Directional Solidification and Liquidus Projection of the Sn-Co-Cu System
NASA Astrophysics Data System (ADS)
Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei
2013-04-01
This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.
NASA Astrophysics Data System (ADS)
Hermann, R.; Löser, W.; Lindenkreuz, H. G.; Yang-Bitterlich, W.; Mickel, Ch.; Diefenbach, A.; Schneider, S.; Dreier, W.
2007-12-01
Soft magnetic Fe-Co alloys display primary fcc phase solidification for>19,5 at% Co in conventional near-equilibrium solidification processes. Undercooled Fe-Co melt drops within the composition range of 30 to 50 at% Co have been investigated with the electromagnetic levitation technique. The solidification kinetics was measured in situ using a high-resolution Siphotodiode. Melt drops were undercooled up to 263 K below the liquidus temperature and subsequently quenched onto a chill substrate in order to characterize the solidification sequence and microstructure. The transition from stable fcc phase to metastable bcc primary phase solidification has been observed after reaching a critical undercooling level. The critical undercooling increases with rising Co content. The growth velocity drops obviously after transition to metastable bcc phase formation. Parabolic flight experiments were performed in order to study the phase selection under reduced gravity conditions. Under microgravity conditions, a much smaller critical undercooling and an increased life time of the metastable bcc phase were obtained. This result was validated with TEM investigations. The appearance of Fe-O particles gives an indirect hint for an intermediate fcc phase formation from the metastable bcc phase at elevated temperature.
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
Evolution of Secondary Phases Formed upon Solidification of a Ni-Based Alloy
NASA Astrophysics Data System (ADS)
Zuo, Qiang; Liu, Feng; Wang, Lei; Chen, Changfeng
2013-07-01
The solidification of UNS N08028 alloy subjected to different cooling rates was studied, where primary austenite dendrites occur predominantly and different amounts of sigma phase form in the interdendritic regions. The solidification path and elemental segregation upon solidification were simulated using the CALPHAD method, where THERMO-CALC software packages and two classical segregation models were employed to predict the real process. It is thus revealed that the interdendritic sigma phase is formed via eutectic reaction at the last stage of solidification. On this basis, an analytical model was developed to predict the evolution of nonequilibrium eutectic phase, while the isolated morphology of sigma phase can be described using divorced eutectic theory. Size, fraction, and morphology of the sigma phase were quantitatively studied by a series of experiments; the results are in good agreement with the model prediction.
Microstructural investigation of D2 tool steel during rapid solidification
NASA Astrophysics Data System (ADS)
Delshad Khatibi, Pooya
Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.
Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems
NASA Astrophysics Data System (ADS)
D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.
2018-02-01
The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.
Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys
NASA Astrophysics Data System (ADS)
Liu, L.; Wei, X. X.; Huang, Q. S.; Li, J. F.; Cheng, X. H.; Zhou, Y. H.
2012-11-01
Three Co-Sn alloys with compositions around the eutectic point were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification structure. It is revealed that the primary phase during rapid solidification changes complexly with the increasing undercooling in the off-eutectic alloys, while coupled eutectic growth takes place at all undercoolings in the eutectic alloy. Two types of anomalous eutectics form in the alloys: one evolving from coupled eutectics and the other from single phase dendrites or seaweeds. The crystallographic orientation of eutectic phases in the anomalous eutectic is dependent on which type their precursors belong to.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Baoguang
As a key tellurium atoms evaporation source for ultraviolet detection photocathode, the hypoeutectic Te{sub 75}In{sub 25} alloy was prepared by employing a slow solidification speed of about 10{sup −2} K/s. The microstructure and chemical composition of the equilibrium phases formed in the as-prepared alloy were studied in this research work. The experimental results show that the as-prepared Te-In alloy was constituted by primary In{sub 2}Te{sub 5} phase and eutectic In{sub 2}Te{sub 5}/Te phases. The eutectic In{sub 2}Te{sub 5}/Te phases are distributed in the grain boundaries of primary In{sub 2}Te{sub 5} phase. With the slow solidification speed, a pure eutectic Temore » phase without any excessive indium solute was obtained, where Te content of eutectic Te phase is 100 mass%. Moreover, it can be considered that the stress between the In{sub 2}Te{sub 5} and Te phases plays an important role in reducing the tellurium vapor pressure in Te{sub 75}In{sub 25} alloy. - Highlights: • The microstructure of Te-In alloy as an evaporation source was analyzed. • A pure eutectic Te phase was obtained by using a slow solidification speed method. • The relation between vapor pressure and inner-stress in the alloy was discussed.« less
NASA Astrophysics Data System (ADS)
Zhou, M. B.; Ma, X.; Zhang, X. P.
2012-11-01
The microstructure of microscale solder interconnects and soldering defects have long been known to have a significant influence on the reliability of electronic packaging, and both are directly related to the solidification behavior of the undercooled solder. In this study, the undercooling behavior and solidification microstructural evolution of Sn-3.0Ag-0.5Cu solder balls with different diameters (0.76 mm, 0.50 mm, and 0.30 mm) and the joints formed by soldering these balls on Cu open pads of two diameters (0.48 mm and 0.32 mm) on a printed circuit board (PCB) substrate were characterized by differential scanning calorimetry (DSC) incorporated into the reflow process. Results show that the decrease in diameter of the solder balls leads to an obvious increase in the undercooling of the balls, while the undercooling of the solder joints shows a dependence on both the diameter of the solder balls and the diameter ratio of solder ball to Cu pad (i.e., D s/ D p), and the diameter of the solder balls has a stronger influence on the undercooling of the joints than the dimension of the Cu pad. Coarse primary intermetallic compound (IMC) solidification phases were formed in the smaller solder balls and joints. The bulk Ag3Sn IMC is the primary solidification phase in the as-reflowed solder balls. Due to the interfacial reaction and dissolution of Cu atoms into the solder matrix, the primary Ag3Sn phase can be suppressed and the bulk Cu6Sn5 IMC is the only primary solidification phase in the as-reflowed solder joints.
On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni-Nb alloys
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Ma, Li; Ofori-Opoku, Nana; Guyer, Jonathan E.
2017-09-01
In this study, an alloy phase-field model is used to simulate solidification microstructures at different locations within a solidified molten pool. The temperature gradient G and the solidification velocity V are obtained from a macroscopic heat transfer finite element simulation and provided as input to the phase-field model. The effects of laser beam speed and the location within the melt pool on the primary arm spacing and on the extent of Nb partitioning at the cell tips are investigated. Simulated steady-state primary spacings are compared with power law and geometrical models. Cell tip compositions are compared to a dendrite growth model. The extent of non-equilibrium interface partitioning of the phase-field model is investigated. Although the phase-field model has an anti-trapping solute flux term meant to maintain local interface equilibrium, we have found that during simulations it was insufficient at maintaining equilibrium. This is due to the fact that the additive manufacturing solidification conditions fall well outside the allowed limits of this flux term.
Microstructural development during solidification of stainless steel alloys
NASA Astrophysics Data System (ADS)
Elmer, J. W.; Allen, S. M.; Eagar, T. W.
1989-10-01
The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method, i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speed vs composition diagrams, which can be used to predict the primary mode of solidification and the microstructural morphology for different processing conditions. Furthermore, changes in the primary solidification mode were observed in alloys that lie on the chromium-rich side of the line of twofold saturation when they are cooled at high rates. These changes were explained by the presence of metastable austenite, which grows epitaxially and can dominate the solidification microstructure throughout the resolidified zone at high cooling rates.
Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy
NASA Astrophysics Data System (ADS)
Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi
2018-01-01
2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.
Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems
NASA Astrophysics Data System (ADS)
Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen
2016-12-01
This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.
1981-10-07
primary solidification phase in the alloy in this condition was identified by CBED as Mg 2 Si , which formed dendrites within the matrix. Each... solidification below the extended c-liquidus. Evolution of Microstructure in Melt-spun Mg- Si Alloys -, The microstructurcs observed in the alloys can...solidificaion pr(es .. in the cellular (dendritic) regime. Solidification of the 5.0 wt.% Si alloy occurs in the coupled eutectic region, and the 8.0 wt.% Si
NASA Astrophysics Data System (ADS)
Barros, André Santos; Magno, Igor Alexsander; Souza, Fabrício Andrade; Mota, Carlos Alberto; Moreira, Antonio Luciano; Silva, Maria Adrina; Rocha, Otávio Lima
2015-05-01
In this work, the effect of the growth rate (VL) and cooling rate (TR), primary dendritic arm spacing (λ1) and Al2Cu intermetallic phase on the microhardness was investigated during transient horizontal directional solidification of Al-3wt%Cu and Al-8wt%Cu alloys. Microstructural characterization of the investigated alloys was performed using traditional techniques of metallography, optical and SEM microscopy and X-Ray diffraction. The microhardness evolution as a function of the thermal and microstructural parameters (VL, TR, and λ1) was evaluated using power and Hall-Petch type experimental laws, which were compared with other laws in the literature. In order to examine the effect of the Al2Cu intermetallic phase, microhardness measurements were performed in interdendritic regions. Finally, a comparative analysis was performed between the experimental data of this work and theoretical models from the literature that have been proposed to predict primary dendrite arm spacing, which have been tested in numerous works considering upward directional solidification.
Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene
2017-01-01
Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification. PMID:28367991
NASA Astrophysics Data System (ADS)
Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai
2016-01-01
The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.
Dual-scale phase-field simulation of Mg-Al alloy solidification
NASA Astrophysics Data System (ADS)
Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.
2015-06-01
Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, Dante G.
Here, we report on the results of a high-energy x-ray diffraction study of Al–Pd–Mn to investigate the solidification products obtained during free-cooling using an electrostatic levitation furnace. The primary solidification product from the melt is i-Al–Pd–Mn which coexists with a significant remaining liquid component. As the sample cools further, we find that the solidification pathway is consistent with the liquidus projection and pseudo-binary cut through the ternary phase diagram reported previously. At ambient temperature we have identified the major phase to be the ξ'-phase orthorhombic approximant, along with minor phases identified as Al and, most likely, the R-phase orthorhombic approximant.more » We have also observed a distinct prepeak in the liquid at high temperature, signifying the presence of extended atomic order. Interestingly, this prepeak was not observed in previous neutron diffraction measurements on the Al–Pd–Mn system. No undercooling was observed preceding the solidification of the i-Al–Pd–Mn phase from the melt which may signal the close similarity of the short-range order in the solid and liquid. However, this can not be clearly determined because of the potential for heterogenous nucleation associated with the presence of an Al2O3 impurity at the surface of the sample.« less
The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong
2017-02-01
The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.
Divorced Eutectic Solidification of Mg-Al Alloys
NASA Astrophysics Data System (ADS)
Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo
2015-08-01
We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.
NASA Astrophysics Data System (ADS)
Mohsen Sadrossadat, S.; Johansson, Sten; Peng, Ru Lin
2012-06-01
This article represents a study of the influence of the solidification rate on the crystallographic orientation of eutectic components with respect to the primary α-Al in the tested hypoeutectic alloy. Electron backscattering diffraction (EBSD) patterns were produced from the Al-Si cast specimens that were solidified with different cooling rates and prepared via ion etch polishing as a complementary method after mechanical polishing. The results indicated a strong orientation relationship between the primary α-Al and eutectic Al phase at all cooling rates. It was also found that the silicon eutectic flakes were heterogeneously nucleated in the interdendritic eutectic liquid. The increase of the cooling rate from 2 to 80 mm/min was found to be effective in lowering the intensity of the relationship between the primary α-Al and eutectic Al phases, and changing the misorientation angle clustering between the primary α-Al and eutectic Si phases in the interval from 41-60° to lower angle intervals.
NASA Astrophysics Data System (ADS)
Yu, Jianding; Koshikawa, Naokiyo; Arai, Yasutomo; Yoda, Shinichi; Saitou, Hirofumi
2001-11-01
Containerless solidification of BiFeO 3 has been carried out in microgravity with an electrostatic levitation furnace (ELF) on board a sounding rocket (TR-IA). This was the first time the ELF was used in microgravity to study the solidification behavior of oxide insulator material. A spherical BiFeO 3 specimen with a diameter of 5 mm was laser heated and solidified in an oxygen and nitrogen mixture atmosphere. The microstructure resulting from solidification in the ELF was compared with that obtained from solidification in a 10 m drop tube and in crucibles. In the crucible experiments, the segregation of the primary Fe 2O 3 phase could not be suppressed, even if the cooling speed increased to 5000 K/s. However it did suppress in a 0.3 mm diameter droplet solidified in the drop tube experiment. This suggests that containerless processing effectively promoted the undercooling of the BiFeO 3 phase. In the microgravity experiment, although a homogeneous BiFeO 3 phase was not observed in the 5 mm spherical specimen, an anomalous fine cellular microstructure appeared due to high undercooling. In addition, the phase transitions of BiFeO 3 were measured by DTA from room temperature to 1523 K and its liquidus temperature was estimated to be 1423 K.
Rapid Solidification and Phase Transformations in Additive Manufactured Materials
Asle Zaeem, Mohsen; Clarke, Amy Jean
2016-01-14
Within the past few years, additive manufacturing (AM) has emerged as a promising manufacturing technique to enable the production of complex engineering structures with high efficiency and accuracy. Among the important factors establishing AM as a sustainable manufacturing process is the ability to control the microstructures and properties of AM products. In most AM processes, such as laser sintering (LS), laser melting (LM), and laser metal deposition (LMD), rapid solidification and high-temperature phase transformations play primary roles in determining nano- and microstructures, and consequently the mechanical and other properties of AM products. This topic of JOM is dedicated to summarizingmore » the current research efforts in the area of rapid solidification and phase transformations in additively manufactured materials. Finally, a brief summary follows below of 10 journal articles in this topic.« less
NASA Astrophysics Data System (ADS)
Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.
2017-08-01
To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Matson, Douglas M.; Hyers, Robert W.; Rogers, Jan R.
2003-01-01
During rapid solidification, a molten sample is cooled below its equilibrium solidification temperature to form a metastable liquid. Once nucleation is initiated, growth of the solid phase proceeds and can be seen as a sudden rise in temperature. The heat of fusion is rejected ahead of the growing dendrites into the undercooled liquid in a process known as recalescence. Fe-Cr-Ni alloys may form several equilibrium phases and the hypoeutectic alloys, with compositions near the commercially important 316 stainless steel alloy, are observed to solidify by way of a two-step process known as double recalescence. During double recalescence, the first temperature rise is associated with formation of the metastable ferritic solid phase with subsequent conversion to the stable austenitic phase during the second temperature rise. Selection of which phase grows into the undercooled melt during primary solidification may be accomplished by choice of the appropriate nucleation trigger material or by control of the processing parameters during rapid solidification. Due to the highly reactive nature of the molten sample material and in order to avoid contamination of the undercooled melt, a containerless electromagnetic levitation (EML) processing technique is used. In ground-based EML, the same forces that support the weight of the sample against gravity also drive convection in the liquid sample. However, in microgravity, the force required to position the sample is greatly reduced, so convection may be controlled over a wide range of internal flows. Space Shuttle experiments have shown that the double recalescence behavior of Fe-Cr-Ni alloys changes between ground and space EML experiments. This program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Watanabe, Yutaka
2008-06-01
Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.
NASA Astrophysics Data System (ADS)
Ritter, Ann M.; Henry, Michael F.; Savage, Warren F.
1984-07-01
Nitronic 50 and Nitronic 50W, two nitrogen-strengthened stainless steels, were heat treated over a wide range of temperatures, and the compositions of the ferrite and austenite at each temperature were measured with analytical electron microscopy techniques. The compositional data were used to generate the (γ + δ phase field on a 58 pct Fe vertical section. Volume fractions of ferrite and austenite were calculated from phase chemistries and compared with volume fractions determined from optical micrographs. Weld solidification modes were predicted by reference to the Cr and Ni contents of each alloy, and the results were compared with predictions based on the ratios of calculated Cr and Ni equivalents for the alloys. Nitronic 50, which contained ferrite and austenite at the solidus temperature of 1370 °C, solidified through the eutectic triangle, and the weld microstructure was similar to that of austenitic-ferritic solidification. Nitronic 50W was totally ferritic at 1340 °C and solidified as primary delta ferrite. During heat treatments, Nitronic 50 and Nitronic 50W precipitated secondary phases, notably Z-phase (NbCrN), sigma phase, and stringered phases rich in Mn and Cr.
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, Narendran; Simunovic, Srdjan; Dehoff, Ryan
In addition to design geometry, surface roughness, and solid-state phase transformation, solidification microstructure plays a crucial role in controlling the performance of additively manufactured components. Crystallographic texture, primary dendrite arm spacing (PDAS), and grain size are directly correlated to local solidification conditions. We have developed a new melt-scan strategy for inducing site specific, on-demand control of solidification microstructure. We were able to induce variations in grain size (30 μm–150 μm) and PDAS (4 μm - 10 μm) in Inconel 718 parts produced by the electron beam additive manufacturing system (Arcam®). A conventional raster melt-scan resulted in a grain size ofmore » about 600 μm. The observed variations in grain size with different melt-scan strategies are rationalized using a numerical thermal and solidification model which accounts for the transient curvature of the melt pool and associated thermal gradients and liquid-solid interface velocities. The refinement in grain size at high cooling rates (>104 K/s) is also attributed to the potential heterogeneous nucleation of grains ahead of the epitaxially growing solidification front. The variation in PDAS is rationalized using a coupled numerical-theoretical model as a function of local solidification conditions (thermal gradient and liquid-solid interface velocity) of the melt pool.« less
NASA Astrophysics Data System (ADS)
Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong
2016-04-01
We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1997-01-01
Melt convection, along with species diffusion and segregation on the solidification interface are the primary factors responsible for species redistribution during HgCdTe crystal growth from the melt. As no direct information about convection velocity is available, numerical modeling is a logical approach to estimate convection. Furthermore influence of microgravity level, double-diffusion and material properties should be taken into account. In the present study, HgCdTe is considered as a binary alloy with melting temperature available from a phase diagram. The numerical model of convection and solidification of binary alloy is based on the general equations of heat and mass transfer in two-dimensional region. Mathematical modeling of binary alloy solidification is still a challenging numericial problem. A Rigorous mathematical approach to this problem is available only when convection is not considered at all. The proposed numerical model was developed using the finite element code FIDAP. In the present study, the numerical model is used to consider thermal, solutal convection and a double diffusion source of mass transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca
2013-12-15
The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less
Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca
Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.
For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...
