbor Laboratory Press.
Primary Drug Resistance in South Africa: Data from 10 Years of Surveys
Manasa, Justen; Katzenstein, David; Cassol, Sharon; Newell, Marie-Louise
2012-01-01
Abstract HIV-1 transmitted drug resistance (TDR) could reverse the gains of antiretroviral rollout. To ensure that current first-line therapies remain effective, TDR levels in recently infected treatment-naive patients need to be monitored. A literature review and data mining exercise was carried out to determine the temporal trends in TDR in South Africa. In addition, 72 sequences from seroconvertors identified from Africa Centre's 2010 HIV surveillance round were also examined for TDR. Publicly available data on TDR were retrieved from GenBank, curated in RegaDB, and analyzed using the Calibrated Population Resistance Program. There was no evidence of TDR from the 2010 rural KwaZulu Natal samples. Ten datasets with a total of 1618 sequences collected between 2000 and 2010 were pooled to provide a temporal analysis of TDR. The year with the highest TDR rate was 2002 [6.67%, 95% confidence interval (CI): 3.09–13.79%; n=6/90]. After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010. The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. Five sequences had multiple resistance mutations associated with NNRTI resistance. There is no evidence of TDR in rural KwaZulu-Natal. TDR levels in South Africa have remained low following a downward trend since 2003. Continuous vigilance in monitoring of TDR is needed as more patients are initiated and maintained onto antiretroviral therapy. PMID:22251009
Generation of control sequences for a pilot-disassembly system
NASA Astrophysics Data System (ADS)
Seliger, Guenther; Kim, Hyung-Ju; Keil, Thomas
2002-02-01
Closing the product and material cycles has emerged as a paradigm for industry in the 21st century. Disassembly plays a key role in a life cycle economy since it enables the recovery of resources. A partly automated disassembly system should adapt to a large variety of products and different degrees of devaluation. Also the amounts of products to be disassembled can vary strongly. To cope with these demands an approach to generate on-line disassembly control sequences will be presented. In order to react on these demands the technological feasibility is considered within a procedure for the generation of disassembly control sequences. Procedures are designed to find available and technologically feasible disassembly processes. The control system is formed by modularised and parameterised control units in the cell level within the entire control architecture. In the first development stage product and process analyses at the sample product washing machine were executed. Furthermore a generalized disassembly process was defined. Afterwards these processes were structured in primary and secondary functions. In the second stage the disassembly control at the technological level was investigated. Factors were the availability of the disassembly tools and the technological feasibility of the disassembly processes within the disassembly system. Technical alternative disassembly processes are determined as a result of availability of the tools and technological feasibility of processes. The fourth phase was the concept for the generation of the disassembly control sequences. The approach will be proved in a prototypical disassembly system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew
GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level, the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of PRA methodologies to conduct a mechanistic source term (MST) analysis for event sequences that could result in the release ofmore » radionuclides. The MST analysis seeks to realistically model and assess the transport, retention, and release of radionuclides from the reactor to the environment. The MST methods developed during this project seek to satisfy the requirements of the Mechanistic Source Term element of the ASME/ANS Non-LWR PRA standard. The MST methodology consists of separate analysis approaches for risk-significant and non-risk significant event sequences that may result in the release of radionuclides from the reactor. For risk-significant event sequences, the methodology focuses on a detailed assessment, using mechanistic models, of radionuclide release from the fuel, transport through and release from the primary system, transport in the containment, and finally release to the environment. The analysis approach for non-risk significant event sequences examines the possibility of large radionuclide releases due to events such as re-criticality or the complete loss of radionuclide barriers. This paper provides details on the MST methodology, including the interface between the MST analysis and other elements of the PRA, and provides a simplified example MST calculation for a sodium fast reactor.« less
Vengerfeldt, Veiko; Špilka, Katerina; Saag, Mare; Preem, Jens-Konrad; Oopkaup, Kristjan; Truu, Jaak; Mändar, Reet
2014-11-01
Chronic apical periodontitis (CAP) is a frequent condition that has a considerable effect on a patient's quality of life. We aimed to reveal root canal microbial communities in antibiotic-naive patients by applying Illumina sequencing (Illumina Inc, San Diego, CA). Samples were collected under strict aseptic conditions from 12 teeth (5 with primary CAP, 3 with secondary CAP, and 4 with a periapical abscess [PA]) and characterized by profiling the microbial community on the basis of the V6 hypervariable region of the 16S ribosomal RNA gene by using Illumina HiSeq2000 sequencing combinatorial sequence-tagged polymerase chain reaction products. Root canal specimens displayed highly polymicrobial communities in all 3 patient groups. One sample contained 5-8 (mean = 6.5) phyla of bacteria. The most numerous were Firmicutes and Bacteroidetes, but Actinobacteria, Fusobacteria, Proteobacteria, Spirochaetes, Tenericutes, and Synergistetes were also present in most of the patients. One sample contained 30-70 different operational taxonomic units; the mean (± standard deviation) was lower in the primary CAP group (36 ± 4) than in the PA (45 ± 4) and secondary CAP (43 ± 13) groups (P < .05). The communities were individually different, but anaerobic bacteria predominated as the rule. Enterococcus faecalis was found only in patients with secondary CAP. One PA sample displayed a significantly high proportion (47%) of Proteobacteria, mainly at the expense of Janthinobacterium lividum. This study provided an in-depth characterization of the microbiota of periapical tissues, revealing highly polymicrobial communities and minor differences between the study groups. A full understanding of the etiology of periodontal disease will only be possible through further in-depth systems-level analyses of the host-microbiome interaction. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Domain architecture conservation in orthologs
2011-01-01
Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the notion that orthologs are functionally more similar than other types of homologs at the same evolutionary distance. PMID:21819573
Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf
2013-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441
Transformation of temporal sequences in the zebra finch auditory system
Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J
2016-01-01
This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971
Endogenous Sequential Cortical Activity Evoked by Visual Stimuli
Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael
2015-01-01
Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915
Du, Pufeng; Wang, Lusheng
2014-01-01
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278
Aldosterone and parathyroid hormone: a precarious couple for cardiovascular disease.
Tomaschitz, Andreas; Ritz, Eberhard; Pieske, Burkert; Fahrleitner-Pammer, Astrid; Kienreich, Katharina; Horina, Jörg H; Drechsler, Christiane; März, Winfried; Ofner, Michael; Pieber, Thomas R; Pilz, Stefan
2012-04-01
Animal and human studies support a clinically relevant interaction between aldosterone and parathyroid hormone (PTH) levels and suggest an impact of the interaction on cardiovascular (CV) health. This review focuses on mechanisms behind the bidirectional interactions between aldosterone and PTH and their potential impact on the CV system. There is evidence that PTH increases the secretion of aldosterone from the adrenals directly as well as indirectly by activating the renin-angiotensin system. Upregulation of aldosterone synthesis might contribute to the higher risk of arterial hypertension and of CV damage in patients with primary hyperparathyroidism. Furthermore, parathyroidectomy is followed by decreased blood pressure levels and reduced CV morbidity as well as lower renin and aldosterone levels. In chronic heart failure, the aldosterone activity is inappropriately elevated, causing salt retention; it has been argued that the resulting calcium wasting causes secondary hyperparathyroidism. The ensuing intracellular calcium overload and oxidative stress, caused by PTH and amplified by the relative aldosterone excess, may increase the risk of CV events. In the setting of primary aldosteronism, renal and faecal calcium loss triggers increased PTH secretion which in turn aggravates aldosterone secretion and CV damage. This sequence explains why adrenalectomy and blockade of the mineralocorticoid receptor tend to decrease PTH levels in patients with primary aldosteronism. In view of the reciprocal interaction between aldosterone and PTH and the potentially ensuing CV damage, studies are urgently needed to evaluate diagnostic and therapeutic strategies addressing the interaction between the two hormones.
Ye, Weixing; Zhu, Lei; Liu, Yingying; Crickmore, Neil; Peng, Donghai; Ruan, Lifang; Sun, Ming
2012-07-01
We have designed a high-throughput system for the identification of novel crystal protein genes (cry) from Bacillus thuringiensis strains. The system was developed with two goals: (i) to acquire the mixed plasmid-enriched genomic sequence of B. thuringiensis using next-generation sequencing biotechnology, and (ii) to identify cry genes with a computational pipeline (using BtToxin_scanner). In our pipeline method, we employed three different kinds of well-developed prediction methods, BLAST, hidden Markov model (HMM), and support vector machine (SVM), to predict the presence of Cry toxin genes. The pipeline proved to be fast (average speed, 1.02 Mb/min for proteins and open reading frames [ORFs] and 1.80 Mb/min for nucleotide sequences), sensitive (it detected 40% more protein toxin genes than a keyword extraction method using genomic sequences downloaded from GenBank), and highly specific. Twenty-one strains from our laboratory's collection were selected based on their plasmid pattern and/or crystal morphology. The plasmid-enriched genomic DNA was extracted from these strains and mixed for Illumina sequencing. The sequencing data were de novo assembled, and a total of 113 candidate cry sequences were identified using the computational pipeline. Twenty-seven candidate sequences were selected on the basis of their low level of sequence identity to known cry genes, and eight full-length genes were obtained with PCR. Finally, three new cry-type genes (primary ranks) and five cry holotypes, which were designated cry8Ac1, cry7Ha1, cry21Ca1, cry32Fa1, and cry21Da1 by the B. thuringiensis Toxin Nomenclature Committee, were identified. The system described here is both efficient and cost-effective and can greatly accelerate the discovery of novel cry genes.
Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Patten, Brian M.
2004-01-01
Making use of eight archival ROSAT HRI images in the regions of the NGC 2232 and Cr 140, this project's primary focus is to identify X-ray sources and to extract net source counts for these sources in these two open clusters. These X-ray data would be combined with ground-based photometry and spectroscopy in order to identify G, K, and early-M type cluster members. Such membership data are important because, at present, no members later than spectral type approx. F5 are currently known for either cluster. With ages estimated to be approx. 25 Myr and at distances of just approx. 350 pc, the combined late-type membership of the NGC 2232 and Cr 140 clusters would yield an almost unique sample of solar-type stars in the post-T Tauri/pre-main sequence phase of evolution. These stars could be used to assess the level and dispersion of coronal activity levels, as a part of a probe of the importance of magnetic braking and the level of magnetic dynamo activity, for solar-type stars just before they reach the zero-age main sequence.
Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.
Knowles, Michael R; Ostrowski, Lawrence E; Leigh, Margaret W; Sears, Patrick R; Davis, Stephanie D; Wolf, Whitney E; Hazucha, Milan J; Carson, Johnny L; Olivier, Kenneth N; Sagel, Scott D; Rosenfeld, Margaret; Ferkol, Thomas W; Dell, Sharon D; Milla, Carlos E; Randell, Scott H; Yin, Weining; Sannuti, Aruna; Metjian, Hilda M; Noone, Peadar G; Noone, Peter J; Olson, Christina A; Patrone, Michael V; Dang, Hong; Lee, Hye-Seung; Hurd, Toby W; Gee, Heon Yung; Otto, Edgar A; Halbritter, Jan; Kohl, Stefan; Kircher, Martin; Krischer, Jeffrey; Bamshad, Michael J; Nickerson, Deborah A; Hildebrandt, Friedhelm; Shendure, Jay; Zariwala, Maimoona A
2014-03-15
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.
Kuriki, Shinya; Kobayashi, Yusuke; Kobayashi, Takanari; Tanaka, Keita; Uchikawa, Yoshinori
2013-02-01
The auditory steady-state response (ASSR) is a weak potential or magnetic response elicited by periodic acoustic stimuli with a maximum response at about a 40-Hz periodicity. In most previous studies using amplitude-modulated (AM) tones of stimulus sound, long lasting tones of more than 10 s in length were used. However, characteristics of the ASSR elicited by short AM tones have remained unclear. In this study, we examined magnetoencephalographic (MEG) ASSR using a sequence of sinusoidal AM tones of 0.78 s in length with various tone frequencies of 440-990 Hz in about one octave variation. It was found that the amplitude of the ASSR was invariant with tone frequencies when the level of sound pressure was adjusted along an equal-loudness curve. The amplitude also did not depend on the existence of preceding tone or difference in frequency of the preceding tone. When the sound level of AM tones was changed with tone frequencies in the same range of 440-990 Hz, the amplitude of ASSR varied in a proportional manner to the sound level. These characteristics are favorable for the use of ASSR in studying temporal processing of auditory information in the auditory cortex. The lack of adaptation in the ASSR elicited by a sequence of short tones may be ascribed to the neural activity of widely accepted generator of magnetic ASSR in the primary auditory cortex. Copyright © 2012 Elsevier B.V. All rights reserved.
Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)
Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.
2002-01-01
Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.
The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway
Ramos, Irene; Herrera, Mónica; Stamatakis, Konstantinos
2009-01-01
Background Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. Methodology/Principal Findings By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. Conclusions/Significance Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs. PMID:19956591
Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.
Noh, Haneul; Park, Charny; Park, Soojun; Lee, Young Seek; Cho, Soo Young; Seo, Hyemyung
2014-08-03
Little is known about the relationship between miRNA and mRNA expression in Alzheimer's disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aβ treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aβ treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function and mechanism of various miRNAs and their target genes in the molecular pathology of AD.
SSMART: Sequence-structure motif identification for RNA-binding proteins.
Munteanu, Alina; Mukherjee, Neelanjan; Ohler, Uwe
2018-06-11
RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized. We developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3'UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP. Availability: SSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/. Supplementary data are available at Bioinformatics online.
Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.
Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J
2017-08-01
Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known type 1/type 2 strains are demonstrated, and a novel classification of EBNA1 and the BART miRNAs is proposed. Copyright © 2017 Correia et al.
Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini
2018-05-01
The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of the cell-cell adhesion molecule PCDH18 correlated with poorer overall survival in the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma data highlighting it as a potential negative prognostic factor in this cancer.
Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome
Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend
2007-01-01
A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995
Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.
2016-01-01
Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805
Plaga, W; Lottspeich, F; Oesterhelt, D
1992-04-01
An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.
Song, Jiangning; Tan, Hao; Wang, Mingjun; Webb, Geoffrey I.; Akutsu, Tatsuya
2012-01-01
Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/. PMID:22319565
Sequence Learning and Selection Difficulty
ERIC Educational Resources Information Center
Rowland, Lee A.; Shanks, David R.
2006-01-01
The authors studied the role of attention as a selection mechanism in implicit learning by examining the effect on primary sequence learning of performing a demanding target-selection task. Participants were trained on probabilistic sequences in a novel version of the serial reaction time (SRT) task, with dual- and triple-stimulus participants…
Frequency, Contingency and Online Processing of Multiword Sequences: An Eye-Tracking Study
ERIC Educational Resources Information Center
Yi, Wei; Lu, Shiyi; Ma, Guojie
2017-01-01
Frequency and contingency are two primary statistical factors that drive the acquisition and processing of language. This study explores the role of phrasal frequency and contingency (the co-occurrence probability/statistical association of the constituent words in multiword sequences) during online processing of multiword sequences. Meanwhile, it…
The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...
Blood-induced differential gene expression in Anopheles dirus evaluated using RNA sequencing.
Mongkol, W; Nguitragool, W; Sattabongkot, J; Kubera, A
2018-06-08
Malaria parasites are transmitted through blood feeding by female Anopheline mosquitoes. Unveiling the blood-feeding process will improve understanding of vector biology. Anopheles dirus (Diptera: Culicidae) is one of the primary malaria vectors in the Greater Mekong Subregion, the epicentre of malaria drug resistance. In this study, differential gene expression between sugar- and blood-fed An. dirus was investigated by RNA sequencing (RNA-seq). A total of 589 transcripts were found to be upregulated and 703 transcripts downregulated as a result of blood feeding. Transcriptional differences were found in genes involved in blood digestion, peritrophic matrix formation, oogenesis and vitellogenesis. The expression levels of several genes were validated by quantitative reverse transcription polymerase chain reaction. The present results provide better understanding of An. dirus biology in relation to its blood feeding. © 2018 The Royal Entomological Society.
Kolondra, Adam; Labedzka-Dmoch, Karolina; Wenda, Joanna M; Drzewicka, Katarzyna; Golik, Pawel
2015-10-21
Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2-3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as "booster" promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms.
Ono, Motoharu; Yamada, Kayo; Avolio, Fabio; Afzal, Vackar; Bensaddek, Dalila; Lamond, Angus I
2015-01-01
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.
Tripathi, Kumar Parijat; Granata, Ilaria; Guarracino, Mario Rosario
2017-10-01
Immortalized cell lines are widely used to study the effectiveness and toxicity of anti cancer drugs as well as to assess the phenotypic characteristics of cancer cells, such as proliferation and migration ability. Unfortunately, cell lines often show extremely different properties than tumor tissues. Also the primary cells, that are deprived of the in vivo environment, might adapt to artificial conditions, and differ from the tissue they should represent. Despite these considerations, cell lines are still one of the most used cancer models due to their availability and capability to expand without limitation, but the clinical relevance of their use is still a big issue in cancer research. Many studies tried to overcome this task, comparing cell lines and tumor samples through the definition of the genomic and transcriptomic differences. To this aim, most of them used nucleotide variation or gene expression data. Here we introduce a different strategy based on alternative splicing detection and integration of DNA and RNA sequencing data, to explore the differences between immortalized and tissue-derived cells at isoforms level. Furthermore, in order to better investigate the heterogeneity of both cell populations, we took advantage of a public available dataset obtained with a new simultaneous omics single cell sequencing methodology. The proposed pipeline allowed us to identify, through a computational and prediction approach, putative mutated and alternative spliced transcripts responsible for the dissimilarity between immortalized and primary hepato carcinoma cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Representations of Pitch and Timbre Variation in Human Auditory Cortex
2017-01-01
Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness—an aspect of timbre or sound quality—allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a distributed code, with no clear anatomical distinctions between auditory cortical regions responsive to changes in either pitch or timbre, but also reveal a population code that can differentiate between changes in either dimension within the same cortical regions. PMID:28025255
Breitenbuecher, Christina; Belanger, Janelle M; Levy, Kerinne; Mundell, Paul; Fates, Valerie; Gershony, Liza; Famula, Thomas R; Oberbauer, Anita M
2016-01-01
Valued for trainability in diverse tasks, dogs are the primary service animal used to assist individuals with disabilities. Despite their utility, many people in need of service dogs are sensitive to the primary dog allergen, Can f 1, encoded by the Lipocalin 1 gene (LCN1). Several organizations specifically breed service dogs to meet special needs and would like to reduce allergenic potential if possible. In this study, we evaluated the expression of Can f 1 protein and the inherent variability of LCN1 in two breeds used extensively as service dogs. Saliva samples from equal numbers of male and female Labrador retrievers (n = 12), golden retrievers (n = 12), and Labrador-golden crosses (n = 12) were collected 1 h after the morning meal. Can f 1 protein concentrations in the saliva were measured by ELISA, and the LCN1 5' and 3' UTRs and exons sequenced. There was no sex effect (p > 0.2) nor time-of-day effect; however, Can f 1 protein levels varied by breed with Labrador retrievers being lower than golden retrievers (3.18 ± 0.51 and 5.35 ± 0.52 μg/ml, respectively, p < 0.0075), and the Labrador-golden crosses having intermediate levels (3.77 ± 0.48 μg/ml). Although several novel SNPs were identified in LCN1, there were no significant breed-specific sequence differences in the gene and no association of LCN1 genotypes with Can f 1 expression. As service dogs, Labrador retrievers likely have lower allergenic potential and, though there were no DNA sequence differences identified, classical genetic selection on the estimated breeding values associated with salivary Can f 1 expression may further reduce that potential.
Dubinett - Targeted Sequencing 2012 — EDRN Public Portal
we propose to use targeted massively parallel DNA sequencing to identify somatic alterations within mutational hotspots in matched sets of primary lung tumors, premalignant lesions, and adjacent,histologically normal lung tissue.
The GS (genetic selection) Principle.
Abel, David L
2009-01-01
The GS (Genetic Selection) Principle states that biological selection must occur at the nucleotide-sequencing molecular-genetic level of 3'5' phosphodiester bond formation. After-the-fact differential survival and reproduction of already-living phenotypic organisms (ordinary natural selection) does not explain polynucleotide prescription and coding. All life depends upon literal genetic algorithms. Even epigenetic and "genomic" factors such as regulation by DNA methylation, histone proteins and microRNAs are ultimately instructed by prior linear digital programming. Biological control requires selection of particular configurable switch-settings to achieve potential function. This occurs largely at the level of nucleotide selection, prior to the realization of any integrated biofunction. Each selection of a nucleotide corresponds to the setting of two formal binary logic gates. The setting of these switches only later determines folding and binding function through minimum-free-energy sinks. These sinks are determined by the primary structure of both the protein itself and the independently prescribed sequencing of chaperones. The GS Principle distinguishes selection of existing function (natural selection) from selection for potential function (formal selection at decision nodes, logic gates and configurable switch-settings).
NASA Astrophysics Data System (ADS)
Bábek, Ondřej; Faměra, Martin; Šimíček, Daniel; Weinerová, Hedvika; Hladil, Jindřich; Kalvoda, Jiří
2018-01-01
The Devonian marine stratigraphic record is characterized by a number of bioevents - overturns in pelagic and benthic faunal assemblages, which are associated with distinct changes in lithology. The coincidence of lithologic and biotic changes can be explained by the causal link between biotic evolution, carbonate production and relative sea-level changes. To gain insight into the sea-level history of Early and Middle Devonian bioevents (the Lochkovian/Pragian Event, Basal Zlíchovian E., Daleje E., and Choteč E.) we carried out a sequence-stratigraphic analysis of carbonate-dominated successions in the Prague Basin (peri-Gondwana), a classic area of Devonian bioevents. The study is based on a basin-wide correlation of facies and field gamma-ray spectrometry (GRS) logs from 18 sections (Lochkovian to Eifelian), supported by element geochemistry and published biostratigraphic and carbon isotope data. Devonian carbonate deposition in the Prague Basin alternated between two end-member modes: an oligotrophic, homoclinal ramp (Praha and Daleje-Třebotov Formations) and a mesotrophic, distally steepened ramp (Lochkov, Zlíchov, and Choteč Formations). They show contrasting facies, particularly the absence/presence of gravity-flow deposits, allochem composition, U/Th ratios, and geochemical composition (productivity proxies such as P/Al, Si/Al, Zn/Al, TOC and stable carbon isotopes). The mesotrophic systems reflect an increased availability of nutrients on the shelf during the late Lochkovian, early Emsian (Zlíchovian), and Eifelian periods when sea surface temperature, pCO2, and silicate weathering rates were higher. The oligotrophic systems deposited during the Pragian-to-earliest Emsian and late Emsian (Dalejan) periods reflect reversed palaeoclimatic trends. We identified three depositional sequences (DS), DS1 (base of Pragian to early Emsian); DS2 (early Emsian to mid Emsian); and DS3 (mid Emsian to mid Eifelian). These sequences were integrated into a peri-Gondwana relative sea-level curve, which was then compared with the Euramerican sea-level curve of Johnson et al. (1985). The bioevents coincided with several sequence stratigraphic surfaces, representing variable limbs of the relative sea-level curve. On the other hand, their conspicuous coincidence with the switching intervals between the colder oligotrophic and warmer mesotrophic modes suggests that organic production linked to global climate was the primary control on biotic overturns, while sea-level fluctuations may have only amplified its effects.
Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.
2015-01-01
Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at np 10436 and a tRNA Thr mutation at np 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to bone and also occurred in three patients. Conclusions Mitochondrial genomic variation was greater in metastatic sites than the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational “hot-spot” was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific “survival of the fittest” as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. PMID:25952970
Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A
2015-09-01
Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. Published by Elsevier Inc.
Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S
2001-12-01
Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.
The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity
Wang, Quanli; Halvorsen, Matt; Han, Yujun; Weir, William H.; Allen, Andrew S.; Goldstein, David B.
2015-01-01
Noncoding sequence contains pathogenic mutations. Yet, compared with mutations in protein-coding sequence, pathogenic regulatory mutations are notoriously difficult to recognize. Most fundamentally, we are not yet adept at recognizing the sequence stretches in the human genome that are most important in regulating the expression of genes. For this reason, it is difficult to apply to the regulatory regions the same kinds of analytical paradigms that are being successfully applied to identify mutations among protein-coding regions that influence risk. To determine whether dosage sensitive genes have distinct patterns among their noncoding sequence, we present two primary approaches that focus solely on a gene’s proximal noncoding regulatory sequence. The first approach is a regulatory sequence analogue of the recently introduced residual variation intolerance score (RVIS), termed noncoding RVIS, or ncRVIS. The ncRVIS compares observed and predicted levels of standing variation in the regulatory sequence of human genes. The second approach, termed ncGERP, reflects the phylogenetic conservation of a gene’s regulatory sequence using GERP++. We assess how well these two approaches correlate with four gene lists that use different ways to identify genes known or likely to cause disease through changes in expression: 1) genes that are known to cause disease through haploinsufficiency, 2) genes curated as dosage sensitive in ClinGen’s Genome Dosage Map, 3) genes judged likely to be under purifying selection for mutations that change expression levels because they are statistically depleted of loss-of-function variants in the general population, and 4) genes judged unlikely to cause disease based on the presence of copy number variants in the general population. We find that both noncoding scores are highly predictive of dosage sensitivity using any of these criteria. In a similar way to ncGERP, we assess two ensemble-based predictors of regional noncoding importance, ncCADD and ncGWAVA, and find both scores are significantly predictive of human dosage sensitive genes and appear to carry information beyond conservation, as assessed by ncGERP. These results highlight that the intolerance of noncoding sequence stretches in the human genome can provide a critical complementary tool to other genome annotation approaches to help identify the parts of the human genome increasingly likely to harbor mutations that influence risk of disease. PMID:26332131
Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata.
Schnare, M N; Gray, M W
1982-01-01
In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista. Images PMID:7079176
Isolation of prolactin and growth hormone from the pituitary of the holostean fish Amia calva.
Dores, R M; Noso, T; Rand-Weaver, M; Kawauchi, H
1993-06-01
Pituitaries from adult male and female Amia calva (Order Holostei) were acid extracted and fractionated by gel filtration column chromatography and reversed-phase high performance liquid chromatography. This two-step isolation procedure yielded homogeneous pools of Amia prolaction (PRL) and growth hormone (GH). The amino acid composition of both purified polypeptides was determined. Primary sequence analysis of the first 22 positions at the N-terminal of Amia PRL revealed that this region has 63% sequence identity with eel PRL-1. The N-terminal region of Amia PRL lacks the disulfide bridge which is characteristic of tetrapod PRLs. Primary sequence analysis of the first 24 positions at the N-terminal of Amia GH revealed that this region has 62% sequence identity with eel GH and 54% sequence identity with both blue shark GH and sea turtle GH. Based on N-terminal analysis, it appears that Amia PRL and GH are more closely related to teleost PRLs and GHs than they are to tetrapod PRLs and GHs.
Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.
Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario
2011-04-01
Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.
Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.
Lella, Muralikrishna; Mahalakshmi, Radhakrishnan
2017-06-20
Every amino acid exhibits a different propensity for distinct structural conformations. Hence, decoding how the primary amino acid sequence undergoes the transition to a defined secondary structure and its final three-dimensional fold is presently considered predictable with reasonable certainty. However, protein sequences that defy the first principles of secondary structure prediction (they attain two different folds) have recently been discovered. Such proteins, aptly named metamorphic proteins, decrease the conformational constraint by increasing flexibility in the secondary structure and thereby result in efficient functionality. In this review, we discuss the major factors driving the conformational switch related both to protein sequence and to structure using illustrative examples. We discuss the concept of an evolutionary transition in sequence and structure, the functional impact of the tertiary fold, and the pressure of intrinsic and external factors that give rise to metamorphic proteins. We mainly focus on the major components of protein architecture, namely, the α-helix and β-sheet segments, which are involved in conformational switching within the same or highly similar sequences. These chameleonic sequences are widespread in both cytosolic and membrane proteins, and these folds are equally important for protein structure and function. We discuss the implications of metamorphic proteins and chameleonic peptide sequences in de novo peptide design.
Kempton, Colton E.; Heninger, Justin R.; Johnson, Steven M.
2014-01-01
Nucleosomes and their positions in the eukaryotic genome play an important role in regulating gene expression by influencing accessibility to DNA. Many factors influence a nucleosome's final position in the chromatin landscape including the underlying genomic sequence. One of the primary reasons for performing in vitro nucleosome reconstitution experiments is to identify how the underlying DNA sequence will influence a nucleosome's position in the absence of other compounding cellular factors. However, concerns have been raised about the reproducibility of data generated from these kinds of experiments. Here we present data for in vitro nucleosome reconstitution experiments performed on linear plasmid DNA that demonstrate that, when coverage is deep enough, these reconstitution experiments are exquisitely reproducible and highly consistent. Our data also suggests that a coverage depth of 35X be maintained for maximal confidence when assaying nucleosome positions, but lower coverage levels may be generally sufficient. These coverage depth recommendations are sufficient in the experimental system and conditions used in this study, but may vary depending on the exact parameters used in other systems. PMID:25093869
Kuroda, Hiroshi; Sugiura, Masahiro
2014-12-01
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.
Mehedi, Masfique; Hoenen, Thomas; Robertson, Shelly; Ricklefs, Stacy; Dolan, Michael A; Taylor, Travis; Falzarano, Darryl; Ebihara, Hideki; Porcella, Stephen F; Feldmann, Heinz
2013-01-01
Ebolavirus (EBOV), the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.
Hiramatsu, K; Harada, K; Tsuneyama, K; Sasaki, M; Fujita, S; Hashimoto, T; Kaneko, S; Kobayashi, K; Nakanuma, Y
2000-07-01
The etiopathogenesis of bile duct lesion in primary biliary cirrhosis is unknown, though the participation of bacteria and/or their components and products is suspected. In this study, we tried to detect and identify bacteria in the bile of patients with primary biliary cirrhosis by polymerase chain reaction using universal bacterial primers of the 16S ribosomal RNA gene. Gallbladder bile samples from 15 patients with primary biliary cirrhosis, 5 with primary sclerosing cholangitis, 5 with hepatitis C virus-related liver cirrhosis, 11 with cholecystolithiasis, and from 12 normal adult gallbladders were used. In addition to the culture study, partial bacterial 16S ribosomal RNA gene was amplified by polymerase chain reaction (PCR) taking advantage of universal primers that can amplify the gene of almost all bacterial species, and the amplicons were cloned and sequenced. Sequence homology with specific bacterial species was analyzed by database research. Bacterial contamination at every step of the bile sampling, DNA extraction and PCR study was avoided. Furthermore, to confirm whether bacterial DNA is detectable in liver explants, the same analysis was performed using 10 liver explants of patients with primary biliary cirrhosis. In primary biliary cirrhosis, 75% (p<0.0001) of 100 clones were identified as so-called gram-positive cocci while these cocci were positive in only 5% in cholecystolithiasis (p<0.0001). In cholecystolithiasis gram-negative rods were predominant instead. One bacterial species detected in a normal adult was not related to those detected in primary biliary cirrhosis and cholecystolithiasis patients. No bacterial DNA was detected by PCR amplification in 10 liver explants of patients with primary biliary cirrhosis. The present results raise several possible roles of gram-positive bacteria in bile in the etiopathogenesis of primary biliary cirrhosis. However, these results could also reflect an epiphenomenon due to decreased bile flow in the patients with primary biliary cirrhosis at an advanced stage.
Herlofsen, Sarah R; Bryne, Jan Christian; Høiby, Torill; Wang, Li; Issner, Robbyn; Zhang, Xiaolan; Coyne, Michael J; Boyle, Patrick; Gu, Hongcang; Meza-Zepeda, Leonardo A; Collas, Philippe; Mikkelsen, Tarjei S; Brinchmann, Jan E
2013-02-15
For safe clinical application of engineered cartilage made from mesenchymal stem cells (MSCs), molecular mechanisms for chondrogenic differentiation must be known in detail. Changes in gene expression and extracellular matrix synthesis have been extensively studied, but the epigenomic modifications underlying these changes have not been described. To this end we performed whole-genome chromatin immunoprecipitation and deep sequencing to quantify six histone modifications, reduced representation bisulphite sequencing to quantify DNA methylation and mRNA microarrays to quantify gene expression before and after 7 days of chondrogenic differentiation of MSCs in an alginate scaffold. To add to the clinical relevance of our observations, the study is based on primary bone marrow-derived MSCs from four donors, allowing us to investigate inter-individual variations. We see two levels of relationship between epigenetic marking and gene expression. First, a large number of genes ontogenetically linked to MSC properties and the musculoskeletal system are epigenetically prepatterned by moderate changes in H3K4me3 and H3K9ac near transcription start sites. Most of these genes remain transcriptionally unaltered. Second, transcriptionally upregulated genes, more closely associated with chondrogenesis, are marked by H3K36me3 in gene bodies, highly increased H3K4me3 and H3K9ac on promoters and 5' end of genes, and increased H3K27ac and H3K4me1 marking in at least one enhancer region per upregulated gene. Within the 7-day time frame, changes in promoter DNA methylation do not correlate significantly with changes in gene expression. Inter-donor variability analysis shows high level of similarity between the donors for this data set. Histone modifications, rather than DNA methylation, provide the primary epigenetic control of early differentiation of MSCs towards the chondrogenic lineage.