2016-11-02
For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less
NASA Astrophysics Data System (ADS)
Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai
2018-05-01
A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.
NASA Technical Reports Server (NTRS)
Ghods, Masoud; Lauer, Mark; Tewari, Surendra; Poirier, David; Grugel, Richard
2016-01-01
Cylindrical Al-7 wt% Silicon, Al-19 wt% Copper and Lead-6 wt% Antimony alloy samples were directionally solidified (DS) with liquid above, solid below, and gravity pointing down, in graphite crucibles having an abrupt cross-sectional increase. These alloys have similar solidification shrinkage but are expected to have different degrees of thermosolutal convection during solidification. Microstructures in the DS samples in the vicinity of the section change have been studied in order to examine the effect of convection associated with the combined influence of thermosolutal effects and solidification shrinkage. Extensive radial and axial macrosegregation associated with cross-section change is observed. It also appears that steepling and local primary alpha-phase remelting resulting from convection are responsible for stray grain formation at the reentrant corners. Preliminary results from a numerical model, which includes solidification shrinkage and thermosolutal convection in the mushy zone, indicate that these regions are prone to solutal remelting of dendrites.
Numerical modeling of an alloy droplet deposition with non-equilibrium solidification
NASA Astrophysics Data System (ADS)
Ramanuj, Vimal
Droplet deposition is a process of extensive relevance to the microfabrication industry. Various bonding and film deposition methods utilize single or multiple droplet impingements on a substrate with subsequent splat formation through simultaneous spreading and solidification. Splat morphology and solidification characteristics play vital roles in determining the final outcome. Experimental methods have limited reach in studying such phenomena owing to the extremely small time and length scales involved. Fundamental understanding of the governing principles of fluid flow, heat transfer and phase change provide effective means of studying such processes through computational techniques. The present study aims at numerically modeling and analyzing the phenomenon of splat formation and phase change in an alloy droplet deposition process. Phase change in alloys occurs non-isothermally and its formulation poses mathematical challenges. A highly non-linear flow field in conjunction with multiple interfaces and convection-diffusion governed phase transition are some of the highlighting features involved in the numerical formulation. Moreover, the non-equilibrium solidification behavior in eutectic systems is of prime concern. The peculiar phenomenon requires special treatments in terms of modeling solid phase species diffusion, liquid phase enrichment during solute partitioning and isothermal eutectic transformation. The flow field is solved using a two-step projection algorithm coupled with enhanced interface modeling schemes. The free surface tracking and reconstruction is achieved through two approaches: VOF-PLIC and CLSVOF to achieve optimum interface accuracy with minimal computational resources. The energy equation is written in terms of enthalpy with an additional source term to account for the phase change. The solidification phenomenon is modeled using a coupled temperature-solute scheme that reflects the microscopic effects arising due to dendritic growth taking place in rapidly solidifying domains. Solid phase diffusion theories proposed in the literature are incorporated in the solute conservation equation through a back diffusion parameter till the eutectic composition; beyond which a special treatment is proposed. A simplified homogeneous mushy region model has also been outline. Both models are employed to reproduce analytical results under limiting conditions and also experimentally verified. The primary objective of the present work is to examine the splat morphology, solidification behavior and microstructural characteristics under varying operational parameters. A simplified homogeneous mushy region model is first applied to study the role of convection in an SS304 droplet deposition with substrate remelting. The results are compared with experimental findings reported in the literature and a good agreement is observed. Furthermore, a hypoeutectic Sn-Pb alloy droplet deposition is studied using a comprehensive coupled temperature solute model that accounts for the non-equilibrium solidification occurring in eutectic type of alloys. Particular focus is laid on the limitations of a homogeneous mushy region assumption, role of species composition in governing solidification, estimation of the microstructural properties and eutectic formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, A. J.; Tourret, D.; Song, Y.
We study microstructure selection during during directional solidification of a thin metallic sample. We combine in situ X-ray radiography of a dilute Al-Cu alloy solidification experiments with three-dimensional phase-field simulations. Here we explore a range of temperature gradient G and growth velocity V and build a microstructure selection map for this alloy. We investigate the selection of the primary dendritic spacing Λ and tip radius ρ. While ρ shows a good agreement between experimental measurements and dendrite growth theory, with ρ~V $-$1/2, Λ is observed to increase with V (∂Λ/∂V > 0), in apparent disagreement with classical scaling laws formore » primary dendritic spacing, which predict that ∂Λ/∂V<0. We show through simulations that this trend inversion for Λ(V) is due to liquid convection in our experiments, despite the thin sample configuration. We use a classical diffusion boundary-layer approximation to semi-quantitatively incorporate the effect of liquid convection into phase-field simulations. This approximation is implemented by assuming complete solute mixing outside a purely diffusive zone of constant thickness that surrounds the solid-liquid interface. This simple method enables us to quantitatively match experimental measurements of the planar morphological instability threshold and primary spacings over an order of magnitude in V. Lastly, we explain the observed inversion of ∂Λ/∂V by a combination of slow transient dynamics of microstructural homogenization and the influence of the sample thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, A. J.; Tourret, D.; Song, Y.
We study microstructure selection during directional solidification of a thin metallic sample. We combine in situ X-ray radiography of a dilute Al-Cu alloy solidification experiments with three-dimensional phase-field simulations. We explore a range of temperature gradient G and growth velocity V and build a microstructure selection map for this alloy. We investigate the selection of the primary dendritic spacing Lambda and tip radius rho. While rho shows a good agreement between experimental measurements and dendrite growth theory, with rho similar to V-1/2, Lambda is observed to increase with V (partial derivative Lambda/partial derivative V > 0), in apparent disagreement withmore » classical scaling laws for primary dendritic spacing, which predict that partial derivative Lambda/partial derivative V <0. We show through simulations that this trend inversion for Lambda(V) is due to liquid convection in our experiments, despite the thin sample configuration. We use a classical diffusion boundary-layer approximation to semi-quantitatively incorporate the effect of liquid convection into phase-field simulations. This approximation is implemented by assuming complete solute mixing outside a purely diffusive zone of constant thickness that surrounds the solid-liquid interface. This simple method enables us to quantitatively match experimental measurements of the planar morphological instability threshold and primary spacings over an order of magnitude in V. We explain the observed inversion of partial derivative Lambda/partial derivative V by a combination of slow transient dynamics of microstructural homogenization and the influence of the sample thickness.« less
Clarke, A. J.; Tourret, D.; Song, Y.; ...
2017-05-01
We study microstructure selection during during directional solidification of a thin metallic sample. We combine in situ X-ray radiography of a dilute Al-Cu alloy solidification experiments with three-dimensional phase-field simulations. Here we explore a range of temperature gradient G and growth velocity V and build a microstructure selection map for this alloy. We investigate the selection of the primary dendritic spacing Λ and tip radius ρ. While ρ shows a good agreement between experimental measurements and dendrite growth theory, with ρ~V $-$1/2, Λ is observed to increase with V (∂Λ/∂V > 0), in apparent disagreement with classical scaling laws formore » primary dendritic spacing, which predict that ∂Λ/∂V<0. We show through simulations that this trend inversion for Λ(V) is due to liquid convection in our experiments, despite the thin sample configuration. We use a classical diffusion boundary-layer approximation to semi-quantitatively incorporate the effect of liquid convection into phase-field simulations. This approximation is implemented by assuming complete solute mixing outside a purely diffusive zone of constant thickness that surrounds the solid-liquid interface. This simple method enables us to quantitatively match experimental measurements of the planar morphological instability threshold and primary spacings over an order of magnitude in V. Lastly, we explain the observed inversion of ∂Λ/∂V by a combination of slow transient dynamics of microstructural homogenization and the influence of the sample thickness.« less
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.
In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...
2016-11-02
In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less
Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias; ...
2017-09-18
Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias
Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less
NASA Astrophysics Data System (ADS)
Wang, Nan; Smith, Nathan; Provatas, Nikolas
2017-09-01
We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.
MPS solidification model. Analysis and calculation of macrosegregation in a casting ingot
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1985-01-01
Work performed on several existing solidification models for which computer codes and documentation were developed is presented. The models describe the solidification of alloys in which there is a time varying zone of coexisting solid and liquid phases; i.e., the S/L zone. The primary purpose of the models is to calculate macrosegregation in a casting or ingot which results from flow of interdendritic liquid in this S/L zone during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, is modeled as flow through a porous medium. In Model 1, the steady state model, the heat flow characteristics are those of steady state solidification; i.e., the S/L zone is of constant width and it moves at a constant velocity relative to the mold. In Model 2, the unsteady state model, the width and rate of movement of the S/L zone are allowed to vary with time as it moves through the ingot. Each of these models exists in two versions. Models 1 and 2 are applicable to binary alloys; models 1M and 2M are applicable to multicomponent alloys.
NASA Astrophysics Data System (ADS)
Xing, Hui; Dong, Xianglei; Wang, Jianyuan; Jin, Kexin
2018-04-01
In this study, a thin-interface phase-field model was employed to study the orientation dependence of the columnar dendritic growth with sidebranching behaviors in directional solidification. It was found that the dimensionless tip undercooling increases with the increase of misorientation angle for three pulling velocities. The primary spacing is found to be a function of misorientation angle, and the dimensionless primary spacing with respect to the misorientation angle follows the orientation correction given by Gandin and Rappaz (Acta. Metall. 42:2233-2246, 1994). For the analysis of the dendritic tip, the two-dimensional (2-D) form of the nonaxisymmetric needle crystal was used to determine the radius of the tilted columnar dendrite. Based on the definitions of open side and constrained side of the dendrite, the analysis of the width active sidebranches and the dendritic area in 2-D with respect to the distance from the dendritic tip was carried out to investigate the asymmetrical dendrite envelop and sidebranching behaviors on the two sides in directional solidification. The obtained prefactor and exponent with respect to misorientation angle are discussed, showing that the sidebranching behaviors of a tilted columnar dendritic array obey a similar power-law relationship with that of a free dendritic growth.
Wei, Qiang; Wei, Wei; Tian, Rui; Wang, Lian-Yan; Su, Zhi-Guo; Ma, Guang-Hui
2008-07-15
Relatively uniform-sized poly(lactide-co-ethylene glycol) (PELA) microspheres with high encapsulation efficiency were prepared rapidly by a novel method combining emulsion-solvent extraction and premix membrane emulsification. Briefly, preparation of coarse double emulsions was followed by additional premix membrane emulsification, and antigen-loaded microspheres were obtained by further solidification. Under the optimum condition, the particle size was about 1 mum and the coefficient of variation (CV) value was 18.9%. Confocal laser scanning microscope and flow cytometer analysis showed that the inner droplets were small and evenly dispersed and the antigen was loaded uniformly in each microsphere when sonication technique was occupied to prepare primary emulsion. Distribution pattern of PEG segment played important role on the properties of microspheres. Compared with triblock copolymer PLA-PEG-PLA, the diblock copolymer PLA-mPEG yielded a more stable interfacial layer at the interface of oil and water phase, and thus was more suitable to stabilize primary emulsion and protect coalescence of inner droplets and external water phase, resulting in high encapsulation efficiency (90.4%). On the other hand, solidification rate determined the time for coalescence during microspheres fabrication, and thus affected encapsulation efficiency. Taken together, improving the polymer properties and solidification rate are considered as two effective strategies to yield high encapsulation.
Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt
NASA Astrophysics Data System (ADS)
Lü, P.; Wang, H. P.
2018-04-01
The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.
Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study
Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong
2018-01-01
Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification. PMID:29419753
Welding Behavior of Free Machining Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.
2000-07-24
The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less
On the composition dependence of faceting behaviour of primary phases during solidification
NASA Astrophysics Data System (ADS)
Saroch, Mamta; Dubey, K. S.; Ramachandrarao, P.
1993-02-01
The entropy of solution of the primary aluminium-rich phase in the aluminium-tin melts has been evaluated as a function of temperature using available thermodynamic and phase equilibria data with a view to understand the faceting behaviour of this phase. It was noticed that the range of compositions in which alloys of aluminium and tin yield a faceted primary phase is correlated with the domain of compositions over which the entropy of solution shows a strong temperature dependence. It is demonstrated that both a high value of the entropy of solution and a strong temperature dependence of it are essential for providing faceting. A strong temperature dependence of the entropy of solution is in turn a consequence of negligible liquidus slope and existence of retrograde solubility. The AgBi and AgPb systems have similar features.
Keller, Trevor; Lindwall, Greta; Ghosh, Supriyo; Ma, Li; Lane, Brandon M; Zhang, Fan; Kattner, Ursula R; Lass, Eric A; Heigel, Jarred C; Idell, Yaakov; Williams, Maureen E; Allen, Andrew J; Guyer, Jonathan E; Levine, Lyle E
2017-10-15
Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).
NASA Astrophysics Data System (ADS)
Ares, A. E.; Gassa, L. M.; Gueijman, S. F.; Schvezov, C. E.
2008-04-01
The columnar to equiaxed transition (CET) has been examined for many years and the significance of CET has been treated in several articles. Experimental observations in different alloy systems have shown that the position of the transition is dependent on parameters like cooling rate, velocity of the liquidus and solidus fronts, local solidification time, temperature gradients and recalescence. The dendritic structure in alloys results in microsegregation of solute species which affects significantly the mechanical properties of the material. The main parameters characterizing the microstructure and the length range of microsegregation is the spacing which is classified as primary, secondary and tertiary. Properties like mechanical resistance and ductility are influenced by the dimensions and continuity of the primary branches, while the secondary and tertiary branches permit the isolation of interdendritic phases which can deteriorate the mechanical behavior of the material. Since the morphology and dimensions of the dendritic structure is related to the solidification parameters mentioned above, for each type of alloy it is essential to correlate dimensions and solidification conditions in order to control the structure. The objective of the present research consists on studying the influence of solidification thermal parameters with the type of structure (columnar, equiaxial or with the CET); and with grain size and dendritic spacing (primary and secondary) in Zn-Al (ZA) alloys (Zn—4 wt%Al, Zn—16 wt%Al and Zn—27 wt%Al, weight percent). Also, correlate the thermal parameters, type of structure, grain size and dendritic spacing with the corrosion resistance of these alloys.
Solidification and solidification cracking in nitrogen-strengthened austenitic stainless steels
NASA Astrophysics Data System (ADS)
Ritter, Ann M.; Savage, Warren F.
1986-04-01
The solidification behavior of three heats of nitrogen-strengthened austenitic stainless steel was examined and was correlated with solidification mode predictions and with hot cracking resistance. The heat of NITRONIC* 50 solidified by the austenitic-ferrite mode, and the NITRONIC 50W and NITRONIC 50W - Nb heats solidified by the ferritic-austenitic mode. This behavior was in good agreement with predictions based on Espy’s formulas for Cr and Ni equivalents. Both the NITRONIC 50W and NITRONIC 50W + Nb welds contained primary delta-ferrite, with the latter weld and the NITRONIC 50 weld also containing some eutectic ferrite. Solute profiles in austenite near the eutectic ferrite showed decreasing Fe and increasing Cr, Ni, Mn, and Mo relative to austenite in the dendrite cores. Numerous Nb-rich precipitates were found on the eutectic ferrite/austenite interfaces and within the eutectic ferrite. The precipitates were mainly Nb(C, N), with some Z-phase, a Nb-rich nitride, also detected. One instance of the transformation of eutectic ferrite to sigma-phase was observed to have occurred during cooling of the NITRONIC 50 weld. Hot cracking was seen in the NITRONIC 50 and NITRONIC 50W + Nb welds and resulted from the formation of a niobium carbonitride eutectic in the interdendritic regions. In the absence of Nb, the NITRONIC 50W heat formed no observable eutectic constituents and did not hot crack. The presence of hot cracks in the NITRONIC 50W + Nb weld indicates that solidification by the ferritic-austenitic mode did not counteract the effects of small Nb additions.
NASA Astrophysics Data System (ADS)
Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé
2018-03-01
Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.
Relationships Between Solidification Parameters in A319 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Vandersluis, E.; Ravindran, C.
2018-03-01
The design of high-performance materials depends on a comprehensive understanding of the alloy-specific relationships between solidification and properties. However, the inconsistent use of a particular solidification parameter for presenting materials characterization in the literature impedes inter-study comparability and the interpretation of findings. Therefore, there is a need for accurate expressions relating the solidification parameters for each alloy. In this study, A319 aluminum alloy castings were produced in a permanent mold with various preheating temperatures in order to control metal cooling. Analysis of the cooling curve for each casting enabled the identification of its liquidus, Al-Si eutectic, and solidus temperatures and times. These values led to the calculation of the primary solidification rate, total solidification rate, primary solidification time, and local solidification time for each casting, which were related to each other as well as to the average casting SDAS and material hardness. Expressions for each of their correlations have been presented with high coefficients of determination, which will aid in microstructural prediction and casting design.
Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys
NASA Technical Reports Server (NTRS)
Fecht, H. J.
1991-01-01
During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.
NASA Astrophysics Data System (ADS)
Que, Zhongping; Wang, Yun; Fan, Zhongyun
2018-06-01
Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.
Undercooled and rapidly quenched Ni-Mo alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Glasgow, T. K.
1986-01-01
Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.
NASA Astrophysics Data System (ADS)
Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang
2018-03-01
The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.
NASA Astrophysics Data System (ADS)
Li, Hu-Tian; Zhao, Pizhi; Yang, Rongdong; Patel, Jayesh B.; Chen, Xiangfu; Fan, Zhongyun
2017-10-01
Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary α-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid-solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1 K/s (°C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid-solid phase region estimated by the Kozeny-Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet.
Solidification of eutectic system alloys in space (M-19)
NASA Technical Reports Server (NTRS)
Ohno, Atsumi
1993-01-01
It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are cast by the Ohno Continuous Casting Process and they show the unidirectionally solidified structure. Each flight and ground sample was made of these same rods. The dimensions of all samples are 4.5 mm in diameter and 23.5 mm in length. Each sample is put in a graphite capsule and then vacuum sealed in a double silica ampoule. Then the ampoule is put in the tantalum cartridge and sealed by electron beam welding. For onbard experiments, a Continuous Heating Furnance (CHF) will be used for melting and solidifying samples under microgravity conditions. Six flight samples will be used. Four samples are hypo-eutectic and two are hyper-eutectic alloys. The surface of the two hypo-eutectic alloy samples are covered with aluminum oxide film to prevent Marangoni convection expected under microgravity conditions. Each sample will be heated to 700 C and held at that temperature for 5 min. After that the samples will be allowed to cool to 500 C in the furnace and they will be taken out of the furnace for He gas cooling. The heating and cooling diagrams for the flight experiments are shown. After collecting the flight samples, the solidified structures of the samples will be examined and the mechanisms of eutectic solidification under microgravity conditions will be determined. It is likely that successful flight experiment results will lead to production of high quality eutectic alloys and eutectic composite materials in space.
Numerical simulation of freckle formation in directional solidification of binary alloys
NASA Technical Reports Server (NTRS)
Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.
1992-01-01
A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.
Phase-field simulation of weld solidification microstructure in an Al Cu alloy
NASA Astrophysics Data System (ADS)
Farzadi, A.; Do-Quang, M.; Serajzadeh, S.; Kokabi, A. H.; Amberg, G.
2008-09-01
Since the mechanical properties and the integrity of the weld metal depend on the solidification behaviour and the resulting microstructural characteristics, understanding weld pool solidification is of importance to engineers and scientists. Thermal and fluid flow conditions affect the weld pool geometry and solidification parameters. During solidification of the weld pool, a columnar grain structure develops in the weld metal. Prediction of the formation of the microstructure during welding may be an important and supporting factor for technology optimization. Nowadays, increasing computing power allows direct simulations of the dendritic and cell morphology of columnar grains in the molten zone for specific temperature conditions. In this study, the solidification microstructures of the weld pool at different locations along the fusion boundary are simulated during gas tungsten arc welding of Al-3wt%Cu alloy using the phase-field model for the directional solidification of dilute binary alloys. A macroscopic heat transfer and fluid flow model was developed to assess the solidification parameters, notably the temperature gradient and solidification growth rate. The effect of the welding speed is investigated. Computer simulations of the solidification conditions and the formation of a cellular morphology during the directional solidification in gas tungsten arc welding are described. Moreover, the simulation results are compared with existing theoretical models and experimental findings.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2017-08-01
High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebang
The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging atmore » 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.« less
Undercooling-Induced macrosegregation in directional solidification
NASA Astrophysics Data System (ADS)
de Groh, Henry C.
1994-11-01
The accepted primary mechanism for causing macrosegregation in directional solidification (DS) is thermal and solutal convection in the liquid. This article demonstrates the effects of under-cooling and nucleation on macrosegregation and shows that undercooling, in some cases, can be the cause of end-to-end macrosegregation. Alloy ingots of Pb-Sn were directionally solidified upward and downward, with and without undercooling. A thermal gradient of about 5.1 K/cm and a cooling rate of 7.7 K/h were used. Crucibles of borosilicate glass, stainless steel with Cu bottoms, and fused silica were used. High undercoolings were achieved in the glass crucibles, and very low undercoolings were achieved in the steel/Cu crucible. During under-cooling, large, coarse Pb dendrites were found to be present. Large amounts of macrosegregation developed in the undercooled eutectic and hypoeutectic alloys. This segre-gation was found to be due to the nucleation and growth of primary Pb-rich dendrites, continued coarsening of Pb dendrites during undercooling of the interdendritic liquid, Sn enrichment of the liquid, and dendritic fragmentation and settling during and after recalescence. Eutectic ingots that solidified with no undercooling had no macrosegregation, because both Pb and Sn phases were effectively nucleated at the start of solidification, thus initiating the growth of solid of eutectic composition. It is thus shown that undercooling and single-phase nucleation can cause significant macrosegregation by increasing the amount of solute rejected into the liquid and by the movement of unattached dendrites and dendrite fragments, and that macrosegregation in excess of what would be expected due to diffusion transport is not necessarily caused by convection in the liquid.
NASA Astrophysics Data System (ADS)
Boettinger, W. J.; Newbury, D. E.; Wang, K.; Bendersky, L. A.; Chiu, C.; Kattner, U. R.; Young, K.; Chao, B.
2010-08-01
The solidification microstructures of three nine-element Zr-Ni-based AB2 type C14/C15 Laves hydrogen storage alloys are determined. The selected compositions represent a class of alloys being examined for usage as an MH electrode in nickel metal-hydride batteries that often have their best properties in the cast state. Solidification is accomplished by dendritic growth of hexagonal C14 Laves phase, peritectic solidification of cubic C15 Laves phase, and formation of cubic B2 phase in the interdendritic regions. The B2 phase decomposes in the solid state into a complex multivariate platelike structure containing Zr-Ni-rich intermetallics. The observed sequence C14/C15 upon solidification agrees with predictions using effective compositions and thermodynamic assessments of the ternary systems, Ni-Cr-Zr and Cr-Ti-Zr. Experimentally, the closeness of the compositions of the C14 and C15 phases required the use of compositional mapping with an energy dispersive detector capable of processing a very high X-ray flux to locate regions in the microstructure for quantitative composition measurement and transmission electron microscope examination.
NASA Astrophysics Data System (ADS)
Du, Qiang; Li, Yanjun
2015-06-01
In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.
Overview of the Tusas Code for Simulation of Dendritic Solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainer, Amelia J.; Newman, Christopher Kyle; Francois, Marianne M.
2016-01-07
The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than itmore » is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].« less
NASA Astrophysics Data System (ADS)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.
2018-01-01
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; ...
2017-12-05
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Three-dimensional phase-field simulations of directional solidification
NASA Astrophysics Data System (ADS)
Plapp, Mathis
2007-05-01
The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.
NASA Astrophysics Data System (ADS)
Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan
2016-03-01
A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.
Microstructure and property of directionally solidified Ni-Si hypereutectic alloy
NASA Astrophysics Data System (ADS)
Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi
2016-03-01
This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.
GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
NASA Astrophysics Data System (ADS)
Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro
2011-03-01
The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.
Progress in modeling solidification in molten salt coolants
NASA Astrophysics Data System (ADS)
Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier
2017-10-01
Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.
The study of flow pattern and phase-change problem in die casting process
NASA Technical Reports Server (NTRS)
Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.
1996-01-01
The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.
The grape cluster, metal particle 63344,1. [in lunar coarse fines
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Axon, H. J.; Agrell, S. O.
1975-01-01
The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1984-01-01
The influence of gravitationally driven convection on the directional solidification of peritectic alloys was evaluated. The Pb-Bi peritectic was studied as a model solidification system. Analyses of directionally solidified Pb-Bi peritectic samples indicate that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. The macrosegregation results in sequantial change of phase and morphology as solidification progresses down the length of the sample. Banding was eliminated when furnace conditions were selected which resulted in a planar solidification interface. The directional solidification that occurs in the vicinity of the Pb-Bi peritectic isothermal was found to be isocompositional and to consist solely of the equilibrium terminal solid solution and peritectic phases on an extremely fine scale. Evidence was found to support the peritectic supercooling mechanism, but not the proposed peritectic superheat mechanism.
Microstructure Formations in the Two-Phase Region of the Binary Peritectic Organic System TRIS-NPG
NASA Technical Reports Server (NTRS)
Mogeritsch, Johann; Ludwig, Andreas
2012-01-01
In order to prepare for an onboard experiment on the International Space Station (ISS), systematic directional solidification experiments with transparent hypoperitectic alloys were carried out at different solidification rates around the critical velocity for morphological stability of both solid phases. The investigations were done in the peritectic region of the binary transparent organic TRIS-NPG system where the formation of layered structures is expected to occur. The transparent appearance of the liquid and solid phase enables real time observations of the dynamic of pattern formation during solidification. The investigations show that frequently occurring nucleation events govern the peritectic solidification morphology which occurs at the limit of morphological stability. As a consequence, banded structures lead to coupled growth even if the lateral growth is much faster compared to the growth in pulling direction.
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
NASA Astrophysics Data System (ADS)
Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping
2018-05-01
A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.
Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming
2016-01-01
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265
NASA Astrophysics Data System (ADS)
Bai, Xiaolong; Ban, Boyuan; Li, Jingwei; Peng, Zhijian; Chen, Jian
2018-03-01
Distribution behavior of B and P during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys has been investigated. Macrostructure of the Al-Si alloy ingots and concentration profile of elements B and P reveal that the elements segregate to eutectic Al-Si melt during growth of primary Si flakes, and P gradually segregates to the top of the ingots during directional solidification. An apparent segregation coefficient, ka, is introduced to describe the segregation behavior of B and P between the primary Si and the Al-Si melt and compared with thermodynamic theoretical equilibrium coefficients. The apparent segregation coefficients of B and P decrease with increase of solidification temperature.
NASA Technical Reports Server (NTRS)
Bourgeois, S. V.
1973-01-01
This report described an analysis of Skylab Experiments M551 (Metals Melting), M552 (Exothermic Brazing), and M553 (Sphere Forming). The primary objective is the study of convection in the molten metals and their attendant solidification theory. Particular attention is given to clarifying the effects of reduced gravity on molten metal flow and solidification. Based on an analysis of physical forces and solidification theory expected for ground-based and Skylab processing, low-g variations were predicted for each experiment. A comparison was then made with the Skylab results available to date. Both metallurgical analyses of other investigators and movies of ground-based and Skylab samples were utilized. Several low-g variations in Skylab processed materials were successfully predicted based on expected variations in physical forces and fluid convection. The same analysis also successfully predicted several features in the Skylab-processed materials which were identical to terrestrially-processed materials. These results are summarized in the conclusion section for each experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less
Containerless solidification of BiFeO3 oxide under microgravity
NASA Astrophysics Data System (ADS)
Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi
1999-07-01
Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.
NASA Astrophysics Data System (ADS)
Tian, Y.; Gauvin, R.; Brochu, M.
2016-07-01
Laser powder deposition was performed on a substrate of Inconel 738 using blended powders of Mar M247 and Amdry DF3 with a ratio of 4:1 for repairing purposes. In the as-deposited condition, continuous secondary phases composed of γ-Ni3B eutectics and discrete (Cr, W)B borides were observed in inter-dendritic regions, and time-dependent nucleation simulation results confirmed that (Cr, W)B was the primary secondary phase formed during rapid solidification. Supersaturated solid solution of B was detected in the γ solid solution dendritic cores. The Kurz-Giovanola-Trivedi model was performed to predict the interfacial morphology and correlate the solidification front velocity (SFV) with dendrite tip radius. It was observed from high-resolution scanning electron microscopy that the dendrite tip radius of the upper region was in the range of 15 to 30 nm, which yielded a SFV of approx 30 cm/s. The continuous growth model for solute trapping behavior developed by Aziz and Kaplan was used to determine that the effective partition coefficient of B was approximately 0.025. Finally, the feasibility of the modeling results were rationalized with the Clyne-Kurz segregation simulation of B, where Clyne-Kurz prediction using a partition coefficient of 0.025 was in good agreement with the electron probe microanalysis results.
NASA Astrophysics Data System (ADS)
Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang
2006-04-01
The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.
NASA Astrophysics Data System (ADS)
Toropova, L. V.; Alexandrov, D. V.
2018-05-01
The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Walker, Mike J.; Sundarraj, Suresh; Dutta, Pradip
2011-08-01
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.
1986-11-14
5wt % Si was completely different from that of the alloy without silicon. The (X phase formed around the primary Mg2 Si crystals, and an irregular...content, and primary crystals in a binary Mg- 5wt % Si alloy did not exhibit this behavior. The surface of the rapidly solidified melt pools was rough and...Microhardness* of the laser treated alloys . Alloy As-cast Laser treated Mg- 5wt %Li 40.8 55.7 o, Mg- 5wt %Li- 5wt % Si 51.1 74.1 Mg-8wt%Li 42.8 71.2
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
Convective instabilities in a ternary alloy mushy layer
NASA Astrophysics Data System (ADS)
Anderson, Daniel; Guba, Peter
2014-11-01
We investigate a mathematical model of convection, thermal and solutal diffusion in a primary mushy layer during the solidification of a ternary alloy. In particular, we explore the influence of phase-change effects, such as solute rejection, latent heat and background solidification, in a linear stability analysis of a non-convecting base state solution. We identify how different rates of diffusion (e.g. double diffusion) as well as how different rates of solute rejection (double solute rejection) play a role in this system. Novel modes of instability that can be present under statically stable conditions are identified. Parcel arguments are proposed to explain the physical mechanisms that give rise to the instabilities. This work was supported in part by the U.S. National Science Foundation, DMS-1107848 (D.M.A.) and by the Slovak Scientific Grant Agency, VEGA 1/0711/12 (P.G.).
Study of Solidification Cracking in a Transformation-Induced Plasticity-Aided Steel
NASA Astrophysics Data System (ADS)
Agarwal, G.; Kumar, A.; Gao, H.; Amirthalingam, M.; Moon, S. C.; Dippenaar, R. J.; Richardson, I. M.; Hermans, M. J. M.
2018-04-01
In situ high-temperature laser scanning confocal microscopy is applied to study solidification cracking in a TRIP steel. Solidification cracking was observed in the interdendritic region during the last stage of solidification. Atom probe tomography revealed notable enrichment of phosphorus in the last remaining liquid. Phase field simulations also confirm phosphorus enrichment leading to severe undercooling of more than 160 K in the interdendritic region. In the presence of tensile stress, an opening at the interdendritic region is difficult to fill with the remaining liquid due to low permeability and high viscosity, resulting in solidification cracking.
NASA Astrophysics Data System (ADS)
Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.
2013-08-01
Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.
Fundamental Studies of Solidification in Microgravity Using Real-Time X-Ray Microscopy
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Kaukler, William; Sen, Subhayu; Bhat, Biliyar N.
1999-01-01
This research applies a state of the art X-ray Transmission Microscope, XTM, to image (with resolutions up to 3 micrometers) the solidification of metallic or semiconductor alloys in real-time. We have successfully imaged in real-time: interfacial morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid interface. We have also measured true local growth rates and can evaluate segregation structures in the solid; a form of in-situ metallography. During this study, the growth of secondary phase fibers and lamellae from eutectic and monotectic alloys have been imaged during solidification, in real-time, for the first time in bulk metal alloys. Current high resolution X-ray sources and high contrast X-ray detectors have advanced to allow systematic study of solidification dynamics and the resulting microstructure. We have employed a state-of-the-art sub-micron source with acceleration voltages of 10-100 kV to image solidification of metals. One useful strength of the XTM stems from the manner an image is formed. The radiographic image is a shadow formed by x-ray photons that are not absorbed as they pass through the specimen. Composition gradients within the specimen cause variations in absorption of the flux such that the final image represents a spatial integral of composition (or thickness). The ability to image these features in real-time enables more fundamental and detailed understanding of solidification dynamics than has previously been possible. Hence, application of this technique towards microgravity experiments will allow rigorous testing of critical solidification models.
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.; Smith, Richard N.; Marsh, Steven P.; Kuklinski, Robert
A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This paper describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical predictions are temporal scaling laws that indicate that average lengthscale increases as time 1/3, a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a macroscopic heat transfer model of one-dimensional alloy solidification, using the Double Integral Method. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. Finally, some suggestions are made for future experimental and theoretical studies required in developing comprehensive solidification processing models.
NASA Astrophysics Data System (ADS)
Unfried-Silgado, Jimy; Ramirez, Antonio J.
2014-03-01
This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s-1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.
NASA Astrophysics Data System (ADS)
Young, George A.; Etien, Robert A.; Hackett, Micah J.; Tucker, Julie D.; Capobianco, Thomas E.
Wrought Alloy 690 is well established for corrosion resistant nuclear applications but development continues to improve the weldability of a filler metal that retains the corrosion resistance and phase stability of the base metal. High alloy Ni-Cr filler metals are prone to several types of welding defects and new alloys are emerging for commercial use. This paper uses experimental and computational methods to illustrate key differences among welding consumables. Results show that solidification segregation is critical to understanding the weldability and environmentally-assisted cracking resistance of these alloys. Primary water stress corrosion cracking tests show a marked decrease in crack growth rates near 21 wt. % Cr at the grain boundary. While filler metals with 21-29 wt.% grain boundary Cr show similar PWSCC resistance, the higher alloyed grades are more prone to solidification cracking. Modeling and aging studies indicate that in some filler metals minor phase formation (e.g., Laves and σ) and long range order (LRO) must be assessed to ensure adequate weldability and inservice performance.
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Pirich, R. G.
1981-01-01
The influence of gravitationally driven thermosolutal convection on the directional solidification of peritectic alloys is considered as well as the relationships between the solidification processing conditions, and the microstructure, chemistry, and magnetic properties of such alloys. Analysis of directionally solidified Pb-Bi peritectic samples indicates that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. A peritectic solidification model which accounts for partial mixing in the liquid ahead of the planar solidification interface and describes macrosegregation has been developed. Two-phase dendritic and banded microstructures were grown in the Pb-Bi peritectic system, refined two-phase microstructures have were observed, and candidate formation mechanisms proposed. Material handling, containment, casting, microstructural and magnetic characterization techniques were developed for the Sm-Co system. Alloys produced with these procedures are homogeneous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, S. L., E-mail: sobolev@icp.ac.ru
An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less
The volume change during solidification
NASA Technical Reports Server (NTRS)
Rittich, M.
1985-01-01
The liquid-solid phase transformation of solidifying metallic melts is accompanied by a volume change Delta-Vm. This volume change produces a gravity-independent microscopic flow near the solidification front. In a ground-based laboratory, solidification processes are also affected by convection due to temperature and concentration gradients. A quantitative evaluation of the effects of these flows on the formation of structure requires reproducible values of Delta-Vm. Alloys with Delta-Vm = 0 would be best suited for such an evaluation, while alloys with a constant value for Delta-Vm are still usable. Another requirement is related to a solidus-liquidus interval which is as small as possible. One-phase alloys, which would be particularly well suited, could not be found. For these reasons, alloys which solidify in two phases, as for example eutectics, have been considered, taking into account the Al-Ge system. Attention is given to the volume change at the melting point, the measurement of this change, the volume change at solidification, and applications to terrestrial technology.
NASA Astrophysics Data System (ADS)
Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi
2016-11-01
In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.
Effect of solidification rate on microstructure evolution in dual phase microalloyed steel
Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.
2016-01-01
In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109
Fundamentals of rapid solidification processing
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Shiohara, Yuh
1985-01-01
An attempt is made to illustrate the continuous change that occurs in the solidification behavior of undercooled melts, as cooling rates increase from 0.0001 K/sec to about 1000 K/sec. At the higher cooling rates, more significant changes occur as the dendrite tip temperature begins to drop from the equilibrium liquidus. Discontinuous solidification behavior changes will occur if absolute stability is reached, or a metastable phase forms, or solidification proceeds to a glass rather than to a crystalline solid, or if there is significant undercooling prior to nucleation.
The modelling of heat, mass and solute transport in solidification systems
NASA Technical Reports Server (NTRS)
Voller, V. R.; Brent, A. D.; Prakash, C.