Ma, Siming; Upneja, Akhil; Galecki, Andrzej; Tsai, Yi-Miau; Burant, Charles F; Raskind, Sasha; Zhang, Quanwei; Zhang, Zhengdong D; Seluanov, Andrei; Gorbunova, Vera; Clish, Clary B; Miller, Richard A; Gladyshev, Vadim N
2016-11-22
Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.
Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation.
Petersen, Jillian M; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; van der Geest, Matthijs; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig; Seah, Brandon K B; Antony, Chakkiath Paul; Liu, Dan; Belitz, Alexandra; Weber, Miriam
2016-10-24
Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.
Valtcheva, Nadejda; Lang, Franziska M; Noske, Aurelia; Samartzis, Eleftherios P; Schmidt, Anna-Maria; Bellini, Elisa; Fink, Daniel; Moch, Holger; Rechsteiner, Markus; Dedes, Konstantin J; Wild, Peter J
2017-01-19
Endometrioid adenocarcinoma of the uterus and ovarian endometrioid carcinoma share many morphological and molecular features. Differentiation between simultaneous primary carcinomas and ovarian metastases of an endometrial cancer may be very challenging but is essential for prognostic and therapeutic considerations. In the present case study of a 33 year-old patient we used targeted amplicon next-generation re-sequencing for clarifying the origin of synchronous endometrioid cancer of the corpus uteri and the left ovary. The patient developed a metachronous lung metastasis of an endometrioid adenocarcinoma four years after hyster- and adnexectomy, vaginal brachytherapy and treatment with the synthetic steroid tibolone. Removal of the metastasis and megestrol treatment for seven years led to a complete remission. A total of 409 genes from the Ampliseq Comprehensive Cancer Panel (Ion Torrent, Thermo Fisher) were analysed by next generation sequencing and mutations in 10 genes, including ARID1A, CTNNB1, PIK3CA and PTEN were identified and confirmed by Sanger sequencing. Primary endometrial as well as ovarian cancer showed an identical mutational profile, suggesting the presence of an ovarian metastasis of the endometrial cancer, rather than a simultaneous endometrial and ovarian cancer. The metachronous lung metastasis showed a different mutational profile compared to the primary cancer. Immunohistochemical staining of the corresponding proteins suggested that the tumour development was driven by alterations in the protein function rather than by changes of the protein abundance in the cell. Our results have demonstrated next generation sequencing as a valuable tool in the differentiation of synchronous primary tumours and metastases, which has an important impact on the clinical decision making process. Similar to breast cancer, targeted therapies based on mutational tumour profiling will become increasingly important in endometrial and ovarian cancer. In summary, our results support the usage of next generation sequencing as a supplementary diagnostic tool, assisting in personalized precision medicine.
Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39
Blombach, Fabian; Salvadori, Enrico; Fouqueau, Thomas; Yan, Jun; Reimann, Julia; Sheppard, Carol; Smollett, Katherine L; Albers, Sonja V; Kay, Christopher WM; Thalassinos, Konstantinos; Werner, Finn
2015-01-01
Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.08378.001 PMID:26067235
Developmental expression of a regulatory gene is programmed at the level of splicing.
Chou, T B; Zachar, Z; Bingham, P M
1987-01-01
We report sequence and transcript structures for a 6191-base chromosomal segment containing the presumptive regulatory gene from Drosophila, suppressor-of-white-apricot [su(wa)]. Our results indicate that su(wa) expression is controlled by regulating occurrence of specific splices. Seven introns are removed from the su(wa) primary transcript during precellular blastoderm development. The sequence of this mature RNA indicates that it is a conventional messenger RNA. In contrast, after cellular blastoderm the first two of these introns cease to be efficiently removed. The mature RNAs resulting from this failure to remove the first two introns have structures quite unexpected of mRNAs. We propose that postcellular blastoderm su(wa) expression is repressed by preventing splices necessary to produce a functional mRNA. Implications and mechanisms are discussed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2832151
Dysgraphia in Patients with Primary Lateral Sclerosis: A Speech-Based Rehearsal Deficit?
Zago, S.; Poletti, B.; Corbo, M.; Adobbati, L.; Silani, V.
2008-01-01
The present study aims to demonstrate that errors when writing are more common than expected in patients affected by primary lateral sclerosis (PLS) with severe dysarthria or complete mutism, independent of spasticity. Sixteen patients meeting Pringle’s et al. [34] criteria for PLS underwent standard neuropsychological tasks and evaluation of writing. We assessed writing abilities in spelling through dictation in which a set of words, non-words and short phrases were presented orally and by composing words using a set of preformed letters. Finally, a written copying task was performed with the same words. Relative to controls, PLS patients made a greater number of spelling errors in all writing conditions, but not in copy task. The error types included: omissions, transpositions, insertions and letter substitutions. These were equally distributed on the writing task and the composition of words with a set of preformed letters. This pattern of performance is consistent with a spelling impairment. The results are consistent with the concept that written production is critically dependent on the subvocal articulatory mechanism of rehearsal, perhaps at the level of retaining the sequence of graphemes in a graphemic buffer. In PLS patients a disturbance in rehearsal opportunity may affect the correct sequencing/assembly of an orthographic representation in the written process. PMID:19096141
Timing and sequence of primary tooth eruption in children with cleft lip and palate
KOBAYASHI, Tatiana Yuriko; GOMIDE, Márcia Ribeiro; CARRARA, Cleide Felício de Carvalho
2010-01-01
Objective To determine the timing and sequence of eruption of primary teeth in children with complete bilateral cleft lip and palate. Material and Methods This cross-sectional study was conducted at the Hospital for Rehabilitation of Craniofacial Anomalies of the University of São Paulo, Bauru, SP, Brazil, with a sample of 395 children (128 girls and 267 boys) aged 0 to 48 months, with complete bilateral cleft lip and palate Results Children with complete bilateral clefts presented a higher mean age of eruption of all primary teeth for both arches and both genders, compared to children without clefts. This difference was statistically significant for all teeth, except for the maxillary first molar. Mean age of eruption of most teeth was lower for girls compared to boys. The greatest delay was found for the maxillary lateral incisor, which was the eighth tooth of children with clefts of both genders. Analyzing by gender, the maxillary lateral incisor was the eighth tooth to erupt in girls and the last in boys. Conclusion The results suggest an interference of the cleft on the timing and sequence of eruption of primary teeth. PMID:20856997
Crumley, Suzanne M; Pepper, Kristi L; Phan, Alexandria T; Olsen, Randall J; Schwartz, Mary R; Portier, Bryce P
2016-06-01
-Colorectal carcinoma is the third most common cause of cancer death in males and females in the United States. Rectal adenocarcinoma can have distinct therapeutic and surgical management from colonic adenocarcinoma owing to its location and anatomic considerations. -To determine the oncologic driver mutations and better understand the molecular pathogenesis of rectal adenocarcinoma in relation to colon adenocarcinoma. -Next-generation sequencing was performed on 20 cases of primary rectal adenocarcinoma with a paired lymph node or solid organ metastasis by using an amplicon-based assay of more than 2800 Catalogue of Somatic Mutations in Cancer (COSMIC)-identified somatic mutations. -Next-generation sequencing data were obtained on both the primary tumor and metastasis from 16 patients. Most rectal adenocarcinoma cases demonstrated identical mutations in the primary tumor and metastasis (13 of 16, 81%). The mutations identified, listed in order of frequency, included TP53, KRAS, APC, FBXW7, GNAS, FGFR3, BRAF, NRAS, PIK3CA, and SMAD4. -The somatic mutations identified in our rectal adenocarcinoma cohort showed a strong correlation to those previously characterized in colonic adenocarcinoma. In addition, most rectal adenocarcinomas harbored identical somatic mutations in both the primary tumor and metastasis. These findings demonstrate evidence that rectal adenocarcinoma follows a similar molecular pathogenesis as colonic adenocarcinoma and that sampling either the primary or metastatic lesion is valid for initial evaluation of somatic mutations and selection of possible targeted therapy.
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer
Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.
Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.
Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation
So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet
2012-01-01
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341
Kim, Hoon; Zheng, Siyuan; Amini, Seyed; Virk, Selene; Mikkelsen, Tom; Brat, Daniel; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew; Cohen, Mark; Van Meir, Erwin; Scarpace, Lisa; Lander, Eric; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill; Verhaak, Roel
2014-01-01
To evaluate evolutionary patterns of GBM recurrence, we analyzed whole genome sequencing (WGS) and multi-sector exome sequencing data from pairs of primary and posttreatment GBM. WGS on ten primary-recurrent pairs detected a median number of 12,214 mutations which we utilized to uncover clonal structures, by analyzing the distribution of mutation cellular frequencies (the fraction of tumor cells harboring a mutation). On average, 41 % of the mutations were shared by primary and recurrence. The majority of shared mutations were clonal in both primary and recurrence, but we also observed many clonal mutations that were uniquely detected in either the primary or the recurrence. This raises the intriguing possibility that major tumor clones in the primary tumor and disease relapse both evolved from a shared ancestral tumor cell population. At least one subclone was identified in the majority of WGS samples, and we observed groups of mutations that were at low cancer cell fractions in both primary and recurrence, suggesting that both subclones evolved from the same ancestral tumor cells separate from the major clone ancestral cells. To address the possibility that the lack of overlap between subsequent tumors was due to intratumoral heterogeneity, we analyzed exome sequencing from a second tumor sector of seven primary and six recurrent tumors. We found that the majority of "second biopsy" mutations were not conserved between time points, suggesting that intratumoral heterogeneity did not explain the large number of mutations uniquely detected in primary and recurrence. The limited overlap of mutations in primary and recurrence provides evidence for ancestral tumor cell populations that could not be eradicated by therapy, while offspring cell populations contained unique mutations, were selectively killed by treatment and could therefore no longer be detected after disease relapse. This study has provided new insights into patterns and dynamics of tumor evolution.
Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunzelle, J. S.; Wu, R.; Korolev, S. V.
2004-12-01
Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less
Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...
2014-09-01
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning
2014-01-01
X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed ‘PredPPCrys’ using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys. PMID:25148528
SeqAPASS (Sequence Alignment to Predict Across Species Susceptibility) software and documentation
SeqAPASS is a software application facilitates rapid and streamlined, yet transparent, comparisons of the similarity of toxicologically-significant molecular targets across species. The present application facilitates analysis of primary amino acid sequence similarity (including ...
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.
Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation
Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104
König, Caroline; Alquézar, René; Vellido, Alfredo; Giraldo, Jesús
2018-03-01
G-protein-coupled receptors (GPCRs) are a large and diverse super-family of eukaryotic cell membrane proteins that play an important physiological role as transmitters of extracellular signal. In this paper, we investigate Class C, a member of this super-family that has attracted much attention in pharmacology. The limited knowledge about the complete 3D crystal structure of Class C receptors makes necessary the use of their primary amino acid sequences for analytical purposes. Here, we provide a systematic analysis of distinct receptor sequence segments with regard to their ability to differentiate between seven class C GPCR subtypes according to their topological location in the extracellular, transmembrane, or intracellular domains. We build on the results from the previous research that provided preliminary evidence of the potential use of separated domains of complete class C GPCR sequences as the basis for subtype classification. The use of the extracellular N-terminus domain alone was shown to result in a minor decrease in subtype discrimination in comparison with the complete sequence, despite discarding much of the sequence information. In this paper, we describe the use of Support Vector Machine-based classification models to evaluate the subtype-discriminating capacity of the specific topological sequence segments.
Molinari, Luisa; Mameli, Consuelo; Gnisci, Augusto
2013-09-01
A sequential analysis of classroom discourse is needed to investigate the conditions under which the triadic initiation-response-feedback (IRF) pattern may host different teaching orientations. The purpose of the study is twofold: first, to describe the characteristics of classroom discourse and, second, to identify and explore the different interactive sequences that can be captured with a sequential statistical analysis. Twelve whole-class activities were video recorded in three Italian primary schools. We observed classroom interaction as it occurs naturally on an everyday basis. In total, we collected 587 min of video recordings. Subsequently, 828 triadic IRF patterns were extracted from this material and analysed with the programme Generalized Sequential Query (GSEQ). The results indicate that classroom discourse may unfold in different ways. In particular, we identified and described four types of sequences. Dialogic sequences were triggered by authentic questions, and continued through further relaunches. Monologic sequences were directed to fulfil the teachers' pre-determined didactic purposes. Co-constructive sequences fostered deduction, reasoning, and thinking. Scaffolding sequences helped and sustained children with difficulties. The application of sequential analyses allowed us to show that interactive sequences may account for a variety of meanings, thus making a significant contribution to the literature and research practice in classroom discourse. © 2012 The British Psychological Society.
Xie, Guosen; Mo, Zhongxi
2011-01-21
In this article, we introduce three 3D graphical representations of DNA primary sequences, which we call RY-curve, MK-curve and SW-curve, based on three classifications of the DNA bases. The advantages of our representations are that (i) these 3D curves are strictly non-degenerate and there is no loss of information when transferring a DNA sequence to its mathematical representation and (ii) the coordinates of every node on these 3D curves have clear biological implication. Two applications of these 3D curves are presented: (a) a simple formula is derived to calculate the content of the four bases (A, G, C and T) from the coordinates of nodes on the curves; and (b) a 12-component characteristic vector is constructed to compare similarity among DNA sequences from different species based on the geometrical centers of the 3D curves. As examples, we examine similarity among the coding sequences of the first exon of beta-globin gene from eleven species and validate similarity of cDNA sequences of beta-globin gene from eight species. Copyright © 2010 Elsevier Ltd. All rights reserved.
DeBoever, Christopher; Reid, Erin G.; Smith, Erin N.; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A.
2013-01-01
Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples. PMID:24023918
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.
Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M
2016-07-01
The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.
Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab.
Liu, Jennifer; Eris, Tamer; Li, Cynthia; Cao, Shawn; Kuhns, Scott
2016-08-01
ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.
Takeuchi, Y; Yoshikawa, M; Takeba, G; Tanaka, K; Shibata, D; Horino, O
1990-06-01
Soybean (Glycine max) beta-1,3-endoglucanase (EC 3.2. 1.39) is involved in one of the earliest plant-pathogen interactions that may lead to active disease resistance by releasing elicitor-active carbohydrates from the cell walls of fungal pathogens. Ethylene induced beta-1,3-endoglucanase activity to 2- to 3-fold higher levels in cotyledons of soybean seedlings. A specific polyclonal antiserum raised against purified soybean beta-1,3-endoglucanase was used to immunoprecipitate in vitro translation products, demonstrating that ethylene induction increased translatable beta-1,3-endoglucanase mRNA. Several cDNA clones for the endoglucanase gene were obtained by antibody screening of a lambda-gt11 expression library prepared from soybean cotyledons. Hybrid-select translation experiments indicated that the cloned cDNA encoded a 36-kilodalton precursor protein product that was specifically immunoprecipitated with beta-1,3-endoglucanase antiserum. Escherichia coli cells expressing the cloned cDNA also synthesized an immunologically positive protein. Nucleotide sequence of three independent clones revealed a single uninterrupted open reading frame of 1041 nucleotides, corresponding to a polypeptide of 347 residue long. The primary amino acid sequence of beta-1,3-endoglucanase as deduced from the nucleotide sequence was confirmed by direct amino acid sequencing of trypsin digests of the glucanase. The soybean beta-1,3-endoglucanase exhibited 53% amino acid homology to a beta-1,3-glucanase cloned from cultured tobacco cells and 48% homology to a beta-(1,3-1,4)-glucanase from barley. Utilizing the largest cloned cDNA (pEG488) as a hybridization probe, it was found that the increase in translatable beta-1,3-endoglucanase mRNA seen upon ethylene treatment of soybean seedlings was due to 50- to 100-fold increase in steady state mRNA levels, indicating that ethylene regulates gene expression of this enzyme important in disease resistance at the level of gene transcription.
Development of a DNA Barcoding System for Seagrasses: Successful but Not Simple
Lucas, Christina; Thangaradjou, Thirunavakkarasu; Papenbrock, Jutta
2012-01-01
Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL) rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches contribute to the understanding of the morphological plasticity of seagrasses versus genetic differentiation. PMID:22253849
Deguchi, T; Fukuoka, A; Yasuda, M; Nakano, M; Ozeki, S; Kanematsu, E; Nishino, Y; Ishihara, S; Ban, Y; Kawada, Y
1997-03-01
We determined a partial sequence of the Klebsiella pneumoniae parC gene, including the region analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene, and examined 26 clinical strains of K. pneumoniae for an association of alterations in GyrA and ParC with susceptibilities to quinolones. The study suggests that in K. pneumoniae DNA gyrase is a primary target of quinolones and that ParC alterations play a complementary role in the development of higher-level fluoroquinolone resistance.
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Update on Rover Sequencing and Visualization Program
NASA Technical Reports Server (NTRS)
Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos
2005-01-01
The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.
Fast computational methods for predicting protein structure from primary amino acid sequence
Agarwal, Pratul Kumar [Knoxville, TN
2011-07-19
The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.
Beintema, J J; Peumans, W J
1992-03-09
The primary structure of stinging nettle (Urtica dioica) agglutinin has been determined by sequence analysis of peptides obtained from three overlapping proteolytic digests. The sequence of 80 residues consists of two hevein-like domains with the same spacing of half-cystine residues and several other conserved residues as observed earlier in other proteins with hevein-like domains. The hinge region between the two domains is four residues longer than those between the four domains in cereal lectins like wheat germ agglutinin.
Han, Bo W; Wang, Wei; Li, Chengjian; Weng, Zhiping; Zamore, Phillip D
2015-05-15
PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence. Copyright © 2015, American Association for the Advancement of Science.
Behura, Susanta K.; Severson, David W.
2014-01-01
The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953
StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics
Ramirez-Gonzalez, Ricardo H.; Leggett, Richard M.; Waite, Darren; Thanki, Anil; Drou, Nizar; Caccamo, Mario; Davey, Robert
2014-01-01
Modern sequencing platforms generate enormous quantities of data in ever-decreasing amounts of time. Additionally, techniques such as multiplex sequencing allow one run to contain hundreds of different samples. With such data comes a significant challenge to understand its quality and to understand how the quality and yield are changing across instruments and over time. As well as the desire to understand historical data, sequencing centres often have a duty to provide clear summaries of individual run performance to collaborators or customers. We present StatsDB, an open-source software package for storage and analysis of next generation sequencing run metrics. The system has been designed for incorporation into a primary analysis pipeline, either at the programmatic level or via integration into existing user interfaces. Statistics are stored in an SQL database and APIs provide the ability to store and access the data while abstracting the underlying database design. This abstraction allows simpler, wider querying across multiple fields than is possible by the manual steps and calculation required to dissect individual reports, e.g. ”provide metrics about nucleotide bias in libraries using adaptor barcode X, across all runs on sequencer A, within the last month”. The software is supplied with modules for storage of statistics from FastQC, a commonly used tool for analysis of sequence reads, but the open nature of the database schema means it can be easily adapted to other tools. Currently at The Genome Analysis Centre (TGAC), reports are accessed through our LIMS system or through a standalone GUI tool, but the API and supplied examples make it easy to develop custom reports and to interface with other packages. PMID:24627795
Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project
Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.; ...
2014-06-15
The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both ofmore » the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.« less
Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.
The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both ofmore » the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Al-Shahrani, Sarah A; Alajmi, Reem A; Ayaad, Tahany H; Al-Shahrani, Mohammed A; Shaurub, El-Sayed H
2017-10-01
The present work aimed at investigating the genetic diversity of the head louse Pediculus humanus capitis (P. humanus capitis) among infested primary school girls at Bisha governorate, Saudi Arabia, based on the sequence of mitochondrial cytochrome b (mt cyt b) gene of 121 P. humanus capitis adults. Additionally, the prevalence of pediculosis capitis was surveyed. The results of sequencing were compared with the sequence of human head lice that are genotyped previously. Phylogenetic tree analysis showed the presence of 100% identity (n = 26) of louse specimens with clade A (prevalent worldwide) of the GenBank data base. Louse individuals (n = 50) showed 99.8% similarity with the same clade A reference having a single base pair difference. Also, a number of 22 louse individuals revealed 99.8% identity with clade B reference (prevalent in North and Central Americas, Europe, and Australia) with individual diversity in two base pairs. Moreover, 14 louse individual sequences revealed 99.4% identity with three base pair differences. It was concluded that moderate pediculosis (~13%) prevailed among the female students of the primary schools. It was age-and hair texture (straight or curly)-dependent. P. humanus capitis prevalence diversity is of clades A and B genotyping.
Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe
2018-06-01
We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, M.H.; Gustason, E.R.
1987-05-01
The Muddy Sandstone at Kitty field is a valley-fill sequence that records a late Albian sea level rise and accompanying transgression. The valley was cut during a preceding sea level lowstand. Stratal geometries and facies successions within the valley fill demonstrate the history of transgression was not gradual and progressive. Rather, the valley fill comprises a series of discrete, time-bounded, depositional units which onlap the erosional surface. Five time-bounded depositional units were defined by facies successions and were used to define onlap geometries. Facies successions within individual units record progressive shoaling. Capping each succession, there may be a planar disconformity,more » a thin bioturbated interval, or the deepest water facies of the next depositional event. Thus, the termination of each depositional event is marked by an episode of rapid deepening. At a single geographic location, stratal successions within older depositional units represent more landward facies than those within younger units. Therefore, the onlap geometry of the valley-fill sequence consists of a landward-stepping arrangement of depositional units. The primary reservoirs within the valley-fill sequence, at Kitty field, are laterally coalesced, channel-belt sandstones at the base and barrier island sandstones at the top. Reservoir sandstones of lesser quality occur within the intermediate estuarine facies. The stacking pattern, developed by onlap of the units, results in multiple pay zones within mid-valley reaches. The boundaries of each depositional unit define a high-resolution, chronostratigraphic correlation of valley-fill strata, a correlation corroborated by bentonites. This correlation method gives an accurate description of the internal geometry of valley-fill strata and, therefore, provides a basis for understanding the process of transgressive onlap.« less
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples
Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.
2016-01-01
Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273
Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway.
Yao, Justin D; Bremen, Peter; Middlebrooks, John C
2015-12-09
Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in three levels of the ascending auditory pathway with extracellular unit recordings in anesthetized rats. We found that neural SSS emerges within the ascending auditory pathway as a consequence of sharpening of spatial sensitivity and increasing forward suppression. Our results highlight brainstem mechanisms that culminate in SSS at the level of the auditory cortex. Copyright © 2015 Yao et al.
Battelino, T; Conget, I; Olsen, B; Schütz-Fuhrmann, I; Hommel, E; Hoogma, R; Schierloh, U; Sulli, N; Bolinder, J
2012-12-01
The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes. Children and adults (n = 153) on CSII with HbA(1c) 7.5-9.5% (58.5-80.3 mmol/mol) were randomised to (CGM) a Sensor On or Sensor Off arm for 6 months. After 4 months' washout, participants crossed over to the other arm for 6 months. Paediatric and adult participants were separately electronically randomised through the case report form according to a predefined randomisation sequence in eight secondary and tertiary centres. The primary outcome was the difference in HbA(1c) levels between arms after 6 months. Seventy-seven participants were randomised to the On/Off sequence and 76 to the Off/On sequence; all were included in the primary analysis. The mean difference in HbA(1c) was -0.43% (-4.74 mmol/mol) in favour of the Sensor On arm (8.04% [64.34 mmol/mol] vs 8.47% [69.08 mmol/mol]; 95% CI -0.32%, -0.55% [-3.50, -6.01 mmol/mol]; p < 0.001). Following cessation of glucose sensing, HbA(1c) reverted to baseline levels. Less time was spent with sensor glucose <3.9 mmol/l during the Sensor On arm than in the Sensor Off arm (19 vs 31 min/day; p = 0.009). The mean number of daily boluses increased in the Sensor On arm (6.8 ± 2.5 vs 5.8 ± 1.9, p < 0.0001), together with the frequency of use of the temporary basal rate (0.75 ± 1.11 vs 0.26 ± 0.47, p < 0.0001) and manual insulin suspend (0.91 ± 1.25 vs 0.70 ± 0.75, p < 0.018) functions. Four vs two events of severe hypoglycaemia occurred in the Sensor On and Sensor Off arm, respectively (p = 0.40). Continuous glucose monitoring was associated with decreased HbA(1c) levels and time spent in hypoglycaemia in individuals with type 1 diabetes using CSII. More frequent self-adjustments of insulin therapy may have contributed to these effects.
Gao, Ting; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Liu, Chang; Chen, Shilin
2010-10-26
Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.
Encoding and choice in the task span paradigm.
Reiman, Kaitlin M; Weaver, Starla M; Arrington, Catherine M
2015-03-01
Cognitive control during sequences of planned behaviors requires both plan-level processes such as generating, maintaining, and monitoring the plan, as well as task-level processes such as selecting, establishing and implementing specific task sets. The task span paradigm (Logan in J Exp Psychol Gen 133:218-236, 2004) combines two common cognitive control paradigms, task switching and working memory span, to investigate the integration of plan-level and task-level processes during control of sequential behavior. The current study expands past task span research to include measures of encoding processes and choice behavior with volitional sequence generation, using the standard task span as well as a novel voluntary task span paradigm. In two experiments, we consider how sequence complexity, defined separately for plan-level and task-level complexity, influences sequence encoding (Experiment 1), sequence choice (Experiment 2), sequence memory, and task performance of planned sequences of action. Results indicate that participants were sensitive to sequence complexity, but that different aspects of behavior are most strongly influenced by different types of complexity. Hierarchical complexity at the plan level best predicts voluntary sequence generation and memory; while switch frequency at the task level best predicts encoding of externally defined sequences and task performance. Furthermore, performance RTs were similar for externally and internally defined plans, whereas memory was improved for internally defined sequences. Finally, participants demonstrated a significant sequence choice bias in the voluntary task span. Consistent with past research on choice behavior, volitional selection of plans was markedly influenced by both the ease of memory and performance.
Tetu, Sasha G; Breakwell, Katy; Elbourne, Liam D H; Holmes, Andrew J; Gillings, Michael R; Paulsen, Ian T
2013-06-01
Beneath Australia's large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as 'slime curtains' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers.
Lavenu, A; Pistoi, S; Pournin, S; Babinet, C; Morello, D
1995-01-01
In vivo, the steady-state level of c-myc mRNA is mainly controlled by posttranscriptional mechanisms. Using a panel of transgenic mice in which various versions of the human c-myc proto-oncogene were under the control of major histocompatibility complex H-2Kb class I regulatory sequences, we have shown that the 5' and the 3' noncoding sequences are dispensable for obtaining a regulated expression of the transgene in adult quiescent tissues, at the start of liver regeneration, and after inhibition of protein synthesis. These results indicated that the coding sequences were sufficient to ensure a regulated c-myc expression. In the present study, we have pursued this analysis with transgenes containing one or the other of the two c-myc coding exons either alone or in association with the c-myc 3' untranslated region. We demonstrate that each of the exons contains determinants which control c-myc mRNA expression. Moreover, we show that in the liver, c-myc exon 2 sequences are able to down-regulate an otherwise stable H-2K mRNA when embedded within it and to induce its transient accumulation after cycloheximide treatment and soon after liver ablation. Finally, the use of transgenes with different coding capacities has allowed us to postulate that the primary mRNA sequence itself and not c-Myc peptides is an important component of c-myc posttranscriptional regulation. PMID:7623834
CDTI: Crew Function Assessment
NASA Technical Reports Server (NTRS)
Tole, J. R.; Young, L. R.
1982-01-01
Man machine interaction often requires the operator to perform a sterotyped scan of instruments to monitor and/or control a system. Situations in which this type of behavior exists, such as instrument flight, scan pattern has been shown to be altered by imposition of simultaneous verbal tasks. The relationship between pilot visual scan of instruments and mental workload was described. A verbal loading task of varying difficulty caused pilots to stare at the primary instrument as the difficulty increased and to shed looks at instruments of less importance. The verbal loading task affected rank ordering of scanning sequences. The behavior of pilots with widely varying skill levels suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. Graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modeling results are presented to support this interpretation.
ATWS analysis for Browns Ferry Nuclear Plant Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallman, R.J.; Jouse, W.C.
1985-01-01
Analyses of postulated Anticipated Transients Without Scram (ATWS) were performed at the Idaho National Engineering Laboratory (INEL). The Browns Ferry Nuclear Plant Unit 1 (BFNP1) was selected as the subject of this work because of the cooperation of the Tennessee Valley Authority (TVA). The work is part of the Severe Accident Sequence Analysis (SASA) Program of the US Nuclear Regulatory Commission (NRC). A Main Steamline Isolation Valve (MSIV) closure served as the transient initiator for these analyses, which proceeded a complete failure to scram. Results from the analyses indicate that operator mitigative actions are required to prevent overpressurization of themore » primary containment. Uncertainties remain concerning the effectiveness of key mitigative actions. The effectiveness of level control as a power reduction procedure is limited. Power level resulting from level control only reduce the Pressure Suppression Pool (PSP) heatup rate from 6 to 4F/min.« less
Thomas, Sean; Martinez, L L Isadora Trejo; Westenberger, Scott J; Sturm, Nancy R
2007-05-24
The structurally complex network of minicircles and maxicircles comprising the mitochondrial DNA of kinetoplastids mirrors the complexity of the RNA editing process that is required for faithful expression of encrypted maxicircle genes. Although a few of the guide RNAs that direct this editing process have been discovered on maxicircles, guide RNAs are mostly found on the minicircles. The nuclear and maxicircle genomes have been sequenced and assembled for Trypanosoma cruzi, the causative agent of Chagas disease, however the complement of 1.4-kb minicircles, carrying four guide RNA genes per molecule in this parasite, has been less thoroughly characterised. Fifty-four CL Brener and 53 Esmeraldo strain minicircle sequence reads were extracted from T. cruzi whole genome shotgun sequencing data. With these sequences and all published T. cruzi minicircle sequences, 108 unique guide RNAs from all known T. cruzi minicircle sequences and two guide RNAs from the CL Brener maxicircle were predicted using a local alignment algorithm and mapped onto predicted or experimentally determined sequences of edited maxicircle open reading frames. For half of the sequences no statistically significant guide RNA could be assigned. Likely positions of these unidentified gRNAs in T. cruzi minicircle sequences are estimated using a simple Hidden Markov Model. With the local alignment predictions as a standard, the HMM had an ~85% chance of correctly identifying at least 20 nucleotides of guide RNA from a given minicircle sequence. Inter-minicircle recombination was documented. Variable regions contain species-specific areas of distinct nucleotide preference. Two maxicircle guide RNA genes were found. The identification of new minicircle sequences and the further characterization of all published minicircles are presented, including the first observation of recombination between minicircles. Extrapolation suggests a level of 4% recombinants in the population, supporting a relatively high recombination rate that may serve to minimize the persistence of gRNA pseudogenes. Characteristic nucleotide preferences observed within variable regions provide potential clues regarding the transcription and maturation of T. cruzi guide RNAs. Based on these preferences, a method of predicting T. cruzi guide RNAs using only primary minicircle sequence data was created.
Rover Sequencing and Visualization Program
NASA Technical Reports Server (NTRS)
Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos
2005-01-01
The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.
Long Baseline Nulling Interferometry with the Keck Telescopes: A Progress Report
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Colavita, M. M.; Crawford, S.; Creech-Eakman, M. J.; Dahl, W.; Fanson, J.;
2005-01-01
The Keck Interferometer Nuller (KIN) is one of the major scientific and technical precursors to the Terrestrial Planet Finder Interferometer (TPF-I) mission. KIN's primary objective is to measure the level of exo-zodiacal mid-infrared emission around nearby main sequence stars, which requires deep broad-band nulling of astronomical sources of a few Janskys at 10 microns. A number of new capabilities are needed in order to reach that goal with the Keck telescopes: mid-infrared coherent recombination, interferometric operation in 'split pupil' mode, N-band optical path stabilization using K-band fringe tracking and internal metrology, and eventually, active atmospheric dispersion correction. We report here on the progress made implementing these new functionalities, and discuss the initial levels of extinction achieved on the sky.
Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Tellgren-Roth, Christian; Kindmark, Andreas
2016-03-01
We investigated the impact of treatment with parathyroid hormone (PTH) and dexamethasone (DEX) for 2 and 24h by RNA sequencing of miRNAs in primary human bone (HOB) cells. A total of 207 million reads were obtained, and normalized absolute expression retrieved for 373 most abundant miRNAs. In naïve control cells, 7 miRNAs were differentially expressed (FDR<0.05) between the two time points. Ten miRNAs exhibited differential expression (FDR <0.05) across two time points and treatments after adjusting for expression in controls and were selected for downstream analyses. Results show significant effects on miRNA expression when comparing PTH with DEX at 2h with even more pronounced effects at 24h. Interestingly, several miRNAs exhibiting differences in expression are predicted to target genes involved in bone metabolism e.g. miR-30c2, miR-203 and miR-205 targeting RUNX2, and miR-320 targeting β-catenin (CTNNB1) mRNA expression. CTNNB1and RUNX2 levels were decreased after DEX treatment and increased after PTH treatment. Our analysis also identified 2 putative novel miRNAs in PTH and DEX treated cells at 24h. RNA sequencing showed that PTH and DEX treatment affect miRNA expression in HOB cells and that regulated miRNAs in turn are correlated with expression levels of key genes involved in bone metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuriki, Shinya; Yokosawa, Koichi; Takahashi, Makoto
2013-01-01
The auditory illusory perception “scale illusion” occurs when a tone of ascending scale is presented in one ear, a tone of descending scale is presented simultaneously in the other ear, and vice versa. Most listeners hear illusory percepts of smooth pitch contours of the higher half of the scale in the right ear and the lower half in the left ear. Little is known about neural processes underlying the scale illusion. In this magnetoencephalographic study, we recorded steady-state responses to amplitude-modulated short tones having illusion-inducing pitch sequences, where the sound level of the modulated tones was manipulated to decrease monotonically with increase in pitch. The steady-state responses were decomposed into right- and left-sound components by means of separate modulation frequencies. It was found that the time course of the magnitude of response components of illusion-perceiving listeners was significantly correlated with smooth pitch contour of illusory percepts and that the time course of response components of stimulus-perceiving listeners was significantly correlated with discontinuous pitch contour of stimulus percepts in addition to the contour of illusory percepts. The results suggest that the percept of illusory pitch sequence was represented in the neural activity in or near the primary auditory cortex, i.e., the site of generation of auditory steady-state response, and that perception of scale illusion is maintained by automatic low-level processing. PMID:24086676
SeqDepot: streamlined database of biological sequences and precomputed features.
Ulrich, Luke E; Zhulin, Igor B
2014-01-15
Assembling and/or producing integrated knowledge of sequence features continues to be an onerous and redundant task despite a large number of existing resources. We have developed SeqDepot-a novel database that focuses solely on two primary goals: (i) assimilating known primary sequences with predicted feature data and (ii) providing the most simple and straightforward means to procure and readily use this information. Access to >28.5 million sequences and 300 million features is provided through a well-documented and flexible RESTful interface that supports fetching specific data subsets, bulk queries, visualization and searching by MD5 digests or external database identifiers. We have also developed an HTML5/JavaScript web application exemplifying how to interact with SeqDepot and Perl/Python scripts for use with local processing pipelines. Freely available on the web at http://seqdepot.net/. RESTaccess via http://seqdepot.net/api/v1. Database files and scripts maybe downloaded from http://seqdepot.net/download.
You, Xinxin; Wang, Jintu; Chen, Jieming; Peng, Chao; Shi, Qiong
2017-01-01
The Chinese green mussel, Perna viridis, is a marine bivalve with important economic values as well as biomonitoring roles for aquatic pollution. Byssus, secreted by the foot gland, has been proved to bind heavy metals effectively. In this study, using the RNA sequencing technology, we performed comparative transcriptomic analysis on the mussel feet with or without inducing by cadmium (Cd). Our current work is aiming at providing insights into the molecular mechanisms of byssus binding to heavy metal ions. The transcriptome sequencing generated a total of 26.13-Gb raw data. After a careful assembly of clean data, we obtained a primary set of 105,127 unigenes, in which 32,268 unigenes were annotated. Based on the expression profiles, we identified 9,048 differentially expressed genes (DEGs) between Cd treatment (50 or 100 μg/L) at 48 h and the control, suggesting an extensive transcriptome response of the mussels during the Cd stimulation. Moreover, we observed that the expression levels of 54 byssus protein coding genes increased significantly after the 48-h Cd stimulation. In addition, 16 critical byssus protein coding genes were picked for profiling by quantitative real-time PCR (qRT-PCR). Finally, we reached a primary conclusion that high content of tyrosine (Tyr), cysteine (Cys), histidine (His) residues or the special motif plays an important role in the accumulation of heavy metals in byssus. We also proposed an interesting model for the confirmed byssal Cd accumulation, in which biosynthesis of byssus proteins may play simultaneously critical roles since their transcription levels were significantly elevated. PMID:28520756
Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC).
Hinrichs, Heiko; Hinrichs, Jan B; Gutberlet, Marcel; Lenzen, Henrike; Raatschen, Hans-Juergen; Wacker, Frank; Ringe, Kristina I
2016-04-01
To assess the value of variable flip angle-based T1 liver mapping on gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC) for evaluation of global and segmental liver function, and determine a possible correlation with disease severity. Sixty-one patients (19 female, 42 male; mean age 41 years) with PSC were included in this prospective study. T1 mapping was performed using a 3D-spoiled GRE sequence (flip angles 5°, 15°, 20°, 30°) before, 16 (HP1) and 132 min (HP2) after contrast injection. T1 values were measured and compared (Wilcoxon-Test) by placing ROIs in each liver segment. The mean reduction of T1 relaxation time at HP1 and HP2 was calculated and correlated with liver function tests (LFTs), MELD, Mayo Risk and Amsterdam Scores (Spearman correlation). Significant changes of T1 relaxation times between non-enhanced and gadoxetate disodium-enhanced MRI at HP1 and HP2 could be observed in all liver segments (p < 0.0001). A significant correlation of T1 reduction could be observed with LFTs, MELD and Mayo Risk Score (p < 0.05). T1 mapping of the liver using a variable flip angle-based sequence is a feasible technique to evaluate liver function on a global level, and may be extrapolated on a segmental level in patients with PSC. • T1 mapping enables evaluation of global liver function in PSC. • T1 relaxation time reduction correlates with the MELD and MayoRisk Score. • Extrapolated, T1 mapping may allow for segmental evaluation of liver function.
Climatic controls on Pennsylvanian sequences, United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecil, C.B.; Dulong, F.T.; Edgar, N.T.
1996-08-01
Temporal and spatial paleoclimate changes were primary controls on changes in sediment supply, both siliciclastic and chemical, in Pennsylvanian deposystems of the United States. Tectonic and eustatic processes, as well as climatically induced changes in sediment supply, controlled accommodation space and sequence stratigraphy within these deposystems. Interbasinal correlations of lithologies sensitive to climate, such as coeval paleosols, provide continental-scale records of climatic and eustatic conditions. Pennsylvanian bio- and lithostratigraphy are indicative of climate change at time scales that range from long-term (tens of millions of years) as Pangea formed and North America moved northward through the paleoequator, to intermediate-term hundredmore » thousand year cycles controlled by orbital forcing, to very short-term events perhaps analogous to El Nino. Because of proximity to the humid tropics, the long-term climate of eastern basins of the United States was generally wetter than western basins. In the east, pluvial parts of climate cycles occur during low-stand events and are recorded by intense chemical weathering, high terrestrial organic productivity, restricted erosion, and siliciclastic sediment starvation. These conditions resulted in highly leached mineral paleosols (Ultisols) and coal beds (Histosols) of interbasinal extent. Drier parts of climate cycles in the east occurred during highstands of sea level when erosion and siliciclastic transport were maximum. In the western basins pluvial periods are generally indicated by shifts from eolian to fluvial and lacustrine sedimentary regimes in continental environments and from evaporate and carbonate to siliciclastic deposition, including black shale petroleum source rocks, in marine environments. Tectonics controlled basin development and glacial eustasy controlled sea level cycles. Climate, however, was the primary control on sediment supply and lithostratigraphy.« less
2011-01-01
Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. PMID:21489281
Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.
2011-01-01
Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.
Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert.
Rasuk, Maria Cecilia; Fernández, Ana Beatriz; Kurth, Daniel; Contreras, Manuel; Novoa, Fernando; Poiré, Daniel; Farías, María Eugenia
2016-01-01
The Atacama Desert has extreme environmental conditions that allow the development of unique microbial communities. The present paper reports the bacterial diversity of microbial mats and sediments and its mineralogical components. Some physicochemical conditions of the water surrounding these ecosystems have also been studied trying to determine their influence on the diversity of these communities. In that way, mats and sediments distributed among different hypersaline lakes located in salt flats of the Atacama Desert were subjected to massive parallel sequencing of the V4 region of the 16S rRNA genes of Bacteria. A higher diversity in sediment than in mat samples have been found. Lakes that harbor microbial mats have higher salinity than lakes where mats are absent. Proteobacteria and/or Bacteroidetes are the major phyla represented in all samples. An interesting item is the finding of a low proportion or absence of Cyanobacteria sequences in the ecosystems studied, suggesting the possibility that other groups may be playing an essential role as primary producers in these extreme environments. Additionally, the large proportion of 16S rRNA gene sequences that could not be classified at the level of phylum indicates potential new phyla present in these ecosystems.
Robbins, Marjorie; Judge, Adam; MacLachlan, Ian
2009-06-01
Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.
Oeo-Santos, Carmen; Mas, Salvador; Benedé, Sara; López-Lucendo, María; Quiralte, Joaquín; Blanca, Miguel; Mayorga, Cristobalina; Villalba, Mayte; Barderas, Rodrigo
2018-06-05
The allergenic non-specific lipid transfer protein Ole e 7 from olive pollen is a major allergen associated with severe symptoms in areas with high olive pollen levels. Despite its clinical importance, its cloning and recombinant production has been unable by classical approaches. This study aimed at determining by mass-spectrometry based proteomics its complete amino acid sequence for its subsequent expression and characterization. To this end, the natural protein was in-2D-gel tryptic digested, and CID and HCD fragmentation spectra obtained by nLC-MS/MS analyzed using PEAKS software. Thirteen out of the 457 de novo sequenced peptides obtained allowed assembling its full-length amino acid sequence. Then, Ole e 7-encoding cDNA was synthesized and cloned in pPICZαA vector for its expression in Pichia pastoris yeast. The analyses by Circular Dichroism, and WB, ELISA and cell-based tests using sera and blood from olive pollen-sensitized patients showed that rOle e 7 mostly retained the structural, allergenic and antigenic properties of the natural allergen. In summary, rOle e 7 allergen assembled by de novo peptide sequencing by MS behaved immunologically similar to the natural allergen scarcely isolated from pollen. Olive pollen is an important cause of allergy. The non-specific lipid binding protein Ole e 7 is a major allergen with a high incidence and a phenotype associated to severe clinical symptoms. Despite its relevance, its cloning and recombinant expression has been unable by classical techniques. Here, we have inferred the primary amino acid sequence of Ole e 7 by mass-spectrometry. We separated Ole e 7 isolated from pollen by 2DE. After in-gel digestion with trypsin and a direct analysis by nLC-MS/MS in an LTQ-Orbitrap Velos, we got the complete de novo sequenced peptides repertoire that allowed the assembling of the primary sequence of Ole e 7. After its protein expression, purification to homogeneity, and structural and immunological characterization using sera from olive pollen allergic patients and cell-based assays, we observed that the recombinant allergen retained the antigenic and allergenic properties of the natural allergen. Collectively, we show that the recombinant protein assembled by proteomics would be suitable for a better in vitro diagnosis of olive pollen allergic patients. Copyright © 2018. Published by Elsevier B.V.
Schwientek, Patrick; Neshat, Armin; Kalinowski, Jörn; Klein, Andreas; Rückert, Christian; Schneiker-Bekel, Susanne; Wendler, Sergej; Stoye, Jens; Pühler, Alfred
2014-11-20
Actinoplanes sp. SE50/110 is the producer of the alpha-glucosidase inhibitor acarbose, which is an economically relevant and potent drug in the treatment of type-2 diabetes mellitus. In this study, we present the detection of transcription start sites on this genome by sequencing enriched 5'-ends of primary transcripts. Altogether, 1427 putative transcription start sites were initially identified. With help of the annotated genome sequence, 661 transcription start sites were found to belong to the leader region of protein-coding genes with the surprising result that roughly 20% of these genes rank among the class of leaderless transcripts. Next, conserved promoter motifs were identified for protein-coding genes with and without leader sequences. The mapped transcription start sites were finally used to improve the annotation of the Actinoplanes sp. SE50/110 genome sequence. Concerning protein-coding genes, 41 translation start sites were corrected and 9 novel protein-coding genes could be identified. In addition to this, 122 previously undetermined non-coding RNA (ncRNA) genes of Actinoplanes sp. SE50/110 were defined. Focusing on antisense transcription start sites located within coding genes or their leader sequences, it was discovered that 96 of those ncRNA genes belong to the class of antisense RNA (asRNA) genes. The remaining 26 ncRNA genes were found outside of known protein-coding genes. Four chosen examples of prominent ncRNA genes, namely the transfer messenger RNA gene ssrA, the ribonuclease P class A RNA gene rnpB, the cobalamin riboswitch RNA gene cobRS, and the selenocysteine-specific tRNA gene selC, are presented in more detail. This study demonstrates that sequencing of enriched 5'-ends of primary transcripts and the identification of transcription start sites are valuable tools for advanced genome annotation of Actinoplanes sp. SE50/110 and most probably also for other bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.
de Jong, Britt G; IJspeert, Hanna; Marques, Lemelinda; van der Burg, Mirjam; van Dongen, Jacques Jm; Loos, Bruno G; van Zelm, Menno C
2017-10-01
The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was performed on purified IgG + memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27 + IgG + memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation markers than CD27 - IgG + memory B cells. We conclude that secondary immunological memory accumulates with age and these memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses.
Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang
2015-09-01
Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value < 0.05). These include genes involved in the synthesis/degradation of abscisic acid, salicylic acid and jasmonic acid, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes and ATP-binding cassette (ABC) transporter genes. This suggests that sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Complete amino acid sequence of the myoglobin from the Pacific sei whale, Balaenoptera borealis.
Jones, B N; Rothgeb, T M; England, R D; Gurd, F R
1979-04-25
The complete amino acid sequence of the major component myoglobin from Pacific sei whale, Balaenoptera borealis, was determined by specific cleavage of the protein to obtain large peptides which are readily degraded by the automatic sequencer. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. From the sequence analysis of four of these peptides and the apomyoglobin, over 75% of the covalent structure of the protein was obtained. The remainder of the primary structure was determined by the sequence analysis of peptides that resulted from further digestion of the amino-terminal and central cyanogen bromide fragments. The amino-terminal fragment was specifically cleaved at its two tryptophanyl residues with N-chlorosuccinimide and the central cyanogen bromide fragment was cleaved at its glutamyl residues with staphylococcal protease and at its single tyrosyl residue with N-bromosuccinimide. The primary structure of this myoglobin proved identical with that from the gray whale but differs from that of the finback whale at four positions, from that of the minke whale at three positions and from the myoglobin of the humpback whale at one position. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.« less
Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard
2016-01-01
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first “metagenomic snapshots” of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a “salt-in” strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds. PMID:26941731
Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; ...
2016-02-25
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.« less
Sui, Zhihai; Zhou, Wenqing; Yao, Kaihu; Liu, Li; Zhang, Gang; Yang, Yonghong
2013-01-01
Streptococcus pneumoniae is a primary cause of bacterial infection in humans. Here, we present the complete genome sequence of S. pneumoniae strain A026, which is a multidrug-resistant strain isolated from cerebrospinal fluid. PMID:24336372
Brassica ASTRA: an integrated database for Brassica genomic research.
Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David
2005-01-01
Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.
Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.
2012-01-01
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921
Choque, Elodie; Klopp, Christophe; Valiere, Sophie; Raynal, José; Mathieu, Florence
2018-03-15
Black Aspergilli represent one of the most important fungal resources of primary and secondary metabolites for biotechnological industry. Having several black Aspergilli sequenced genomes should allow targeting the production of certain metabolites with bioactive properties. In this study, we report the draft genome of a black Aspergilli, A. tubingensis G131, isolated from a French Mediterranean vineyard. This 35 Mb genome includes 10,994 predicted genes. A genomic-based discovery identifies 80 secondary metabolites biosynthetic gene clusters. Genomic sequences of these clusters were blasted on 3 chosen black Aspergilli genomes: A. tubingensis CBS 134.48, A. niger CBS 513.88 and A. kawachii IFO 4308. This comparison highlights different levels of clusters conservation between the four strains. It also allows identifying seven unique clusters in A. tubingensis G131. Moreover, the putative secondary metabolites clusters for asperazine and naphtho-gamma-pyrones production were proposed based on this genomic analysis. Key biosynthetic genes required for the production of 2 mycotoxins, ochratoxin A and fumonisin, are absent from this draft genome. Even if intergenic sequences of these mycotoxins biosynthetic pathways are present, this could not lead to the production of those mycotoxins by A. tubingensis G131. Functional and bioinformatics analyses of A. tubingensis G131 genome highlight its potential for metabolites production in particular for TAN-1612, asperazine and naphtho-gamma-pyrones presenting antioxidant, anticancer or antibiotic properties.
Nestorov, Ivan; Zhao, Guolin; Meka, Venkata; Leahy, Mark; Kam, Jeanelle; Sheikh, Sarah I.
2017-01-01
Abstract Delayed‐release dimethyl fumarate (DMF) is an oral therapy for relapsing multiple sclerosis with anti‐inflammatory and neuroprotective properties. This 2‐period crossover study was conducted to evaluate the potential for drug–drug interaction between DMF (240 mg twice daily) and a combined oral contraceptive (OC; norgestimate 250 μg, ethinyl estradiol 35 μg). Forty‐six healthy women were enrolled; 32 completed the study. After the lead‐in period (OC alone), 41 eligible participants were randomized 1:1 to sequence 1 (OC and DMF coadministration in period 1; OC alone in period 2) or sequence 2 (regimens reversed). Mean concentration profiles of plasma norelgestromin (primary metabolite of norgestimate) and ethinyl estradiol were superimposable following OC alone and OC coadministered with DMF, with 90% confidence intervals of geometric mean ratios for area under the plasma concentration–time curve over the dosing interval and peak plasma concentration contained within the 0.8–1.25 range. Low serum progesterone levels during combined treatment confirmed suppression of ovulation. The pharmacokinetics of DMF (measured via its primary active metabolite, monomethyl fumarate) were consistent with historical data when DMF was administered alone. No new safety concerns were identified. These results suggest that norgestimate/ethinyl estradiol–based OCs may be used with DMF without dose modification. PMID:28783872
Purdue, P E; Lumb, M J; Allsop, J; Minatogawa, Y; Danpure, C J
1992-05-01
We have synthesized and sequenced alanine:glyoxylate aminotransferase (AGT; HGMW-approved symbol for the gene--AGXT) cDNA from the liver of a primary hyperoxaluria type 1 (PH1) patient who had normal levels of hepatic peroxisomal immunoreactive AGT protein, but no AGT catalytic activity. This revealed the presence of a single point mutation (G----A at cDNA nucleotide 367), which is predicted to cause a glycine-to-glutamate substitution at residue 82 of the AGT protein. This mutation is located in exon 2 of the AGT gene and leads to the loss of an AvaI restriction site. Exon 2-specific PCR followed by AvaI digestion showed that this patient was homozygous for this mutation. In addition, three other PH1 patients, one related to and two unrelated to, but with enzymological phenotype similar to that of the first patient, were also shown to be homozygous for the mutation. However, one other phenotypically similar PH1 patient was shown to lack this mutation. The mechanism by which the glycine-to-glutamate substitution at residue 82 causes loss of catalytic activity remains to be resolved. However, the protein sequence in this region is highly conserved between different mammals, and the substitution at residue 82 is predicted to cause significant local structural alterations.
Resurgence of Integrated Behavioral Units
Bachá-Méndez, Gustavo; Reid, Alliston K; Mendoza-Soylovna, Adela
2007-01-01
Two experiments with rats examined the dynamics of well-learned response sequences when reinforcement contingencies were changed. Both experiments contained four phases, each of which reinforced a 2-response sequence of lever presses until responding was stable. The contingencies then were shifted to a new reinforced sequence until responding was again stable. Extinction-induced resurgence of previously reinforced, and then extinguished, heterogeneous response sequences was observed in all subjects in both experiments. These sequences were demonstrated to be integrated behavioral units, controlled by processes acting at the level of the entire sequence. Response-level processes were also simultaneously operative. Errors in sequence production were strongly influenced by the terminal, not the initial, response in the currently reinforced sequence, but not by the previously reinforced sequence. These studies demonstrate that sequence-level and response-level processes can operate simultaneously in integrated behavioral units. Resurgence and the development of integrated behavioral units may be dissociated; thus the observation of one does not necessarily imply the other. PMID:17345948
Ali, Ather; Ma, Yingying; Reynolds, Jesse; Wise, John Pierce; Inzucchi, Silvio E; Katz, David L
2011-01-01
To investigate the effects of daily chromium picolinate supplementation on serum measures of glucose tolerance and insulin sensitivity in patients at high risk for type 2 diabetes mellitus. We conducted a randomized, double-blind, placebo-controlled, modified cross-over clinical trial with 6-month sequences of intervention and placebo followed by a 6-month postintervention assessment. Adult patients with impaired fasting glucose, impaired glucose tolerance, or metabolic syndrome were enrolled. Participants received 6-month sequences of chromium picolinate or placebo at 1 of 2 dosages (500 or 1000 mcg daily). Primary outcome measures were change in fasting plasma glucose, 2-hour plasma glucose during oral glucose tolerance testing, fasting and 2-hour insulin, and homeostasis model assessment of insulin resistance (HOMA-IR). Secondary outcomes included anthropometric measures, blood pressure, endothelial function, hemoglobin A1c, lipids, and urinary microalbumin. Fifty-nine participants were enrolled. No changes were seen in glucose level, insulin level, or HOMA-IR (all P>.05) after 6 months of chromium at either dosage level (500 mcg or 1000 mcg daily) when compared with placebo. None of the secondary outcomes improved with either chromium dosage compared with placebo (P>.05). Chromium supplementation does not appear to ameliorate insulin resistance or impaired glucose metabolism in patients at risk for type 2 diabetes and thus is unlikely to attenuate diabetes risk.
Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altemus, M.; Murphy, D.L.; Greenberg, B.
1996-07-26
Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less
Mariner 9 mapping science sequence design.
NASA Technical Reports Server (NTRS)
Goldman, A. M., Jr.
1973-01-01
The primary mission of Mariner 9 was to map the Martian surface. This paper discusses in detail the design of the mapping science sequences which were executed by the spacecraft in sixty days and during which over eighty percent of the surface was photographed. The sequence design was influenced by many factors: experimenter scientific objectives, instrument capabilities, spacecraft capabilities, orbit characteristics, and data return rates, which are illustrated graphically. Typical orbits are depicted for each of the three different mapping phases lasting twenty days. Examples of typical orbital sequence plans prepared daily during mission operations are given.
Sequencing technologies - the next generation.
Metzker, Michael L
2010-01-01
Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.
Thomas, Xiomara V; Grady, Bart P X; Van Der Meer, Jan T M; Ho, Cynthia K; Vanhommerig, Joost W; Rebers, Sjoerd P; De Jong, Menno D; Van Der Valk, Marc; Prins, Maria; Molenkamp, Richard; Schinkel, Janke
2015-11-01
High rates of hepatitis C virus (HCV) reinfections among HIV-infected men who have sex with men (MSM) following clearance of a primary infection suggest absence of protective immunity. Here, we investigated the incidence of HCV super and reinfections in 85 HIV-infected MSM with incident HCV infection. Serial sequencing of a fragment of NS5B and the HCV envelope was used to longitudinally characterize the virus. If the primary genotype was still present at the most recent viremic time point, as indicated by the NS5B sequence analysis, serial envelope 2/hypervariable region 1 (E2/HRV1) sequence analysis was performed to distinguish a new infection with the same genotype (clade switch) from intrahost evolution. Incidence rate and cumulative incidence of secondary infections were estimated, and the effect of the primary genotype (1a versus non1) on the risk of acquiring a second infection with the same genotype was determined using Cox proportional-hazards analysis. Among 85 patients with a median follow-up of 4.8 years, incidence rate of secondary infections was 5.39 cases/100 person-years (95% confidence interval 3.34-8.26). Cumulative incidence of genotype switches was markedly higher than the cumulative incidence of clade switches (26.7 versus 4.8% at 5 years, respectively). In patients with HCV-1a as primary infection, the risk for acquiring another HCV-1a infection was reduced compared to those with a primary non-HCV-1a subsequently acquiring HCV-1a (hazard ratio 0.25, 95% confidence interval 0.07-0.93). Risk of acquiring a secondary infection with the primary genotype was strikingly reduced compared with the risk of acquiring a secondary infection with a different genotype.
Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma.
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah; Liu, Yang; Maron, Steven; Islam, Mirazul; Alpert, Lindsay; Kwak, Heewon; Kindler, Hedy; Polite, Blase; Sharma, Manish R; Allen, Kenisha; O'Day, Emily; Lomnicki, Samantha; Maranto, Melissa; Kanteti, Rajani; Fitzpatrick, Carrie; Weber, Christopher; Setia, Namrata; Xiao, Shu-Yuan; Hart, John; Nagy, Rebecca J; Kim, Kyoung-Mee; Choi, Min-Gew; Min, Byung-Hoon; Nason, Katie S; O'Keefe, Lea; Watanabe, Masayuki; Baba, Hideo; Lanman, Rick; Agoston, Agoston T; Oh, David J; Dunford, Andrew; Thorner, Aaron R; Ducar, Matthew D; Wollison, Bruce M; Coleman, Haley A; Ji, Yuan; Posner, Mitchell C; Roggin, Kevin; Turaga, Kiran; Chang, Paul; Hogarth, Kyle; Siddiqui, Uzma; Gelrud, Andres; Ha, Gavin; Freeman, Samuel S; Rhoades, Justin; Reed, Sarah; Gydush, Greg; Rotem, Denisse; Davison, Jon; Imamura, Yu; Adalsteinsson, Viktor; Lee, Jeeyun; Bass, Adam J; Catenacci, Daniel V
2018-01-01
Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential reason for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy. Significance: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1); 37-48. ©2017 AACR. See related commentary by Sundar and Tan, p. 14 See related article by Janjigian et al., p. 49 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.
Two Preferences in Question-Answer Sequences in Language Classroom Context
ERIC Educational Resources Information Center
Hosoda, Yuri; Aline, David
2013-01-01
Discussing two preferences associated with question-answer sequences, this study examines student responses to teacher questions in primary school English-as-a-foreign-language classes. The paper starts out with a reconsideration of institutional context, with a focus on classroom context from a conversation analysis perspective. We then introduce…
USDA-ARS?s Scientific Manuscript database
Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput, method for genome-wide polymorphism discovery and genotyping adjacent to restriction sites. Since 2010, GBS has been applied for the genotyping of over 12,000 grape breeding lines, with a primary focus on identifying markers predictive ...
GSP: a web-based platform for designing genome-specific primers in polyploids
USDA-ARS?s Scientific Manuscript database
The primary goal of this research was to develop a web-based platform named GSP for designing genome-specific primers to distinguish subgenome sequences in the polyploid genome background. GSP uses BLAST to extract homeologous sequences of the subgenomes in the existing databases, performed a multip...
Teacher Deployment of "Oh" in Known-Answer Question Sequences
ERIC Educational Resources Information Center
Hosoda, Yuri
2016-01-01
This conversation analytic study describes some specific interactional contexts in which native English-speaking teachers produce "oh" in known-answer question sequences in English language classes. The data for this study come from 10 video-recorded Japanese primary school English language class sessions. The analysis identified three…
Inhibition of duck hepatitis B virus replication by mimic peptides in vitro
JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU
2015-01-01
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539
Inhibition of duck hepatitis B virus replication by mimic peptides in vitro.
Jia, Hongyu; Liu, Changhong; Yang, Ying; Zhu, Haihong; Chen, Feng; Liu, Jihong; Zhou, Linfu
2015-11-01
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro .
SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer.
Zeller, Constanze; Hinzmann, Bernd; Seitz, Susanne; Prokoph, Helmuth; Burkhard-Goettges, Elke; Fischer, Jörg; Jandrig, Burkhard; Schwarz, Lope-Estevez; Rosenthal, André; Scherneck, Siegfried
2003-05-15
Loss of heterozygosity (LOH) and in silico expression analysis were applied to identify genes significantly downregulated in breast cancer within the genomic interval 6q23-25. Systematic comparison of candidate EST sequences with genomic sequences from this interval revealed the genomic structure of a potential target gene on 6q24.3, which we called SAM and SH3 domain containing 1 (SASH1). Loss of the gene-internal marker D6S311, found in 30% of primary breast cancer, was significantly correlated with poor survival and increase in tumor size. Two SASH1 transcripts of approximately 4.4 and 7.5 kb exist and are predominantly transcribed in the human breast, lung, thyroid, spleen, placenta and thymus. In breast cancer cell lines, SASH1 is only expressed at low levels. SASH1 is downregulated in the majority (74%) of breast tumors in comparison with corresponding normal breast epithelial tissues. In addition, SASH1 is also downregulated in tumors of the lung and thyroid. Analysis of the protein domain structure revealed that SASH1 is a member of a recently described family of SH3/SAM adapter molecules and thus suggests a role in signaling pathways. We assume that SASH1 is a new tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers. We were unable to find mutations in the coding region of the gene in primary breast cancers showing LOH within the critical region. We therefore hypothesize that other mechanisms as for instance methylation of the promoter region of SASH1 are responsible for the loss of expression of SASH1 in primary and metastatic breast cancer.
Ismaiel, A A; Zhu, C X; Colby, G D; Chen, J S
1993-01-01
Two primary alcohols (1-butanol and ethanol) are major fermentation products of several clostridial species. In addition to these two alcohols, the secondary alcohol 2-propanol is produced to a concentration of about 100 mM by some strains of Clostridium beijerinckii. An alcohol dehydrogenase (ADH) has been purified to homogeneity from two strains (NRRL B593 and NESTE 255) of 2-propanol-producing C. beijerinckii. When exposed to air, the purified ADH was stable, whereas the partially purified ADH was inactivated. The ADHs from the two strains had similar structural and kinetic properties. Each had a native M(r) of between 90,000 and 100,000 and a subunit M(r) of between 38,000 and 40,000. The ADHs were NADP(H) dependent, but a low level of NAD(+)-linked activity was detected. They were equally active in reducing aldehydes and 2-ketones, but a much lower oxidizing activity was obtained with primary alcohols than with secondary alcohols. The kcat/Km value for the alcohol-forming reaction appears to be a function of the size of the larger alkyl substituent on the carbonyl group. ADH activities measured in the presence of both acetone and butyraldehyde did not exceed activities measured with either substrate present alone, indicating a common active site for both substrates. There was no similarity in the N-terminal amino acid sequence between that of the ADH and those of fungi and several other bacteria. However, the N-terminal sequence had 67% identity with those of two other anaerobes, Thermoanaerobium brockii and Methanobacterium palustre. Furthermore, conserved glycine and tryptophan residues are present in ADHs of these three anaerobic bacteria and ADHs of mammals and green plants. Images PMID:8349550
Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta
2012-01-01
Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917
Siddiqui, Huma; Chen, Tsute; Aliko, Ardita; Mydel, Piotr M; Jonsson, Roland; Olsen, Ingar
2016-01-01
Reduced salivation is considered a major clinical feature of most but not all cases of primary Sjögren's syndrome (pSS). Reduced saliva flow may lead to changes in the salivary microbiota. These changes have mainly been studied with culture that typically recovers only 65% of the bacteria present. This study was to use high throughput sequencing, covering both cultivated and not-yet-cultivated bacteria, to assess the bacterial microbiota of whole saliva in pSS patients with normal salivation. Bacteria of whole unstimulated saliva from nine pSS patients with normal salivation flow and from nine healthy controls were examined by high throughput sequencing of the hypervariable region V1V2 of 16S rRNA using the 454 GS Junior system. Raw sequence reads were subjected to a species-level, reference-based taxonomy assignment pipeline specially designed for studying the human oral microbial community. Each of the sequence reads was BLASTN-searched against a database consisting of reference sequences representing 1,156 oral and 12,013 non-oral species. Unassigned reads were then screened for high-quality non-chimeras and subjected to de novo species-level operational taxonomy unit (OTU) calling for potential novel species. Downstream analyses, including alpha and beta diversities, were analyzed using the Quantitative Insights into Microbial Ecology (QIIME) pipeline. To reveal significant differences between the microbiota of control saliva and Sjögren's saliva, a statistical method introduced in Metastats www.metastats.cbcb.umd.edu was used. Saliva of pSS patients with normal salivation had a significantly higher frequency of Firmicutes compared with controls ( p =0.004). Two other major phyla, Synergistetes and Spirochaetes, were significantly depleted in pSS ( p =0.001 for both). In addition, we saw a nearly 17% decrease in the number of genera in pSS (25 vs. 30). While Prevotella was almost equally abundant in both groups (25% in pSS and 22% in controls), about a twofold increase in pSS of Streptococcus (28% vs. 17%) and Veillonella (26% vs. 12%) was detected. Prevotella melaninogenica was the major species in controls (13%) while Veillonella atypica and the Veillonella parvula groups dominated in patient samples (14 and 14%). The scarcity in bacterial species in pSS compared with controls was also demonstrated by alpha and beta diversity analyses, as well as read abundance depicted in a phylogenetic tree. While Firmicutes was significantly higher in pSS patients than in controls, Synergistetes and Spirochaetes were significantly lower. The number of bacterial genera and species was also lower. These data showed that microbial dysbiosis is another key characteristic of pSS whole saliva which can occur independent of hyposalivation.
Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash
2016-01-01
Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499
The role of university research in primary and secondary education
NASA Astrophysics Data System (ADS)
Redondo, A.; Llopart, M.; Ramos, L.; Roger, T.; Rafols, R.; Redondo, J. M.
2009-04-01
One of the most important roles of educators at all levels(transversally and inter-generationally between adult education, university and the primary schools, specially in sciences is to estimulate the quest for new knowledge and to help to provide the basic thinking tools of the proper scientific method. An innovative plan has been set up though the Campus Universitari de la Mediterrania that integrates the UPC, the local Education authorities and the local governement in Vilanova i la Geltru, Barcelona. To coordinate university professors invited to lecture in summer courses, so their research and lecturing materials may be used as school level material (as a CD collection) and to help younger students to iniciate their own research proyects. During 2006-2008 a series of Environmental science seminars, group proyects decided by the students or proposed jointly by the CUM were started. Examples of these works, such as Cetacean comunication (with the help of the Laboratory of Bioacustic Applications of the UPC), Shapes and patterns in the environment (Cosmocaixa Science Museum), the Rainbow, Waves and Tides, Turbulence, The growth of snails and the Fibonacci sequence, etc... will be presented, showing the importance of comunicating scientific interest to the younger generations.
Mulder, Kevin P.; Cortazar-Chinarro, Maria; Harris, D. James; Crottini, Angelica; Grant, Evan H. Campbell; Fleischer, Robert C.; Savage, Anna E.
2017-01-01
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.
Zumaraga, Mark Pretzel; Medina, Paul Julius; Recto, Juan Miguel; Abrahan, Lauro; Azurin, Edelyn; Tanchoco, Celeste C; Jimeno, Cecilia A; Palmes-Saloma, Cynthia
2017-03-01
This study aimed to discover genetic variants in the entire 101 kB vitamin D receptor (VDR) gene for vitamin D deficiency in a group of postmenopausal Filipino women using targeted next generation sequencing (TNGS) approach in a case-control study design. A total of 50 women with and without osteoporotic fracture seen at the Philippine Orthopedic Center were included. Blood samples were collected for determination of serum vitamin D, calcium, phosphorus, glucose, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and as primary source for targeted VDR gene sequencing using the Ion Torrent Personal Genome Machine. The variant calling was based on the GATK best practice workflow and annotated using Annovar tool. A total of 1496 unique variants in the whole 101-kb VDR gene were identified. Novel sequence variations not registered in the dbSNP database were found among cases and controls at a rate of 23.1% and 16.6% of total discovered variants, respectively. One disease-associated enhancer showed statistically significant association to low serum 25-hydroxy vitamin D levels (Pearson chi-square P-value=0.009). The transcription factor binding site prediction program PROMO predicted the disruption of three transcription factor binding sites in this enhancer region. These findings show the power of TNGS in identifying sequence variations in a very large gene and the surprising results obtained in this study greatly expand the catalog of known VDR sequence variants that may represent an important clue in the emergence of vitamin D deficiency. Such information will also provide the additional guidance necessary toward a personalized nutritional advice to reach sufficient vitamin D status. Copyright © 2016 Elsevier Inc. All rights reserved.
Mulder, Kevin P; Cortazar-Chinarro, Maria; Harris, D James; Crottini, Angelica; Campbell Grant, Evan H; Fleischer, Robert C; Savage, Anna E
2017-11-01
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recurrent and functional regulatory mutations in breast cancer.
Rheinbay, Esther; Parasuraman, Prasanna; Grimsby, Jonna; Tiao, Grace; Engreitz, Jesse M; Kim, Jaegil; Lawrence, Michael S; Taylor-Weiner, Amaro; Rodriguez-Cuevas, Sergio; Rosenberg, Mara; Hess, Julian; Stewart, Chip; Maruvka, Yosef E; Stojanov, Petar; Cortes, Maria L; Seepo, Sara; Cibulskis, Carrie; Tracy, Adam; Pugh, Trevor J; Lee, Jesse; Zheng, Zongli; Ellisen, Leif W; Iafrate, A John; Boehm, Jesse S; Gabriel, Stacey B; Meyerson, Matthew; Golub, Todd R; Baselga, Jose; Hidalgo-Miranda, Alfredo; Shioda, Toshi; Bernards, Andre; Lander, Eric S; Getz, Gad
2017-07-06
Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.
Using the Tools and Resources of the RCSB Protein Data Bank.
Costanzo, Luigi Di; Ghosh, Sutapa; Zardecki, Christine; Burley, Stephen K
2016-09-07
The Protein Data Bank (PDB) archive is the worldwide repository of experimentally determined three-dimensional structures of large biological molecules found in all three kingdoms of life. Atomic-level structures of these proteins, nucleic acids, and complex assemblies thereof are central to research and education in molecular, cellular, and organismal biology, biochemistry, biophysics, materials science, bioengineering, ecology, and medicine. Several types of information are associated with each PDB archival entry, including atomic coordinates, primary experimental data, polymer sequence(s), and summary metadata. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) serves as the U.S. data center for the PDB, distributing archival data and supporting both simple and complex queries that return results. These data can be freely downloaded, analyzed, and visualized using RCSB PDB tools and resources to gain a deeper understanding of fundamental biological processes, molecular evolution, human health and disease, and drug discovery. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis.
Wu, Chi-Hong; Fallini, Claudia; Ticozzi, Nicola; Keagle, Pamela J; Sapp, Peter C; Piotrowska, Katarzyna; Lowe, Patrick; Koppers, Max; McKenna-Yasek, Diane; Baron, Desiree M; Kost, Jason E; Gonzalez-Perez, Paloma; Fox, Andrew D; Adams, Jenni; Taroni, Franco; Tiloca, Cinzia; Leclerc, Ashley Lyn; Chafe, Shawn C; Mangroo, Dev; Moore, Melissa J; Zitzewitz, Jill A; Xu, Zuo-Shang; van den Berg, Leonard H; Glass, Jonathan D; Siciliano, Gabriele; Cirulli, Elizabeth T; Goldstein, David B; Salachas, Francois; Meininger, Vincent; Rossoll, Wilfried; Ratti, Antonia; Gellera, Cinzia; Bosco, Daryl A; Bassell, Gary J; Silani, Vincenzo; Drory, Vivian E; Brown, Robert H; Landers, John E
2012-08-23
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.
Saimpont, Arnaud; Mercier, Catherine; Malouin, Francine; Guillot, Aymeric; Collet, Christian; Doyon, Julien; Jackson, Philip L
2016-01-01
Motor imagery (MI) training and anodal transcranial direct current stimulation (tDCS) applied over the primary motor cortex can independently improve hand motor function. The main objective of this double-blind, sham-controlled study was to examine whether anodal tDCS over the primary motor cortex could enhance the effects of MI training on the learning of a finger tapping sequence. Thirty-six right-handed young human adults were assigned to one of three groups: (i) who performed MI training combined with anodal tDCS applied over the primary motor cortex; (ii) who performed MI training combined with sham tDCS; and (iii) who received tDCS while reading a book. The MI training consisted of mentally rehearsing an eight-item complex finger sequence for 13 min. Before (Pre-test), immediately after (Post-test 1), and at 90 min after (Post-test 2) MI training, the participants physically repeated the sequence as fast and as accurately as possible. An anova showed that the number of sequences correctly performed significantly increased between Pre-test and Post-test 1 and remained stable at Post-test 2 in the three groups (P < 0.001). Furthermore, the percentage increase in performance between Pre-test and Post-test 1 and Post-test 2 was significantly greater in the group that performed MI training combined with anodal tDCS compared with the other two groups (P < 0.05). As a potential physiological explanation, the synaptic strength within the primary motor cortex could have been reinforced by the association of MI training and tDCS compared with MI training alone and tDCS alone. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Spectrum of primary immunodeficiency disorders in Sri Lanka
2013-01-01
Background While primary immunodeficiencies (PID has been recognized in the west for decades, recognition has been delayed in the third world. This study attempts to detail the spectrum of PID, the therapy provided, and constraints in the diagnosis and treatment in a middle income country such as Sri Lanka. Methods Nine hundred and forty two patients with recurrent infections and features suggestive of immune deficiency, referred from the entire country in a 4 year period, to the sole immunology unit in Sri Lanka were included. The following tests were performed. Full blood counts, serum Immunoglobulin and complement C3 and C4 levels, functional antibody levels, enumeration of lymphocyte subsets, in vitro and in vivo T cell functional assays,, nitroblue tetrazolium assay to diagnose chronic granulomatous disease, hair shaft assay to diagnose Griscelli syndrome. Sequencing of the common gamma chain to identify x linked severe combined immune deficiency, and X linked agammaglobulinemia was confirmed by assaying for Btk mutations by single sequence conformation polymorphism. HIV/AIDS was excluded in all patients. Results Seventy three patients were diagnosed with a primary immune deficiency. The majority (60.27%) had antibody deficiency. Common variable immune deficiency was the commonest (28.76%), followed by X linked agammaglobulinemia (XLA) (20.54%). Five patients had possible hyper IgM syndrome. Ten patients had severe combined immune deficiency (SCID), including 2 with x linked SCID, in addition to DiGeorge syndrome (2), ataxia telangiectasia (6), autosomal dominant hyper IgE syndrome (2), chronic granulomatous disease (4), leucocyte adhesion deficiency type 1 (2) and Griscelli syndrome (3). Patients with autoinflammatory, innate immune and complement defects could not be identified due to lack of facilities. Conclusions Antibody deficiency is the commonest PID, as in the west.IgA deficiency is rare. Autoinflammatory diseases, innate immune and complement deficiencies could not be identified due to lack of diagnostic facilities. Lack of awareness of PID among adult physicians result in delay in treatment of adult patients. While treatment of antibody deficiencies provided in state hospitals has extended life expectancy, there is no treatment available for severe T cell defects. PMID:24373416
Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham
2014-09-01
Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.
Yang, Lingyi; Zhang, Lin; Huang, Qiujuan; Liu, Changxu; Qi, Lisha; Li, Lingmei; Qu, Tongyuan; Wang, Yalei; Liu, Suxiang; Meng, Bin; Sun, Baocun; Cao, Wenfeng
2018-05-01
The purpose of this study was to distinguish synchronous primary endometrial and ovarian carcinomas from single primary tumor with metastasis by clinical pathologic criteria and whole exome sequencing (WES). Fifty-two patients with synchronous endometrial and ovarian carcinomas (SEOCs) between 2010 and 2017 were reviewed and subjected to WES. On the basis of the Scully criteria, 11 cases were supposed as synchronous primary endometrial and ovarian carcinomas, 38 cases as single primary tumor with metastasis, and the remaining 3 cases (S50-S52) cannot be defined. Through a quantization scoring analysis, 9 cases that were scored 0-1 point were defined as synchronous primary endometrial and ovarian carcinomas, and 42 cases that were scored 3-8 points were defined as single primary tumor with metastasis. Two of the undefined cases were classified into metastatic disease, and another one that scored 2 points (S52) was subjected to WES. S52 was deemed synchronous primary endometrial and ovarian carcinomas, with few shared somatic mutations and overlapping copy number varieties. The finding of a serous component examined from the uterine endometrium samples further illustrated that the case was synchronous primary endometrial and ovarian carcinomas. By scoring criterion, SEOCs were divided into 2 groups: synchronous primary endometrial and ovarian carcinoma group and single primary tumor with metastasis group. The analysis of clonality indicated that the case that scored 2 (S52) can be considered as synchronous primary endometrial and ovarian carcinomas. Scoring criteria of clinical pathology, along with the study of the WES, may further identify the classification of SEOCs.
Mehta, Sanjay R.; Murrell, Ben; Anderson, Christy M.; Kosakovsky Pond, Sergei L.; Wertheim, Joel O.; Young, Jason A.; Freitas, Lorri; Richman, Douglas D.; Mathews, W. Chris; Scheffler, Konrad; Little, Susan J.; Smith, Davey M.
2016-01-01
Background. Because recently infected individuals disproportionately contribute to the spread of human immunodeficiency virus (HIV), we evaluated the impact of a primary HIV screening program (the Early Test) implemented in San Diego. Methods. The Early Test program used combined nucleic acid and serology testing to screen for primary infection targeting local high-risk individuals. Epidemiologic, HIV sequence, and geographic data were obtained from the San Diego County Department of Public Health and the Early Test program. Poisson regression analysis was performed to determine whether the Early Test program was temporally and geographically associated with changes in incident HIV diagnoses. Transmission chains were inferred by phylogenetic analysis of sequence data. Results. Over time, a decrease in incident HIV diagnoses was observed proportional to the number primary HIV infections diagnosed in each San Diego region (P < .001). Molecular network analyses also showed that transmission chains were more likely to terminate in regions where the program was marketed (P = .002). Although, individuals in these zip codes had infection diagnosed earlier (P = .08), they were not treated earlier (P = .83). Conclusions. These findings suggests that early HIV diagnoses by this primary infection screening program probably contributed to the observed decrease in new HIV diagnoses in San Diego, and they support the expansion and evaluation of similar programs. PMID:27174704
ABSOLUTE PROPERTIES OF THE PRE-MAIN-SEQUENCE ECLIPSING BINARY STAR NP PERSEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Claud H. Sandberg; Fekel, Francis C.; Muterspaugh, Matthew W.
2016-07-01
NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparisonmore » of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The H α spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.« less
Williams, Tony D.; Ames, Caroline E.; Kiparissis, Yiannis; Wynne-Edwards, Katherine E.
2005-01-01
We investigated the relationship between plasma and yolk oestrogens in laying female zebra finches (Taeniopygia guttata) by manipulating plasma oestradiol (E2) levels, via injection of oestradiol-17β, in a sequence-specific manner to maintain chronically high plasma levels for later-developing eggs (contrasting with the endogenous pattern of decreasing plasma E2 concentrations during laying). We report systematic variation in yolk oestrogen concentrations, in relation to laying sequence, similar to that widely reported for androgenic steroids. In sham-manipulated females, yolk E2 concentrations decreased with laying sequence. However, in E2-treated females plasma E2 levels were higher during the period of rapid yolk development of later-laid eggs, compared with control females. As a consequence, we reversed the laying-sequence-specific pattern of yolk E2: in E2-treated females, yolk E2 concentrations increased with laying-sequence. In general therefore, yolk E2 levels were a direct reflection of plasma E2 levels. However, in control females there was some inter-individual variability in the endogenous pattern of plasma E2 levels through the laying cycle which could generate variation in sequence-specific patterns of yolk hormone levels even if these primarily reflect circulating steroid levels. PMID:15695208
RefSeq microbial genomes database: new representation and annotation strategy.
Tatusova, Tatiana; Ciufo, Stacy; Fedorov, Boris; O'Neill, Kathleen; Tolstoy, Igor
2014-01-01
The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.
Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin
2007-12-01
Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide
Primary and secondary structural analyses of glutathione S-transferase pi from human placenta.
Ahmad, H; Wilson, D E; Fritz, R R; Singh, S V; Medh, R D; Nagle, G T; Awasthi, Y C; Kurosky, A
1990-05-01
The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form.
Whole exome or genome sequencing: nurses need to prepare families for the possibilities.
Prows, Cynthia A; Tran, Grace; Blosser, Beverly
2014-12-01
A discussion of whole exome sequencing and the type of possible results patients and families should be aware of before samples are obtained. To find the genetic cause of a rare disorder, whole exome sequencing analyses all known and suspected human genes from a single sample. Over 20,000 detected DNA variants in each individual exome must be considered as possibly causing disease or disregarded as not relevant to the person's disease. In the process, unexpected gene variants associated with known diseases unrelated to the primary purpose of the test may be incidentally discovered. Because family members' DNA samples are often needed, gene variants associated with known genetic diseases or predispositions for diseases can also be discovered in their samples. Discussion paper. PubMed 2009-2013, list of references in retrieved articles, Google Scholar. Nurses need a general understanding of the scope of potential genomic information that may be revealed with whole exome sequencing to provide support and guidance to individuals and families during their decision-making process, while waiting for results and after disclosure. Nurse scientists who want to use whole exome sequencing in their study design and methods must decide early in study development if they will return primary whole exome sequencing research results and if they will give research participants choices about learning incidental research results. It is critical that nurses translate their knowledge about whole exome sequencing into their patient education and patient advocacy roles and relevant programmes of research. © 2014 John Wiley & Sons Ltd.
Porter, Danielle P.; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D.; White, Kirsten L.
2015-01-01
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study. PMID:26690199
Porter, Danielle P; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D; White, Kirsten L
2015-12-07
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.
Zurawski, Gerard; Bohnert, Hans J.; Whitfeld, Paul R.; Bottomley, Warwick
1982-01-01
The gene for the so-called Mr 32,000 rapidly labeled photosystem II thylakoid membrane protein (here designated psbA) of spinach (Spinacia oleracea) chloroplasts is located on the chloroplast DNA in the large single-copy region immediately adjacent to one of the inverted repeat sequences. In this paper we show that the size of the mRNA for this protein is ≈ 1.25 kilobases and that the direction of transcription is towards the inverted repeat unit. The nucleotide sequence of the gene and its flanking regions is presented. The only large open reading frame in the sequence codes for a protein of Mr 38,950. The nucleotide sequence of psbA from Nicotiana debneyi also has been determined, and comparison of the sequences from the two species shows them to be highly conserved (>95% homology) throughout the entire reading frame. Conservation of the amino acid sequence is absolute, there being no changes in a total of 353 residues. This leads us to conclude that the primary translation product of psbA must be a protein of Mr 38,950. The protein is characterized by the complete absence of lysine residues and is relatively rich in hydrophobic amino acids, which tend to be clustered. Transcription of spinach psbA starts about 86 base pairs before the first ATG codon. Immediately upstream from this point there is a sequence typical of that found in E. coli promoters. An almost identical sequence occurs in the equivalent region of N. debneyi DNA. Images PMID:16593262
Loebel, Madlen; Eckey, Maren; Sotzny, Franziska; Hahn, Elisabeth; Bauer, Sandra; Grabowski, Patricia; Zerweck, Johannes; Holenya, Pavlo; Hanitsch, Leif G; Wittke, Kirsten; Borchmann, Peter; Rüffer, Jens-Ulrich; Hiepe, Falk; Ruprecht, Klemens; Behrends, Uta; Meindl, Carola; Volk, Hans-Dieter; Reimer, Ulf; Scheibenbogen, Carmen
2017-01-01
Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.
Henneges, Carsten; Reed, Catherine; Chen, Yun-Fei; Dell'Agnello, Grazia; Lebrec, Jeremie
2016-01-01
Improved understanding of the pattern of cognitive decline in Alzheimer's disease (AD) would be useful to assist primary care physicians in explaining AD progression to patients and caregivers. To identify the sequence in which cognitive abilities decline in community-dwelling patients with AD. Baseline data were analyzed from 1,495 patients diagnosed with probable AD and a Mini-Mental State Examination (MMSE) score ≤ 26 enrolled in the 18-month observational GERAS study. Proportional odds logistic regression models were applied to model MMSE subscores (orientation, registration, attention and concentration, recall, language, and drawing) and the corresponding subscores of the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), using MMSE total score as the index of disease progression. Probabilities of impairment start and full impairment were estimated at each MMSE total score level. From the estimated probabilities for each MMSE subscore as a function of the MMSE total score, the first aspect of cognition to start being impaired was recall, followed by orientation in time, attention and concentration, orientation in place, language, drawing, and registration. For full impairment in subscores, the sequence was recall, drawing, attention and concentration, orientation in time, orientation in place, registration, and language. The sequence of cognitive decline for the corresponding ADAS-cog subscores was remarkably consistent with this pattern. The sequence of cognitive decline in AD can be visualized in an animation using probability estimates for key aspects of cognition. This might be useful for clinicians to set expectations on disease progression for patients and caregivers.
Le Pennec, Soazig; Konopka, Tomasz; Gacquer, David; Fimereli, Danai; Tarabichi, Maxime; Tomás, Gil; Savagner, Frédérique; Decaussin-Petrucci, Myriam; Trésallet, Christophe; Andry, Guy; Larsimont, Denis; Detours, Vincent; Maenhaut, Carine
2015-04-01
The contribution of intratumor heterogeneity to thyroid metastatic cancers is still unknown. The clonal relationships between the primary thyroid tumors and lymph nodes (LN) or distant metastases are also poorly understood. The objective of this study was to determine the phylogenetic relationships between matched primary thyroid tumors and metastases. We searched for non-synonymous single-nucleotide variants (nsSNVs), gene fusions, alternative transcripts, and loss of heterozygosity (LOH) by paired-end massively parallel sequencing of cDNA (RNA-Seq) in a patient diagnosed with an aggressive papillary thyroid cancer (PTC). Seven tumor samples from a stage IVc PTC patient were analyzed by RNA-Seq: two areas from the primary tumor, four areas from two LN metastases, and one area from a pleural metastasis (PLM). A large panel of other thyroid tumors was used for Sanger sequencing screening. We identified seven new nsSNVs. Some of these were early events clonally present in both the primary PTC and the three matched metastases. Other nsSNVs were private to the primary tumor, the LN metastases and/or the PLM. Three new gene fusions were identified. A novel cancer-specific KAZN alternative transcript was detected in this aggressive PTC and in dozens of additional thyroid tumors. The PLM harbored an exclusive whole-chromosome 19 LOH. We have presented the first, to our knowledge, deep sequencing study comparing the mutational spectra in a PTC and both LN and distant metastases. This study has yielded novel findings concerning intra-tumor heterogeneity, clonal evolution and metastases dissemination in thyroid cancer. © 2015 Society for Endocrinology.
Harper, J R; Prince, J T; Healy, P A; Stuart, J K; Nauman, S J; Stallcup, W B
1991-03-01
We have isolated cDNA clones coding for the human homologue of the neuronal cell adhesion molecule L1. The nucleotide sequence of the cDNA clones and the deduced primary amino acid sequence of the carboxy terminal portion of the human L1 are homologous to the corresponding sequences of mouse L1 and rat NILE glycoprotein, with an especially high sequences identity in the cytoplasmic regions of the proteins. There is also protein sequence homology with the cytoplasmic region of the Drosophila cell adhesion molecule, neuroglian. The conservation of the cytoplasmic domain argues for an important functional role for this portion of the molecule.
Bossa, Francesco; Barra, Donatella; Carloni, Massimo; Fasella, Paolo; Riva, Francesca; Doonan, Shawn; Doonan, Hilary J.; Hanford, Robin; Vernon, Charles A.; Walker, John M.
1973-01-01
Peptides produced by thermolytic digestion of aminoethylated aspartate aminotransferase and of the oxidized enzyme were isolated and their amino acid sequences determined. Digestion by elastase of the carboxymethylated enzyme gave peptides representing approximately 40% of the primary structure. Fragments from these digests overlapped with previously reported sequences of peptides obtained by peptic and tryptic digestion (Doonan et al., 1972), giving ten composite peptides containing 395 amino acid residues. The amino acid composition of these composite peptides agrees well with that of the intact enzyme. Confirmatory results for some of the present data have been deposited as Supplementary Publication 50018 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5. PMID:4748834
SubCellProt: predicting protein subcellular localization using machine learning approaches.
Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan
2009-01-01
High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.
Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.
Ning, Juan; Wang, Minxiao; Li, Chaolun; Sun, Song
2013-01-01
Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs) that provide a resource for gene function studies. Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.
STAG3 truncating variant as the cause of primary ovarian insufficiency
Le Quesne Stabej, Polona; Williams, Hywel J; James, Chela; Tekman, Mehmet; Stanescu, Horia C; Kleta, Robert; Ocaka, Louise; Lescai, Francesco; Storr, Helen L; Bitner-Glindzicz, Maria; Bacchelli, Chiara; Conway, Gerard S
2016-01-01
Primary ovarian insufficiency (POI) is a distressing cause of infertility in young women. POI is heterogeneous with only a few causative genes having been discovered so far. Our objective was to determine the genetic cause of POI in a consanguineous Lebanese family with two affected sisters presenting with primary amenorrhoea and an absence of any pubertal development. Multipoint parametric linkage analysis was performed. Whole-exome sequencing was done on the proband. Linkage analysis identified a locus on chromosome 7 where exome sequencing successfully identified a homozygous two base pair duplication (c.1947_48dupCT), leading to a truncated protein p.(Y650Sfs*22) in the STAG3 gene, confirming it as the cause of POI in this family. Exome sequencing combined with linkage analyses offers a powerful tool to efficiently find novel genetic causes of rare, heterogeneous disorders, even in small single families. This is only the second report of a STAG3 variant; the first STAG3 variant was recently described in a phenotypically similar family with extreme POI. Identification of an additional family highlights the importance of STAG3 in POI pathogenesis and suggests it should be evaluated in families affected with POI. PMID:26059840
Toufektzian, Levon; Attia, Rizwan; Polydorou, Nicolaos; Veres, Lukacs
2015-02-01
A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'in patients with primary lung carcinoma, does the sequence of pulmonary vasculature ligation during anatomical lung resection influence the oncological outcomes?' A total of 48 papers were found using the reported search, of which 7 represented the best evidence to answer the question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Among six prospective studies included, five of them randomized patients to either pulmonary vein or artery occlusion first during anatomical lung resection, while one study was retrospective. Two reports did not find any difference between pulmonary vein and artery occlusion first during long-term follow-up in terms of either disease recurrence (51 vs 53%, P = 0.7), or 5-year overall survival (54 vs 50%, P = 0.82). One report did not find any difference with regard to circulating tumour cells either after thoracotomy (5.0 vs 3.9, P = 0.4), or after the completion of lobectomy (38.0 vs 70.0, P = 0.23). One report found a higher expression of CD44v6 (P = 0.008) and CK19 (P = 0.05) in patients undergoing pulmonary arterial occlusion first. One report found that pulmonary vein occlusion before that of the pulmonary arterial branches has a favourable outcome on circulating carcino-embryonic antigen (CEA) mRNA in the peripheral blood, while another one did not find a significant difference in circulating levels of CEA mRNA (P = 0.075) and CK19 mRNA (P = 0.086) with either method. Another study reported no correlation between circulating pin1 mRNA levels in peripheral blood after the completion of the resection and the sequence of ligation of pulmonary vessels (9.95 ± 0.91 vs 14.71 ± 1.64, P > 0.05). Based on the two studies assessing the long-term outcome of patients with primary lung cancer undergoing anatomical curative resection, the sequence of ligation of pulmonary vessels does not seem to influence the oncological outcomes or survival. However, the other studies focusing on the influence of these techniques on circulating tumour cells or their molecular products report conflicting results the clinical consequences of which cannot be predicted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
GenSeq: An updated nomenclature and ranking for genetic sequences from type and non-type sources
Chakrabarty, Prosanta; Warren, Melanie; Page, Lawrence M.; Baldwin, Carole C.
2013-01-01
Abstract An improved and expanded nomenclature for genetic sequences is introduced that corresponds with a ranking of the reliability of the taxonomic identification of the source specimens. This nomenclature is an advancement of the “Genetypes” naming system, which some have been reluctant to adopt because of the use of the “type” suffix in the terminology. In the new nomenclature, genetic sequences are labeled “genseq,” followed by a reliability ranking (e.g., 1 if the sequence is from a primary type), followed by the name of the genes from which the sequences were derived (e.g., genseq-1 16S, COI). The numbered suffix provides an indication of the likely reliability of taxonomic identification of the voucher. Included in this ranking system, in descending order of taxonomic reliability, are the following: sequences from primary types – “genseq-1,” secondary types – “genseq-2,” collection-vouchered topotypes – “genseq-3,” collection-vouchered non-types – “genseq-4,” and non-types that lack specimen vouchers but have photo vouchers – “genseq-5.” To demonstrate use of the new nomenclature, we review recently published new-species descriptions in the ichthyological literature that include DNA data and apply the GenSeq nomenclature to sequences referenced in those publications. We encourage authors to adopt the GenSeq nomenclature (note capital “G” and “S” when referring to the nomenclatural program) to provide a searchable tag (e.g., “genseq”; note lowercase “g” and “s” when referring to sequences) for genetic sequences from types and other vouchered specimens. Use of the new nomenclature and ranking system will improve integration of molecular phylogenetics and biological taxonomy and enhance the ability of researchers to assess the reliability of sequence data. We further encourage authors to update sequence information on databases such as GenBank whenever nomenclatural changes are made. PMID:24223486
Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.
Koren, Amnon; Tsai, Hung-Ji; Tirosh, Itay; Burrack, Laura S; Barkai, Naama; Berman, Judith
2010-08-19
Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.
Integration of Research Into Science-outreach (IRIS): A Video and Web-based Approach
NASA Astrophysics Data System (ADS)
Clay, P. L.; O'Driscoll, B.
2013-12-01
The development of the IRIS (Integration of Research Into Science-outreach) initiative is aimed at using field- and laboratory- based videos and blog entries to enable a sustained outreach relationship between university researchers and local classrooms. IRIS seeks to communicate complex, cutting-edge scientific research in the Earth and Planetary sciences to school-aged children in a simple and interesting manner, in the hope of ameliorating the overall decline of children entering into science and engineering fields in future generations. The primary method of delivery IRIS utilizes is the media of film, ';webinars' and blog entries. Filmed sequences of laboratory work, field work, science demos and mini webinars on current and relevant material in the Earth and Planetary sciences are ';subscribed' to by local schools. Selected sequences are delivered in 20-30 minute film segments with accompanying written material. The level at which the subject matter is currently geared is towards secondary level school-aged children, with the purpose of inspiring and encouraging curiosity, learning and development in scientific research. The video broadcasts are supplemented by a hands-on visit 1-2 times per year by a group of scientists participating in the filmed sequences to the subscribing class, with the objective of engaging and establishing a natural rapport between the class and the scientists that they see in the broadcasts. This transgresses boundaries that traditional 'one off' outreach platforms often aren't able to achieve. The initial results of the IRIS outreach initiative including successes, problems encountered and classroom feedback will be reported.
Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus
McGee, Charles E.; Tsetsarkin, Konstantin A.; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L.; Higgs, Stephen
2011-01-01
Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely. PMID:21826243
Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus.
McGee, Charles E; Tsetsarkin, Konstantin A; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L; Higgs, Stephen
2011-01-01
Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.
Niazi, Sadia Ambreen; Al Kharusi, Hana Suleiman; Patel, Shanon; Bruce, Kenneth; Beighton, David; Foschi, Federico; Mannocci, Francesco
2016-11-01
The presence of opportunistic pathogens such as Propionibacterium acnes (P. acnes) may contribute to the endodontic pathology. The presence of P. acnes may be influenced by different endodontic conditions. The aims of the study were firstly, to identify P. acnes within the whole cultivable microbiota of primary endodontic infections, to investigate which P. acnes phylotypes predominate in such infections and secondly to determine if the presence of an "open" communication (e.g. a sinus) can be associated with the isolation of P. acnes from the root canal. The predominant cultivable microbiota of 15 primary endodontic lesions (7 without communication with the oral environment and 8 with an open communication) were identified using partial 16S ribosomal RNA (rRNA) gene sequence analysis. The identification of the organism was determined by interrogating the Human Oral Microbiome Database. The P. acnes isolates were typed on the basis of the recA gene sequence comparison. A neighbor-joining tree was constructed using MEGA 4.1 with the inclusion of known recA sequences. There was no difference in the number of species identified from lesions without communication (5.86 ± 3.7) and those with communication (5.37 ± 3.6) (P > 0.05). PCR-based 16S rRNA gene sequencing revealed P. acnes as the most prevalent isolate recovered from lesions with communication. recA gene sequencing revealed two phylogenetic lineages present in lesion with communication, with mainly type I (further split into type IA and type IB) and type II. The presence of P. acnes as opportunistic pathogens has been confirmed and may sustain the traits observed in specific clinical presentations. Clinical management of open lesions may require further disinfection to eliminate opportunistic bacteria.