1989-01-01
The aim of this paper is to explore the range of possible one-phase models of binary alloy solidification. Starting from a general two-phase description, based on the two-fluid model, three limiting cases are identified which result in one-phase models of binary systems. Each of these models can be readily implemented in standard single phase flow numerical codes. Differences between predictions from these models are examined. In particular, the effects of the models on the predicted macro-segregation patterns are evaluated.
SolTrack: an automatic video processing software for in situ interface tracking.
Griesser, S; Pierer, R; Reid, M; Dippenaar, R
2012-10-01
High-Resolution in situ observation of solidification experiments has become a powerful technique to improve the fundamental understanding of solidification processes of metals and alloys. In the present study, high-temperature laser-scanning confocal microscopy (HTLSCM) was utilized to observe and capture in situ solidification and phase transformations of alloys for subsequent post processing and analysis. Until now, this analysis has been very time consuming as frame-by-frame manual evaluation of propagating interfaces was used to determine the interface velocities. SolTrack has been developed using the commercial software package MATLAB and is designed to automatically detect, locate and track propagating interfaces during solidification and phase transformations as well as to calculate interfacial velocities. Different solidification phenomena have been recorded to demonstrate a wider spectrum of applications of this software. A validation, through comparison with manual evaluation, is included where the accuracy is shown to be very high. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
Coupled Heat Transfer and Fluid Dynamics Modeling of InSb Solidification
NASA Astrophysics Data System (ADS)
Barvinschi, Paul; Barvinschi, Floricica
2011-10-01
A method for the directional solidification of melted InSb in a silica ampoule is presented and solved with COMSOL Multiphysics. The configuration and initial boundary settings of the model resemble those used in a de-wetting vertical Bridgman configuration [1]. A slightly modified version of the method presented by Voller and Prakash [2] is used to account for solidification of the liquid phase, including convection and conduction heat transfer with mushy region phase change. Axial-symmetric numerical simulations of temperature and velocity fields, under normal gravity, are carried out using different thermal conditions.
NASA Technical Reports Server (NTRS)
Ghods, M.; Lauer, M.; Tewari, S. N.; Poirier, D. R..; Grugel, R. N.
2015-01-01
Al-7 wt% Si and Pb-6 wt% Sb alloy samples were directionally solidified (DS), with liquid above and solid below and gravity pointing down, in cylindrical graphite crucibles through an abrupt cross-section change. Fraction eutectic distribution in the microstructure, primary dendrite spacing and primary dendrite trunk diameters have been measured in the DS samples in the vicinity of section change in order to examine the effect of convection associated with the combined influence of thermosolutal factors and solidification shrinkage. It is observed that convection not only produces extensive radial and axial macrosegregation near cross-section change, it also affects the dendritic array morphology. Primary dendrite spacing and primary dendrite trunk diameter, both, are influenced by this convection. In addition to the experimental results, preliminary results from a numerical model which includes solidification shrinkage and thermosolutal convection in the mushy zone in its analysis will also be presented
Premature melt solidification during mold filling and its influence on the as-cast structure
NASA Astrophysics Data System (ADS)
Wu, M.; Ahmadein, M.; Ludwig, A.
2018-03-01
Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the socalled "big bang" theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.
Solidification Sequence of Spray-Formed Steels
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro
2016-02-01
Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.
Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting
NASA Astrophysics Data System (ADS)
Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.
2018-05-01
Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.
NASA Astrophysics Data System (ADS)
Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang
2017-03-01
In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K. W.; Liu, Can; Gordillo, M. A.
Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less
Zweiacker, K. W.; Liu, Can; Gordillo, M. A.; ...
2017-12-05
Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less
NASA Astrophysics Data System (ADS)
Montajabnia, A.; Pourbahari, B.; Emamy, M.
2018-04-01
The microstructures and tensile properties of Mg-x wt%Al-y wt%Sb alloys have been studied where x/y ratio was 1 and Sb(Al) contents were 5, 10, 15 and 20 wt%, respectively. The results indicated that by increasing Sb(Al) content, not only the crystals of primary Mg3Sb2 alter from small flake-like particles to polygonal or needle-like morphology, but also the eutectic structure changes from semi-continuous network in Mg-5Al-5Sb to continuous network in Mg-20Sb-20Al alloy. The results obtained from thermal analysis revealed different peaks related to the formation of Mg3Sb2 as primary phase and eutectic structure containing Mg17Al12 + Al3Mg2 intermetallic phases. Further results also revealed that Sb(Al) additions change the solidification performance of the material by depressing the Mg3Sb2 nucleation temperature, reducing solidification range and widening eutectic area. Tensile testing results showed that with the increase in Sb (Al) content, ultimate tensile strength (UTS) and elongation values of the alloys are decreased in as-cast condition. But, significant improvement in the UTS and elongation values of the extruded specimens was attributed to the severe fragmentation of intermetallic phases and well distributed fine particles in the matrix which provided proper obstacles for dislocation motion. It was interesting to note that the fracture behavior of intermetallic particles was found to be different, while Mg3Sb2 was ductile, intermetallic compounds in eutectic regions were brittle.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1981-01-01
The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.
Microstructural Development during Directional Solidification of Peritectic Alloys
NASA Technical Reports Server (NTRS)
Lograsso, Thomas A.
1996-01-01
A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences between intrinsic and externally influenced layer formation were explored. The choice of alloy system is critical to a study of the formation of layered microstructures. The ideal system would have a well-characterized phase diagram, equal densities of both elements in the liquid state to minimize compositionally-driven convective flows, a low peritectic temperature to simplify directional solidification and the achievement of a high temperature gradient in the liquid, a broad composition range for the peritectic reaction, and a reasonable hardness at room temperature to facilitate handling and metallographic preparation. The In-Sn system was selected initially due to a very low peritectic temperature and the nearly equal densities of In and Sn in the liquid state. Since the In-rich peritectic reaction had apparently not been utilized previously for solidification research, experiments were conducted to check the phase diagram in the region of interest. The alloys in this system proved to be difficult to handle and prepare in bulk form with the equipment available, so experiments were initiated with the Sn-Cd system. Layered microstructures had been observed previously in Sn-Cd.
NASA Astrophysics Data System (ADS)
Branagan, D. J.; McCallum, R. W.
In order to evaluate the effects of additions on the solidification behavior of Nd 2Fe 14B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BHmax versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling.
Development of a CFD code for casting simulation
NASA Technical Reports Server (NTRS)
Murph, Jesse E.
1993-01-01
Because of high rejection rates for large structural castings (e.g., the Space Shuttle Main Engine Alternate Turbopump Design Program), a reliable casting simulation computer code is very desirable. This code would reduce both the development time and life cycle costs by allowing accurate modeling of the entire casting process. While this code could be used for other types of castings, the most significant reductions of time and cost would probably be realized in complex investment castings, where any reduction in the number of development castings would be of significant benefit. The casting process is conveniently divided into three distinct phases: (1) mold filling, where the melt is poured or forced into the mold cavity; (2) solidification, where the melt undergoes a phase change to the solid state; and (3) cool down, where the solidified part continues to cool to ambient conditions. While these phases may appear to be separate and distinct, temporal overlaps do exist between phases (e.g., local solidification occurring during mold filling), and some phenomenological events are affected by others (e.g., residual stresses depend on solidification and cooling rates). Therefore, a reliable code must accurately model all three phases and the interactions between each. While many codes have been developed (to various stages of complexity) to model the solidification and cool down phases, only a few codes have been developed to model mold filling.
Effect of high power ultrasound on mechanical properties of Al-Si alloys
NASA Astrophysics Data System (ADS)
Srivastava, N.; Gupta, R.; Chaudhari, G. P.
2018-03-01
Effect of high power ultrasonic treatment on the solidification microstructures of Al-Si alloys containing varying content of solute Si (1, 2, 3 and 5 wt %) is investigated. Large variation in microstructures is seen and refinement of primary α-Al grains is observed. It is observed that increasing the weight percentage of solute along with ultrasonic treatment resulted in finer primary phase. By increasing the solute content from 1% to 5 wt.% in Al-Si alloys, hardness increased by about 38% without and 48% with ultrasonic treatment. Tensile strength of the alloys with ultrasonic treatment is higher as compared to those without ultrasonic treated.
NASA Astrophysics Data System (ADS)
Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.
2013-10-01
The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).
NASA Astrophysics Data System (ADS)
Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.
2012-07-01
Cracking in continuous casting of steels has been one of the main problems for decades. Many of the cracks that occur during solidification are hot tears. To better understand the factors leading to this defect, microstructure formation is simulated for a low carbon (LCAK) and two high strength low alloyed (HSLA) steel grades during the initial stage of the process where the first solidified shell is formed inside the mould and where breakouts typically occur. 2D simulation is performed using the multiphase-field software MICRESS [1], which is coupled to the thermodynamic database TCFE6 [2] and the mobility database MOB2 [2], taking into account all elements which may have a relevant effect on the mechanical properties and structure formation during or subsequent to solidification. The use of a moving-frame boundary condition allows travelling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. A heterogeneous nucleation model is included to permit the description of morphological transitions between the initial solidification and the subsequent columnar growth region. Furthermore, a macroscopic one-dimensional temperature solver is integrated to account for the transient and nonlinear temperature field during the initial stage of continuous casting. The external heat flux boundary conditions for this process were derived from thermal process data of the industrial slab caster. The simulation results for the three steel grades have been validated by thickness measurements of breakout shells and microstructure observation of the corresponding grades. Furthermore, the primary dendrite spacing has been measured across the whole thickness of the shell and compared with the simulated microstructures. Significant microstructure differences between the steel grades are discussed and correlated with their hot-cracking behavior.
NASA Astrophysics Data System (ADS)
Tveito, Knut Omdal; Pakanati, Akash; M'Hamdi, Mohammed; Combeau, Hervé; Založnik, Miha
2018-04-01
Macrosegregation is a result of the interplay of various transport mechanisms, including natural convection, solidification shrinkage, and grain motion. Experimental observations also indicate the impact of grain morphology, ranging from dendritic to globular, on macrosegregation formation. To avoid the complexity arising due to modeling of an equiaxed dendritic grain, we present the development of a simplified three-phase, multiscale equiaxed dendritic solidification model based on the volume-averaging method, which accounts for the above-mentioned transport phenomena. The validity of the model is assessed by comparing it with the full three-phase model without simplifications. It is then applied to qualitatively analyze the impact of grain morphology on macrosegregation formation in an industrial scale direct chill cast aluminum alloy ingot.
Application of Solidification Theory to Rapid Solidification Processing
1982-09-01
period were achieved in the following areas : Extended Solid Solubilities -- for Produetion of Alloys with New Compositions and Phases o At high growth... Areas where significant improvements In alloy properties can be produced by rapid solidification will be emphasized. Technical Problem and General...focussed on the science underlying areas where Improved materials can be obtained in order to provide such prediction and control. This work is both
Impact of Metal Droplets: A Numerical Approach to Solidification
NASA Astrophysics Data System (ADS)
Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef
2016-11-01
Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.
Solidification and microstructures of binary ice-I/hydrate eutectic aggregates
McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.
2007-01-01
The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.
NASA Astrophysics Data System (ADS)
Kadoi, Kota; Shinozaki, Kenji
2017-12-01
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.
Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study
NASA Astrophysics Data System (ADS)
Jiang, Dongbin; Wang, Weiling; Luo, Sen; Ji, Cheng; Zhu, Miaoyong
2017-12-01
Solidified shell bulging is supposed to be the main reason for slab center segregation, while the influence of thermal shrinkage rarely has been considered. In this article, a thermal shrinkage model coupled with the multiphase solidification model is developed to investigate the effect of the thermal shrinkage, solidification shrinkage, grain sedimentation, and thermal flow on solute transport in the continuous casting slab. In this model, the initial equiaxed grains contract freely with the temperature decrease, while the coherent equiaxed grains and columnar phase move directionally toward the slab surface. The results demonstrate that the center positive segregation accompanied by negative segregation in the periphery zone is mainly caused by thermal shrinkage. During the solidification process, liquid phase first transports toward the slab surface to compensate for thermal shrinkage, which is similar to the case considering solidification shrinkage, and then it moves opposite to the slab center near the solidification end. It is attributed to the sharp decrease of center temperature and the intensive contract of solid phase, which cause the enriched liquid to be squeezed out. With the effect of grain sedimentation and thermal flow, the negative segregation at the external arc side (zone A1) and the positive segregation near the columnar-to-equiaxed transition at the inner arc side (position B1) come into being. Besides, it is found that the grain sedimentation and thermal flow only influence solute transport before equiaxed grains impinge with each other, while the solidification and thermal shrinkage still affect solute redistribution in the later stage.
Size-dependent microstructures in rapidly solidified uranium-niobium powder particles
McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...
2016-06-14
The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less
Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.
2017-04-01
Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.
Modeling of Detached Solidification
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Popov, Dmitri
1997-01-01
Our long term goal is to develop techniques to achieve detached solidification reliably and reproducibly, in order to produce crystals with fewer defects. To achieve this goal it is necessary to understand thoroughly the physics of detached solidification. It was the primary objective of the current project to make progress toward this complete understanding. 'Me products of this grant are attached. These include 4 papers and a preliminary survey of the observations of detached solidification in space. We have successfully modeled steady state detached solidification, examined the stability of detachment, and determined the influence of buoyancy-driven convection under different conditions. Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Indeed, under the Soviet microgravity program the major objective was to achieve detached solidification with its resulting improvement in perfection and properties. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past three years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification.
A review of rapid solidification studies of intermetallic compounds
NASA Technical Reports Server (NTRS)
Koch, C. C.
1985-01-01
A review of rapid solidification studies of high-temperature ordered intermetallic compounds is presented. Emphasis is on the nickel - and iron- aluminides which are of potential interest as structural materials. The nickel-base aluminides which have been rapidly solidified exhibit changes in grain size, compositional segregation, and degree of long range order (as reflected in APB size and distribution) which markedly affect mechanical properties. Some experiments indicate the formation of a metastable L1(2) phase in rapidly solidified Fe-(Ni,Mn)-Al-C alloys, while other work observes only a metastable fcc phase in the same composition range. The metastable phases and/or microstructures in both nickel and iron aluminides are destroyed by annealing at temperatures above 750 K, with subsequent degradation of mechanical properties. Rapid solidification studies of several other intermetallic compounds are briefly noted.
Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel
NASA Astrophysics Data System (ADS)
Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.
2017-10-01
Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.
Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy
NASA Astrophysics Data System (ADS)
Karaköse, Ercan; Keskin, Mustafa
2010-06-01
Al-Si-Ni-Nd alloys with a nominal composition of Al-12 wt.% Si-8 wt.% Ni-5 wt.% Nd alloy are prepared by a conventional casting (ingot) and melt spinning technique at different cooling rates ( ν). The effects of the rapid solidification rate on the microstructures and microhardness performances of the specimen alloys are investigated in detail. The results obtained by the XRD, SEM and DSC show that the ingot and melt spun alloys have a multiphase structure. When ν is 5 m/s, the alloy consists of four phases namely α-Al, intermetallic Al3Ni, Al11Nd3, and fcc Si. The melt-spun ribbons are completely composed of α-Al and eutectic Si phases, and primary silicon is not observed when ν increases to 20 m/s, 25 m/s, 30 m/s and 35 m/s. The XRD analysis indicated that the solubility of Si in the α-Al matrix increases greatly with the rapid solidification. The change in microhardness is discussed based on the microstructural observations. The microhardness values of the melt spun ribbons are about three times higher than those of ingot counterparts.
Advanced Gradient Heating Facility (AGHF)
NASA Technical Reports Server (NTRS)
1998-01-01
This section of the publication includes papers entitled: (1) Coupled growth in hypermonotectics; (2) Directional solidification of refined Al-4 wt.% Cu alloys; (3) Effects of convection on interface curvature during growth of concentrated ternary compounds; (4) Directional solidification of Al-1.5 wt.% Ni alloys; (5) Interactive response of advancing phase boundaries to particles; (6) INTeractive Response of Advancing Phase boundaries to Particles-INTRAPP; and (7) Particle engulfment and pushing by solidifying interfaces.
NASA Astrophysics Data System (ADS)
Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.
2016-12-01
Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.
Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu 6Sn 5 phase during solidification. In this study, the number and size of Cu 6Sn 5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu 6Sn 5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzedmore » as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu 6Sn 5 phases. Transitions in the Cu 6Sn 5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 10 3 to 10 4 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu 6Sn 5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary-β phase in the solidified alloys was noted. As a result, solidification pathways omitting the formation of the ternary-β phase agreed well with observed room temperature microstructures.« less
Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; ...
2016-10-06
Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu 6Sn 5 phase during solidification. In this study, the number and size of Cu 6Sn 5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu 6Sn 5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzedmore » as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu 6Sn 5 phases. Transitions in the Cu 6Sn 5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 10 3 to 10 4 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu 6Sn 5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary-β phase in the solidified alloys was noted. As a result, solidification pathways omitting the formation of the ternary-β phase agreed well with observed room temperature microstructures.« less
Coupled Growth in Hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Coriell, Sam R.
2001-01-01
The overall objective of this project is to obtain a fundamental understanding of the physics controlling solidification processes in immiscible alloy systems. The investigation involves both experimentation and the development of a model describing solidification in monotectic systems. The experimental segment was designed to first demonstrate that it is possible to obtain interface stability and steady state coupled growth in hypermonotectic alloys through microgravity processing. Microgravity results obtained to date have verified this possibility. Future flights will permit experimental determination of the limits of interface stability and the influence of alloy composition and growth rate on microstructure. The objectives of the modeling segment of the investigation include prediction of the limits of interface stability, modeling of convective flow due to residual acceleration, and the influence of surface tension driven flows at the solidification interface. The study of solidification processes in immiscible alloy systems is hindered by the inherent convective flow that occurs on Earth and by the possibility of sedimentation of the higher density immiscible liquid phase. It has been shown that processing using a high thermal gradient and a low growth rate can lead to a stable macroscopically planar growth front even in hypermonotectic alloys. Processing under these growth conditions can avoid constitutional supercooling and prevent the formation of the minor immiscible liquid phase in advance of the solidification front. However, the solute depleted boundary layer that forms in advance of the solidification front is almost always less dense than the liquid away from the solidification front. As a result, convective instability is expected. Ground based testing has indicated that convection is a major problem in these alloy systems and leads to gross compositional variations along the sample and difficulties maintaining interface stability. Sustained low gravity processing conditions are necessary in order to minimize these problems and obtain solidification conditions which approach steady state.