Seventies, Eighties, Nineties, Noughties.... a Sequence of Concerns
ERIC Educational Resources Information Center
Jackson, Elizabeth
2007-01-01
This paper outlines small scale research regarding mathematics anxiety and potential links to confidence and mathematics subject knowledge for primary teacher education (QTS) students in a HE institution, where the author is a Senior Lecturer in Primary Mathematics Education. The purpose is to establish the existence of such anxiety and related…
Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte
2017-06-15
The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
2010-01-01
Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels. PMID:20977734
Wilson, George D; Johnson, Matthew D; Ahmed, Samreen; Cardenas, Paola Yumpo; Grills, Inga S; Thibodeau, Bryan J
2018-05-25
This study explores the hypothesis that dominant molecular oncogenes in non-small cell lung cancer (NSCLC) are associated with metastatic spread to the brain. NSCLC patient groups with no evidence of metastasis, with metastatic disease to a non-CNS site, who developed brain metastasis after diagnosis, and patients with simultaneous diagnosis of NSCLC and metastatic brain lesions were studied using targeted sequencing. In patients with brain metastasis versus those without, only 2 variants (one each in BCL6 and NOTHC2) were identified that occurred in ≥ 4 NSCLC of patients with brain metastases but ≤ 1 of the NSCLC samples without brain metastases. At the gene level, 20 genes were found to have unique variants in more than 33% of the patients with brain metastases. When analyzed at the patient level, these 20 genes formed the basis of a predictive test to discriminate those with brain metastasis. Further analysis showed that PI3K/AKT signaling is altered in both the primary and metastases of NSCLC patients with brain lesions. While no single variant was associated with brain metastasis, this study describes a potential gene panel for the identification of patients at risk and implicates PI3K/AKT signaling as a therapeutic target.
Methodology and Ontology in Microbiome Research.
Huss, John
2014-01-01
Research on the human microbiome has generated a staggering amount of sequence data, revealing variation in microbial diversity at the community, species (or phylotype), and genomic levels. In order to make this complexity more manageable and easier to interpret, new units-the metagenome, core microbiome, and enterotype-have been introduced in the scientific literature. Here, I argue that analytical tools and exploratory statistical methods, coupled with a translational imperative, are the primary drivers of this new ontology. By reducing the dimensionality of variation in the human microbiome, these new units render it more tractable and easier to interpret, and hence serve an important heuristic role. Nonetheless, there are several reasons to be cautious about these new categories prematurely "hardening" into natural units: a lack of constraints on what can be sequenced metagenomically, freedom of choice in taxonomic level in defining a "core microbiome," typological framing of some of the concepts, and possible reification of statistical constructs. Finally, lessons from the Human Genome Project have led to a translational imperative: a drive to derive results from the exploration of microbiome variation that can help to articulate the emerging paradigm of personalized genomic medicine (PGM). There is a tension between the typologizing inherent in much of this research and the personal in PGM.
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Deshmukh, Pranawa C.; Manson, Steven T.; Majumder, Sonjoy
2007-06-01
Our primary aim in this work is to present both allowed and forbidden transition amplitudes and corresponding wavelengths and oscillator strengths for a few ions in the 19-electron potassium isoelectronic sequence. All of these ions have the configuration [Ar] 3^2D3/2 as their ground state, except in the case of K and Ca^+, where it is [Ar] 4^2S1/2.This difference in ground state configuration arises due to strong contributions of correlation effects in the energy levels of these systems [1]. Allowed and forbidden transitions in these systems are of great importance in astrophysics [2] and in laboratory plasma research [3]. We apply in the present work the relativistic coupled-cluster (RCC) theory [4] to evaluate the energy levels and wave functions of these systems and study amplitudes for electric and magnetic dipole transition amplitudes and also the electric quadrupole transition amplitudes. The contributions of various electron correlation effects to the transition amplitudes are estimated in some detail using the RCC theory. [1] Gopal Dixit et al., Astrophys. J (submitted); arXiv.org: physics/0702066. [2] C. R. Cowley and G. M. Wahlgern, Astronomy & Astrophysics, 447, 681 (2002). [3] J. E. Vernazza, E. M. Reeves, Astrophys. J. Suppl. 37, 485 (1978) [4] I. Lindgren, Physics Scripta, 36, 591 (1987).
Wilson, George D.; Johnson, Matthew D.; Ahmed, Samreen; Cardenas, Paola Yumpo; Grills, Inga S.; Thibodeau, Bryan J.
2018-01-01
Introduction This study explores the hypothesis that dominant molecular oncogenes in non-small cell lung cancer (NSCLC) are associated with metastatic spread to the brain. Methods NSCLC patient groups with no evidence of metastasis, with metastatic disease to a non-CNS site, who developed brain metastasis after diagnosis, and patients with simultaneous diagnosis of NSCLC and metastatic brain lesions were studied using targeted sequencing. Results In patients with brain metastasis versus those without, only 2 variants (one each in BCL6 and NOTHC2) were identified that occurred in ≥ 4 NSCLC of patients with brain metastases but ≤ 1 of the NSCLC samples without brain metastases. At the gene level, 20 genes were found to have unique variants in more than 33% of the patients with brain metastases. When analyzed at the patient level, these 20 genes formed the basis of a predictive test to discriminate those with brain metastasis. Further analysis showed that PI3K/AKT signaling is altered in both the primary and metastases of NSCLC patients with brain lesions. Conclusion While no single variant was associated with brain metastasis, this study describes a potential gene panel for the identification of patients at risk and implicates PI3K/AKT signaling as a therapeutic target. PMID:29899834
Simon, J R; Treger, J M; McEntee, K
1999-02-01
Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression.
Tremblay, Sara; Beaulé, Vincent; Proulx, Sébastien; Tremblay, Sébastien; Marjańska, Małgorzata; Doyon, Julien; Lassonde, Maryse; Théoret, Hugo
2015-01-01
Objective Recent studies have shown, in asymptomatic concussed athletes, metabolic disruption in the primary motor cortex (M1) and abnormal intracortical inhibition lasting for more than six months. The present study aims to assess if these neurochemical and neurophysiological alterations are persistent and linked to M1 cortical thickness. Methods Sixteen active football players who sustained their last concussion, on average, three years prior to testing and 14 active football players who never sustained a concussion were recruited for a single session of proton magnetic resonance spectroscopy (1H-MRS) and transcranial magnetic stimulation (TMS). Measures of M1 and whole brain cortical thickness were acquired, and 1H-MRS data were acquired from left M1 using a MEGA-PRESS sequence. Cortical silent period (CSP) and long-interval intracortical inhibition (LICI) were measured with TMS applied over left M1. Results No significant group differences were observed for metabolic concentrations, TMS measures, and cortical thickness. However, whereas GABA and glutamate levels, and GABA levels and M1 mean thickness were positively correlated in control athletes, these relationships were absent in concussed athletes. Conclusion These data suggest the general absence of neurophysiologic, neurometabolic and neuroanatomical disruptions in M1 three years following the last concussive event. However, correlational analyses suggest the presence of a slight metabolic imbalance between GABA and glutamate concentrations in the primary motor cortex of concussed athletes. Significance The present study highlights the importance of multimodal assesments of the impacts of sport concussions. PMID:24462505
Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia.
Nemoto, Michiko; Hattori, Hiroyoshi; Maeda, Naoko; Akita, Nobuhiro; Muramatsu, Hideki; Moritani, Suzuko; Kawasaki, Tomonori; Maejima, Masami; Ode, Hirotaka; Hachiya, Atsuko; Sugiura, Wataru; Yokomaku, Yoshiyuki; Horibe, Keizo; Iwatani, Yasumasa
2018-05-03
Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4 + T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.
Huang, Ran-Ran; Jia, Bao-Hui; Xie, Lei; Ma, Shu-Hua; Yin, Jing-Jing; Sun, Zong-Bo; Le, Hong-Bo; Xu, Wen-Can; Huang, Jin-Zhuang; Luo, Dong-Xue
2016-01-01
To explore mild cognitive dysfunction and/or spatial working memory impairment in patients with primary onset middle-age type 2 diabetes mellitus (T2DM] using ethology (behavior tests) and blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). Eighteen primary onset T2DM patients and 18 matched subjects with normal blood glucose levels were all tested using the Montreal cognitive assessment scale test, the Wechsler Memory Scale Chinese-revised test, and scanned using BOLD-fMRI (1.5T, EPI sequence) while performing the n-back task to find the activation intensity of some cognition-related areas. The ethology results showed that T2DM patients had a mild cognitive impairment and memory dysfunction (P < 0.05). The fMRI scan identified a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), bilateral premotor area (PreMA), bilateral parietal lobe (PA), and anterior cingulate cortex (ACC) / supplementary motor area (SMA) that was activated during the n-back task, with right hemisphere dominance. However, only the right PA and ACC/SMA showed a load effect via quantitative analysis in the T2DM group; the activation intensity of most working memory-related brain areas for the T2DM group were lower than for the control group under three memory loads. Furthermore, we found that the activation intensity of some cognition-related areas, including the right insular lobe, left caudate nucleus, and bilateral hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. Diabetes-related brain damage of primary onset middle-age T2DM patients with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial working memory and mild cognitive dysfunction. © 2015 Wiley Periodicals, Inc.
Gene encoding a novel extracellular metalloprotease in Bacillus subtilis.
Sloma, A; Rudolph, C F; Rufo, G A; Sullivan, B J; Theriault, K A; Ally, D; Pero, J
1990-01-01
The gene for a novel extracellular metalloprotease was cloned, and its nucleotide sequence was determined. The gene (mpr) encodes a primary product of 313 amino acids that has little similarity to other known Bacillus proteases. The amino acid sequence of the mature protease was preceded by a signal sequence of approximately 34 amino acids and a pro sequence of 58 amino acids. Four cysteine residues were found in the deduced amino acid sequence of the mature protein, indicating the possible presence of disulfide bonds. The mpr gene mapped in the cysA-aroI region of the chromosome and was not required for growth or sporulation. Images FIG. 2 FIG. 7 PMID:2105291
NASA Astrophysics Data System (ADS)
Zhong, G.; Wang, L.
2013-12-01
The northern South China Sea (SCS) margin is suggested as one of the ideal sites for documenting the late Cenozoic sea level changes for its characteristics of rapid sedimentation and relatively stable structural subsidence since the Late Miocene. In this study, high-resolution seismic profiles acquired by the Guangzhou Marine Geological Survey, calibrated by well control from the ODP sites 1146 and 1148, were utilized to construct a time-significant sequence stratigraphic framework, from which the history of relative sea level changes since the Late Miocene on the northern SCS margin was derived. Our study area is situated in the middle segment of the margin, between the Hainan Island to the west and the Dongsha Islands to the east. This region is to a certain degree far away from the active structural zones and is suggested as the most stable region in the margin. Totally 4000 km seismic profiles were used, which controls an area of about 6×104 km2. The seismic data have a vertical resolution of 5 to 15 m for the Upper Miocene to Quaternary interval. Three regional seismic sequence boundaries were identified. They subdivide the Late Miocene to Quaternary into three mega-sequences, which correspond to the Quaternary, Pliocene and Late Miocene, respectively by tying to well control. The Late Miocene mega-sequence, including 13 component sequences, is characterized with a basal incised canyon-developed interval overlain by three sets of progradational sequences formed in deep-water slope environments. The Pliocene mega-sequence consists of four sets of progradational sequences. Each sequence set contains one to three component sequences. At least 7 component sequences can be identified. The Quaternary mega-sequence consists of five sets of progradational sequences, in which the lower two constitute a retrogressive sequence set and the upper three a progradational sequence set. At least 9 component sequences can be recognized. Most of the component sequences within the Pliocene and Quaternary mega-sequences occur adjacent to modern shelf margin, and therefore were interpreted as shelf-marginal progradational deltaic sequences. A relative sea level curve since the Late Miocene was compiled by integrating the shift trajectory of onlap points, the stacking pattern of component sequences, and the chronostratigraphic diagrams. The curve contains about 29 cycles of relative sea level changes, showing a much higher resolution than the previous results in the region. These cycles constitute three large relative sea level rise and fall cycles. General trend of sea level variations is rising since the Late Miocene, which is opposite to the global sea level changes and is in accordance with the previous regional researches. This deviation is ascribed to the combined effects of very rapid regional subsidence and relative deficiency of sediment supply. This research was funded by the National Natural Science Foundation of China (Grant Nos. 91028003 and 41076020).
A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.
Williams, Emma L; Kemper, Markus J; Rumsby, Gill
2006-09-01
Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.
Sequence-Mandated, Distinct Assembly of Giant Molecules
Zhang, Wei; Lu, Xinlin; Mao, Jialin; ...
2017-10-24
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less
Sequence-Mandated, Distinct Assembly of Giant Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Xinlin; Mao, Jialin
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less
Using random forests for assistance in the curation of G-protein coupled receptor databases.
Shkurin, Aleksei; Vellido, Alfredo
2017-08-18
Biology is experiencing a gradual but fast transformation from a laboratory-centred science towards a data-centred one. As such, it requires robust data engineering and the use of quantitative data analysis methods as part of database curation. This paper focuses on G protein-coupled receptors, a large and heterogeneous super-family of cell membrane proteins of interest to biology in general. One of its families, Class C, is of particular interest to pharmacology and drug design. This family is quite heterogeneous on its own, and the discrimination of its several sub-families is a challenging problem. In the absence of known crystal structure, such discrimination must rely on their primary amino acid sequences. We are interested not as much in achieving maximum sub-family discrimination accuracy using quantitative methods, but in exploring sequence misclassification behavior. Specifically, we are interested in isolating those sequences showing consistent misclassification, that is, sequences that are very often misclassified and almost always to the same wrong sub-family. Random forests are used for this analysis due to their ensemble nature, which makes them naturally suited to gauge the consistency of misclassification. This consistency is here defined through the voting scheme of their base tree classifiers. Detailed consistency results for the random forest ensemble classification were obtained for all receptors and for all data transformations of their unaligned primary sequences. Shortlists of the most consistently misclassified receptors for each subfamily and transformation, as well as an overall shortlist including those cases that were consistently misclassified across transformations, were obtained. The latter should be referred to experts for further investigation as a data curation task. The automatic discrimination of the Class C sub-families of G protein-coupled receptors from their unaligned primary sequences shows clear limits. This study has investigated in some detail the consistency of their misclassification using random forest ensemble classifiers. Different sub-families have been shown to display very different discrimination consistency behaviors. The individual identification of consistently misclassified sequences should provide a tool for quality control to GPCR database curators.
Profiles of Brain Metastases: Prioritization of Therapeutic Targets.
Ferguson, Sherise D; Zheng, Siyuan; Xiu, Joanne; Zhou, Shouhao; Khasraw, Mustafa; Brastianos, Priscilla K; Kesari, Santosh; Hu, Jethro; Rudnick, Jeremy; Salacz, Michael E; Piccioni, David; Huang, Suyun; Davies, Michael A; Glitza, Isabella C; Heymach, John V; Zhang, Jianjun; Ibrahim, Nuhad K; DeGroot, John F; McCarty, Joseph; O'Brien, Barbara J; Sawaya, Raymond; Verhaak, Roeland G W; Reddy, Sandeep K; Priebe, Waldemar; Gatalica, Zoran; Spetzler, David; Heimberger, Amy B
2018-06-19
We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of non-small cell lung cancer, breast cancer, and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry), and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification, and mutations among brain metastases, extracranial metastases, and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8178 non-small cell lung cancers (5098 primaries; 2787 systemic metastases; 293 brain metastases), 7064 breast cancers (3496 primaries; 3469 systemic metastases; 99 brain metastases), and 1757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1, and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication, and/or repair. This article is protected by copyright. All rights reserved. © 2018 UICC.
Jenkins, Claire; Ling, Clare L; Ciesielczuk, Holly L; Lockwood, Julianne; Hopkins, Susan; McHugh, Timothy D; Gillespie, Stephen H; Kibbler, Christopher C
2012-04-01
Amplification and sequence analysis of the 16S rRNA gene can be applied to detect and identify bacteria in clinical samples. We examined 75 clinical samples (17 culture-positive, 58 culture-negative) prospectively by two different PCR protocols, amplifying either a single fragment (1343 bp) or two fragments (762/598 bp) of the 16S rRNA gene. The 1343 bp PCR and 762/598 bp PCRs detected and identified the bacterial 16S rRNA gene in 23 (31 %) and 38 (51 %) of the 75 samples, respectively. The 1343 bp PCR identified 19 of 23 (83 %) PCR-positive samples to species level while the 762/598 bp PCR identified 14 of 38 (37 %) bacterial 16S rRNA gene fragments to species level and 24 to the genus level only. Amplification of shorter fragments of the bacterial 16S rRNA gene (762 and 598 bp) resulted in a more sensitive assay; however, analysis of a large fragment (1343 bp) improved species discrimination. Although not statistically significant, the 762/598 bp PCR detected the bacterial 16S rRNA gene in more samples than the 1343 bp PCR, making it more likely to be a more suitable method for the primary detection of the bacterial 16S rRNA gene in the clinical setting. The 1343 bp PCR may be used in combination with the 762/598 bp PCR when identification of the bacterial rRNA gene to species level is required.
Levering, Jennifer; Dupont, Christopher L.; Allen, Andrew E.; ...
2017-02-14
Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and sharedmore » metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levering, Jennifer; Dupont, Christopher L.; Allen, Andrew E.
Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and sharedmore » metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.« less
Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.
Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N
2016-06-01
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.
Firman, Taylor; Ghosh, Kingshuk
2018-03-28
We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high-throughput level can provide valuable insights into the different mechanisms by which phosphorylation/charge mutation controls IDP function.
A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency
Caburet, Sandrine; Guigon, Celine; Mäkinen, Marika; Tanner, Laura; Hietala, Marja; Urbanska, Kaja; Bellutti, Laura; Legois, Bérangère; Bessieres, Bettina; Gougeon, Alain; Benachi, Alexandra; Livera, Gabriel; Rosselli, Filippo
2017-01-01
Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients’ lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitination. FANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation. PMID:29231814
A DNA methylation map of human cancer at single base-pair resolution.
Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M
2017-10-05
Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.
ToTem: a tool for variant calling pipeline optimization.
Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka
2018-06-26
High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at https://totem.software .
Dimensionality and Reliability of Letter Writing in 3- to 5-Year-Old Preschool Children
Puranik, Cynthia S.; Petscher, Yaacov; Lonigan, Christopher J.
2015-01-01
The primary purpose of this study was to examine the dimensionality and reliability of letter writing skills in preschool children with the aim of determining whether a sequence existed in how children learn to write the letters of the alphabet. Additionally, we examined gender differences in the development of letter writing skills. 471 children aged 3 to 5 years old completed a letter writing task. Results from factor analyses indicated that letter writing represented a unidimensional skill. Similar to research findings that the development of letter-names and letter-sound knowledge varies in acquisition, our findings indicate that the ability to write some letters is acquired earlier than the ability to write other letters. Although there appears to be an approximate sequence for the easiest and most difficult letters, there appears to be a less clear sequence for letters in the middle stages of development. Overall, girls had higher letter writing scores compared to boys. Gender differences regarding difficulty writing specific letters was less conclusive; however, results indicated that when controlling for ability level, girls had a higher probability of writing a letter correctly than boys. Implications of these findings for the assessment and instruction of letter writing are discussed. PMID:26346443
Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E
2010-12-01
Animals collecting resources that replenish over time often visit patches in predictable sequences called traplines. Despite the widespread nature of this strategy, we still know little about how spatial memory develops and guides individuals toward suitable routes. Here, we investigate whether flower visitation sequences by bumblebees Bombus terrestris simply reflect the order in which flowers were discovered or whether they result from more complex navigational strategies enabling bees to optimize their foraging routes. We analyzed bee flight movements in an array of four artificial flowers maximizing interfloral distances. Starting from a single patch, we sequentially added three new patches so that if bees visited them in the order in which they originally encountered flowers, they would follow a long (suboptimal) route. Bees' tendency to visit patches in their discovery order decreased with experience. Instead, they optimized their flight distances by rearranging flower visitation sequences. This resulted in the development of a primary route (trapline) and two or three less frequently used secondary routes. Bees consistently used these routes after overnight breaks while occasionally exploring novel possibilities. We discuss how maintaining some level of route flexibility could allow traplining animals to cope with dynamic routing problems, analogous to the well-known traveling salesman problem.
Therien, Jesse B; Artz, Jacob H; Poudel, Saroj; Hamilton, Trinity L; Liu, Zhenfeng; Noone, Seth M; Adams, Michael W W; King, Paul W; Bryant, Donald A; Boyd, Eric S; Peters, John W
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro , with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.
Ragupathy, Viswanath; Zhao, Jiangqin; Wood, Owen; Tang, Shixing; Lee, Sherwin; Nyambi, Phillipe; Hewlett, Indira
2011-04-23
The HIV epidemic in Cameroon is characterized by a high degree of viral genetic diversity with circulating recombinant forms (CRFs) being predominant. The goal of our study was to determine recent trends in virus evolution and emergence of drug resistance in blood donors and HIV positive patients. Blood specimens of 73 individuals were collected from three cities and a few villages in Cameroon and viruses were isolated by co-cultivation with PBMCs. Nested PCR was performed for gag p17 (670 bp) pol (840 bp) and Env gp41 (461 bp) genes. Sequences were phylogenetically analyzed using a reference set of sequences from the Los Alamos database. Phylogenetic analysis based on partial sequences revealed that 65% (n = 48) of strains were CRF02_AG, 4% (n = 3) subtype F2, 1% each belonged to CRF06 (n = 1), CRF11 (n = 1), subtype G (n = 1), subtype D (n = 1), CRF22_01A1 (n = 1), and 26% (n = 18) were Unique Recombinant Forms (URFs). Most URFs contained CRF02_AG in one or two HIV gene fragments analyzed. Furthermore, pol sequences of 61 viruses revealed drug resistance in 55.5% of patients on therapy and 44% of drug naïve individuals in the RT and protease regions. Overall URFs that had a primary HIV subtype designation in the pol region showed higher HIV-1 p24 levels than other recombinant forms in cell culture based replication kinetics studies. Our results indicate that although CRF02_AG continues to be the predominant strain in Cameroon, phylogenetically the HIV epidemic is continuing to evolve as multiple recombinants of CRF02_AG and URFs were identified in the individuals studied. CRF02_AG recombinants that contained the pol region of a primary subtype showed higher replicative advantage than other variants. Identification of drug resistant strains in drug-naïve patients suggests that these viruses are being transmitted in the population studied. Our findings support the need for continued molecular surveillance in this region of West Central Africa and investigating impact of variants on diagnostics, viral load and drug resistance assays on an ongoing basis.
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; ...
2017-07-12
Here, the first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogenmore » production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.« less
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; Hamilton, Trinity L.; Liu, Zhenfeng; Noone, Seth M.; Adams, Michael W. W.; King, Paul W.; Bryant, Donald A.; Boyd, Eric S.; Peters, John W.
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities. PMID:28747909
DNA viewed as an out-of-equilibrium structure
NASA Astrophysics Data System (ADS)
Provata, A.; Nicolis, C.; Nicolis, G.
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
Signatures of selection among sex-determining alleles of the honey bee.
Hasselmann, Martin; Beye, Martin
2004-04-06
Patterns of DNA polymorphisms are a primary tool for dissecting signatures of selection; however, the underlying selective forces are poorly understood for most genes. A classical example of diversifying selection is the complementary sex-determining locus that is found in the very large insect order Hymenoptera (bees, wasps, ants, and sawflies). The gene responsible for sex determination, the complementary sex determiner (csd), has been most recently identified in the honey bee. Females are heterozygous at this locus. Males result when there is only one functional allele present, as a result of either homozygosity (fertilized eggs) or, more commonly, hemizygosity (unfertilized eggs). The homozygotes, diploid males, do not reproduce and have zero fitness, which implies positive selection in favor of rare alleles. Large differences in csd cDNA sequences within and between four populations were found that fall into two major groups, types I and II. Type I consists of several allelic lineages that were maintained over an extended period, an indication of balancing selection. Diversifying selection has operated on several confined parts of the protein, as shown by an excess of nonsynonymous differences. Elevated sequence differences indicate another selected part near a repeat region. These findings have general implications about the understanding of both the function of the multiallelic mechanism and the adaptive processes on the level of nucleotide sequences. Moreover, the first csd sequence data are a notable basis for the avoidance of diploid males in bee selection programs by allele-assisted breeding.
The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression
Lammers, Peter J.; Jun, Jeongwon; Abubaker, Jehad; Arreola, Raul; Gopalan, Anjali; Bago, Berta; Hernandez-Sebastia, Cinta; Allen, James W.; Douds, David D.; Pfeffer, Philip E.; Shachar-Hill, Yair
2001-01-01
The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of 13C labeling of germinating spores and extraradical mycelium with 13C2-acetate and 13C2-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle. PMID:11706207
DNA viewed as an out-of-equilibrium structure.
Provata, A; Nicolis, C; Nicolis, G
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
Alberts, Mark J; Latchaw, Richard E; Jagoda, Andy; Wechsler, Lawrence R; Crocco, Todd; George, Mary G; Connolly, E S; Mancini, Barbara; Prudhomme, Stephen; Gress, Daryl; Jensen, Mary E; Bass, Robert; Ruff, Robert; Foell, Kathy; Armonda, Rocco A; Emr, Marian; Warren, Margo; Baranski, Jim; Walker, Michael D
2011-09-01
The formation and certification of Primary Stroke Centers has progressed rapidly since the Brain Attack Coalition's original recommendations in 2000. The purpose of this article is to revise and update our recommendations for Primary Stroke Centers to reflect the latest data and experience. We conducted a literature review using MEDLINE and PubMed from March 2000 to January 2011. The review focused on studies that were relevant for acute stroke diagnosis, treatment, and care. Original references as well as meta-analyses and other care guidelines were also reviewed and included if found to be valid and relevant. Levels of evidence were added to reflect current guideline development practices. Based on the literature review and experience at Primary Stroke Centers, the importance of some elements has been further strengthened, and several new areas have been added. These include (1) the importance of acute stroke teams; (2) the importance of Stroke Units with telemetry monitoring; (3) performance of brain imaging with MRI and diffusion-weighted sequences; (4) assessment of cerebral vasculature with MR angiography or CT angiography; (5) cardiac imaging; (6) early initiation of rehabilitation therapies; and (7) certification by an independent body, including a site visit and disease performance measures. Based on the evidence, several elements of Primary Stroke Centers are particularly important for improving the care of patients with an acute stroke. Additional elements focus on imaging of the brain, the cerebral vasculature, and the heart. These new elements may improve the care and outcomes for patients with stroke cared for at a Primary Stroke Center.
Timing of Visual Bodily Behavior in Repair Sequences: Evidence from Three Languages
ERIC Educational Resources Information Center
Floyd, Simeon; Manrique, Elizabeth; Rossi, Giovanni; Torreira, Francisco
2016-01-01
This article expands the study of other-initiated repair in conversation--when one party signals a problem with producing or perceiving another's turn at talk--into the domain of visual bodily behavior. It presents one primary cross-linguistic finding about the timing of visual bodily behavior in repair sequences: if the party who initiates repair…
A Linked Series of Laboratory Exercises in Molecular Biology Utilizing Bioinformatics and GFP
ERIC Educational Resources Information Center
Medin, Carey L.; Nolin, Katie L.
2011-01-01
Molecular biologists commonly use bioinformatics to map and analyze DNA and protein sequences and to align different DNA and protein sequences for comparison. Additionally, biologists can create and view 3D models of protein structures to further understand intramolecular interactions. The primary goal of this 10-week laboratory was to introduce…
The carrot genome provides insights into crop origins and a foundation for future crop improvement
USDA-ARS?s Scientific Manuscript database
The sequencing of the carrot genome was an effort that formally began in 2012 and culminated with the publication and release of the genome in 2016. A full genome sequence provides the ultimate foundation to study genetics, gene function, and evolution of a species. The primary goal of the carrot ge...
ERIC Educational Resources Information Center
Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan
2010-01-01
Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…
Reading Nature from a "Bottom-Up" Perspective
ERIC Educational Resources Information Center
Magntorn, Ola; Hellden, Gustav
2007-01-01
This paper reports on a study of ecology teaching and learning in a Swedish primary school class (age 10-11 yrs). A teaching sequence was designed to help students read nature in a river ecosystem. The teaching sequence had a "bottom up" approach, taking as its starting point a common key organism--the freshwater shrimp. From this…
Soil amino acid composition across a boreal forest successional sequence
Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone
2009-01-01
Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...
Curriculum Sequencing and the Acquisition of Clock-Reading Skills among Chinese and Flemish Children
ERIC Educational Resources Information Center
Burny, Elise; Valcke, Martin; Desoete, Annemie; Van Luit, Johannes E. Hans
2013-01-01
The present study addresses the impact of the curriculum on primary school children's acquisition of clock-reading knowledge from analog and digital clocks. Focusing on Chinese and Flemish children's clock-reading knowledge, the study is about whether the differences in sequencing of learning and instruction opportunities--as defined by the…
White Room - Mercury-Atlas (MA)-9 Prelaunch Activities - Astronauts Cooper and Shepard - Cape
1963-01-01
S63-03965 (1963) --- Astronauts Alan Shepard (left) and L. Gordon Cooper Jr.(in suit) check over the instrument panel from Mercury spacecraft #20. It contains the instruments necessary to monitor spacecraft systems and sequencing, the controls required to initiate primary sequences manually, and the necessary flight control displays. Photo credit: NASA
Timing, sequencing, and executive control in repetitive movement production.
Krampe, Ralf Th; Mayr, Ulrich; Kliegl, Reinhold
2005-06-01
The authors demonstrate that the timing and sequencing of target durations require low-level timing and executive control. Sixteen young (M-sub(age) = 19 years) and 16 older (M-sub(age) = 70 years) adults participated in 2 experiments. In Experiment 1, individual mean-variance functions for low-level timing (isochronous tapping) and the sequencing of multiple targets (rhythm production) revealed (a) a dissociation of low-level timing and sequencing in both age groups, (b) negligible age differences for low-level timing, and (c) large age differences for sequencing. Experiment 2 supported the distinction between low-level timing and executive functions: Selection against a dominant rhythm and switching between rhythms impaired performances in both age groups and induced pronounced perseveration of the dominant pattern in older adults. ((c) 2005 APA, all rights reserved).
Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.
Li, Qing; Hermanson, Peter J; Springer, Nathan M
2018-01-01
DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.
The number of reduced alignments between two DNA sequences
2014-01-01
Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679
Novel numerical and graphical representation of DNA sequences and proteins.
Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D
2006-12-01
We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.
Hetrick, Sarah E; Simmons, Magenta; Thompson, Andrew; Parker, Alexandra G
2011-11-01
We sought to examine potential barriers to the use of evidence-based guidelines for youth depression in a tertiary specialist mental health service, as part of an initiative to implement evidence based practice within the service. This was a qualitative study adopting a social constructionist perspective using focus groups. The focus groups, conducted with all clinicians (medical and allied health), were audiotaped, transcribed and thematic analysis was undertaken. Clinicians were asked about the barriers to implementing four key recommendations from the National Institute for Health and Clinical Excellence (NICE) guidelines. Barriers existed at (i) the individual clinician level; (ii) the clinical level in terms of the presentation of young people; and (iii) the service level. The key individual clinician level barrier was a stated belief that the guidelines were not relevant to the young people presenting to the service, with little evidence to guide practice. Related, the main barrier with regard to the clinical presentation was the severity and complexity of this presentation, often making the delivery of interventions like cognitive behavioural therapy (CBT) difficult. At the service level, a lack of integration with primary and secondary level care meant sequencing interventions according to guideline recommendations was difficult. There is a clear imperative to develop the evidence base to ensure that effective treatments for young people aged up to 25 years with severe and complex disorders that include comorbid conditions, suicide risk and psychosocial difficulties are investigated and disseminated. Furthermore, this work has highlighted the need for greater investment in models of care that ensure integration between existing primary and secondary care and enhanced specialist early intervention mental health services for young people.
Experimental investigation of an RNA sequence space
NASA Technical Reports Server (NTRS)
Lee, Youn-Hyung; Dsouza, Lisa; Fox, George E.
1993-01-01
Modern rRNAs are the historic consequence of an ongoing evolutionary exploration of a sequence space. These extant sequences belong to a special subset of the sequence space that is comprised only of those primary sequences that can validly perform the biological function(s) required of the particular RNA. If it were possible to readily identify all such valid sequences, stochastic predictions could be made about the relative likelihood of various evolutionary pathways available to an RNA. Herein an experimental system which can assess whether a particular sequence is likely to have validity as a eubacterial 5S rRNA is described. A total of ten naturally occurring, and hence known to be valid, sequences and two point mutants of unknown validity were used to test the usefulness of the approach. Nine of the ten valid sequences tested positive whereas both mutants tested as clearly defective. The tenth valid sequence gave results that would be interpreted as reflecting a borderline status were the answer not known. These results demonstrate that it is possible to experimentally determine which sequences in local regions of the sequence space are potentially valid 5S rRNAs.
McMahon, Colm J
2008-01-01
The relative roles of magnetic resonance cholangiopancreatography (MRCP) and endoscopic ultrasound (EUS) in the investigation of common bile duct (CD) calculi were evaluated using "evidence-based practice" (EBP) methods. A focused clinical question was constructed. A structured search of primary and secondary evidence was performed. Retrieved studies were appraised for validity, strength and level of evidence (Oxford/CEBM scale: 1-5). Retrieved literature was divided into group A; MRCP slice thickness >or=5 mm, group B; MRCP slice thickness = 3 mm or 3D-MRCP sequences. Six studies were eligible for inclusion (3 = level 1b, 3 = level 3b). Group A: sensitivity and specificity of MRCP and EUS were (40%, 96%) and (80%, 95%), respectively. Group B: sensitivity and specificity of MRCP and EUS were (87%, 95%) and (90%, 99%), respectively. MRCP should be the first-line investigation for CD calculi and EUS should be performed when MRCP is negative in patients with moderate or high pre-test probability.
Tian, J; Andreadis, S T
2009-07-01
Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.
Visual scanning behavior and pilot workload
NASA Technical Reports Server (NTRS)
Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Ephrath, A. R.; Young, L. R.
1983-01-01
Sophisticated man machine interaction often requires the human operator to perform a stereotyped scan of various instruments in order to monitor and/or control a system. For situations in which this type of stereotyped behavior exists, such as certain phases of instrument flight, scan pattern was shown to be altered by the imposition of simultaneous verbal tasks. A study designed to examine the relationship between pilot visual scan of instruments and mental workload is described. It was found that a verbal loading task of varying difficulty causes pilots to stare at the primary instrument as the difficulty increases and to shed looks at instruments of less importance. The verbal loading task also affected the rank ordering of scanning sequences. By examining the behavior of pilots with widely varying skill levels, it was suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. A graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modelling results are presented to support this interpretation.
A Public Health Model for the Molecular Surveillance of HIV Transmission in San Diego, California
May, Susanne; Tweeten, Samantha; Drumright, Lydia; Pacold, Mary E.; Kosakovsky Pond, Sergei L.; Pesano, Rick L.; Lie, Yolanda S.; Richman, Douglas D.; Frost, Simon D.W.; Woelk, Christopher H.; Little, Susan J.
2009-01-01
Background Current public health efforts often use molecular technologies to identify and contain communicable disease networks, but not for HIV. Here, we investigate how molecular epidemiology can be used to identify highly-related HIV networks within a population and how voluntary contact tracing of sexual partners can be used to selectively target these networks. Methods We evaluated the use of HIV-1 pol sequences obtained from participants of a community-recruited cohort (n=268) and a primary infection research cohort (n=369) to define highly related transmission clusters and the use of contact tracing to link other individuals (n=36) within these clusters. The presence of transmitted drug resistance was interpreted from the pol sequences (Calibrated Population Resistance v3.0). Results Phylogenetic clustering was conservatively defined when the genetic distance between any two pol sequences was <1%, which identified 34 distinct transmission clusters within the combined community-recruited and primary infection research cohorts containing 160 individuals. Although sequences from the epidemiologically-linked partners represented approximately 5% of the total sequences, they clustered with 60% of the sequences that clustered from the combined cohorts (O.R. 21.7; p=<0.01). Major resistance to at least one class of antiretroviral medication was found in 19% of clustering sequences. Conclusions Phylogenetic methods can be used to identify individuals who are within highly related transmission groups, and contact tracing of epidemiologically-linked partners of recently infected individuals can be used to link into previously-defined transmission groups. These methods could be used to implement selectively targeted prevention interventions. PMID:19098493
Mehta, Sanjay R; Murrell, Ben; Anderson, Christy M; Kosakovsky Pond, Sergei L; Wertheim, Joel O; Young, Jason A; Freitas, Lorri; Richman, Douglas D; Mathews, W Chris; Scheffler, Konrad; Little, Susan J; Smith, Davey M
2016-07-01
Because recently infected individuals disproportionately contribute to the spread of human immunodeficiency virus (HIV), we evaluated the impact of a primary HIV screening program (the Early Test) implemented in San Diego. The Early Test program used combined nucleic acid and serology testing to screen for primary infection targeting local high-risk individuals. Epidemiologic, HIV sequence, and geographic data were obtained from the San Diego County Department of Public Health and the Early Test program. Poisson regression analysis was performed to determine whether the Early Test program was temporally and geographically associated with changes in incident HIV diagnoses. Transmission chains were inferred by phylogenetic analysis of sequence data. Over time, a decrease in incident HIV diagnoses was observed proportional to the number primary HIV infections diagnosed in each San Diego region (P < .001). Molecular network analyses also showed that transmission chains were more likely to terminate in regions where the program was marketed (P = .002). Although, individuals in these zip codes had infection diagnosed earlier (P = .08), they were not treated earlier (P = .83). These findings suggests that early HIV diagnoses by this primary infection screening program probably contributed to the observed decrease in new HIV diagnoses in San Diego, and they support the expansion and evaluation of similar programs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Gaspar'ian, A V; Sel'chuk, V Iu; Iakubovskaia, M G; Zborovskaia, I B; Tatosian, A G
1997-01-01
Restriction fragment length polymorphism in the human c-Ha-ras-1 locus, associated with a minisatellite sequence, was examined in 45 multiple primary cancer (MPC) patients, 56 patients with squamous cell lung cancer (SCLC), 21 patients with lung adenocarcinoma (LAC), and 53 individuals having no oncopathology. Southern analysis of cellular DNA revealed the presence of 4 common alleles (with collective allele frequency close to 94% in the control group) and a set of rare alleles. Allele a3, (2.1 kb in size under MspI/HpaII digestion) was shown to be more frequent in the MPC than in the control group. The same tendency was observed in the patients with highly differentiated cell lung cancer. An increased frequency of the a4 allele (2.5 kb under MspI/HpaII digestion) was observed in the patients with adenocarcinomas as well as in the patients with metastases and low levels of tumor tissue differentiation. The elevated frequencies of a3 in the MPC group and of a4 in the LAC patients did not correlate with increased risk of the cancers mentioned above but was associated with type of tumor progression. Previously, it was reported that the mini-satellite sequence within the c-Ha-ras-1 locus possesses enhancer activity. Our data indirectly confirm the hypothesis that the efficiency of minisatellite modulator activity is associated with fragment size.
Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture.
Han, Zhaoxue; Crisp, Peter A; Stelpflug, Scott; Kaeppler, Shawn M; Li, Qing; Springer, Nathan M
2018-05-30
DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. To investigate heritable epigenetic changes as a consequence of tissue culture, a sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ∼15Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines suggesting that some loci are either targeted or hotspots for epigenetic variation. The consistent changes inherited following tissue culture include both gains and losses of DNA methylation and can affect CG, CHG or both contexts within a region. Only a subset of the tissue culture changes observed in callus plants are observed in the primary regnerants but the majority of DNA methylation changes present in primary regenerants are passed onto offspring. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species. Copyright © 2018, Genetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loo, Billy W.; Draney, Mary T.; Sivanandan, Ranjiv
2006-10-01
Purpose: To evaluate indirect magnetic resonance lymphangiography (MR-LAG) using interstitial injection of conventional gadolinium contrast (gadoteridol and gadopentetate dimeglumine) for delineating the primary lymphatic drainage of head-and-neck sites. Methods and Materials: We performed head-and-neck MR-LAG in 5 healthy volunteers, with injection of dermal and mucosal sites. We evaluated the safety of the procedure, the patterns of enhancement categorized by injection site and nodal level, the time course of enhancement, the optimal concentration and volume of contrast, and the optimal imaging sequence. Results: The worst side effects of interstitial contrast injection were brief, mild pain and swelling at the injected sitesmore » that were self-limited. MR-LAG resulted in consistent visualization of the primary lymphatic drainage pattern specific to each injected site, which was reproducible on repeated examinations. The best enhancement was obtained with injection of small volumes (0.3-0.5 mL) of either agent diluted, imaging within 5-15 min of injection, and a three-dimensional fast spoiled gradient echo sequence with magnetization transfer. Conclusions: We found head-and-neck MR-LAG to be a safe, convenient imaging method that provides functional information about the lymphatic drainage of injected sites. Applied to head-and-neck cancer, it has the potential to identify sites at highest risk of occult metastatic spread for radiotherapy or surgical planning, and possibly to visualize micrometastases.« less
Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran
NASA Astrophysics Data System (ADS)
Rahimpour-Bonab, H.; Kalantarzadeh, Z.
2005-04-01
In early Miocene times, an extensive carbonate shelf developed in Central Iran and during several cycles of sea-level fluctuations, evaporite-bearing carbonate sequences of the Qom Formation were deposited. However, in the early-middle Miocene, development of restricted marine conditions led to a facies change from shelf carbonates of the Qom Formation to the evaporite series of the M 1 member of the overlying Lower Red Formation. This member is a facies mosaic of lagoonal and salina evaporites (mainly halite beds) admixed with wadi siliciclastics. The purpose of this study, which focuses on two salt mines in the northwestern portion of Central Iran in the Zanjan province, was to reveal the origin, sedimentary environment, and diagenesis of these potash-bearing evaporite sequences. Petrographic examination revealed the following mineral assemblage: halite, gypsum, anhydrite and carnallite as primary precipitates, and langbeinite and aphthitalite as secondary metamorphic potash salts. In the Iljaq mine, distorted halite beds are dominated by burial and deformational textures and a great deal of secondary potash salts. In the Qarah-Aghaje mine, however, the bedded halite shows pristine primary textures and is devoid of the secondary potash salts. High bromine content of most evaporite minerals suggests their marine origin, and confirms the absence of the extensive meteoric alterations and subsequent bromine depletions. Potash salts are mainly secondary, and resulted from diagenetic replacements of distorted halite beds during thermal and dynamic metamorphism in a burial setting.
Zhu, Bing; Nestorov, Ivan; Zhao, Guolin; Meka, Venkata; Leahy, Mark; Kam, Jeanelle; Sheikh, Sarah I
2017-11-01
Delayed-release dimethyl fumarate (DMF) is an oral therapy for relapsing multiple sclerosis with anti-inflammatory and neuroprotective properties. This 2-period crossover study was conducted to evaluate the potential for drug-drug interaction between DMF (240 mg twice daily) and a combined oral contraceptive (OC; norgestimate 250 μg, ethinyl estradiol 35 μg). Forty-six healthy women were enrolled; 32 completed the study. After the lead-in period (OC alone), 41 eligible participants were randomized 1:1 to sequence 1 (OC and DMF coadministration in period 1; OC alone in period 2) or sequence 2 (regimens reversed). Mean concentration profiles of plasma norelgestromin (primary metabolite of norgestimate) and ethinyl estradiol were superimposable following OC alone and OC coadministered with DMF, with 90% confidence intervals of geometric mean ratios for area under the plasma concentration-time curve over the dosing interval and peak plasma concentration contained within the 0.8-1.25 range. Low serum progesterone levels during combined treatment confirmed suppression of ovulation. The pharmacokinetics of DMF (measured via its primary active metabolite, monomethyl fumarate) were consistent with historical data when DMF was administered alone. No new safety concerns were identified. These results suggest that norgestimate/ethinyl estradiol-based OCs may be used with DMF without dose modification. © 2017, The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.
Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J.; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa
2017-01-01
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae. PMID:28797083
Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa; Corrado, Giandomenico
2017-01-01
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.
JPRS Report, Science and Technology USSR: Life Sciences.
1990-07-16
4 1 VETERINARY MEDICINE Primary Structure of RNA Polymerase Gene of Foot-and-Mouth Disease Virus ( FMDV ...neering were used to obtain cDNA corresponding to the Primary Structure of RNA Polymerase Gene of RNA polymerase gene to FMDV A 2 2 , with a map of the...Foot-and-Mouth Disease Virus ( FMDV ) A22 primary nucleotide sequence of the cDNA provided. 18400538F Moscow BIOORGANICHESKA YA Analysis of the data
Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo
2006-06-01
An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the "PGR" motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.
NASA Astrophysics Data System (ADS)
Zwick, Harry; Stuck, Bruce E.; Akers, A.; Edsall, Peter; DiCarlo, Cheryl D.; Lund, David J.
2005-04-01
Laser induced retinal damage may involve primary injury to the central retina and secondary damage, including intraretinal scar formation (IRSF) retinal traction (RT) and retinal nerve fiber layer injury (RNFL). We have evaluated these laser induced retinal pathologies with MFERG in non-human primates (NHPs) with a Veris (4.9) MFERG system 103 Hexagons, centered on the macula with non-scaled arrays and in one NHP with a 2-frame/M-step sequence to assess long term exposure effects within the RNFL. Chemical restraint was achieved using Ketamine stability HCL (10 mg/kg IM) and Propofol (0.5 mg-1.2/Kg/min via syringe pump). Peribulbar eye blocks were performed using 2% lidocain or a mixture of 2% Lidocain/Marcain (monitored ocular motility was less than 40 microns in retinal space). Primary and secondary damage effects were induced with either q-switched single pulse Neodymium (1064 nm, 1.0 mJ) or Argon CW (10 to 1000 msec, 10-150 mW). MFERG demonstrated capability to detect primary and secondary induced retinal damage in both 1st and 2nd order kernels. Primary and secondary damage in the central retina was often suppressed in amplitude and with longer latencies relative to the MFERG norm. Preliminary investigations in one NHP with Primary and secondary RNFL damage at 9 to 14 months showed recovery with non-scaled array one frame / M-step sequence but demonstrated significant abnormalities for a two frame/ M-step sequence. Utilization of advanced Veris recording parameters involving spatial and temporal manipulation of the stimulus parameters can improve detection of functional deficits induced by focal laser retinal injury.
Ravenscroft, G; Pannell, S; O'Grady, G; Ong, R; Ee, H C; Faiz, F; Marns, L; Goel, H; Kumarasinghe, P; Sollis, E; Sivadorai, P; Wilson, M; Magoffin, A; Nightingale, S; Freckmann, M-L; Kirk, E P; Sachdev, R; Lemberg, D A; Delatycki, M B; Kamm, M A; Basnayake, C; Lamont, P J; Amor, D J; Jones, K; Schilperoort, J; Davis, M R; Laing, N G
2018-05-21
Primary chronic intestinal pseudo-obstruction (CIPO) is a rare, potentially life-threatening disorder characterized by severely impaired gastrointestinal motility. The objective of this study was to examine the contribution of ACTG2, LMOD1, MYH11, and MYLK mutations in an Australasian cohort of patients with a diagnosis of primary CIPO associated with visceral myopathy. Pediatric and adult patients with primary CIPO and suspected visceral myopathy were recruited from across Australia and New Zealand. Sanger sequencing of the genes encoding enteric gamma-actin (ACTG2) and smooth muscle leiomodin (LMOD1) was performed on DNA from patients, and their relatives, where available. MYH11 and MYLK were screened by next-generation sequencing. We identified heterozygous missense variants in ACTG2 in 7 of 17 families (~41%) diagnosed with CIPO and its associated conditions. We also identified a previously unpublished missense mutation (c.443C>T, p.Arg148Leu) in one family. One case presented with megacystis-microcolon-intestinal hypoperistalsis syndrome in utero with subsequent termination of pregnancy at 28 weeks' gestation. All of the substitutions identified occurred at arginine residues. No likely pathogenic variants in LMOD1, MYH11, or MYLK were identified within our cohort. ACTG2 mutations represent a significant underlying cause of primary CIPO with visceral myopathy and associated phenotypes in Australasian patients. Thus, ACTG2 sequencing should be considered in cases presenting with hypoperistalsis phenotypes with suspected visceral myopathy. It is likely that variants in other genes encoding enteric smooth muscle contractile proteins will contribute further to the genetic heterogeneity of hypoperistalsis phenotypes. © 2018 John Wiley & Sons Ltd.
Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo
2006-01-01
An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the “PGR” motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes. PMID:16699036
Relationships between Digestive, Circulatory, and Urinary Systems in Portuguese Primary Textbooks
ERIC Educational Resources Information Center
Carvalho, Graça S.; Clèment, Pierre
2007-01-01
In this study, 63 Portuguese primary schoolbooks (1920-2005) were analyzed. The analysis focused on text information (reference to blood absorption and association of the digestive system to other human systems) and on information from images (presence or absence of image "confusion" (when the sequence of the digestive tract is not…
Integrated Modular Teaching of Human Biology for Primary Care Practitioners
ERIC Educational Resources Information Center
Glasgow, Michael S.
1977-01-01
Describes the use of integrated modular teaching of the human biology component of the Health Associate Program at Johns Hopkins University, where the goal is to develop an understanding of the sciences as applied to primary care. Discussion covers the module sequence, the human biology faculty, goals of the human biology faculty, laboratory…
Fatima, Tahira; Snyder, Crystal L; Schroeder, William R; Cram, Dustin; Datla, Raju; Wishart, David; Weselake, Randall J; Krishna, Priti
2012-01-01
Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18:2 ω-6) and α-linolenic (18:3 ω-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16:1 ω-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and α-linolenic acids at 33-36% and 30-36%, respectively, while the pulp oil contained palmitoleic acid at 32-42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and α-linolenic acid in a close to 1:1 ratio, which is beneficial for human health. These data provide the foundation for further studies on sea buckthorn oil, the enzymes involved in its biosynthesis, and the genes involved in the general hardiness of sea buckthorn against environmental conditions.
Fatima, Tahira; Snyder, Crystal L.; Schroeder, William R.; Cram, Dustin; Datla, Raju; Wishart, David; Weselake, Randall J.; Krishna, Priti
2012-01-01
Background Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18∶2ω-6) and α-linolenic (18∶3ω-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16∶1ω-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. Results GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and α-linolenic acids at 33–36% and 30–36%, respectively, while the pulp oil contained palmitoleic acid at 32–42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. Conclusion This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and α-linolenic acid in a close to 1∶1 ratio, which is beneficial for human health. These data provide the foundation for further studies on sea buckthorn oil, the enzymes involved in its biosynthesis, and the genes involved in the general hardiness of sea buckthorn against environmental conditions. PMID:22558083
In Search of Grid Converged Solutions
NASA Technical Reports Server (NTRS)
Lockard, David P.
2010-01-01
Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.
LymPHOS 2.0: an update of a phosphosite database of primary human T cells
Nguyen, Tien Dung; Vidal-Cortes, Oriol; Gallardo, Oscar; Abian, Joaquin; Carrascal, Montserrat
2015-01-01
LymPHOS is a web-oriented database containing peptide and protein sequences and spectrometric information on the phosphoproteome of primary human T-Lymphocytes. Current release 2.0 contains 15 566 phosphorylation sites from 8273 unique phosphopeptides and 4937 proteins, which correspond to a 45-fold increase over the original database description. It now includes quantitative data on phosphorylation changes after time-dependent treatment with activators of the TCR-mediated signal transduction pathway. Sequence data quality has also been improved with the use of multiple search engines for database searching. LymPHOS can be publicly accessed at http://www.lymphos.org. Database URL: http://www.lymphos.org. PMID:26708986
Primary microcephaly caused by novel compound heterozygous mutations in ASPM
Okamoto, Nobuhiko; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Imoto, Issei
2018-01-01
Autosomal recessive primary microcephaly (microcephaly primary hereditary, MCPH) is a genetically heterogeneous rare developmental disorder that is characterized by prenatal onset of abnormal brain growth, which leads to intellectual disability of variable severity. We report a 5-year-old male who presented with a severe form of primary microcephaly. Targeted panel sequencing revealed compound heterozygous truncating mutations of the abnormal spindle-like microcephaly-associated (ASPM) gene, which confirmed the MCPH5 diagnosis. A novel NM_018136.4: c.9742_9745del (p.Lys3248Serfs*13) deletion mutation was identified. PMID:29644084
Primary microcephaly caused by novel compound heterozygous mutations in ASPM.
Okamoto, Nobuhiko; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Imoto, Issei
2018-01-01
Autosomal recessive primary microcephaly (microcephaly primary hereditary, MCPH) is a genetically heterogeneous rare developmental disorder that is characterized by prenatal onset of abnormal brain growth, which leads to intellectual disability of variable severity. We report a 5-year-old male who presented with a severe form of primary microcephaly. Targeted panel sequencing revealed compound heterozygous truncating mutations of the abnormal spindle-like microcephaly-associated ( ASPM ) gene, which confirmed the MCPH5 diagnosis. A novel NM_018136.4: c.9742_9745del (p.Lys3248Serfs*13) deletion mutation was identified.
Coarse-grained sequences for protein folding and design.
Brown, Scott; Fawzi, Nicolas J; Head-Gordon, Teresa
2003-09-16
We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the alpha/beta ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design.
Coarse-grained sequences for protein folding and design
Brown, Scott; Fawzi, Nicolas J.; Head-Gordon, Teresa
2003-01-01
We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the α/β ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design. PMID:12963815
Fitzpatrick, Terry; Huang, Sui
2012-01-01
Alu repeats within human genes may potentially alter gene expression. Here, we show that 3′-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3′-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3′-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3′-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules. PMID:22688648
Li, Fa-gui; Chu, Yi; Meng, Dong-mei; Tong, Ya-wen
2011-12-01
To assess the association between a C421A single nucleotide polymorphism (SNP) in exon 5 of ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2) gene and susceptibility of primary gout in Han Chinese males. For 200 male patients with primary gout and 235 controls, the genotype of C421A locus was analyzed by PCR and direct sequencing. Blood glucose, uric acid, total cholesterol, triglycerides, creatinine and urea nitrogen was measured by an automatic biochemical analyzer. Compared with the controls, there was a higher frequency for AA genotype and A allele of the rs2231142 SNP in gout patients (22.5% vs. 8.5% by genotype; 44.9% vs. 32.3% by allele). The association with gout reached significance (chi-square =15.91, P< 0.001, crude OR=3.02, 95% CI:1.36-4.90 and OR (adjusted by age)=1.80, 95% CI: 1.32-2.45 by dominant mode; chi-square=6.82, P=0.009, OR=1.67, 95% CI: 1.54-2.27 by recessive mode). Blood glucose, uric acid, triglycerides, creatinine and urea nitrogen levels in gout patients were significantly higher than those of controls (P< 0.001). The C421A SNP, in particular AA phenotype, may be associated with susceptibility of primary gout in Han Chinese males.
Reticular influences on primary and augmenting responses in the somatosensory cortex.
Steriade, M; Morin, D
1981-01-26
The effects of brief, conditioning trains of high-frequency pulses to the midbrain reticular formation (RF) on primary and augmenting responses of somatosensory (SI) cortex were investigated. Testing stimulation was applied to the ventrobasal (VB) thalamus or to the white matter (WM) beneath SI in VB-lesioned animals. The RF-elicited EEG activation was associated with increased firing rates of SI neurons, enhanced probability of early synaptic discharges to VB or WM stimuli, and significantly reduced duration of the suppressed firing period following an afferent VB or WM volley. The diminished latency of the postinhibitory rebound under RF stimulation had the consequence that, within 10/sec shock-train, the second stimulus was delivered following completion of the rebound component and, instead of an augmented potential, generated a field response of primary-type. The dependence of the RF-induced change in augmenting potentials upon the sharpening effect exerted on the preceding inhibitory-rebound sequence was corroborated by analyzing the RF influence on neurons with different time-course of recovery from inhibition. The replacement of augmenting potentials by primary responses under RF stimulation is advanced as the mechanism behind the obliteration of spontaneously developing 'type I' spindle-waves during EEG arousal. The demonstration of RF influences on SI responses to WM stimulation in VB-lesioned animals points out the cortical level of the effects. The reticulo-thalamo-cortical pathways underlying these influences are discussed.
NASA Astrophysics Data System (ADS)
Li, Na; Black, John B.
2016-10-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter- level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra- level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter- level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra- level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter- level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.
Hidden Markov models of biological primary sequence information.
Baldi, P; Chauvin, Y; Hunkapiller, T; McClure, M A
1994-01-01
Hidden Markov model (HMM) techniques are used to model families of biological sequences. A smooth and convergent algorithm is introduced to iteratively adapt the transition and emission parameters of the models from the examples in a given family. The HMM approach is applied to three protein families: globins, immunoglobulins, and kinases. In all cases, the models derived capture the important statistical characteristics of the family and can be used for a number of tasks, including multiple alignments, motif detection, and classification. For K sequences of average length N, this approach yields an effective multiple-alignment algorithm which requires O(KN2) operations, linear in the number of sequences. PMID:8302831
Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X
1993-05-01
The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.
NASA Astrophysics Data System (ADS)
Cleary, Alison C.; Durbin, Edward G.; Rynearson, Tatiana A.; Bailey, Jennifer
2016-12-01
Pseudocalanus copepods are small, abundant zooplankton in the Bering Sea ecosystem that play an important role in transferring primary production to fish and other higher trophic-level predators. Four morphologically cryptic species, the primarily arctic Pseudocalanus minutus and Pseudocalanus acuspes, and the more temperate Pseudocalanus newmani and Pseudocalanus mimus, are found within the Bering Sea. Pseudocalanus are generally considered phytoplanktivores. However, their feeding is poorly known, despite their importance to the ecosystem. In situ feeding by the three most abundant Pseudocalanus congeners, P. minutus, P. newmani, and P. acuspes, was investigated by sequencing partial 18S rDNA (ribosomal Deoxyribonucleic Acid) of gut contents from 225 individuals sampled from 8 stations across the Bering Sea in May and June of 2010. The 28,456 prey 18S rDNA sequences obtained clustered into 138 distinct prey items with a 97% similarity cut-off, and included diatoms, dinoflagellates, microzooplankton, mesozooplankton, and vascular plants. Pseudocalanus diets reflected variations in the environment, with phytoplankton sequences relatively more abundant in copepods from stations with higher water-column chlorophyll a concentrations. Feeding differences were observed between species. P. acuspes diet contained relatively more heterotrophic dinoflagellate sequences, and was significantly different from that of P. minutus and P. newmani, both of which contained relatively more diatom sequences, and between which no significant difference was observed. Feeding differences between the two primarily arctic species may be a mechanism of niche partitioning between these spatially co-located congeners and may have implications for the effects of climate change on the success of these abundant zooplankters and their many predators in this ecosystem.
Cancian, Laila; Bosshard, Rachel; Lucchesi, Walter; Karstegl, Claudio Elgueta; Farrell, Paul J.
2011-01-01
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. PMID:21857817
Barnes, D W
2012-04-01
Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Paldurai, Anandan; Subbiah, Madhuri; Kumar, Sachin; Collins, Peter L.; Samal, Siba K.
2009-01-01
Complete consensus genome sequences were determined for avian paramyxovirus type 8 (APMV-8) strains goose/Delaware/1053/76 (prototype strain) and pintail/Wakuya/20/78. The genome of each strain is 15,342 nucleotides (nt) long, which follows the “rule of six”. The genome consists of six genes in the order of 3′-N-P/V/W-M-F-HN-L-5′. The genes are flanked on either side by conserved transcription start and stop signals, and have intergenic regions ranging from 1 to 30 nt. The genome contains a 55 nt leader region at the 3′-end and a 171 nt trailer region at the 5′-end. Comparison of sequences of strains Delaware and Wakuya showed nucleotide identity of 96.8% at the genome level and amino acid identities of 99.3%, 96.5%, 98.6%, 99.4%, 98.6% and 99.1% for the predicted N, P, M, F, HN and L proteins, respectively. Both strains grew in embryonated chicken eggs and in primary chicken embryo kidney cells, and 293T cells. Both strains contained only a single basic residue at the cleavage activation site of the F protein and their efficiency of replication in vitro depended on and was augmented by, the presence of exogenous protease in most cell lines. Sequence alignment and phylogenic analysis of the predicted amino acid sequence of APMV-8 strain Delaware proteins with the cognate proteins of other available APMV serotypes showed that APMV-8 is more closely related to APMV-2 and -6 than to APMV-1, -3 and -4. PMID:19341613
Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng
2017-05-10
Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .
Poropatich, Kate; Fontanarosa, Joel; Swaminathan, Suchitra; Dittmann, Dave; Chen, Siqi; Samant, Sandeep; Zhang, Bin
2017-11-01
The success of programmed cell death 1 (PD-1) inhibition in achieving a clinical response in a subset of head and neck squamous cell carcinoma (HNSCC) patients emphasizes the need to better understand the immunobiology of HNSCC. Immunophenotyping was performed for 30 HCSCC patients [16 human papillomavirus (HPV)-positive; 14 HPV-negative] on matched tissue from the primary tumour site, locally metastatic cervical lymph nodes (LNs), uninvolved local cervical LNs, and peripheral blood. CD4 + and CD8 + T-cell lymphocytes obtained from tissue were analysed for expression levels of the inhibitory receptors PD-1, TIM-3 and CTLA-4. Next-generation sequencing of the T-cell receptor (TCR) β chain was performed on patients (n = 9) to determine receptor repertoire diversity and for clonality analysis. HPV-negative HNSCC patients, particularly those with stage IV disease, had significantly higher proportions of CD8 + T cells expressing CTLA-4 in tumour tissue (P = 0.0013) and in peripheral blood (P = 0.0344) than HPV-positive patients, as well as higher expression levels of TIM-3 + PD-1 + CD8 + T cells (P = 0.0072) than controls. For all patients, PD-1 expression on CD8 + T cells - particularly in HPV-negative HNSCC cases - strongly correlated (r = 0.63, P = 0.013) with tumour size at the primary site. The top CD8 + TCR clones from tumour tissue significantly overlapped with circulating peripheral blood TCR clones (r = 0.946), and HPV-positive patients had frequently expanded TCR clones that were more hydrophobic - and potentially more immunogenic - than those from HPV-negative patients. Collectively, our findings demonstrate, for the first time, that high-stage HPV-negative HNSCC patients with primary tumours at different sites in the head and neck have elevated peripheral CTLA-4 + CD8 + T-cell levels, that tumour-familiar CD8 + T cells are detectable in peripheral blood from HNSCC patients, and that TCRs from HPV-positive HNSCC patients potentially recognize distinctly immunogenic cognate antigens. However, our findings are preliminary, and need to be further confirmed in a larger patient cohort; also, how these factors affect patient response to immunotherapy needs to be determined. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension.
Azam, Afifah Binti; Azizan, Elena Aisha Binti
2018-01-01
Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.
2014-01-01
Background GWAS have consistently revealed that LDLR locus variability influences LDL-cholesterol in general population. Severe LDLR mutations are responsible for familial hypercholesterolemia (FH). However, most primary hypercholesterolemias are polygenic diseases. Although Cis-regulatory regions might be the cause of LDL-cholesterol variability; an extensive analysis of the LDLR distal promoter has not yet been performed. We hypothesized that genetic variants in this region are responsible for the LDLR association with LDL-cholesterol found in GWAS. Methods Four-hundred seventy-seven unrelated subjects with polygenic hypercholesterolemia (PH) and without causative FH-mutations and 525 normolipemic subjects were selected. A 3103 pb from LDLR (-625 to +2468) was sequenced in 125 subjects with PH. All subjects were genotyped for 4 SNPs (rs17242346, rs17242739, rs17248720 and rs17249120) predicted to be potentially involved in transcription regulation by in silico analysis. EMSA and luciferase assays were carried out for the rs17248720 variant. Multivariable linear regression analysis using LDL-cholesterol levels as the dependent variable were done in order to find out the variables that were independently associated with LDL-cholesterol. Results The sequencing of the 125 PH subjects did not show variants with minor allele frequency ≥ 10%. The T-allele from g.3131C > T (rs17248720) had frequencies of 9% (PH) and 16.4% (normolipemic), p < 0.00001. Studies of this variant with EMSA and luciferase assays showed a higher affinity for transcription factors and an increase of 2.5 times in LDLR transcriptional activity (T-allele vs C-allele). At multivariate analysis, this polymorphism with the lipoprotein(a) and age explained ≈ 10% of LDL-cholesterol variability. Conclusion Our results suggest that the T-allele at the g.3131 T > C SNP is associated with LDL-cholesterol levels, and explains part of the LDL-cholesterol variability. As a plausible cause, the T-allele produces an increase in LDLR transcriptional activity and lower LDL-cholesterol levels. PMID:24708769
Non-redundant patent sequence databases with value-added annotations at two levels
Li, Weizhong; McWilliam, Hamish; de la Torre, Ana Richart; Grodowski, Adam; Benediktovich, Irina; Goujon, Mickael; Nauche, Stephane; Lopez, Rodrigo
2010-01-01
The European Bioinformatics Institute (EMBL-EBI) provides public access to patent data, including abstracts, chemical compounds and sequences. Sequences can appear multiple times due to the filing of the same invention with multiple patent offices, or the use of the same sequence by different inventors in different contexts. Information relating to the source invention may be incomplete, and biological information available in patent documents elsewhere may not be reflected in the annotation of the sequence. Search and analysis of these data have become increasingly challenging for both the scientific and intellectual-property communities. Here, we report a collection of non-redundant patent sequence databases, which cover the EMBL-Bank nucleotides patent class and the patent protein databases and contain value-added annotations from patent documents. The databases were created at two levels by the use of sequence MD5 checksums. Sequences within a level-1 cluster are 100% identical over their whole length. Level-2 clusters were defined by sub-grouping level-1 clusters based on patent family information. Value-added annotations, such as publication number corrections, earliest publication dates and feature collations, significantly enhance the quality of the data, allowing for better tracking and cross-referencing. The databases are available format: http://www.ebi.ac.uk/patentdata/nr/. PMID:19884134
Non-redundant patent sequence databases with value-added annotations at two levels.