Melt Flow Control in the Directional Solidification of Binary Alloys
NASA Technical Reports Server (NTRS)
Zabaras, Nicholas
2003-01-01
Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.
The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors
NASA Astrophysics Data System (ADS)
Treat, Neil D.; Westacott, Paul; Stingelin, Natalie
2015-07-01
The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.
NASA Astrophysics Data System (ADS)
Yoon, Joonsung
The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.
NASA Technical Reports Server (NTRS)
Ang, C.-Y.; Lacy, L. L.
1979-01-01
Typical commercial or laboratory-prepared samples of polycrystalline AlSb contain microstructural inhomogeneities of Al- or Sb-rich phases in addition to the primary AlSb grains. The paper reports on gravitational influences, such as density-driven convection or sedimentation, that cause microscopic phase separation and nonequilibrium conditions to exist in earth-based melts of AlSb. A triple-cavity electric furnace is used to homogenize the multiphase AlSb samples in space and on earth. A comparative characterization of identically processed low- and one-gravity samples of commercial AlSb reveals major improvements in the homogeneity of the low-gravity homogenized material.
NASA Astrophysics Data System (ADS)
Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan
2018-01-01
Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.
Metal Solidification Imaging Process by Magnetic Induction Tomography.
Ma, Lu; Spagnul, Stefano; Soleimani, Manuchehr
2017-11-06
There are growing number of important applications that require a contactless method for monitoring an object surrounded inside a metallic enclosure. Imaging metal solidification is a great example for which there is no real time monitoring technique at present. This paper introduces a technique - magnetic induction tomography - for the real time in-situ imaging of the metal solidification process. Rigorous experimental verifications are presented. Firstly, a single inductive coil is placed on the top of a melting wood alloy to examine the changes of its inductance during solidification process. Secondly, an array of magnetic induction coils are designed to investigate the feasibility of a tomographic approach, i.e., when one coil is driven by an alternating current as a transmitter and a vector of phase changes are measured from the remaining of the coils as receivers. Phase changes are observed when the wood alloy state changes from liquid to solid. Thirdly, a series of static cold phantoms are created to represent various liquid/solid interfaces to verify the system performance. Finally, a powerful temporal reconstruction method is applied to realise real time in-situ visualisation of the solidification and the measurement of solidified shell thickness, a first report of its kind.
NASA Astrophysics Data System (ADS)
Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang
2015-07-01
The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.
Solidification of high temperature molten salts for thermal energy storage systems
NASA Technical Reports Server (NTRS)
Sheffield, J. W.
1981-01-01
The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.
Property measurements and solidification studies by electrostatic levitation.
Paradis, Paul-François; Yu, Jianding; Ishikawa, Takehiko; Yoda, Shinichi
2004-11-01
The National Space Development Agency of Japan has recently developed several electrostatic levitation furnaces and implemented new techniques and procedures for property measurement, solidification studies, and atomic structure research. In addition to the contamination-free environment for undercooled and liquid metals and semiconductors, the newly developed facilities possess the unique capabilities of handling ceramics and high vapor pressure materials, reducing processing time, and imaging high luminosity samples. These are exemplified in this paper with the successful processing of BaTiO(3). This allowed measurement of the density of high temperature solid, liquid, and undercooled phases. Furthermore, the material resulting from containerless solidification consisted of micrometer-size particles and a glass-like phase exhibiting a giant dielectric constant exceeding 100,000.
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures
Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.
1995-01-01
Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.
Theoretical modeling of cellular and dendritic solidification microstructures
NASA Astrophysics Data System (ADS)
Song, Younggil
In this dissertation, we use three-dimensional (3D) phase-field (PF) modeling to investigate (i) 3D solid-liquid interface dynamics observed in microgravity experiments, and (ii) array patterns in a thin-sample geometry. In addition, using the two-dimensional (2D) dendritic-needle-network (DNN) model, we explore (iii) secondary sidebranching dynamics. Recently, solidification experiments are carried out in the DSI (Directional Solidification Insert) of the DECLIC (Device for the study of Critical LIquids and Crystallization) facility aboard the International Space Station (ISS). Thus, the directional solidification experiments are achieved under limited convective currents, and the experimental observations reveal unique dynamics of 3D microstructure in a purely diffusive growth regime. In this directional solidification setup, a temperature field between heat sources could evolve due to two main factors: (i) heat transfer within an adiabatic zone and (ii) latent heat rejection at the interface. These two thermal effects are phenomenologically characterized using a time-dependent thermal shift. In addition, we could quantitatively account for these thermal factors using a numerical calculation of the evolution of temperature field. We introduce these phenomenological and quantitative thermal representations into the PF model. The performed simulations using different thermal descriptions are compared to the experimental measurements from the initial planar interface dynamics to the final spacing selection. The DECLIC-DSI experimental observations exhibit complex grain boundary (GB) dynamics between large grains with a small misorientation. In the observations, several large grains with a small misorientation with respect to the temperature gradient are formed during solidification. Specifically, at a convergent GB, a localized group of misoriented cells penetrates into a nearby grain, which yields the morphological instability of grain boundaries. Remarkably, while the invasion process starts with a group of cells, the leader cell can detach itself from the group and grow continuously as a misoriented solitary cell in the other grain with a different misorientation. We use PF simulations to investigate the GB morphology and dynamics of a solitary cell. Solidification experiments on earth are typically performed in a thin-sample geometry to avoid fluid convection. Thus, we consider various influences on cellular and dendritic array patterns in thin samples. First, we explore the influence of crystal orientation. When a grain in a thin-sample geometry is misoriented with respect to the temperature gradient, primary cells and dendrites drift laterally in both experiments and simulations. At the same time, grain boundaries are systematically formed at the edges of the misoriented grain. The misoriented primary branches move away from the divergent grain boundary. At this boundary, cells/dendrites are generated continuously, and their spacings are larger than the dynamically selected spacings. Primary branches run into the other convergent GB, which leads to their elimination. Thus, at a stationary state, a spacing distribution is uniform with the spacing selected at the divergent GB until it decreases near the convergent GB. We perform simulations to illustrate the global evolutions of a primary spacing. In addition, we suggest a simple geometrical model and a nonlinear advection equation for the dynamics of the primary spacing evolution, which can predict the slow evolution of a primary spacing in a quasi-2D array. Experimental observations point out that the primary spacing selection could be affected by the sample thickness; however, the detailed description for the link between the primary spacing selection and a sample thickness is still missing. Here, we use PF simulations to investigate the primary cellular and dendritic spacing selection mechanisms under the influence of a sample thickness. A thin-sample geometry can limit thermal and solutal convective currents effectively. However, as the sample thickness increases, the convective currents can influence the solid- liquid interface dynamics. Then, the microstructure selection mechanisms can be different from the classical theories that are valid in a diffusive regime. We propose a simple approach for the PF model to demonstrate the microstructure selection when liquid convection is present. These simulations are compared to experimental results. Columnar microstructures with cells and dendrites typically form polycrystalline materials during directional solidification. Then, convergent and divergent grain boundaries form systematically between grains, which are misoriented with respect to the temperature gradient. Moreover, the GB is dynamically selected during the competition between two nearby misoriented grains. In order to investigate the GB orientation selection, we carry out 3D PF simulations in a thin-sample geometry. These simulations reveal the influence of the 3D GB bi-crystallography on grain competition. The results highlight the importance of considering the orientation of the orthogonal planes containing secondary branches in addition to the growth direction of primary branches. Finally, we propose three growth steps to demonstrate the secondary sidebranching growth dynamics under isothermal dendritic growth condition. (Abstract shortened by ProQuest.).
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
NASA Astrophysics Data System (ADS)
Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.
2017-11-01
A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.
An approximate formula for recalescence in binary eutectic alloys
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.
1993-01-01
In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, J.; Mazumder, J.
1996-12-31
Networking three fields of welding--thermal, microstructure, and stress--was attempted and produced a reliable model using a numerical method with the finite element analysis technique. Model prediction was compared with experimental data in order to validate the model. The effects of welding process parameters on these welding fields were analyzed and reported. The effort to correlate the residual stress and solidification was initiated, with some valuable results. The solidification process was simulated using the formulation based on the Hunt-Trivedi model. Based on the temperature history, solidification speed and primary dendrite arm spacing were predicted at given nodes of interest. Results showmore » that the variation during solidification is usually within an order of magnitude. The temperature gradient was generally in the range of 10{sup 4}--10{sup 5} K/m for the given welding conditions (welding power = 6 kW and welding speed = 3.3867 to 7.62 mm/sec), while solidification speed appeared to slow down from an order of 10{sup {minus}1} to 10{sup {minus}2} m/sec during solidification. SEM images revealed that the primary dendrite arm spacing (PDAS) fell in the range of 10{sup 1}--10{sup 2} {micro}m. For grain growth at the heat affected zone (HAZ), Ashby`s model was employed. The prediction was in agreement with experimental results. For the residual stress calculation, the same mesh generation used in the heat transfer analysis was applied to make the simulation consistent. The analysis consisted of a transient heat analysis followed by a thermal stress analysis. An experimentally measured strain history was compared with the simulated result. The relationship between microstructure and the stress/strain field of welding was also obtained. 64 refs., 18 figs., 9 tabs.« less
Transport processes in directional solidification and their effects on microstructure development
NASA Astrophysics Data System (ADS)
Mazumder, Prantik
The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructures and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection --> transient mono-periodic --> transient bi-periodic --> transient quasiperiodic --> transient intermittent oscillation- relaxation --> stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Rustan, G. E.; Wilson, S. R.
2015-02-04
High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni 50Zr 50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2–B33 transformation is proposed and investigated through further MD simulations.
NASA Astrophysics Data System (ADS)
Lambrakos, S. G.
2017-08-01
An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.
Numerical Simulation of Transient Liquid Phase Bonding under Temperature Gradient
NASA Astrophysics Data System (ADS)
Ghobadi Bigvand, Arian
Transient Liquid Phase bonding under Temperature Gradient (TG-TLP bonding) is a relatively new process of TLP diffusion bonding family for joining difficult-to-weld aerospace materials. Earlier studies have suggested that in contrast to the conventional TLP bonding process, liquid state diffusion drives joint solidification in TG-TLP bonding process. In the present work, a mass conservative numerical model that considers asymmetry in joint solidification is developed using finite element method to properly study the TG-TLP bonding process. The numerical results, which are experimentally verified, show that unlike what has been previously reported, solid state diffusion plays a major role in controlling the solidification behavior during TG-TLP bonding process. The newly developed model provides a vital tool for further elucidation of the TG-TLP bonding process.
Microgravity Processing of Oxide Superconductors
NASA Technical Reports Server (NTRS)
Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)
2000-01-01
The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.
NASA Astrophysics Data System (ADS)
Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.
2016-11-01
For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in both 1g and micro-g environments, some grain movement was apparent due to liquid feeding and mechanical impingement of neighbouring grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan
2015-03-31
The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by themore » shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 similar to 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.« less
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Zhao, Dengke; Li, Chuanjun; Shang, Xingfu; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2018-05-01
The effect of a high magnetic field on the γ' phase of Ni-based single crystal superalloy during directional solidification is investigated experimentally. The results clearly indicate that the magnetic field significantly reduces the γ' phase size. Further, the quenching experiment is carried out, and the results found that the length of mushy zone is obviously decreased under a high magnetic field. Based on both experimental results and nucleation mechanism, it is found that the decrease of γ' phase size should be attributed to the fact that a high magnetic field causes the increase of temperature gradient in front of solid/liquid interface and leads to the increase of undercooling of γ' phase.
Use of Microgravity to Control the Microstructure of Eutectics
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.
1998-01-01
This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing. Because of difficulties in tracking the freezing interfaces of the two solid phases, a phase-field model is also being developed. A paper demonstrating application of phase field methods to periodic structures has been submitted for publication.
Copper-silicon-magnesium alloys for latent heat storage
Gibbs, P. J.; Withey, E. A.; Coker, E. N.; ...
2016-06-21
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
Fourier Thermal Analysis of the Eutectic Formed in Pb-Sn Alloys
NASA Astrophysics Data System (ADS)
Cruz, H.; Ramírez-Argaez, M.; Juarez, A.; Garcia, A.; González-Rivera, C.
2009-06-01
The effect of the presence of two different primary phases on the microstructural characteristics and solidification kinetics of Pb-Sn eutectic was analyzed using Fourier thermal analysis method (FTA) and microstructural characterization. Three Pb-Sn alloys, a hypoeutectic, an eutectic, and a hypereutectic alloy, were melted in an electric furnace under an argon atmosphere and poured into sand molds. Cooling curves were obtained and numerically processed using FTA. Microstructural observations of the probes indicate a lamellar morphology for the eutectic microconstituent of the hypereutectic alloy; the eutectic alloy shows the presence of both lamellar and anomalous eutectic and the hypoeutectic alloy shows only the presence of anomalous eutectic. FTA results indicate that in the case of the probes showing the presence of anomalous eutectic, there is a primary eutectic formed during recalescence at high undercooling and a secondary eutectic yielded at low undercooling at the eutectic plateau temperature. This result shows that the cause behind the observed differences in the eutectic morphologies of the experimental alloys lies on the nucleating ability of the primary phase available as a potential substrate for nucleation of the eutectic microconstituent.
Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels
NASA Astrophysics Data System (ADS)
Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko
2010-01-01
The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.
In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification
NASA Astrophysics Data System (ADS)
Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.
2017-11-01
In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.
Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal
NASA Astrophysics Data System (ADS)
Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.
2018-03-01
The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.
Cellular solidification in a monotectic system
NASA Technical Reports Server (NTRS)
Kaukler, W. F.; Curreri, P. A.
1987-01-01
Succinonitrile-glycerol, SN-G, transparent organic monotectic alloy is studied with particular attention to cellular growth. The phase diagram is determined, near the monotectic composition, with greater accuracy than previous studies. A solidification interface stability diagram is determined for planar growth. The planar-to-cellular transition is compared to predictions from the Burton, Primm, Schlichter theory. A new technique to determine the solute segregation by Fourier transform infrared spectroscopy is developed. Proposed models that involve the cellular interface for alignment of monotectic second-phase spheres or rods are compared with observations.
NASA Technical Reports Server (NTRS)
Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.
1988-01-01
Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.
NASA Astrophysics Data System (ADS)
Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo
2017-09-01
Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.
Solidification processing of intermetallic Nb-Al alloys
NASA Technical Reports Server (NTRS)
Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.
1992-01-01
Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.
NASA Astrophysics Data System (ADS)
Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis
2017-11-01
This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.
Microgravity Processing of Oxide Superconductors
NASA Technical Reports Server (NTRS)
Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus
1999-01-01
Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Messina, D.; Rustan, G. E.
In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperaturemore » metastable structures.« less
Effect of alumina on grain refinement of Al-Si hypereutectic alloys
NASA Astrophysics Data System (ADS)
Majhi, J.; Sahoo, S. K.; Patnaik, S. C.; Sarangi, B.; Sachan, N. K.
2018-03-01
The size, volume fraction and distribution of primary as well as eutectic silicon affect the mechanical properties of the Al-Si hypereutectic alloys. It is very difficult for the simultaneous refinement and modification of primary and secondary Si particles in hypereutectic Al-Si alloys through traditional processes. This paper explores the role of γ-Al2O3 nanoparticles on Si particles in the course of solidification in hypereutectic Al-Si alloys at particular pouring temperature. The present study involves incorporation of varying contents dispersed γ-Al2O3 nanoparticles into a molten base metal during stir casting and followed by solidification. It has been reported that the synthesized composites having good interfacial bonding (wetting) between the dispersed phase and the liquid matrix was achieved in order to provide improved mechanical properties of the composite. The cast product of hypereutectic Al-16Si alloy with the reinforcement of nanoparticles, illustrated a significant improvement in both wear behaviour and hardness. The dry sliding wear test has been performed on a group of specimens with varying parameters (different loads and sliding velocities) in a pin on disc wear testing machine. Moreover, the wear rate and specific wear rate also affected in different load and different sliding velocities. However in XRD analysis of the samples, the enhancement of wear resistance as well as hardness was due to the formation of brittle phases like SiO2, Al2O3 and Al-rich intermetallic compounds. The hardness value of the materials increases nearly 6% in addition to increase in the density of only 0.8%. As per literature, the large plate eutectic Si particles were modified in to the fine core particles and it acquires enough potential for various applications.
Castellero, Alberto; Fiore, Gianluca; Evenstein, Eliran; Baricco, Marcello; Amouyal, Yaron
2017-03-01
We report on rapid solidification of an Ag(16.7)Sb(30.0)Te(53.3) compound using planar flow casting to stabilize the δ-AgSbTe₂ single phase and avoid precipitation of the interconnected Sb₂Te₃ phase, which leads to deterioration of thermoelectric properties. Rapidly solidified samples are in form of flakes with different thickness (60–400 μm). Precipitation of Sb2Te₃ phase is fully inhibited in thin flakes (thickness below 100 μm), which consist of an homogeneous δ-AgSbTe₂ matrix, whereas isolated Sb₂Te₃ precipitates, dispersed throughout the δ-AgSbTe₂ matrix, were found in thick flakes (thickness above 100 μm). The lattice parameter of the δ-AgSbTe₂ phase progressively increases with the cooling rate, indicating progressive supersaturation of the matrix for high degree of supercooling. Bulk specimens were prepared by hot pressing of the rapidly solidified flakes to evaluate thermoelectric properties. After sintering of the rapidly solidified flakes, the differential scanning calorimetry (DSC) traces indicates partial decomposition of the non equilibrium δ-AgSbTe₂ into the stable phases. Measurements of the thermoelectric transport properties indicate the positive effects of rapid solidification on thermal conductivity and Seebeck coefficient and its negative effect on electrical conductivity, suggesting an operative way to improve thermoelectric performance.
Solidification studies of monotectic systems
NASA Technical Reports Server (NTRS)
Chang, K.
1982-01-01
Described is an attempt to determine critical wetting temperatures in monotectic systems and to investigate the wetting phase on container walls and the phase preferential wetting of a monotectic solid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...