Li, Weizhong; McWilliam, Hamish; de la Torre, Ana Richart; Grodowski, Adam; Benediktovich, Irina; Goujon, Mickael; Nauche, Stephane; Lopez, Rodrigo
2010-01-01
The European Bioinformatics Institute (EMBL-EBI) provides public access to patent data, including abstracts, chemical compounds and sequences. Sequences can appear multiple times due to the filing of the same invention with multiple patent offices, or the use of the same sequence by different inventors in different contexts. Information relating to the source invention may be incomplete, and biological information available in patent documents elsewhere may not be reflected in the annotation of the sequence. Search and analysis of these data have become increasingly challenging for both the scientific and intellectual-property communities. Here, we report a collection of non-redundant patent sequence databases, which cover the EMBL-Bank nucleotides patent class and the patent protein databases and contain value-added annotations from patent documents. The databases were created at two levels by the use of sequence MD5 checksums. Sequences within a level-1 cluster are 100% identical over their whole length. Level-2 clusters were defined by sub-grouping level-1 clusters based on patent family information. Value-added annotations, such as publication number corrections, earliest publication dates and feature collations, significantly enhance the quality of the data, allowing for better tracking and cross-referencing. The databases are available format: http://www.ebi.ac.uk/patentdata/nr/.
ERIC Educational Resources Information Center
Douglass, Claudia B.
The primary purpose of the reported study was to identify a possible interaction between the cognitive style of the students and the instructional sequence of the materials and their combined effect on achievement. The subjects were 627 biology students from six midwestern high schools. The students were ranked and classified as field-dependent…
Leekitcharoenphon, Pimlapas; Raufu, Ibrahim; Nielsen, Mette T.; Rosenqvist Lund, Birthe S.; Ameh, James A.; Ambali, Abdul G.; Sørensen, Gitte; Le Hello, Simon; Aarestrup, Frank M.; Hendriksen, Rene S.
2016-01-01
Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections. PMID:27228329
Cherry, M Gemma; Fletcher, Ian; Berridge, Damon; O'Sullivan, Helen
2018-04-01
To investigate whether and how doctors' attachment styles and emotional intelligence (EI) might influence patients' emotional expressions in general practice consultations. Video recordings of 26 junior doctors consulting with 173 patients were coded using the Verona Coding Definition of Emotional Sequences (VR-CoDES). Doctors' attachment style was scored across two dimensions, avoidance and anxiety, using the Experiences in Close Relationships: Short Form questionnaire. EI was assessed with the Mayer-Salovey-Caruso Emotional Intelligence Test. Multilevel Poisson regressions modelled the probability of patients' expressing emotional distress, considering doctors' attachment styles and EI and demographic and contextual factors. Both attachment styles and EI were significantly associated with frequency of patients' cues, with patient- and doctor-level explanatory variables accounting for 42% of the variance in patients' cues. The relative contribution of attachment styles and EI varied depending on whether patients' presenting complaints were physical or psychosocial in nature. Doctors' attachment styles and levels of EI are associated with patients' emotional expressions in primary care consultations. Further research is needed to investigate how these two variables interact and influence provider responses and patient outcomes. Understanding how doctors' psychological characteristics influence PPC may help to optimise undergraduate and postgraduate medical education. Copyright © 2017 Elsevier B.V. All rights reserved.
Coiled-coil length: Size does matter.
Surkont, Jaroslaw; Diekmann, Yoan; Ryder, Pearl V; Pereira-Leal, Jose B
2015-12-01
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. © 2015 Wiley Periodicals, Inc.
Direct Measurement of T Cell Receptor Affinity and Sequence from Naïve Anti-Viral T Cells
Zhang, Shuqi; Parker, Patricia; Ma, Keyue; He, Chenfeng; Shi, Qian; Cui, Zhonghao; Williams, Chad; Wendel, Ben S.; Meriwether, Amanda; Salazar, Mary A.; Jiang, Ning
2016-01-01
T cells recognize and kill a myriad of pathogen-infected or cancer cells using a diverse set of T cell receptors (TCR). The affinity of TCR to cognate antigen is of high interest in adoptive T cell transfer immunotherapy and antigen-specific T cell repertoire immune profiling because it is widely known to correlate with downstream T cell responses. Here, we introduce the in situ TCR affinity and sequence test (iTAST) for simultaneous measurement of TCR affinity and sequence from single primary CD8+ T cells in human blood. We demonstrate that the repertoire of primary antigen-specific T cells from pathogen inexperienced individuals has a surprisingly broad affinity range of 1000-fold composed of diverse TCR sequences. Within this range, samples from older individuals contained a reduced frequency of high affinity T cells compared to young individuals, demonstrating an age-related effect of T cell attrition that could cause holes in the repertoire. iTAST should enable the rapid selection of high affinity TCRs ex vivo for adoptive immunotherapy and measurement of T cell response for immune monitoring applications. PMID:27252176
Nakayama, Manabu; Oda, Hirotsugu; Nakagawa, Kenji; Yasumi, Takahiro; Kawai, Tomoki; Izawa, Kazushi; Nishikomori, Ryuta; Heike, Toshio; Ohara, Osamu
2017-03-01
Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID). In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program-which detects and avoids common SNPs in gene-specific PCR primers-we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of somatic mosaic mutations.
Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.
1998-03-01
Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.
Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, Emg
2017-09-01
Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (p<0.05). ProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in primary teeth.
Inverted-U Function Relating Cortical Plasticity and Task Difficulty
Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.
2012-01-01
Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158
DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer
Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine
2017-01-01
Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820
Iandolino, Alberto; Nobuta, Kan; da Silva, Francisco Goes; Cook, Douglas R; Meyers, Blake C
2008-05-12
Vitis vinifera (V. vinifera) is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS) and combined it with available Expressed Sequence Tag (EST) data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS). A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was approximately 49 TPM (Transcripts Per Million). Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed evidence of antisense expression not previously reported in grapes but comparable to that reported in other plant species. Finally, we developed a novel web-based, public resource for utilization of the grape MPSS data [1].
Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors
Bagrodia, Aditya; Lee, Byron H.; Lee, William; Cha, Eugene K.; Sfakianos, John P.; Iyer, Gopa; Pietzak, Eugene J.; Gao, Sizhi Paul; Zabor, Emily C.; Ostrovnaya, Irina; Kaffenberger, Samuel D.; Syed, Aijazuddin; Arcila, Maria E.; Chaganti, Raju S.; Kundra, Ritika; Eng, Jana; Hreiki, Joseph; Vacic, Vladimir; Arora, Kanika; Oschwald, Dayna M.; Berger, Michael F.; Bajorin, Dean F.; Bains, Manjit S.; Schultz, Nikolaus; Reuter, Victor E.; Sheinfeld, Joel; Bosl, George J.; Al-Ahmadie, Hikmat A.; Solit, David B.
2016-01-01
Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture–based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic profiling of patients with advanced GCT could improve current risk stratification and identify novel therapeutic approaches for patients with cisplatin-resistant disease. PMID:27646943
Alcaide, María; Messina, Enzo; Richter, Michael; Bargiela, Rafael; Peplies, Jörg; Huws, Sharon A.; Newbold, Charles J.; Golyshin, Peter N.; Simón, Miguel A.; López, Guillermo; Yakimov, Michail M.; Ferrer, Manuel
2012-01-01
Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx (Lynx pardinus) fecal samples. Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was further characterized by an over-representation of ‘presumptive’ aquaporin aqpZ genes and genes encoding ‘active’ lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins, glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total glycosidases) in genes encoding α-amylase and related enzymes, although it exhibited low rate of enzymatic activity indicative of starch degradation. The preponderance of β-xylosidase activity in protein extracts further suggests lynx gut microbes being most active for the metabolism of β-xylose containing plant N-glycans, although β-xylosidases sequences constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal tissues (with the monotypic dietary profile of the wild lynx consisting of 80–100% wild rabbits) but also for the hydrolysis of prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed. PMID:23251564
Sakamoto, Soichiro; Kawabata, Hiroshi; Masuda, Taro; Uchiyama, Tatsuki; Mizumoto, Chisaki; Ohmori, Katsuyuki; Koeffler, H. Phillip; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi
2015-01-01
Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body’s iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin. PMID:26441243
Method and apparatus for biological sequence comparison
Marr, T.G.; Chang, W.I.
1997-12-23
A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.
Method and apparatus for biological sequence comparison
Marr, Thomas G.; Chang, William I-Wei
1997-01-01
A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.
Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice
Nakayama, Maki; Castoe, Todd; Sosinowski, Tomasz; He, XiangLing; Johnson, Kelly; Haskins, Kathryn; Vignali, Dario A.A.; Gapin, Laurent; Pollock, David; Eisenbarth, George S.
2012-01-01
There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9–23 (insulin B:9–23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9–23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13–1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes. PMID:22315318
Shahinyan, Grigor; Margaryan, Armine; Panosyan, Hovik; Trchounian, Armen
2017-05-02
Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5-70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98-99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. Newly isolated bacilli strains could be prospective source for thermostable lipases and their genes.
Kakinuma, Makoto; Nakamoto, Chika; Kishi, Kazuki; Coury, Daniel A; Amano, Hideomi
2017-07-01
Ammonium and nitrate are the primary nitrogen sources in natural environments, and are essential for growth and development in photosynthetic eukaryotes. In this study, we report on the isolation and characterization of an ammonium transporter gene (PyAMT1) which performs a key function in nitrogen (N) metabolism of Pyropia yezoensis thalli. The predicted length of PyAMT1 was 483 amino acids (AAs). The AA sequence included 11 putative transmembrane domains and showed approximately 33-44% identity to algal and plant AMT1 AA sequences. Functional complementation in an AMT-defective yeast mutant indicated that PyAMT1 mediated ammonium transport across the plasma membrane. Expression analysis showed that the PyAMT1 mRNA level was strongly induced by N-deficiency, and was more highly suppressed by resupply of inorganic-N than organic-N. These results suggest that PyAMT1 plays important roles in the ammonium transport system, and is highly regulated in response to external/internal N-status. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kuroda, M; Hashida-Okado, T; Yasumoto, R; Gomi, K; Kato, I; Takesako, K
1999-03-01
The AUR1 gene of Saccharomyces cerevisiae, mutations in which confer resistance to the antibiotic aureobasidin A, is necessary for inositol phosphorylceramide (IPC) synthase activity. We report the molecular cloning and characterization of the Aspergillus nidulans aurA gene, which is homologous to AUR1. A single point mutation in the aurA gene of A. nidulans confers a high level of resistance to aureobasidin A. The A. nidulans aurA gene was used to identify its homologs in other Aspergillus species, including A. fumigatus, A. niger, and A. oryzae. The deduced amino acid sequence of an aurA homolog from the pathogenic fungus A. fumigatus showed 87% identity to that of A. nidulans. The AurA proteins of A. nidulans and A. fumigatus shared common characteristics in primary structure, including sequence, hydropathy profile, and N-glycosylation sites, with their S. cerevisiae, Schizosaccharomyces pombe, and Candida albicans counterparts. These results suggest that the aureobasidin resistance gene is conserved evolutionarily in various fungi.
Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim
2005-11-01
Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
Thorvaldsdóttir, Helga; Mesirov, Jill P.
2013-01-01
Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today’s sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license. PMID:22517427
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
Thorvaldsdóttir, Helga; Robinson, James T; Mesirov, Jill P
2013-03-01
Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today's sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.
Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance
NASA Astrophysics Data System (ADS)
Gregory, Steven T.
2018-03-01
Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.
Campello-Nunes, Pedro H; Fernandes, Noemi M; Szokoli, Franziska; Petroni, Giulio; da Silva-Neto, Inácio D
2018-05-19
Ciliates of the genus Gruberia are poorly studied. Consequently, most species lack detailed morphological descriptions, and all gene sequences in GenBank are not classified at the species level. In this study, a detailed morphological description of a population of G. lanceolata from Brazil is presented, based on live and protargol-stained organisms. We also present the 18S rRNA gene sequence and the phylogenetic position of this species. The primary characteristics of G. lanceolata from the Maricá Lagoon are as follows: an elongate fusiform body 280-870 × 40-160 μm in size; rosy cortical granules; a peristome occupying approximately 1/3-1/2 of body length; an adoral zone comprising 115-330 membranelles; a paroral membrane in 35-50 fragments; and a moniliform macronucleus with 11-16 nodules. Based on our observations and data from pertinent literature, we suggest G. beninensis to be a junior synonym of G. lanceolata. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Limitations and possibilities of low cell number ChIP-seq
2012-01-01
Background Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) offers high resolution, genome-wide analysis of DNA-protein interactions. However, current standard methods require abundant starting material in the range of 1–20 million cells per immunoprecipitation, and remain a bottleneck to the acquisition of biologically relevant epigenetic data. Using a ChIP-seq protocol optimised for low cell numbers (down to 100,000 cells / IP), we examined the performance of the ChIP-seq technique on a series of decreasing cell numbers. Results We present an enhanced native ChIP-seq method tailored to low cell numbers that represents a 200-fold reduction in input requirements over existing protocols. The protocol was tested over a range of starting cell numbers covering three orders of magnitude, enabling determination of the lower limit of the technique. At low input cell numbers, increased levels of unmapped and duplicate reads reduce the number of unique reads generated, and can drive up sequencing costs and affect sensitivity if ChIP is attempted from too few cells. Conclusions The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells), and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance. PMID:23171294
The Effects of Nucleosome Positioning and Chromatin Architecture on Transgene Expression
NASA Astrophysics Data System (ADS)
Kempton, Colton E.
Eukaryotes use proteins to carefully package and compact their genomes to fit into the nuclei of their individual cells. Nucleosomes are the primary level of compaction. Nucleosomes are formed when DNA wraps around an octamer of histone proteins and a nucleosome's position can limit access to genetic regulatory elements. Therefore, nucleosomes represent a basic level of gene regulation. DNA and its associated proteins, called chromatin, is usually classified as euchromatin or heterochromatin. Euchromatin is transcriptionally active with loosely packed nucleosomes while heterochromatin is condensed with tightly packed nucleosomes and is transcriptionally silent. In order to become active, heterochromatin must first be remodeled. We have studied the effects of nucleosome positioning on transgene expression in vivo using Caenorhabditis elegans as a model. We show that both location and polarity of the DNA sequence can influence transgene expression. We also discuss some considerations for working with CRISPR/Cas9. A major reason for doing in vitro nucleosome reconstitutions is to determine the effects of DNA sequence on nucleosome formation and position. It has previously been implied that nucleosome reconstitutions are stochastic and not very reproducible. We show that nucleosome reconstitutions are highly reproducible under our reaction conditions. Our results also indicate that a minimum depth of 35X sequencing coverage be maintained for maximal gains in Pearson's correlation coefficients. Communicating science with others is an important skill for any researcher. The rising generation of scientists need mentors who can teach them how to be independent thinkers who can carry out scientific experiments and communicate their finding to others. With this goal in mind, we have devised a scaffolding pedagogical method to help transform undergraduates into confident independent thinkers and researchers.
Implications of hydrologic variability on the succession of plants in Great Lakes wetlands
Wilcox, Douglas A.
2004-01-01
Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.
Anderson, Julia; Lemmer, Darrin; Lehmkuhl, Erik; Georghiou, Sophia B.; Heaton, Hannah; Wiggins, Kristin; Gillece, John D.; Schupp, James M.; Catanzaro, Donald G.; Crudu, Valeriu; Cohen, Ted; Rodwell, Timothy C.; Engelthaler, David M.
2016-01-01
Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool. PMID:27225403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Yuxiang, E-mail: yuxiangqin@126.com; Tian, Yanchen; Han, Lu
Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusionmore » between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.« less
Tong, C G; Reichler, S; Blumenthal, S; Balk, J; Hsieh, H L; Roux, S J
1997-01-01
A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene. PMID:9193096
2010-01-01
Background The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. Results The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species. Conclusions This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing development of Varroa genomic resources will be a boon for comparative genomics of under-represented arthropods, and will further enhance the honey bee and its associated pathogens as a model system for studying host-pathogen interactions. PMID:20973996
Protein sequence annotation in the genome era: the annotation concept of SWISS-PROT+TREMBL.
Apweiler, R; Gateau, A; Contrino, S; Martin, M J; Junker, V; O'Donovan, C; Lang, F; Mitaritonna, N; Kappus, S; Bairoch, A
1997-01-01
SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotation, a minimal level of redundancy and high level of integration with other databases. Ongoing genome sequencing projects have dramatically increased the number of protein sequences to be incorporated into SWISS-PROT. Since we do not want to dilute the quality standards of SWISS-PROT by incorporating sequences without proper sequence analysis and annotation, we cannot speed up the incorporation of new incoming data indefinitely. However, as we also want to make the sequences available as fast as possible, we introduced TREMBL (TRanslation of EMBL nucleotide sequence database), a supplement to SWISS-PROT. TREMBL consists of computer-annotated entries in SWISS-PROT format derived from the translation of all coding sequences (CDS) in the EMBL nucleotide sequence database, except for CDS already included in SWISS-PROT. While TREMBL is already of immense value, its computer-generated annotation does not match the quality of SWISS-PROTs. The main difference is in the protein functional information attached to sequences. With this in mind, we are dedicating substantial effort to develop and apply computer methods to enhance the functional information attached to TREMBL entries.
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutscher, J.; Pevec, B.; Beyreuther, K.
1986-10-21
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolyptic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system,more » HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction. The site of ATP-dependent phosphorylation in HPr of S faecalis has now been determined. (/sup 32/P)P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, they obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, they isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-. Thus, the site of ATP-dependent phosphorylation was determined to be Ser-46 within the primary structure of HPr.« less
Myers, Kenneth A; Kline, Gregory A
2010-01-01
To report a rare case of Addison disease presenting with acute neurologic deterioration, and to discuss previous reports and illustrative clinical lessons drawn from the case. We detail the clinical presentation and sequence of events leading to diagnosis of Addison disease in a 20-year-old man whose initial symptoms were those of acute neurologic deterioration. A 20-year-old man presented with acute, rapid neurologic deterioration. The patient required intubation, but his condition responded very well to mannitol and dexamethasone. Head computed tomography showed a fourth ventricle reduced in size and basal cistern effacement, changes consistent with mild cerebral edema. Primary adrenal insufficiency was diagnosed after a low morning cortisol concentration prompted a corticotropin-stimulation test and serum aldosterone measurement (undetectable). The diagnosis was almost missed because of suspected confounders of dexamethasone and etomidate use. Subsequently, the patient tested positive for anti-21- hydroxylase antibodies. Cerebral edema rarely occurs with Addison disease and is most likely secondary to hyponatremia. Diagnosis in such cases may be complicated by resuscitative therapies; however, low cortisol levels should always be thoroughly investigated. This patient's presentation was also unique in that he maintained a normal electrolyte profile despite hypoaldosteronism, a phenomenon that may be explained by enhanced mineralocorticoid activity of exogenous cortisol. The diagnosis of primary adrenal insufficiency may not be suspected in the absence of classic hyperpigmentation and hyperkalemia, but should remain in the differential diagnosis of acute confusion. While the use of dexamethasone and etomidate in initial resuscitation can transiently suppress adrenal function, any unusually low cortisol level merits thorough investigation.
Bruce, A. Gregory; Barcy, Serge; DiMaio, Terri; Gan, Emilia; Garrigues, H. Jacques; Lagunoff, Michael; Rose, Timothy M.
2017-01-01
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression. PMID:28335496
The chronology and sequence of eruption of human permanent teeth in Northern Ireland.
Kochhar, R; Richardson, A
1998-12-01
To ascertain the average and range of ages and sequence of eruption of human permanent teeth, taking into account the effect of premature loss of primary antecedents. Longitudinal study. Caucasian subjects in Northern Ireland. Study casts at 6-monthly intervals from age 5 to 15 years of 276 children (146 males and 130 females) enrolled in the Belfast Growth Study. The mean and range of ages of eruption of each individual tooth were computed. Comparisons were made between the mean ages of eruption with and without premature loss of primary antecedents, between upper and lower arches, between right and left sides and between males and females. The sequence of eruption was also investigated. The means and ranges of eruption ages are reported. Premature loss of primary antecedents delayed eruption of permanent successors except for the upper premolars which were accelerated. The differences relating to the upper first premolar and lower canine were not statistically significant. Each lower tooth erupted before its upper counterpart except for the premolars. There was no significant difference in age of eruption between right and left sides. Females tended to erupt teeth before males with the exception of the second molars in both arches; however, the only differences to reach statistical significance related to upper and lower canines and upper lateral incisors. The most frequent orders of eruption were unique to the subject. These occurred in 22% of upper and 33% of lower arches. The classic sequences: first molar-central incisor-lateral incisor-first premolar-canine-second premolar-second molar (M1-I1-I2-PM1-C-PM2-M2) in the upper arch and I1-M1-I2-C-PM1-PM2-M2 in the lower arch occurred in only 16% of upper arches and 13% of lower arches. Males adhered to the textbook sequence (20% upper, 17% lower) more than females (12% upper, 8% lower). In the upper arch of females, the order M1-I1-I2-PM1-PM2-C-M2 in 10% of subjects was almost as frequent as the classic sequence. The ages, ranges and orders of eruption found in this study are more reliable than many which are frequently quoted on account of its longitudinal nature and the fact that the effect of premature loss of primary antecedents is taken into account. The exclusively Caucasian sample makes the data quite precise but limits applicability to patients of this ethnic origin.
Fluorescence energy transfer as a probe for nucleic acid structures and sequences.
Mergny, J L; Boutorine, A S; Garestier, T; Belloc, F; Rougée, M; Bulychev, N V; Koshkin, A A; Bourson, J; Lebedev, A V; Valeur, B
1994-01-01
The primary or secondary structure of single-stranded nucleic acids has been investigated with fluorescent oligonucleotides, i.e., oligonucleotides covalently linked to a fluorescent dye. Five different chromophores were used: 2-methoxy-6-chloro-9-amino-acridine, coumarin 500, fluorescein, rhodamine and ethidium. The chemical synthesis of derivatized oligonucleotides is described. Hybridization of two fluorescent oligonucleotides to adjacent nucleic acid sequences led to fluorescence excitation energy transfer between the donor and the acceptor dyes. This phenomenon was used to probe primary and secondary structures of DNA fragments and the orientation of oligodeoxynucleotides synthesized with the alpha-anomers of nucleoside units. Fluorescence energy transfer can be used to reveal the formation of hairpin structures and the translocation of genes between two chromosomes. PMID:8152922
Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins
NASA Astrophysics Data System (ADS)
Firman, Taylor; Ghosh, Kingshuk
2018-03-01
We present an analytical theory to compute conformations of heteropolymers—applicable to describe disordered proteins—as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence—while maintaining the same charge composition—can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high-throughput level can provide valuable insights into the different mechanisms by which phosphorylation/charge mutation controls IDP function.
Advances in DNA sequencing technologies for high resolution HLA typing.
Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young
2015-12-01
This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
MERCURY-ATLAS (MA)-9 - "FRIENDSHIP 7" SPACECRAFT - PRELAUNCH ACTIVITIES - CAPE
1963-02-01
S63-03960 (1 Feb. 1963) --- Astronaut L. Gordon Cooper Jr., prime pilot for the Mercury-Atlas 9 (MA-9) mission, checks over the instrument panel from Mercury spacecraft #20 with Robert Graham, McDonnell Aircraft Corp. spacecraft engineer. It contains the instruments necessary to monitor spacecraft systems and sequencing, the controls required to initiate primary sequences manually, and flight control displays. Photo credit: NASA
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.
Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L
2016-11-04
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/ .
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics
Deutsch, Eric W.; Sun, Zhi; Campbell, David S.; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S.; Moritz, Robert L.
2016-01-01
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances – a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ~20,000 primary isoforms plus contaminants to a very large database that includes almost all non-redundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/. PMID:27577934
Pham-Ledard, Anne; Prochazkova-Carlotti, Martina; Deveza, Mélanie; Laforet, Marie-Pierre; Beylot-Barry, Marie; Vergier, Béatrice; Parrens, Marie; Feuillard, Jean; Merlio, Jean-Philippe; Gachard, Nathalie
2017-11-01
Immunophenotype of primary cutaneous diffuse large B-cell lymphoma, leg-type (PCLBCL-LT) suggests a germinal center-experienced B lymphocyte (BCL2+ MUM1+ BCL6+/-). As maturation history of B-cell is "imprinted" during B-cell development on the immunoglobulin gene sequence, we studied the structure and sequence of the variable part of the genes (IGHV, IGLV, IGKV), immunoglobulin surface expression and features of class switching in order to determine the PCLBCL-LT cell of origin. Clonality analysis with BIOMED2 protocol and VH leader primers was done on DNA extracted from frozen skin biopsies on retrospective samples from 14 patients. The clonal DNA IGHV sequence of the tumor was aligned and compared with the closest germline sequence and homology percentage was calculated. Superantigen binding sites were studied. Features of selection pressure were evaluated with the multinomial Lossos model. A functional monoclonal sequence was observed in 14 cases as determined for IGHV (10), IGLV (2) or IGKV (3). IGV mutation rates were high (>5%) in all cases but one (median:15.5%), with superantigen binding sites conservation. Features of selection pressure were identified in 11/12 interpretable cases, more frequently negative (75%) than positive (25%). Intraclonal variation was detected in 3 of 8 tumor specimens with a low rate of mutations. Surface immunoglobulin was an IgM in 12/12 cases. FISH analysis of IGHM locus, deleted during class switching, showed heterozygous IGHM gene deletion in half of cases. The genomic PCR analysis confirmed the deletions within the switch μ region. IGV sequences were highly mutated but functional, with negative features of selection pressure suggesting one or more germinal center passage(s) with somatic hypermutation, but superantigen (SpA) binding sites conservation. Genetic features of class switch were observed, but on the non functional allele and co-existing with primary isotype IgM expression. These data suggest that cell-of origin is germinal center experienced and superantigen driven selected B-cell, in a stage between germinal center B-cell and plasma cell. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Inaugural Genomics Automation Congress and the coming deluge of sequencing data.
Creighton, Chad J
2010-10-01
Presentations at Select Biosciences's first 'Genomics Automation Congress' (Boston, MA, USA) in 2010 focused on next-generation sequencing and the platforms and methodology around them. The meeting provided an overview of sequencing technologies, both new and emerging. Speakers shared their recent work on applying sequencing to profile cells for various levels of biomolecular complexity, including DNA sequences, DNA copy, DNA methylation, mRNA and microRNA. With sequencing time and costs continuing to drop dramatically, a virtual explosion of very large sequencing datasets is at hand, which will probably present challenges and opportunities for high-level data analysis and interpretation, as well as for information technology infrastructure.
Wen, B; Rikihisa, Y; Fuerst, P A; Chaichanasiriwithaya, W
1995-04-01
Ehrlichia risticii is the causative agent of Potomac horse fever. Variations among the major antigens of different local E. risticii strains have been detected previously. To further assess genetic variability in this species or species complex, the sequences of the 16S rRNA genes of several isolates obtained from sick horses diagnosed as having Potomac horse fever were determined. The sequences of six isolates obtained from Ohio and three isolates obtained from Kentucky were amplified by PCR. Three groups of sequences were identified. The sequences of five of the Ohio isolates were identical to the sequence of the type strain of E. risticii, the Illinois strain. The sequence of one Ohio isolate, isolate 081, was unique; this sequence differed in 10 nucleotides from the sequence of the type strain (level of similarity, 99.3%). The sequences of the three Kentucky isolates were identical to each other, but differed by five bases from the sequence of the type strain (level of similarity, 99.6%). The levels of sequence similarity of isolate 081, the Kentucky isolates, and the type strain to the next most closely related Ehrlichia sp., Ehrlichia sennetsu, were 99.3, 99.2, and 99.2%, respectively. On the basis of the distinct antigenic profiles and the levels of 16S rRNA sequence divergence, isolate 081 is as divergent from the type strain of E. risticii as E. sennetsu is. Therefore, we suggest that strain 081 and the Kentucky isolates may represent two new distinct Ehrlichia species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayhurst, Thomas Laine
1980-08-06
Techniques for applying ab-initio calculations to the is of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radial correlations betweenmore » electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to "screen" the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+, fitting to experimental levels for V 4+, and Cr 5+; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6) 2- for X= F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O h symmetry) with corrections proposed by Brian Judd.« less
Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades
Blanga-Kanfi, Shani; Miranda, Hector; Penn, Osnat; Pupko, Tal; DeBry, Ronald W; Huchon, Dorothée
2009-01-01
Background Rodentia is the most diverse order of placental mammals, with extant rodent species representing about half of all placental diversity. In spite of many morphological and molecular studies, the family-level relationships among rodents and the location of the rodent root are still debated. Although various datasets have already been analyzed to solve rodent phylogeny at the family level, these are difficult to combine because they involve different taxa and genes. Results We present here the largest protein-coding dataset used to study rodent relationships. It comprises six nuclear genes, 41 rodent species, and eight outgroups. Our phylogenetic reconstructions strongly support the division of Rodentia into three clades: (1) a "squirrel-related clade", (2) a "mouse-related clade", and (3) Ctenohystrica. Almost all evolutionary relationships within these clades are also highly supported. The primary remaining uncertainty is the position of the root. The application of various models and techniques aimed to remove non-phylogenetic signal was unable to solve the basal rodent trifurcation. Conclusion Sequencing and analyzing a large sequence dataset enabled us to resolve most of the evolutionary relationships among Rodentia. Our findings suggest that the uncertainty regarding the position of the rodent root reflects the rapid rodent radiation that occurred in the Paleocene rather than the presence of conflicting phylogenetic and non-phylogenetic signals in the dataset. PMID:19341461
Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, J.; Voellmy, R.; Mestril, R.
Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been stimulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. The authors report here that the shp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in themore » absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reported constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.« less
McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca; Nierychlo, Marta; Kristensen, Jannie Munk; Karst, Søren Michael; Albertsen, Mads
2017-01-01
Abstract Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design and operation. Amplicon sequencing of the 16S rRNA gene allows high-throughput monitoring of these systems. The MiDAS field guide is a public resource providing amplicon sequencing protocols and an ecosystem-specific taxonomic database optimized for use with wastewater treatment facility samples. The curated taxonomy endeavours to provide a genus-level-classification for abundant phylotypes and the online field guide links this identity to published information regarding their ecology, function and distribution. This article describes the expansion of the database resources to cover the organisms of the anaerobic digester systems fed primary sludge and surplus activated sludge. The updated database includes descriptions of the abundant genus-level-taxa in influent wastewater, activated sludge and anaerobic digesters. Abundance information is also included to allow assessment of the role of emigration in the ecology of each phylotype. MiDAS is intended as a collaborative resource for the progression of research into the ecology of wastewater treatment, by providing a public repository for knowledge that is accessible to all interested in these biotechnologically important systems. Database URL: http://www.midasfieldguide.org PMID:28365734
Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M
1992-02-01
The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs. The presence in shark liver of an FABP which differs substantially in primary structure from mammalian liver FABP, while being closely related to the FABP expressed in mammalian heart muscle, peripheral nerve myelin and adipocytes, opens a further dimension regarding the question of the existence of structure-dependent and tissue-specific specialization of FABP function in lipid metabolism.