2017-06-15
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
Study on solidification of immisible alloys (M-10)
NASA Technical Reports Server (NTRS)
Kamio, Akihiko
1993-01-01
Alloying of immiscible alloys under microgravity is of interest in metallurgical processes. Several experiments investigating the alloying of immiscible alloys, such as Al-In, Al-Bi, Zn-Bi, and Zn-Pb, were done in space. Homogeneous distribution of small L2 particles in the matrix, such as an emulsion structure, was expected in the space-solidifed alloys. However, the alloys demonstrated an extremely segregated structure. To date insufficient information was obtained to explain these unexpected results. Our experiment was proposed to clarify the solidification manner of immiscible alloys and to obtain fundamental information concerning structural control of the alloys. In space, density differences between the two liquids separated in immiscible regions can be neglected, so that no sedimentation of L(sub 2) phase will take place. When the growth of the alloys is interrupted and this status is frozen by an adequate rapid cooling procedure, it will provide much information concerning decomposing homogeneous liquid and the interaction between the monotectic growth front morphology and the distribution of L(sub 2) phase. It is anticipated that the results will be useful for elucidating the monotectic solidification manner and it will be instructive to explain the segregated structures obtained in the past space experiments.
NASA Astrophysics Data System (ADS)
Nguyen Thi, H.; Jamgotchian, H.; Gastaldi, J.; Härtwig, J.; Schenk, T.; Klein, H.; Billia, B.; Baruchel, J.; Dabo, Y.
2003-05-01
During directional solidification of a binary alloy, the solid-liquid interface exhibits a variety of patterns that are due to the Mullins-Sekerka instability and governed by the growth conditions. It is well known that properties of the grown material are largely controlled by the microstructures left in the solid during processing. Thus, a precise mastering of the solidification is essential to tailor products in a reproducible fashion to a specified quality. One major difficulty for this study is the real-time and in situ observation of the interface, especially for metallic alloys. A possibility is to use an intense and coherent third generation x-ray beam. By combining different x-ray imaging techniques (absorption/phase contrast radiography and diffraction topography), we have studied the directional melting and solidification of aluminium-based alloys. The preliminary results show the great potential of these techniques for the study of the coupling between stress effects and microstructure formation in solidification processing.
An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.
Wang, Chuo-Li; Teo, Ka Yaw; Han, Bumsoo
2008-08-01
One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.
NASA Astrophysics Data System (ADS)
Sediako, Dimitry G.; Kasprzak, Wojciech
2015-09-01
Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.
Dynamic evolution of liquid–liquid phase separation during continuous cooling
Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...
2015-01-06
Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.« less
Solidification phenomena of binary organic mixtures
NASA Technical Reports Server (NTRS)
Chang, K.
1982-01-01
The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.
Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R
2013-05-31
We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.
NASA Astrophysics Data System (ADS)
Nguyen, Thi-Thuy-My; Gandin, Charles-André; Combeau, Hervé; Založnik, Miha; Bellet, Michel
2018-02-01
The transport of solid crystals in the liquid pool during solidification of large ingots is known to have a significant effect on their final grain structure and macrosegregation. Numerical modeling of the associated physics is challenging since complex and strong interactions between heat and mass transfer at the microscopic and macroscopic scales must be taken into account. The paper presents a finite element multi-scale solidification model coupling nucleation, growth, and solute diffusion at the microscopic scale, represented by a single unique grain, while also including transport of the liquid and solid phases at the macroscopic scale of the ingots. The numerical resolution is based on a splitting method which sequentially describes the evolution and interaction of quantities into a transport and a growth stage. This splitting method reduces the non-linear complexity of the set of equations and is, for the first time, implemented using the finite element method. This is possible due to the introduction of an artificial diffusion in all conservation equations solved by the finite element method. Simulations with and without grain transport are compared to demonstrate the impact of solid phase transport on the solidification process as well as the formation of macrosegregation in a binary alloy (Sn-5 wt pct Pb). The model is also applied to the solidification of the binary alloy Fe-0.36 wt pct C in a domain representative of a 3.3-ton steel ingot.
Quasicrystal-reinforced Mg alloys.
Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do
2014-04-01
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.
Quasicrystal-reinforced Mg alloys
Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do
2014-01-01
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. PMID:27877660
Novel method of realizing metal freezing points by induced solidification
NASA Astrophysics Data System (ADS)
Ma, C. K.
1997-07-01
The freezing point of a pure metal, tf, is the temperature at which the solid and liquid phases are in equilibrium. The purest metal available is actually a dilute alloy. Normally, the liquidus point of a sample, tl, at which the amount of the solid phase in equilibrium with the liquid phase is minute, provides the closest approximation to tf. Thus the experimental realization of tf is a matter of realizing tl. The common method is to cool a molten sample continuously so that it supercools and recalesces. The highest temperature after recalescence is normally the best experimental value of tl. In the realization, supercooling of the sample at the sample container and the thermometer well is desirable for the formation of dual solid-liquid interfaces to thermally isolate the sample and the thermometer. However, the subsequent recalescence of the supercooled sample requires the formation of a certain amount of solid, which is not minute. Obviously, the plateau temperature is not the liquidus point. In this article we describe a method that minimizes supercooling. The condition that provides tl is closely approached so that the latter may be measured. As the temperature of the molten sample approaches the anticipated value of tl, a small solid of the same alloy is introduced into the sample to induce solidification. In general, solidification does not occur as long as the temperature is above or at tl, and occurs as soon as the sample supercools minutely. Thus tl can be obtained, in principle, by observing the temperature at which induced solidification begins. In case the solid is introduced after the sample has supercooled slightly, a slight recalescence results and the subsequent maximum temperature is a close approximation to tl. We demonstrate that the principle of induced solidification is indeed applicable to freezing point measurements by applying it to the design of a copper-freezing-point cell for industrial applications, in which a supercooled sample is reheated and then induced to solidify by the solidification of an auxiliary sample. Further experimental studies are necessary to assess the practical advantages and disadvantages of the induction method.
Project Description and Publications List for UAH CMMR
NASA Technical Reports Server (NTRS)
Kaukler, William F.
1999-01-01
This research combines a state of the art X-ray Transmission Microscope, XTM, with a specially designed x-ray transparent horizontal Bridgman furnace to image (with resolutions up to 3 micrometers) the solidification of metal alloys in real-time. The objective is to obtain real-time dynamic data to provide direct measure of the solute profile in the liquid, phase coalescence and growth in the liquid, and the detailed interface morphology (e,g., dendrites and cells) during solidification. We are also enhancing the XTM data with precise solid-liquid interfacial temperature and the thermal gradient measurement techniques, and working on the application of this technology to the study of the fundamentals of solidification in microgravity. Over the last several years we have successfully imaged in real-time: interfacial-morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid interface. We have also measured true local growth rates and can evaluate segregation structures in the solid. Interfacial undercoolings are being measured either with a special Seebeck furnace or with micro-thermocouple arrays we are developing. These later techniques are presently being incorporated with the XTM furnace. This last year emphasized the investigation of the solute layer in the melt during solidification. Methods were developed to quantify the solute concentrations using x-ray absorption and to compare to predictions from simulations. In addition, work is being completed on a brass-board portable XTM that incorporates a vertical Bridgman furnace.
NASA Astrophysics Data System (ADS)
Rahimi, R.; Biermann, H.; Volkova, O.; Mola, J.
2018-06-01
The origin of subgrain formation during conventional casting and solidification of stainless steels was studied using two austenitic stainless steels with 0 and 4 mass-% Al. Whereas the Al-free alloy showed no subgrain formation, the Al-added alloy developed a high density of subgrains separated by low-angle grain boundaries. The occurrence of subgrains in the Al-added alloy was justified by its ferritic mode of solidification as predicted by thermodynamic calculations and confirmed by dynamic scanning calorimetry measurements. The subgrains might be a consequence of the plastic deformation of soft primary ferrite dendrites by the fluid flow and their subsequent inheritance by the austenite. Alternatively, they might have been induced during the austenite formation from delta ferrite, most likely via a peritectic reaction. The absence of subgrains in the Al-free alloy was justified by its austenitic mode of solidification.
A unified analysis of solidification in Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Lu, Ming-Fang
2012-04-01
The simulation of multiphase solidification process can be handled by combining the VOF (Volume of Fluid) transport equation, in which the continuum mechanics model is used to simulate the melt/solid interface and the conservation of mass, momentum, and energy. Because the melt phase, the solid phase, and the melt/solid interface are controlled by a single control equation; if the enthalpy model based on porosity concept represents the processing of the phase transformation range, it is possible to solve the problem of phase transformation in the same way as solving the single-phase problem. Once the energy field of enthalpy for each step in time is resolved, the position of the interface can be precisely calculated with the use of VOF equation. This type of novel VOF method can be applied to find out the conditions of vertical Bridgman crystal growing located on the earth or under microgravity.
A unified analysis of solidification in Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Lu, Ming-Fang
2011-11-01
The simulation of multiphase solidification process can be handled by combining the VOF (Volume of Fluid) transport equation, in which the continuum mechanics model is used to simulate the melt/solid interface and the conservation of mass, momentum, and energy. Because the melt phase, the solid phase, and the melt/solid interface are controlled by a single control equation; if the enthalpy model based on porosity concept represents the processing of the phase transformation range, it is possible to solve the problem of phase transformation in the same way as solving the single-phase problem. Once the energy field of enthalpy for each step in time is resolved, the position of the interface can be precisely calculated with the use of VOF equation. This type of novel VOF method can be applied to find out the conditions of vertical Bridgman crystal growing located on the earth or under microgravity.
Compact seaweed growth of peritectic phase on confined, flat properitectic dendrites
NASA Astrophysics Data System (ADS)
Ludwig, A.; Mogeritsch, J.
2016-12-01
Peritectic alloys form a variety of different solidification morphologies at low growth rates. An alloy with a concentration that corresponds to the hyper-peritectic limit should show a cellular/dendritic solidification of the peritectic phase for growth velocities above the corresponding constitutional undercooling limit. However, due to nucleation retardation of the peritectic phase we observed growth of properitectic dendrites before cellular growth of the peritectic could established. The transition happened via an overgrowth of dendrites with a thin layer of peritectic phase. The observations were made using a transparent, metal-like solidifying peritectic system that was solidified directionally in thin samples. In the gap between the flat dendrites and the tubing walls, the peritectic phase grew with a compact seaweed morphology, whereas in the interdendritic spacing it formed small-curved bumps. At same distance behind the tip region, more and more polycrystalline-like objects appeared at the elongated traces of the compact seaweed morphology.
Susceptibility measurements on the superconducting properties of Nb-Ge alloys
NASA Technical Reports Server (NTRS)
Rathz, T. J.
1981-01-01
A susceptibility apparatus to measure superconducting properties of samples made in the MSFC Drop Tube was used to measure the transition temperature (Tc) and susceptibilities of Nb and Nb Ge Alloys prepared in bulk spherical (2-4 mm diameter) form using a 32 m drop tube in which containerless low gravity solidification could take place. Results indicate that a drop tube processing environment was beneficial for increasing the Tc of the superconducting phase of the material over that of arc melted material. The increase in Tc is found to be related to the amount of solidification of the total sample that took place before reaching the bottom of the drop tube. In phase and quadrature phase measurements of the specimen's susceptibility indicated that some improvement in homogeneity takes place in drop tube processing. These phase measurements also indicated little or no shielding of a lower Tc phase by a higher Tc filamentary structure.
Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review
NASA Astrophysics Data System (ADS)
Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás
2014-04-01
Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.
Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa
2012-03-15
Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less
Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2
NASA Technical Reports Server (NTRS)
Herbert, F.
1985-01-01
A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.
NASA Astrophysics Data System (ADS)
Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro
2017-04-01
The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.
Effects of Process Parameters on Solidification Structure of A390 Aluminum Alloy Hollow Billet
NASA Astrophysics Data System (ADS)
Zuo, Kesheng; Zhang, Haitao; Qin, Ke; Cui, Jianzhong; Chen, Qingzhang
2017-08-01
The effects of process parameters on the solidification structure of A390 aluminum alloy hollow billets prepared by direct-chill casting were investigated. The decrease of casting temperature deteriorated the homogeneity and increased the size of primary Si particles in the hollow billet. Although the average size of primary Si particles was not obviously affected by the increase of casting speed, the thickness of Si-depleted layer at the inner wall increased with the higher casting speed. The tensile strength of A390 alloy is a function of the percentage of coarse Si particles (larger than 35 μm) and the average size of primary Si particles. Higher and more stable tensile strength can be received in the hollow billet with the casting temperature of 1050 K (777 °C), because the fine and uniformly distributed primary Si particles were obtained in the hollow billet.
Modeling transport phenomena and uncertainty quantification in solidification processes
NASA Astrophysics Data System (ADS)
Fezi, Kyle S.
Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification time, and sump profile predictions. Uncertain model inputs of interest included the secondary dendrite arm spacing, equiaxed particle size, equiaxed packing fraction, heat transfer coefficient, and material properties. The most influential input parameters for predicting the macrosegregation level were the dendrite arm spacing, which also strongly depended on the choice of mushy zone permeability model, and the equiaxed packing fraction. Additionally, the degree of uncertainty required to produce accurate predictions depended on the output of interest from the model.
Effects of Space Environment on Flow and Concentration During Directional Solidification
NASA Technical Reports Server (NTRS)
Benjapiyaporn, C.; Timchenko, V.; Leonardi, E.; deVahlDavis, G.; deGroh, H. C., III
2000-01-01
A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermosolutal convection in the liquid region. In this paper we numerically investigate the effects of g-jitter on directional solidification. A background gravity of 1 micro-g has been assumed, and new results for the effects of periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.
NASA Astrophysics Data System (ADS)
Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.
2015-07-01
The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.
NASA Astrophysics Data System (ADS)
Yildiz, A. K.; Celik, F. A.
2017-04-01
The solidification process of Platinum-Rhodium alloy from liquid phase to solid state is investigated at the nano-scale by using Molecular Dynamics Simulation (MDS) for different atomic concentration ratios of Pt. The critical nucleus radius, the bond order parameter, interfacial free energies and total energy based on nucleation theory of the alloy are examined with respect to the temperature changes. The heat of fusion from high temperatures to low temperatures during solidification of the alloy system is determined from molecular dynamics simulation. The structural development is determined from the radial distribution function. It is observed from the results that the melting point of the alloy system decreases with increasing concentration of Pt and that variation of Pt ratio in the alloy shows a remarkable effect on solidification to understand the cooling process of thermal effects.
Cauchy integral method for two-dimensional solidification interface shapes
NASA Astrophysics Data System (ADS)
Siegel, R.; Sosoka, D. J.
1982-07-01
A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tianping; Chen, Zhan W.; Gao Wei
2008-11-15
During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a moremore » regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.« less
Effect of Cs content on K1-xCsxAlSi2O6 ceramic solidification forms
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Jianxia; Hou, Li; Lu, Zhongyuan
2018-02-01
K1-xCsx-geopolymers with chemical compositions of about K1-xCsxAlSi2O6·nH2O were used as precursors to prepare K1-xCsxAlSi2O6 ceramic solidification forms through the thermal treatment method. The structures of K1-xCsxAlSi2O6 ceramic solidification forms obtained at different sintering temperatures have been characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy. It has been observed that the crystallization temperature and phase of K1-xCsxAlSi2O6 ceramic were significantly influenced by the Cs content. An increase in the Cs content resulted in a decrease in the crystallization temperature of the K1-xCsxAlSi2O6 cubic phase. K1-xCsxAlSi2O6 ceramic obtained at 850 °C was lecucite cubic or pollucite cubic phase when x ≥ 0.2, and the lattice parameters of cubic phase increased with increasing of Cs content. However, leucite tetragonal phase formed at elevated heating temperature (1100 °C and 1300 °C) except for the case x = 0.3, 0.4, 0.5 and 1. The c/a ratio of leucite tetragonal phase obtained at 1100 °C and 1300 °C was much more closed to 1 with Cs content increased, which made it hard to be indexed between cubic and tetragonal phase. In this case, leucite tetragonal phase could also be considered as pseudo-cubic phase. Additionally, the product consistency test leaching results showed that K1-xCsxAlSi2O6 ceramics possessed superior chemical durability.
Understanding Superfine Graphite Iron Solidification Through Interrupted Solidification Experiments
NASA Astrophysics Data System (ADS)
Alonso, G.; Stefanescu, D. M.; Larrañaga, P.; De la Fuente, E.; Aguado, E.; Suarez, R.
The tensile strength of near-eutectic gray iron can be increased from 230-300 to 300-345MPa, without a significant increase in hardness, through 0.3-0.4%Ti addition to low sulfur (<0.01%S) iron. This is due to the combination of higher primary austenite/eutectic ratio and the precipitation of superfine-interdendritic-graphite (SIG), characterized by a fine (10-20μm) and highly branched fibrous structure.
Atomistic to continuum modeling of solidification microstructures
Karma, Alain; Tourret, Damien
2015-09-26
We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less
Thermal control of low-pressure fractionation processes. [in basaltic magma solidification
NASA Technical Reports Server (NTRS)
Usselman, T. M.; Hodge, D. S.
1978-01-01
Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.
The melting and solidification of nanowires
NASA Astrophysics Data System (ADS)
Florio, B. J.; Myers, T. G.
2016-06-01
A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.
Purification of silicon for photovoltaic applications
NASA Astrophysics Data System (ADS)
Delannoy, Yves
2012-12-01
Solar grade silicon, as a starting material for crystallization to produce solar cells, is discussed here in terms of impurities whose maximum content is estimated from recent literature and conferences. A review of the production routes for each category of solar-grade silicon (undoped, compensated or heavily compensated) is proposed with emphasis on the metallurgical route. Some recent results are proposed concerning segregation, showing that directional solidification systems can be used for solidification even at high solidification rate (15 cm/h). Results on inductive plasma purification, where boron is evacuated as HBO in a gas phase blown from an inductive plasma torch, are shown to apply as well to arc plasmas and purification by moist gas. Special attention is paid to the history of impurities in the purification processes, showing that impure auxiliary phases (silicon tetrachloride, slag, aluminum, etc.) often need their own purification process to enable their recycling, which has to be considered to evaluate the cost (financial, energetic and environmental) of the purification route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
NASA Astrophysics Data System (ADS)
Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.
2015-06-01
The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.
Performance of a cylindrical phase-change thermal energy storage unit
NASA Astrophysics Data System (ADS)
Jacobson, D. L.; Ponnappan, R.
1983-05-01
The high-temperature performance of a eutectic salt Phase Change Material (PCM) in a cylindrical Thermal Energy Storage Container (TESC) sample is evaluated by means of an experimental apparatus with a water-circulated calorimeter. The phase change characteristics of the salt during melting and solidification were observed by monitoring the external axial temperature profile of the container, and the analysis of the phase change heat transfer in the cylindrical geometry was based on the modified heat balance integral method of Tien (1980), which provides the solidification rate and time. Melting point (983 K), freezing point (944 K), latent heat of fusion (782.26 J/gm) and thermal diffusivity (0.00799 sq cm/sec) results are in agreement with those found in the literature. The experimental and analytical results of the nondimensionalized heat transfer resistance as a function of the solidified or melted weight fraction are compared.
Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys
NASA Astrophysics Data System (ADS)
Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin
Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.
Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry
NASA Astrophysics Data System (ADS)
Zhang, M.; Wen, J. G.; Efremov, M. Y.; Olson, E. A.; Zhang, Z. S.; Hu, L.; de la Rama, L. P.; Kummamuru, R.; Kavanagh, K. L.; Ma, Z.; Allen, L. H.
2012-05-01
We have investigated the stability and solidification of nanometer size Au-Si droplets using an ultrafast heating/cooling nanocalorimetry and in situ growth techniques. The liquid can be supercooled to very low temperatures for both Au-rich (ΔT ˜ 95 K) and Si-rich (ΔT ˜ 220 K) samples. Solidification of a unique metastable phase δ1 is observed with a composition of 74 ± 4 at. % Au and a b-centered orthorhombic structure (a = 0.92, b = 0.72, and c = 1.35 nm; body-center in the a-c plane), which grows heteroepitaxially to Aus. Its melting temperature Tm is 305 ± 5 °C. There is competition during formation between the eutectic and δ1 phases but δ1 is the only metastable alloy observed. For small size droplets, both the δ1 and eutectic phases show considerable depression of the melting point (size-dependent melting).
The materials processing research base of the Materials Processing Center
NASA Technical Reports Server (NTRS)
Latanision, R. M.
1986-01-01
An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.
NASA Astrophysics Data System (ADS)
Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.
2015-06-01
Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.
NASA Astrophysics Data System (ADS)
Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas
2017-11-01
γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.
NASA Astrophysics Data System (ADS)
Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain
2015-08-01
We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. We focus on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
NASA Technical Reports Server (NTRS)
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel
NASA Astrophysics Data System (ADS)
Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.
2011-12-01
A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, M. Parans; Sridharan, Niyanth; List, Fred A.
The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd 2Fe 14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets ismore » significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd 2Fe 17B x solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd 2Fe 14B phase during fabrication.« less
The solidification behavior of calcium oxide-aluminum oxide slags
NASA Astrophysics Data System (ADS)
Prapakorn, Kritsada
The binary CaO-Al2O3 based slag and the ternary CaO-Al2O3-MgO based slag are common slags covering and inclusions that are found in calcium treated Al-killed, continuously cast steels. However, the effect of cooling conditions and chemistry on the solidification behavior of these slags is not well characterized. To better understand this phenomena, the solidification behavior of these slags was studied by using double hot thermocouple technique. TTT and CCT diagrams of these slags were determined to quantify the solidification behavior in both dry and humid atmospheres. In this work, these slag samples were easily undercooled and the solidification behavior of these slags was found to be a strong function of cooling conditions. The crystallization tendency of these slags follows the trends suggested by the phase diagram. In CaO-Al2O3 based slags, The eutectic composition (50%CaO) give the lowest crystallization tendency due to the lowest liquidus temperature. In a eutectic CaO-Al2O3 slag sample, dissolved water in the sample increases crystallization tendency and enhances the growth. It was also found that the crystalline phase that formed during cooling in both the dry and humid conditions is the mixture between 3CaO.Al2O 3 and CaO.Al2O3 phases. In CaO-Al2O3-MgO based slags, the crystallization tendency increases with MgO content because the high MgO content leads to the high liquidus temperature. The effect of dissolved of water on the crystallization of CaO-Al2O3-MgO based slags is not as prominent as in the eutectic CaO-Al2O3 slag. Thus, the addition of MgO to CaO-Al2O3 slags was seen to minimize or eliminate the effect of humidity on the solidification of CaO-Al2O3 based slags. In this work, Uhlmann's method was used to estimate the solid-liquid interfacial energy of CaO-Al2O3 based slag for the temperature between 1100--1250°C. The result is between 0.25--0.4 Joules/m 2.
Microstructures in rapidly solidified Ni-Mo alloys
NASA Technical Reports Server (NTRS)
Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.
1985-01-01
Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.
Phase Field Modeling of Microstructure Development in Microgravity
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Goldenfeld, Nigel
2001-01-01
This newly funded project seeks to extend our NASA-sponsored project on modeling of dendritic microstructures to facilitate collaboration between our research group and those of other NASA investigators. In our ongoing program, we have applied advanced computational techniques to study microstructural evolution in dendritic solidification, for both pure isolated dendrites and directionally solidified alloys. This work has enabled us to compute dendritic microstructures using both realistic material parameters and experimentally relevant processing conditions, thus allowing for the first time direct comparison of phase field computations with laboratory observations. This work has been well received by the materials science and physics communities, and has led to several opportunities for collaboration with scientists working on experimental investigations of pattern selection and segregation in solidification. While we have been able to pursue these collaborations to a limited extent, with some important findings, this project focuses specifically on those collaborations. We have two target collaborations: with Prof. Glicksman's group working on the Isothermal Dendritic Growth Experiment (IDGE), and with Prof. Poirier's group studying directional solidification in Pb-Sb alloys. These two space experiments match well with our two thrusts in modeling, one for pure materials, as in the IDGE, and the other directional solidification. Such collaboration will benefit all of the research groups involved, and will provide for rapid dissemination of the results of our work where it will have significant impact.
Melt infiltration of silicon carbide compacts. II - Evaluation of solidification microstructures
NASA Technical Reports Server (NTRS)
Asthana, Rajiv; Rohatgi, Pradeep K.
1993-01-01
Microstructural aspects of alloy solidification within the interstices of porous compacts of platelet-shaped single crystals of alpha-SiC, when the latter are infiltrated with a hot metal under pressure, have been described. Microstructural evidence is presented of selective reorientation of platelets and nonhomogeneous solute distribution under shear of pressurized melt, of constrained growth of primary solid within finite width zones, and of the modulation of coring due to microsegregation as a result of variations in the pore size of compacts.
NASA Astrophysics Data System (ADS)
Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah
2014-09-01
Computer aided thermal analysis and microstructural observation showed that addition of bismuth (Bi) within the range of 0.25 and 2 wt% produced a greater effect on the Al-Si eutectic phase than on primary aluminium and Al2Cu phases. Results showed that with addition of 1 wt% Bi the eutectic silicon structure was refined from flake-like morphology into lamellar. Bi refines rather than modifies the Si structure and increases the Al-Si eutectic fraction solid and more significantly there was no fading even up to 180 min of melt holding. Transmission electron microscopy study showed that the Si twin spacing decreased from 160 to 75 nm which is likely attributed to the refining effect of Bi. It was also found that addition of 1 wt% Bi increased the tensile strength, elongation and the absorbed energy for fracture due to the refined eutectic silicon structure.
Gravitational Acceleration Effects on Macrosegregation: Experiment and Computational Modeling
NASA Technical Reports Server (NTRS)
Leon-Torres, J.; Curreri, P. A.; Stefanescu, D. M.; Sen, S.
1999-01-01
Experiments were performed under terrestrial gravity (1g) and during parabolic flights (10-2 g) to study the solidification and macrosegregation patterns of Al-Cu alloys. Alloys having 2% and 5% Cu were solidified against a chill at two different cooling rates. Microscopic and Electron Microprobe characterization was used to produce microstructural and macrosegregation maps. In all cases positive segregation occurred next to the chill because shrinkage flow, as expected. This positive segregation was higher in the low-g samples, apparently because of the higher heat transfer coefficient. A 2-D computational model was used to explain the experimental results. The continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the solidification phenomena, for a two-phase system. The model considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The solidification event was divided into two stages. In the first one, the liquid containing freely moving equiaxed grains was described through the relative viscosity concept. In the second stage, when a fixed dendritic network was formed after dendritic coherency, the mushy zone was treated as a porous medium. The macrosegregation maps and the cooling curves obtained during experiments were used for validation of the solidification and segregation model. The model can explain the solidification and macrosegregation patterns and the differences between low- and high-gravity results.
Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys
NASA Astrophysics Data System (ADS)
Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio
Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.
NASA Technical Reports Server (NTRS)
Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David
2012-01-01
Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.
Primary Dendrite Array: Observations from Ground-Based and Space Station Processed Samples
NASA Technical Reports Server (NTRS)
Tewari, Surendra N.; Grugel, Richard N.; Erdman, Robert G.; Poirier, David R.
2012-01-01
Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST). Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K per centimeter (MICAST6) and 28 K per centimeter (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 millimeters per second) and a speed decrease (MICAST7-from 20 to 10 millimeters per second). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition
NASA Astrophysics Data System (ADS)
Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.
2017-01-01
The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.
NASA Astrophysics Data System (ADS)
Chun, Eun-Joon; Lim, Sung-Sang; Kim, Young-Tae; Nam, Ki-Sung; Kim, Young-Min; Park, Young-Whan; Murugan, Siva Prasad; Park, Yeong-Do
2018-03-01
Resistance nut projection weldability of Al-Si coated hot stamped steel (HSS) was investigated under the viewpoint of weldable current range and joint strength (pull-out load). The microstructural inhomogeneities in the welds were also studied in order to elucidate the factors affecting the joint strength of the welds. The weldability of the given Al-Si coated HSS was compared with the weldability of an identical HSS without the Al-Si coating (Al-Si coating was polished out) and Zn coated dual phase steel. The weldable current range of Al-Si coated HSS was found to be narrower than that of the other materials. Furthermore, the average pull-out load within the weldable current range of the Al-Si coated HSS was the lowest among the three materials. The reason for poor weld mechanical property of the Al-Si coated hot-stamped steel was attributed to the microstructural inhomogeneities such as unmixed Al-Si coating layer at the edge of the nugget and the second phase Fe3(Al, Si) intermetallic compound. The formation of Fe3(Al, Si) phase was attributed to the solidification segregation of Al and Si during the weld solidification and was confirmed with the numerical analysis of solidification segregation.
Numerical simulation of the interaction of biological cells with an ice front during freezing
NASA Astrophysics Data System (ADS)
Carin, M.; Jaeger, M.
2001-12-01
The goal of this study is a better understanding of the interaction between cells and a solidification front during a cryopreservation process. This technique of freezing is commonly used to conserve biological material for long periods at low temperatures. However the biophysical mechanisms of cell injuries during freezing are difficult to understand because a cell is a very sophisticated microstructure interacting with its environment. We have developed a finite element model to simulate the response of cells to an advancing solidification front. A special front-tracking technique is used to compute the motion of the cell membrane and the ice front during freezing. The model solves the conductive heat transfer equation and the diffusion equation of a solute on a domain containing three phases: one or more cells, the extra-cellular solution and the growing ice. This solid phase growing from a binary salt solution rejects the solute in the liquid phase and increases the solute gradient around the cell. This induces the shrinkage of the cell. The model is used to simulate the engulfment of one cell modelling a red blood cell by an advancing solidification front initially planar or not is computed. We compare the incorporation of a cell with that of a solid particle.
Advances in Pb-free solder microstructure control and interconnect design
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.; ...
2016-06-09
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing
NASA Astrophysics Data System (ADS)
Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.
2009-09-01
The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.
NASA Astrophysics Data System (ADS)
Viardin, A.; Berger, R.; Sturz, L.; Apel, M.; Hecht, U.
2016-03-01
The effect of solutal convection on the solidification of γ titanium aluminides, specifically on β(Ti) dendrite growth, is not well known. With the aim of supporting directional solidification experiments under hyper-gravity using a large diameter centrifuge, 2D-phase field simulations of β(Ti) dendrite growth have been performed for the binary alloy Ti-45at.%Al and various gravity scenarios. Both, the direction and magnitude of the gravity vector were varied systematically in order to reveal the subtle interplay between the convective flow pattern and mushy zone characteristics. In this presentation, gravity effects are discussed for early dendrite growth. For selected cases the evolution on longer timescales is also analyse of and oscillatory modes leading to dynamically stable steady state growth are outlined. In a dedicated simulation series forced flow is superimposed, as to mimic thermally driven fluid flow expected to establish on the macroscopic scale (sample size) in the centrifugal experiments. Above a certain threshold this flow turns dominant and precludes solutally driven convective effects.
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
Thermal analysis of HGFQ using FIDAP(trademark): Solidification front motion
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.
1996-01-01
The High Gradient Furnace with Quench (HGFQ) is being designed by NASA/MSFC for flight on the International Space Station. The furnace is being designed specifically for solidification experiments in metal and metallic alloy systems. The HGFQ Product development Team (PDT) has been active since January 1994 and their effort is now in early Phase B. Thermal models have been developed both by NASA and Sverdrup (support contractor) to assist in the HGFQ design effort. Both these models use SINDA as a solution engine, but the NASA model was developed using PATRAN and includes more detail than the Sverdrup model. These models have been used to guide design decisions and have been validated through experimentation on a prototypical 'Breadboard' furnace at MSFC. One facet of the furnace operation of interest to the designers is the sensitivity of the solidification interface location to changes in the furnace setpoint. Specifically of interest is the motion (position and velocity) of the solidification front due to a small perturbation in the furnace temperature. FIDAP(TM) is a commercially available finite element program for analysis of heat transfer and fluid flow processes. Its strength is in solution of the Navier-Stokes equations for incompressible flow, but among its capabilities is the analysis of transient processes involving radiation and solidification. The models presently available from NASA and Sverdrup are steady-state models and are incapable of computing the motion of the solidification front. The objective of this investigation is to use FIDAP(TM) to compute the motion of the solidification interface due to a perturbation in the furnace setpoint.
NASA Astrophysics Data System (ADS)
Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael
2015-09-01
During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.
Containerless processing of undercooled melts
NASA Technical Reports Server (NTRS)
Perepezko, J. H.
1993-01-01
The investigation focused on the control of microstructural evolution in Mn-Al, Fe-Ni, Ni-V, and Au-Pb-Sb alloys through the high undercooling levels provided by containerless processing, and provided fundamental new information on the control of nucleation. Solidification analysis was conducted by means of thermal analysis, x-ray diffraction, and metallographic characterization on samples processed in a laboratory scale drop tube system. The Mn-Al alloy system offers a useful model system with the capability of phase separation on an individual particle basis, thus permitting a more complete understanding of the operative kinetics and the key containerless processing variables. This system provided the opportunity of analyzing the nucleation rate as a function of processing conditions and allowed for the quantitative assessment of the relevant processing parameters. These factors are essential in the development of a containerless processing model which has a predictive capability. Similarly, Ni-V is a model system that was used to study duplex partitionless solidification, which is a structure possible only in high under cooling solidification processes. Nucleation kinetics for the competing bcc and fcc phases were studied to determine how this structure can develop and the conditions under which it may occur. The Fe-Ni alloy system was studied to identify microstructural transitions with controlled variations in sample size and composition during containerless solidification. This work was forwarded to develop a microstructure map which delineates regimes of structural evolution and provides a unified analysis of experimental observations. The Au-Pb-Sb system was investigated to characterize the thermodynamic properties of the undercooled liquid phase and to characterize the glass transition under a variety of processing conditions. By analyzing key containerless processing parameters in a ground based drop tube study, a carefully designed flight experiment may be planned to utilize the extended duration microgravity conditions of orbiting spacecraft.
Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; ...
2015-05-27
We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues formore » investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.« less
Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo
2003-01-01
Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well characterized, the constituent metals are available in a very pure form, and the thermophysical properties are well known. During solidification of hypoeutectic alloys, e.g., 55 wt pct Pb, the primary dendrites reject the less dense tin, and for the hypereutectic alloys, e.g., 75 wt pct Sn, the primary dendrites reject denser lead. Alloys were prepared by melting appropriate amounts of lead and tin in a glass crucible after which the homogeneous liquid was sucked directly into 5-mm i.d. glass tubes. The sample tube, containing approximately 30 cm of alloy, was then mechanically driven into the directional solidification furnace assembly and positioned such that approx. 20 cm of the sample was remelted. Subsequently, directional solidification was initiated by withdrawing the sample through a water-cooled jacket at a constant growth velocity of 2 ,microns/s. After 5 to 6 cm of growth, the sample was quickly removed from the furnace and quenched in a water bath to preserve the solid-liquid interface. Samples were directionally solidified vertically upward, nearly horizontally, and some in conjunction with an applied axial rotation of the crucible. Temperature gradients at the solid-liquid interface were measured with an in-siru K-type thermocouple. Solidified samples were cut perpendicular and parallel to the growth direction and conventionally prepared for microscopic examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jeong
The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method ismore » a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid spacings. This oscillatory dynamics including instantaneous jump of interface velocities are consistent with a previous phenomenological model by and a numerical investigation, which may cause the formation of banded structures. Additionally, the selection of the steady state growth dynamics in the highly undercooled melt is demonstrated. The transition of the growth morphology, interface velocity selection, and solute trapping phenomenon with increasing melt supersaturations was described by the phase-field simulation. The tip selection for the dendritic growth was consistent with Ivantsov's function, and the non-equilibrium chemical partitioning behavior shows good qualitative agreement with the Aziz's solute trapping model even though the model parameter(V D) remains as an arbitrary constant. This work is able to show the possibility of comprehensive description of rapid alloy growth over the entire time-dependent non-equilibrium phenomenon.« less
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
NASA Astrophysics Data System (ADS)
Dolz, M. I.; Fasano, Y.; Cejas Bolecek, N. R.; Pastoriza, H.; Mosser, V.; Li, M.; Konczykowski, M.
2015-09-01
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi2 Sr2 CaCu2 O8 vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Dolz, M I; Fasano, Y; Cejas Bolecek, N R; Pastoriza, H; Mosser, V; Li, M; Konczykowski, M
2015-09-25
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys
NASA Astrophysics Data System (ADS)
Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.
The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.
Continuous Solidification of Immiscible Alloys and Microstructure Control
NASA Astrophysics Data System (ADS)
Jiang, Hongxiang; Zhao, Jiuzhou
2018-05-01
Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.
Containerless processing of Nb-Ge alloys in a long drop tube
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.
1982-01-01
The thirty-two meter drop tube at the Marshall Space Flight Center was used to study the effect of zero gravity containerless processing on the structure and properties of materials. The concept involves the suppression of heterogeneous nucleation of solid in liquid and, therefore, solidification accompanied by large degrees of undercooling. Under these conditions metastable phases can be formed or, at the very least, unique nonequilibrium microstructures (containing equilibrium phases) with unique properties can be produced. The drop tube solidification was applied to niobium base alloys with emphasis on the Nb-Ge binary system in an effort to produce metastable phases with high superconducting transition temperatures in bulk specimens. In the past, only lower Ge alloys (Nb-13 a/o, Nb-18 a/o, and Nb-22 a/o) could be undercooled. Higher Ge alloys (e.g., Nb-25 a/o Ge and Nb-27 a/o Ge) can now be undercooled on a routine basis.