Yu, Hui; Zhang, Victor Wei; Stray-Pedersen, Asbjørg; Hanson, Imelda Celine; Forbes, Lisa R; de la Morena, M Teresa; Chinn, Ivan K; Gorman, Elizabeth; Mendelsohn, Nancy J; Pozos, Tamara; Wiszniewski, Wojciech; Nicholas, Sarah K; Yates, Anne B; Moore, Lindsey E; Berge, Knut Erik; Sorte, Hanne; Bayer, Diana K; ALZahrani, Daifulah; Geha, Raif S; Feng, Yanming; Wang, Guoli; Orange, Jordan S; Lupski, James R; Wang, Jing; Wong, Lee-Jun
2016-10-01
Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (<20× read depth) or high sequence homology (pseudogenes) are complemented by amplicon-based sequencing with specific primers to ensure 100% coverage of all targeted regions. Analysis of 20 patient samples with low T-cell receptor excision circle numbers on newborn screening or a positive family history or clinical suspicion of SCID or other severe PIDD identified deleterious mutations in 14 of them. Identified pathogenic variants included both single nucleotide variants and exonic copy number variants, such as hemizygous nonsense, frameshift, and missense changes in IL2RG; compound heterozygous changes in ATM, RAG1, and CIITA; homozygous changes in DCLRE1C and IL7R; and a heterozygous nonsense mutation in CHD7. High-throughput deep sequencing analysis with complete clinical validation greatly increases the diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Chang, Vivian Y.; Federman, Noah; Martinez-Agosto, Julian; Tatishchev, Sergei F.; Nelson, Stanley F.
2014-01-01
Background Gastric adenocarcinoma is a rare diagnosis in childhood. A 14-year old male patient presented with metastatic gastric adenocarcinoma, and a strong family history of colon cancer. Clinical sequencing of CDH1 and APC were negative. Whole exome sequencing was therefore applied to capture the majority of protein-coding regions for the identification of single-nucleotide variants, small insertion/deletions, and copy number abnormalities in the patient’s germline as well as primary tumor. Materials and Methods DNA was extracted from the patient’s blood, primary tumor, and the unaffected mother’s blood. DNA libraries were constructed and sequenced on Illumina HiSeq2000. Data were post-processed using Picard and Samtools, then analyzed with the Genome Analysis Toolkit. Variants were annotated using an in-house Ensembl-based program. Copy number was assessed using ExomeCNV. Results Each sample was sequenced to a mean depth of coverage of greater than 120×. A rare non-synonymous coding SNV in TP53 was identified in the germline. There were 10 somatic cancer protein-damaging variants that were not observed in the unaffected mother genome. ExomeCNV comparing tumor to the patient’s germline, identified abnormal copy number, spanning 6,946 genes. Conclusion We present an unusual case of Li-Fraumeni detected by whole exome sequencing. There were also likely driver somatic mutations in the gastric adenocarcinoma. These results highlight the need for more thorough and broad scale germline and cancer analyses to accurately inform patients of inherited risk to cancer and to identify somatic mutations. PMID:23015295
Martel Villagrán, J; Bueno Horcajadas, Á; Pérez Fernández, E; Martín Martín, S
2015-01-01
To determine the ability of MRI to distinguish between benign and malignant vertebral lesions. We included 85 patients and studied a total of 213 vertebrae (both pathologic and normal). For each vertebra, we determined whether the lesion was hypointense in T1-weighted sequences and whether it was hyperintense in STIR and in diffusion-weighted sequences. We calculated the in-phase/out-of-phase quotient and the apparent diffusion coefficient for each vertebra. We combined parameters from T1-weighted, diffusion-weighted, and STIR sequences to devise a formula to distinguish benign from malignant lesions. The group comprised 60 (70.6%) women and 25 (29.4%) men with a mean age of 67±13.5 years (range, 33-90 y). Of the 85 patients, 26 (30.6%) had a known primary tumor. When the lesion was hypointense on T1-weighted sequences, hyperintense on STIR and diffusion-weighted sequences, and had a signal intensity quotient greater than 0.8, the sensitivity was 97.2%, the specificity was 90%, and the diagnostic accuracy was 91.2%. If the patient had a known primary tumor, these values increased to 97.2%, 99.4%, and 99%, respectively. Benign lesions can be distinguished from malignant lesions if we combine the information from T1-weighted, STIR, and diffusion-weighted sequences together with the in-phase/out-of-phase quotient of the lesion detected in the vertebral body on MRI. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Protein Interaction Profile Sequencing (PIP-seq).
Foley, Shawn W; Gregory, Brian D
2016-10-10
Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert
2017-01-01
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665
Lee, K L; Albee, K L; Bernasconi, R J; Edmunds, T
1997-01-01
The amino acid sequences of ananain (EC3.4.22.31) and stem bromelain (3.4.22.32), two cysteine proteases from pineapple stem, are similar yet ananain and stem bromelain possess distinct specificities towards synthetic peptide substrates and different reactivities towards the cysteine protease inhibitors E-64 and chicken egg white cystatin. We present here the complete amino acid sequence of ananain and compare it with the reported sequences of pineapple stem bromelain, papain and chymopapain from papaya and actinidin from kiwifruit. Ananain is comprised of 216 residues with a theoretical mass of 23464 Da. This primary structure includes a sequence insert between residues 170 and 174 not present in stem bromelain or papain and a hydrophobic series of amino acids adjacent to His-157. It is possible that these sequence differences contribute to the different substrate and inhibitor specificities exhibited by ananain and stem bromelain. PMID:9355753
NASA Technical Reports Server (NTRS)
Dar, M. E.; Winters, T. A.; Jorgensen, T. J.
1997-01-01
Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.
Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging.
Chen, Y Iris; Cypess, Aaron M; Sass, Christina A; Brownell, Anna-Liisa; Jokivarsi, Kimmo T; Kahn, C Ronald; Kwong, Kenneth K
2012-07-01
Brown adipose tissue (BAT) is the primary tissue responsible for nonshivering thermogenesis in mammals. The amount of BAT and its level of activation help regulate the utilization of excessive calories for thermogenesis as opposed to storage in white adipose tissue (WAT) which would lead to weight gain. Over the past several years, BAT activity in vivo has been primarily assessed by positron emission tomography-computed tomography (PET-CT) scan using 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) to measure glucose utilization associated with BAT mitochondrial respiration. In this study, we demonstrate the feasibility of mapping and estimating BAT volume and metabolic function in vivo in rats at a 9.4T magnetic resonance imaging (MRI) scanner using sequences available from clinical MR scanners. Based on the morphological characteristics of BAT, we measured the volume distribution of BAT with MRI sequences that have strong fat-water contrast. We also investigated BAT volume by utilizing spin-echo MRI sequences. The in vivo MRI-estimated BAT volumes were correlated with direct measurement of BAT mass from dissected samples. Using MRI, we also were able to map hemodynamic responses to changes in BAT metabolism induced pharmacologically by β3-adrenergic receptor agonist, CL-316,243 and compare this to BAT activity in response to CL-316,243 assessed by PET 18F-FDG. In conclusion, we demonstrate the feasibility of measuring BAT volume and function in vivo using routine MRI sequences. The MRI measurement of BAT volume is consistent with quantitative measurement of the tissue ex vivo.
Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A
1997-05-01
The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.
Spatial and temporal clonal evolution during development of metastatic urothelial carcinoma.
Thomsen, Mathilde B H; Nordentoft, Iver; Lamy, Philippe; Høyer, Søren; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen B; Ørntoft, Torben F; Dyrskjøt, Lars
2016-11-01
Patients with metastatic bladder cancer have a median survival of only 13-14 months. Precision medicine using targeted therapy may improve survival. Here we investigated spatial and temporal tumour evolution and tumour heterogeneity in order to evaluate the potential use of targeted treatment of metastatic bladder cancer. We performed a proof-of-concept study by whole exome sequencing of multiple tumour regions (n = 22) from three patients with metastatic bladder cancer. DNA from primary and metastatic tumour biopsies was analysed for mutations using Mutect and potential therapeutic targets were identified. We identified 256, 265 and 378 somatic mutations per patient, encompassing mutations with an estimated functional impact in 6-12 known disease driver genes per patient. Disease driver mutations present in all tumour regions could be identified in all cases, however, over time metastasis specific driver mutations emerged. For each patient we identified 6-10 potentially therapeutic targets, however very few targets were present in all regions. Low mutational allele frequencies were observed in most regions suggesting a complex mixture of different cancer cells with no spatial demarcation of subclones. In conclusion, primary bladder tumours and metastatic lesions showed heterogeneity at the molecular level, but within the primary tumour the heterogeneity appeared low. The observed lack of potential therapeutic targets common to all cancer cells in primary tumours and metastases emphasizes the challenges in designing rational targeted therapy solely based on analysis of the primary tumours. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Genomic evolution and chemoresistance in germ-cell tumours.
Taylor-Weiner, Amaro; Zack, Travis; O'Donnell, Elizabeth; Guerriero, Jennifer L; Bernard, Brandon; Reddy, Anita; Han, G Celine; AlDubayan, Saud; Amin-Mansour, Ali; Schumacher, Steven E; Litchfield, Kevin; Turnbull, Clare; Gabriel, Stacey; Beroukhim, Rameen; Getz, Gad; Carter, Scott L; Hirsch, Michelle S; Letai, Anthony; Sweeney, Christopher; Van Allen, Eliezer M
2016-11-30
Germ-cell tumours (GCTs) are derived from germ cells and occur most frequently in the testes. GCTs are histologically heterogeneous and distinctly curable with chemotherapy. Gains of chromosome arm 12p and aneuploidy are nearly universal in GCTs, but specific somatic genomic features driving tumour initiation, chemosensitivity and progression are incompletely characterized. Here, using clinical whole-exome and transcriptome sequencing of precursor, primary (testicular and mediastinal) and chemoresistant metastatic human GCTs, we show that the primary somatic feature of GCTs is highly recurrent chromosome arm level amplifications and reciprocal deletions (reciprocal loss of heterozygosity), variations that are significantly enriched in GCTs compared to 19 other cancer types. These tumours also acquire KRAS mutations during the development from precursor to primary disease, and primary testicular GCTs (TGCTs) are uniformly wild type for TP53. In addition, by functional measurement of apoptotic signalling (BH3 profiling) of fresh tumour and adjacent tissue, we find that primary TGCTs have high mitochondrial priming that facilitates chemotherapy-induced apoptosis. Finally, by phylogenetic analysis of serial TGCTs that emerge with chemotherapy resistance, we show how TGCTs gain additional reciprocal loss of heterozygosity and that this is associated with loss of pluripotency markers (NANOG and POU5F1) in chemoresistant teratomas or transformed carcinomas. Our results demonstrate the distinct genomic features underlying the origins of this disease and associated with the chemosensitivity phenotype, as well as the rare progression to chemoresistance. These results identify the convergence of cancer genomics, mitochondrial priming and GCT evolution, and may provide insights into chemosensitivity and resistance in other cancers.
NASA Astrophysics Data System (ADS)
Chen, Huawei; Hagiwara, Ichiro; Kiet Tieu, A.; Kishimoto, Kikuo; Liu, Qiang
2007-05-01
The thin-film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin-film in short time as gas fluids through surface of substrate. Such growth mechanism has been mainly investigated on the basis of experiment. Due to immense cost of the experimental equipment and low level of current measurement technology, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin-film. In this simulation, three different cluster sizes of 203, 653, and 1563 atoms with different velocities (0, 10, 100, 1000, and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. To increase initial velocity not only enhanced the speed of epitaxial growth, adhesion between clusters and substrate, but also increased the degree of epitaxy for primary deposition and secondary deposition. Exfoliation pattern of thin-film was profoundly dependent on initial velocity through comparison between adhesion of primary and secondary deposition. Moreover, the epitaxial growth became well as the temperature of substrate was raised, and the degree of epitaxy of small cluster was larger than that of larger cluster, no matter of primary and secondary deposition.
Novel Δ J =1 Sequence in 78Ge: Possible Evidence for Triaxiality
NASA Astrophysics Data System (ADS)
Forney, A. M.; Walters, W. B.; Chiara, C. J.; Janssens, R. V. F.; Ayangeakaa, A. D.; Sethi, J.; Harker, J.; Alcorta, M.; Carpenter, M. P.; Gürdal, G.; Hoffman, C. R.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Rogers, A. M.; Seweryniak, D.; Stefanescu, I.; Zhu, S.
2018-05-01
A sequence of low-energy levels in Ge783246 has been identified with spins and parity of 2+, 3+, 4+, 5+, and 6+. Decays within this band proceed strictly through Δ J =1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2+ level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ -rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the Δ J =2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ =3 0 ° , there are sequences of higher-spin levels connected by strong Δ J =1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.
Orta De Velásquez, M T; Yáñez-Noguez, I; Jiménez-Cisneros, B; Luna Pabello, V M
2008-11-01
This paper evaluates the efficacy of hydrogen peroxide (HP) and peracetic acid (PAA) in the disinfection of an Advanced Primary Treatment (APT) effluent, and how said disinfection capacities can be enhanced by combining the oxidants with copper (Cu2+) and silver (Ag). The treatment sequence consisted of APT (adding chemicals to water to remove suspended solids by coagulation and flocculation), followed by disinfection with various doses of HP, HP+Cu2+, HP+Ag, PAA and PAA+Ag. Microbiological quality was determined by monitoring concentrations of fecal coliforms (FC), pathogenic bacteria (PB) and helminth eggs (HE) throughout the sequence. The results revealed that APT effluent still contains very high levels of bacteria as the treatment only removes 1-2 log of FC and PB, but the reduction in the number of viable helminth eggs was 83%. Subsequent disinfection stages demonstrated that both HP+Cu2+ and HP+Ag have a marked disinfection capacity for bacteria (3.9 and 3.4 log-inactivation, respectively). Peracetic acid on its own was already extremely efficient at disinfecting for bacteria, and the effect was enhanced when combining PAA with silver (PAA+Ag). The best result for HE removal was achieved by combining PAA with silver (PAA+Ag) at doses of 20 + 2.0 mg l(-1), respectively. The study concluded that the PAA+Ag and HP+Ag combinations were good alternatives for APT effluent disinfection, because the disinfected effluents met the standards in NOM-001-SEMARNAT-1996, Mexico's regulation governing the microbiological quality required in treated wastewater destined for unrestricted reuse in agricultural irrigation (< or =1 helminths per litre). Combining either of these disinfection treatments with a primary method such as APT, therefore, offers an effective and practical way of reducing the health risks normally associated with the reuse of wastewaters.
Phi, Ji Hoon; Park, Ae Kyung; Lee, Semin; Choi, Seung Ah; Baek, In-Pyo; Kim, Pora; Kim, Eun-Hye; Park, Hee Chul; Kim, Byung Chul; Bhak, Jong; Park, Sung-Hye; Lee, Ji Yeoun; Wang, Kyu-Chang; Kim, Dong-Seok; Shim, Kyu Won; Kim, Se Hoon; Kim, Chae-Yong; Kim, Seung-Ki
2018-06-01
Despite great advances in understanding of molecular pathogenesis and achievement of a high cure rate in medulloblastoma, recurrent medulloblastomas are still dismal. Additionally, misidentification of secondary malignancies due to histological ambiguity leads to misdiagnosis and eventually to inappropriate treatment. Nevertheless, the genomic characteristics of recurrent medulloblastomas are poorly understood, largely due to a lack of matched primary and recurrent tumor tissues. We performed a genomic analysis of recurrent tumors from 17 pediatric medulloblastoma patients. Whole transcriptome sequencing revealed that a subset of recurrent tumors initially diagnosed as locally recurrent medulloblastomas are secondary glioblastomas after radiotherapy, showing high similarity to the non-G-CIMP proneural subtype of glioblastoma. Further analysis, including whole exome sequencing, revealed missense mutations or complex gene fusion events in PDGFRA with augmented expression in the secondary glioblastomas after radiotherapy, implicating PDGFRA as a putative driver in the development of secondary glioblastomas after treatment exposure. This result provides insight into the possible application of PDGFRA-targeted therapy in these second malignancies. Furthermore, genomic alterations of TP53 including 17p loss or germline/somatic mutations were also found in most of the secondary glioblastomas after radiotherapy, indicating a crucial role of TP53 alteration in the process. On the other hand, analysis of recurrent medulloblastomas revealed that the most prevalent alterations are the loss of 17p region including TP53 and gain of 7q region containing EZH2 which already exist in primary tumors. The 7q gain events are frequently accompanied by high expression levels of EZH2 in both primary and recurrent medulloblastomas, which provides a clue to a new therapeutic target to prevent recurrence. Considering the fact that it is often challenging to differentiate between recurrent medulloblastomas and secondary glioblastomas after radiotherapy, our findings have major clinical implications both for correct diagnosis and for potential therapeutic interventions in these devastating diseases.
Historical Analysis of Portuguese Primary School Textbooks (1920-2005) on the Topic of Digestion
ERIC Educational Resources Information Center
Carvalho, Graca S.; Silva, Rui; Clement, Pierre
2007-01-01
Our previous studies have shown that Portuguese primary school pupils and teachers have three main difficulties in the representation of the digestion process: the sequence of the digestive tract, blood absorption, and the relationship of the digestive function with other human functions. In this study we analysed the topic of digestion in 63…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Cris William
After the decision to end nuclear testing and the inception of the Stockpile Stewardship program, the condition of the stockpile was the primary mission driver. During the first two decades of stewardship, the primary program goal could be described as underwriting the Stockpile-to-Target Sequence (STS), the military requirements on the conditions the nuclear warheads needed to survive and still operate.
Aucamp, Jean P; Davies, Richard; Hallet, Damien; Weiss, Amanda; Titchener-Hooker, Nigel J
2014-01-01
An ultra scale-down primary recovery sequence was established for a platform E. coli Fab production process. It was used to evaluate the process robustness of various bioengineered strains. Centrifugal discharge in the initial dewatering stage was determined to be the major cause of cell breakage. The ability of cells to resist breakage was dependant on a combination of factors including host strain, vector, and fermentation strategy. Periplasmic extraction studies were conducted in shake flasks and it was demonstrated that key performance parameters such as Fab titre and nucleic acid concentrations were mimicked. The shake flask system also captured particle aggregation effects seen in a large scale stirred vessel, reproducing the fine particle size distribution that impacts the final centrifugal clarification stage. The use of scale-down primary recovery process sequences can be used to screen a larger number of engineered strains. This can lead to closer integration with and better feedback between strain development, fermentation development, and primary recovery studies. Biotechnol. Bioeng. 2014;111: 1971–1981. © 2014 Wiley Periodicals, Inc. PMID:24838387
NASA Astrophysics Data System (ADS)
Meere, Patrick; Mulchrone, Kieran; McCarthy, David
2017-04-01
The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.
Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V
2010-01-01
The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.
2011-01-01
Background The bacterial pathogen Edwardsiella ictaluri is a primary cause of mortality in channel catfish raised commercially in aquaculture farms. Additional treatment and diagnostic regimes are needed for this enteric pathogen, motivating the discovery and characterization of bacteriophages specific to E. ictaluri. Results The genomes of three Edwardsiella ictaluri-specific bacteriophages isolated from geographically distant aquaculture ponds, at different times, were sequenced and analyzed. The genomes for phages eiAU, eiDWF, and eiMSLS are 42.80 kbp, 42.12 kbp, and 42.69 kbp, respectively, and are greater than 95% identical to each other at the nucleotide level. Nucleotide differences were mostly observed in non-coding regions and in structural proteins, with significant variability in the sequences of putative tail fiber proteins. The genome organization of these phages exhibit a pattern shared by other Siphoviridae. Conclusions These E. ictaluri-specific phage genomes reveal considerable conservation of genomic architecture and sequence identity, even with considerable temporal and spatial divergence in their isolation. Their genomic homogeneity is similarly observed among E. ictaluri bacterial isolates. The genomic analysis of these phages supports the conclusion that these are virulent phages, lacking the capacity for lysogeny or expression of virulence genes. This study contributes to our knowledge of phage genomic diversity and facilitates studies on the diagnostic and therapeutic applications of these phages. PMID:21214923
PlanMine--a mineable resource of planarian biology and biodiversity.
Brandl, Holger; Moon, HongKee; Vila-Farré, Miquel; Liu, Shang-Yun; Henry, Ian; Rink, Jochen C
2016-01-04
Planarian flatworms are in the midst of a renaissance as a model system for regeneration and stem cells. Besides two well-studied model species, hundreds of species exist worldwide that present a fascinating diversity of regenerative abilities, tissue turnover rates, reproductive strategies and other life history traits. PlanMine (http://planmine.mpi-cbg.de/) aims to accomplish two primary missions: First, to provide an easily accessible platform for sharing, comparing and value-added mining of planarian sequence data. Second, to catalyze the comparative analysis of the phenotypic diversity amongst planarian species. Currently, PlanMine houses transcriptomes independently assembled by our lab and community contributors. Detailed assembly/annotation statistics, a custom-developed BLAST viewer and easy export options enable comparisons at the contig and assembly level. Consistent annotation of all transcriptomes by an automated pipeline, the integration of published gene expression information and inter-relational query tools provide opportunities for mining planarian gene sequences and functions. For inter-species comparisons, we include transcriptomes of, so far, six planarian species, along with images, expert-curated information on their biology and pre-calculated cross-species sequence homologies. PlanMine is based on the popular InterMine system in order to make the rich biology of planarians accessible to the general life sciences research community. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Rodingite in Layered Gabbro of the Leka Ophiolite Complex, North-Central Caledonides of Norway
NASA Astrophysics Data System (ADS)
Prestvik, T.; Austrheim, H.
2006-12-01
Both the ultramafic (mantle) and the layered ultramafic to gabbroic (crustal) sequences of the Cambrian (497 Ma) Leka ophiolite are characterized by extensive serpentinization. Rodingite, containing grossular garnet, clinopyroxene, clinozoisite, prehnite, chlorite and preiswerkite, which has been found in the lowermost plagioclase-rich layers of the gabbro sequence seems to represent an unusual (new?) mode of rodingite occurrence compared to the more common rodingitized basaltic dikes described from many ultramafic complexes worldwide. The 5 to 15 cm wide rodingitized plagioclase layers, that alternate with less altered layers of wehrlite, clinopyroxenite, and websterite, are located c. 10 m away from a 10 m wide layer of serpentinized dunite. The whole sequence is cut by numerous fractures oriented almost perpendicular to the layering, and rodingite occurs where the fractures transect the plagioclase layers. In the adjacent lithologies, the fractures can be followed as thin veins filled with grossular, clinopyroxene, amphibole, epidote, and chlorite. These fractures were most likely channelways for the rodingite-forming fluids. Gresen analysis, assuming constant volume, shows that the rodingite formed from the plagioclase-rich layers by addition of c. 22 g of CaO, 6 g of FeO and SiO2 and removal of 10 g of Al2O3 and all (2 g) of Na2O per 100 g of protolith. Microtextures show chlorite and serpentine pseudomorphs after primary clinopyroxene, demonstrating that the alteration took place at constant volume. This reaction is the most likely Ca source for the rodingitization, possibly in addition to the serpentinization of olivine in the dunite layers. Furthermore, Ca-enriched and Al2O3- depleted clinopyroxene of the rodingite - compared to the primary clinopyroxene of the layered sequence - attest to the mobil nature of these elements. While both the protolith and the rodingite are almost K2O-free, one of the plagioclase-rich layers has K2O in the 1.1 to 1.4% range for several meters along strike and has abundant secondary phlogopite. The source for K is not easily accounted for and may suggest large scale transport. LA-ICP-MS analysis of trace elements in grossular garnet shows a strongly LREE depleted pattern with a considerable (10x) positive Eu anomaly. We interpret this as evidence for reduced conditions during formation of the rodingite (or that the garnet inherited the Eu anomaly from primary plagioclase). This first description of rodingite at Leka indicates that serpentinization and rodingitization were related and most likely took place as part of a large scale Cambrian hydrothermal system associated with an oceanic rift. It further implies that the hydrothermal alteration affected rocks at sub-Moho level.
Hyperimmunoglobulin E syndrome with juvenile dermatomyositis and calcinosis.
Saikia, Bedangshu; Aneja, Himanshu; Jain, Jyoti; Puliyel, Jacob M
2013-03-01
Juvenile dermatomyositis (JDM) is a rare childhood disease with autoimmune association. Environmental factors are known to trigger JDM in genetically susceptible individuals (Schmieder et al., Dermatol Online 6:3, 2009). Calcinosis is a well-established complication of JDM. Prevalence is higher in children (30-70%; Özkaya et al., Erciyes Med J 30(1):40-43, 2008). Hyperimmunoglobulin E syndrome is a primary immunodeficiency syndrome with multiple recurrent abscess formation and raised serum immunoglobulin E levels. We report a case of JDM with calcinosis cutis universalis with hyperimmunoglobulin E syndrome. With a previous similar case report (Min et al., Korean J Intern Med 14:95-98, 1999), this could well be a new sequence syndrome where abscesses are the trigger for the onset of JDM.
Galileo probe battery systems design
NASA Technical Reports Server (NTRS)
Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.
1986-01-01
NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.
The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.
Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R
1982-01-01
The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo
2016-07-19
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .
Storage and retrieval of large digital images
Bradley, J.N.
1998-01-20
Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.
A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency.
Liu, Hongli; Xu, Xiaofei; Han, Ting; Yan, Lei; Cheng, Lei; Qin, Yingying; Liu, Wen; Zhao, Shidou; Chen, Zi-Jiang
2017-12-01
To identify the potential FSHR mutation in a Chinese woman with primary ovarian insufficiency (POI). Genetic and functional studies. University-based reproductive medicine center. A POI patient, her family members, and another 192 control women with regular menstruation. Ovarian biopsy was performed in the patient. Sanger sequencing was carried out for the patient, her sister, and parents. The novel variant identified was further confirmed with the use of control subjects. Sanger sequencing and genotype analysis to identify the potential variant of the FSHR gene; hematoxylin and eosin staining of the ovarian section to observe the follicular development; Western blotting and immunofluorescence to detect FSH receptor (FSHR) expression; and cyclic adenosine monophosphate (cAMP) assay to monitor FSH-induced signaling. Histologic examination of the ovaries in the patient revealed follicular development up to the early antral stage. Mutational screening and genotype analysis of the FSHR gene identified a novel homozygous mutation c.175C>T (p.R59X) in exon 2, which was inherited in the autosomal recessive mode from her heterozygous parents but was absent in her sister and the 192 control women. Functional studies demonstrated that in vitro the nonsense mutation caused the loss of full-length FSHR expression and that p.R59X mutant showed no response to FSH stimulation in the cAMP level. The mutation p.R59X in FSHR is causative for POI by means of arresting folliculogenesis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Hodgson, J. Graeme; Shah, Neil P.; Cortes, Jorge E.; Kim, Dong-Wook; Nicolini, Franck E.; Talpaz, Moshe; Baccarani, Michele; Müller, Martin C.; Li, Jin; Parker, Wendy T.; Lustgarten, Stephanie; Clackson, Tim; Haluska, Frank G.; Guilhot, Francois; Kantarjian, Hagop M.; Soverini, Simona; Hochhaus, Andreas; Hughes, Timothy P.; Rivera, Victor M.; Branford, Susan
2016-01-01
BCR-ABL1 kinase domain mutations can confer resistance to first- and second-generation tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In preclinical studies, clinically achievable concentrations of the third-generation BCR-ABL1 TKI ponatinib inhibit T315I and all other single BCR-ABL1 mutants except T315M, which generates a single amino acid exchange, but requires 2 sequential nucleotide exchanges. In addition, certain compound mutants (containing ≥2 mutations in cis) confer resistance. Initial analyses based largely on conventional Sanger sequencing (SS) have suggested that the preclinical relationship between BCR-ABL1 mutation status and ponatinib efficacy is generally recapitulated in patients receiving therapy. Thus far, however, such analyses have been limited by the inability of SS to definitively identify compound mutations or mutations representing less than ∼20% of total alleles (referred to as “low-level mutations”), as well as limited patient follow-up. Here we used next-generation sequencing (NGS) to define the baseline BCR-ABL1 mutation status of 267 heavily pretreated chronic phase (CP)-CML patients from the PACE trial, and used SS to identify clonally dominant mutants that may have developed on ponatinib therapy (30.1 months median follow-up). Durable cytogenetic and molecular responses were observed irrespective of baseline mutation status and included patients with compound mutations. No single or compound mutation was identified that consistently conferred primary and/or secondary resistance to ponatinib in CP-CML patients. Ponatinib is effective in CP-CML irrespective of baseline mutation status. PMID:26603839
Storage and retrieval of large digital images
Bradley, Jonathan N.
1998-01-01
Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T.sub.ij (x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T.sub.ij (x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T.sub.ij (x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval.
Feliu, Neus; Kohonen, Pekka; Ji, Jie; Zhang, Yuning; Karlsson, Hanna L; Palmberg, Lena; Nyström, Andreas; Fadeel, Bengt
2015-01-27
Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.
Du, Q S; Ma, Y; Xie, N Z; Huang, R B
2014-01-01
In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the peptide inhibitor design that may aim for different target proteins, or different positions of a protein. A notable advantage of the two-level statistical algorithm is that there is no need for host protein structural information. It may also provide useful insight into the amino acid properties and the roles of sequence positions.
Bierzynska, Agnieszka; McCarthy, Hugh J; Soderquest, Katrina; Sen, Ethan S; Colby, Elizabeth; Ding, Wen Y; Nabhan, Marwa M; Kerecuk, Larissa; Hegde, Shivram; Hughes, David; Marks, Stephen; Feather, Sally; Jones, Caroline; Webb, Nicholas J A; Ognjanovic, Milos; Christian, Martin; Gilbert, Rodney D; Sinha, Manish D; Lord, Graham M; Simpson, Michael; Koziell, Ania B; Welsh, Gavin I; Saleem, Moin A
2017-04-01
Steroid Resistant Nephrotic Syndrome (SRNS) in children and young adults has differing etiologies with monogenic disease accounting for 2.9-30% in selected series. Using whole exome sequencing we sought to stratify a national population of children with SRNS into monogenic and non-monogenic forms, and further define those groups by detailed phenotypic analysis. Pediatric patients with SRNS were identified via a national United Kingdom Renal Registry. Whole exome sequencing was performed on 187 patients, of which 12% have a positive family history with a focus on the 53 genes currently known to be associated with nephrotic syndrome. Genetic findings were correlated with individual case disease characteristics. Disease causing variants were detected in 26.2% of patients. Most often this occurred in the three most common SRNS-associated genes: NPHS1, NPHS2, and WT1 but also in 14 other genes. The genotype did not always correlate with expected phenotype since mutations in OCRL, COL4A3, and DGKE associated with specific syndromes were detected in patients with isolated renal disease. Analysis by primary/presumed compared with secondary steroid resistance found 30.8% monogenic disease in primary compared with none in secondary SRNS permitting further mechanistic stratification. Genetic SRNS progressed faster to end stage renal failure, with no documented disease recurrence post-transplantation within this cohort. Primary steroid resistance in which no gene mutation was identified had a 47.8% risk of recurrence. In this unbiased pediatric population, whole exome sequencing allowed screening of all current candidate genes. Thus, deep phenotyping combined with whole exome sequencing is an effective tool for early identification of SRNS etiology, yielding an evidence-based algorithm for clinical management. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Bertine, Mélanie; Charpentier, Charlotte; Visseaux, Benoit; Storto, Alexandre; Collin, Gilles; Larrouy, Lucile; Damond, Florence; Matheron, Sophie; Brun-Vézinet, Françoise; Descamps, Diane
2015-04-24
In HIV-1, hypermutation introduced by APOBEC3F/3G cytidine deaminase activity leads to defective viruses. In-vivo impact of APOBEC3F/3G editing on HIV-2 sequences remains unknown. The objective of this study was to assess the level of APOBEC3F/3G editing in HIV-2-infected antiretroviral-naive patients. Direct sequencing of vif and pol regions was performed on HIV-2 proviral DNA from antiretroviral-naive patients included in the French Agence Nationale de Recherches sur le SIDA et les hépatites virales CO5 HIV-2 cohort. Hypermutated sequences were identified using Hypermut2.0 program. HIV-1 proviral sequences from Genbank were also assessed. Among 82 antiretroviral-naive HIV-2-infected patients assessed, 15 (28.8%) and five (16.7%) displayed Vif proviral defective sequences in HIV-2 groups A and B, respectively. A lower proportion of defective sequences was observed in protease-reverse transcriptase region. A higher median number of G-to-A mutations was observed in HIV-2 group B than in group A, both in Vif and protease-reverse transcriptase regions (P = 0.02 and P = 0.006, respectively). Compared with HIV-1 Vif sequences, a higher number of Vif defective sequences was observed in HIV-2 group A (P = 0.00001) and group B sequences (P = 0.013). We showed for the first time a high level of APOBEC3F/3G editing in HIV-2 sequences from antiretroviral-naive patients. Our study reported a group effect with a significantly higher level of APOBEC3F/3G editing in HIV-2 group B than in group A sequences.