NASA Astrophysics Data System (ADS)
Lan, Peng; Tang, Haiyan; Zhang, Jiaquan
2016-06-01
A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping
2018-03-01
To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.
NASA Astrophysics Data System (ADS)
Lass, Eric A.; Stoudt, Mark R.; Williams, Maureen E.; Katz, Michael B.; Levine, Lyle E.; Phan, Thien Q.; Gnaeupel-Herold, Thomas H.; Ng, Daniel S.
2017-11-01
The microstructural evolution of laser powder-bed additively manufactured Inconel 625 during a post-build stress-relief anneal of 1 hour at 1143 K (870 °C) is investigated. It is found that this industry-recommended heat treatment promotes the formation of a significant fraction of the orthorhombic D0a Ni3Nb δ-phase. This phase is known to have a deleterious influence on fracture toughness, ductility, and other mechanical properties in conventional, wrought Inconel 625; and is generally considered detrimental to materials' performance in service. The δ-phase platelets are found to precipitate within the inter-dendritic regions of the as-built solidification microstructure. These regions are enriched in solute elements, particularly Nb and Mo, due to the micro-segregation that occurs during solidification. The precipitation of δ-phase at 1073 K (800 °C) is found to require up to 4 hours. This indicates a potential alternative stress-relief processing window that mitigates δ-phase formation in this alloy. Ultimately, a homogenization heat treatment is recommended for additively manufactured Inconel 625 because the increased susceptibility to δ-phase precipitation increases the possibility for significant degradation of materials' properties in service.
Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate
Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong
2014-01-01
In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281
Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification
NASA Technical Reports Server (NTRS)
Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.
1999-01-01
Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.
Huang, Zhiheng; Xiong, Hua; Wu, Zhiyong; Conway, Paul; Altmann, Frank
2013-01-01
The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps. PMID:28788356
NASA Astrophysics Data System (ADS)
Hope, Adam T.
Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.
PREFACE: Third International Conference on Advances in Solidification Processes (ICASP - 3)
NASA Astrophysics Data System (ADS)
Zimmermann, Gerhard; Ratke, Lorenz
2012-01-01
The 3rd International Conference on Advances in Solidification Processes was held in the Rolduc Abbey in the Netherlands a few kilometres away from Aachen. Around 200 scientists from 24 countries come in for the four day meeting. They found a stimulating but also relaxing environment and atmosphere, with beautiful weather and the medieval abbey inviting for walks, discussions, sitting outside and drinking a beer or wine. The contributions given at the conference reflected recent advances in various topics of solidification processes, ranging from fundamental aspects to applied casting technologies. In 20 oral sessions and a large poster session innovative results of segregation phenomena, microstructure evolution, nucleation and growth, phase formation, polyphase solidification, rapid solidification and welding, casting technology, thermophysics of molten alloys, solidification with forced melt flow and growth of single crystals and superalloys together with innovative diagnostic techniques were presented. Thereby, findings from experiments as well as from numerical modeling on different lengths scales were jointly discussed and contribute to new insight in solidification behaviour. The papers presented in this open access proceedings cover about half the oral and poster presentations given. They were carefully reviewed as in classical peer reviewed journals by two independent referees and most of them were revised and thus improved according to the reviewers comments. We think that this collection of papers presented at ICASP-3 gives an impression of the excellent contributions made. The papers embrace both the basic and applied aspects of solidification. We especially wish to express our appreciation for the team around Georg Schmitz and Margret Nienhaus organising this event and giving us their valued advice and support at every stage in preparing the conference. We also thank Lokasenna Lektorat for taking the task of checking all language-associated issues and fixing the papers according to the templates given by IOP Conference Series. We also wish to express our gratitude to the IOP Conference Series publishers, who were always helpful and patient with us. Conference photograph
NASA Astrophysics Data System (ADS)
Nguyen-Thi, H.; Reinhart, G.; Salloum Abou Jaoude, G.; Mathiesen, R. H.; Zimmermann, G.; Houltz, Y.; Voss, D.; Verga, A.; Browne, D. J.; Murphy, A. G.
2013-07-01
As most of the phenomena involved during the growth of metallic alloys from the melt are dynamic, in situ and time-resolved X-ray imaging should be retained as the method of choice for investigating the solidification front evolution. On Earth, the gravity force is the major source of various disturbing effects (natural convection, buoyancy/sedimentation, and hydrostatic pressure) which can significantly modify or mask certain physical mechanisms. Therefore solidification under microgravity is an efficient way to eliminate such perturbations to provide unique benchmark data for the validation of models and numerical simulations. Up to now, in situ observation during microgravity solidification experiments were limited to the investigations on transparent organic alloys, using optical methods. On the other hand, in situ observation on metallic alloys generally required synchrotron facilities. This paper reports on a novel facility we have designed and developed to investigate directional solidification on metallic alloys in microgravity conditions with in situ X-ray radiography observation. The facility consists of a Bridgman furnace and an X-ray radiography device specifically devoted to the study of Al-based alloys. An unprecedented experiment was recently performed on board a sounding rocket, with a 6 min period of microgravity. Radiographs were successfully recorded during the entire experiment including the melting and solidification phases of the sample, with a Field-of-View of about 5 mm×5 mm, a spatial resolution of about 4 µm and a frequency of 2 frames per second. Some preliminary results are presented on the solidification of the Al-20 wt% Cu sample, which validate the apparatus and confirm the potential of in situ X-ray characterization for the investigation of dynamical phenomena in materials processing, and particularly for the studying of metallic alloys solidification.
NASA Astrophysics Data System (ADS)
Mohagheghi, Samira; Şerefoğlu, Melis
2017-07-01
In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.
Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron
2017-05-16
The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.
An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal
NASA Astrophysics Data System (ADS)
Gallagher, Morgan Leo
Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-01
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-14
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less
Transport Phenomena During Equiaxed Solidification of Alloys
NASA Technical Reports Server (NTRS)
Beckermann, C.; deGroh, H. C., III
1997-01-01
Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.
GTA weld cracking-alloy 625 to 304L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, R.A.; Milewski, J.O.
1985-08-01
Autogenous gas tungsten arc welds joining alloy 625 and 304L stainless steel were found to be susceptible to weld solidification cracking. Utilization of pulsed current GTA welding produced a higher sensitivity to solidification cracks than continuous current welding. Spot Varestraint tests show that the sensitivity of this dissimilar metal combination to cracking exists over the entire range of dilutions while the greatest sensitivity is in 304L stainless steel rich compositions. Auger electron spectroscopy indicates that segregation of sulfur and phosphorous to the interdendritic phase promotes the hot cracking.
Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6
NASA Astrophysics Data System (ADS)
Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite
2017-05-01
The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo
2018-01-01
Additive manufacturing (AM) processes produce parts with improved physical, chemical, and mechanical properties compared to conventional manufacturing processes. In AM processes, intricate part geometries are produced from multicomponent alloy powder, in a layer-by-layer fashion with multipass laser melting, solidification, and solid-state phase transformations, in a shorter manufacturing time, with minimal surface finishing, and at a reasonable cost. However, there is an increasing need for post-processing of the manufactured parts via, for example, stress relieving heat treatment and hot isostatic pressing to achieve homogeneous microstructure and properties at all times. Solidification in an AM process controls the size, shape, and distribution of the grains, the growth morphology, the elemental segregation and precipitation, the subsequent solid-state phase changes, and ultimately the material properties. The critical issues in this process are linked with multiphysics (such as fluid flow and diffusion of heat and mass) and multiscale (lengths, times and temperature ranges) challenges that arise due to localized rapid heating and cooling during AM processing. The alloy chemistry-process-microstructure-property-performance correlation in this process will be increasingly better understood through multiscale modeling and simulation.
Center for low-gravity fluid mechanics and transport phenomena
NASA Technical Reports Server (NTRS)
Kassoy, D. R.; Sani, R. L.
1991-01-01
Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.
NASA Technical Reports Server (NTRS)
Papazian, J. M.; Wilcox, W. R.
1977-01-01
The behavior of bubbles at a dendritic solidification interface was studied during the coasting phase of a sounding rocket flight. Sequential photographs of the gradient freeze experiment showed nucleation, growth and coalescence of bubbles at the moving interface during both the low-gravity and one-gravity tests. In the one-gravity test the bubbles were observed to detach from the interface and float to the top of the melt. However, in the low-gravity tests no bubble detachment from the interface or steady state bubble motion occurred and large voids were grown into the crystal. These observations are discussed in terms of the current theory of thermal migration of bubbles and in terms of their implications on the space processing of metals.
NASA Astrophysics Data System (ADS)
Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.
2018-01-01
The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehozky, Sandor L.
1997-01-01
A numerical model of HgCdTe solidification was implemented using finite the element code FIDAP. Model verification was done using both experimental data and numerical test problems. The model was used to evaluate possible effects of double-diffusion convection in molten material, and microgravity level on concentration distribution in the solidified HgCdTe. Particular attention was paid to incorporation of HgCdTe phase diagram. It was found, that below a critical microgravity amplitude, the maximum convective velocity in the melt appears virtually independent on the microgravity vector orientation. Good agreement between predicted interface shape and an interface obtained experimentally by quenching was achieved. The results of numerical modeling are presented in the form of video film.
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang
2015-04-01
To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Ivanov, A. A.
2009-05-15
The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square rootmore » of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.« less
Gravitational modulation of thermosolutal convection during directional solidification
NASA Astrophysics Data System (ADS)
Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.
1993-03-01
During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.
NASA Astrophysics Data System (ADS)
Yan, Xuewei; Wang, Run'nan; Xu, Qingyan; Liu, Baicheng
2017-04-01
Mathematical models for dynamic heat radiation and convection boundary in directional solidification processes are established to simulate the temperature fields. Cellular automaton (CA) method and Kurz-Giovanola-Trivedi (KGT) growth model are used to describe nucleation and growth. Primary dendritic arm spacing (PDAS) and secondary dendritic arm spacing (SDAS) are calculated by the Ma-Sham (MS) and Furer-Wunderlin (FW) models respectively. The mushy zone shape is investigated based on the temperature fields, for both high-rate solidification (HRS) and liquid metal cooling (LMC) processes. The evolution of the microstructure and crystallographic orientation are analyzed by simulation and electron back-scattered diffraction (EBSD) technique, respectively. Comparison of the simulation results from PDAS and SDAS with experimental results reveals a good agreement with each other. The results show that LMC process can provide both dendritic refinement and superior performance for castings due to the increased cooling rate and thermal gradient.
Fluid mechanics of directional solidification at reduced gravity
NASA Technical Reports Server (NTRS)
Chen, C. F.
1992-01-01
The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiannan; Zhu, Ding; Zhou, Wanhai
Highlights: • Effects of four different preparation processes were studied at 20/60 °C. • All NS + HT, RS and RS + HT processes can optimize the thermodynamic performance. • The HT process can provoke the precipitation of A{sub 2}B{sub 7} and leads to a poor cycling life. • Al exhibits the most remarkable dissolution for all the alloys, especially at 60 °C. - Abstract: In order to optimize the microstructure and high temperature electrochemical performances of low-cost AB{sub 5}-type Ml(NiMnAl){sub 4.2}Co{sub 0.3}Fe{sub 0.5} hydrogen storage electrode alloys, four different preparation methods including normal solidification (NS), normal solidification and 900more » °C heat treatment (NS + HT), rapid solidification (RS), rapid solidification and 900 °C heat treatment (RS + HT) were adopted in this work. All alloys exhibit CaCu{sub 5} type hexagonal structure and there is a small amount of A{sub 2}B{sub 7} phase in NS + HT and RS + HT alloys. It is found the using of HT process can decrease the hydrogen equilibrium plateau pressure, the plateau slope and hysteresis at 40, 60 and 80 °C. The NS + HT and RS + HT alloys also possess better activation, high rate discharge performance, larger discharge capacity, but poor cycling performance due to the existence of A{sub 2}B{sub 7} phase which can accelerate dissolution of Ni, Mn and Fe elements in KOH alkaline electrolyte. The RS process can make alloy exhibit the best cycling performance especially at 60 °C.« less
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C.
2001-01-01
As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.
The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys
Lim, Jeon Taik; Youn, Ji Won; Seo, Seok Yong; Kim, Ki Young; Kim, Suk Jun
2017-01-01
The mechanical strength of an Al-30% Si alloy in the mushy zone was estimated by using a novel centrifugation apparatus. In the apparatus, the alloy melt was partially solidified, forming a porous structure made of primary Si platelets (Si foam) while cooling. Subsequently, pressure generated by centrifugal force pushed the liquid phase out of the foam. The estimated mechanical strength of the Si foam in the temperature range 850–993 K was very low (62 kPa to 81 kPa). This is about two orders of magnitude lower than the mechanical strength at room temperature as measured by compressive tests. When the centrifugal stress was higher than the mechanical strength of the foam, the foam fractured, and the primary Si crystallites were extracted along with the Al-rich melt. Therefore, to maximize the centrifugal separation efficiency of the Al-30% Si alloy, the centrifugal stress should be in the range of 62–81 kPa. PMID:28772695
Pressurized metallurgy for high performance special steels and alloys
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.
2016-07-01
The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.
Immiscible phase incorporation during directional solidification of hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Merrick, Roger A.
1993-01-01
Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For samples with compositions ranging from the monotectic composition up to 2 percent off of the monotectic composition, data indicated that the square of the phase spacing (lambda) varied linearly with the inverse of the growth rate (R).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spinelli, José Eduardo, E-mail: spinelli@ufscar.br; Silva, Bismarck Luiz; Cheung, Noé
2014-10-15
Bi–Ag alloys have been stressed as possible alternatives to replace Pb-based solder alloys. Although acceptable melting temperatures and suitable mechanical properties may characterize such alloys, as referenced in literature, there is a lack of comprehension regarding their microstructures (morphologies and sizes of the phases) considering a composition range from 1.5 to 4.0 wt.%Ag. In order to better comprehend such aspects and their correlations with solidification thermal parameters (growth rate, v and cooling rate, T-dot), directional solidification experiments were carried out under transient heat flow conditions. The effects of Ag content on both cooling rate and growth rate during solidification aremore » examined. Microstructure parameters such as eutectic/dendritic spacing, interphase spacing and diameter of the Ag-rich phase were determined by optical microscopy and scanning electron microscopy. The competition between eutectic cells and dendrites in the range from 1.5 to 4.0 wt.%Ag is explained by the coupled zone concept. Microhardness was determined for different microstructures and alloy Ag contents with a view to permitting correlations with microstructure parameters to be established. Hardness is shown to be directly affected by both solute macrosegregation and morphologies of the phases forming the Bi–Ag alloys, with higher hardness being associated with the cellular morphology of the Bi-2.5 and 4.0 wt.%Ag alloys. - Highlights: • Asymmetric zone of coupled growth for Bi–Ag is demonstrated. • Faceted Bi-rich dendrites have been characterized for Bi–1.5 wt.%Ag alloy. • Eutectic cells were shown for the Bi-2.5 and 4.0 wt.%Ag solder alloys. • Interphase spacing relations with G × v are able to represent the experimental scatters. • Hall-Petch type equations are proposed relating microstructural spacings to hardness.« less
NASA Astrophysics Data System (ADS)
Das, Prosenjit; Samanta, Sudip K.; Mondal, Biswanath; Dutta, Pradip
2018-04-01
In the present paper, we present an experimentally validated 3D multiphase and multiscale solidification model to understand the transport processes involved during slurry generation with a cooling slope. In this process, superheated liquid alloy is poured at the top of the cooling slope and allowed to flow along the slope under the influence of gravity. As the melt flows down the slope, it progressively loses its superheat, starts solidifying at the melt/slope interface with formation of solid crystals, and eventually exits the slope as semisolid slurry. In the present simulation, the three phases considered are the parent melt as the primary phase, and the solid grains and air as secondary phases. The air phase forms a definable air/liquid melt interface as the free surface. After exiting the slope, the slurry fills an isothermal holding bath maintained at the slope exit temperature, which promotes further globularization of microstructure. The outcomes of the present model include prediction of volume fractions of the three different phases considered, grain evolution, grain growth, size, sphericity and distribution of solid grains, temperature field, velocity field, macrosegregation and microsegregation. In addition, the model is found to be capable of making predictions of morphological evolution of primary grains at the onset of isothermal coarsening. The results obtained from the present simulations are validated by performing quantitative image analysis of micrographs of the rapidly oil-quenched semisolid slurry samples, collected from strategic locations along the slope and from the isothermal slurry holding bath.
Phase-field simulations of velocity selection in rapidly solidified binary alloys
NASA Astrophysics Data System (ADS)
Fan, Jun; Greenwood, Michael; Haataja, Mikko; Provatas, Nikolas
2006-09-01
Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth kinetics of Aziz and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad [Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidification, which inherently contain a nonzero interface width, can be used to study the dynamics of complex solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.
Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Mahata, Avik; Asle Zaeem, Mohsen; Baskes, Michael I.
2018-02-01
Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, and solid-state grain growth regimes. The main crystalline phase was identified as face-centered cubic, but a hexagonal close-packed (hcp) and an amorphous solid phase were also detected. The hcp phase was created due to the formation of stacking faults during solidification of Al melt. By slowing down the cooling rate, the volume fraction of hcp and amorphous phases decreased. After the box was completely solid, grain growth was simulated and the grain growth exponent was determined for different annealing temperatures.
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Influence of a magnetic field during directional solidification of MAR-M 246 + Hf superalloy
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Alter, Wendy; Schmidt, Dianne
1991-01-01
An area that has been almost totally overlooked in the optimization of properties in directionally solidified superalloys is the control of microstructural features through the application of a magnetic field during solidification. The influence of a magnetic field on the microstructural features of a nickel-base superalloys is investigated. Studies were performed on the dendritic MAR-M 246+Hf alloy, which was solidified under both a 5 K gauss magnetic field and under no-applied-field conditions. The possible influences of the magnetic field on the solidification process were observed by studying variations in microstructural features including volume fraction, surface area, number, and shape of the carbide particles. Stereological factors analyzed also included primary and secondary dendrite arm spacing and the volume fraction of the interdendritic eutectic constituent. Microprobe analysis was performed to determine the chemistry of the carbides, dendrites, and interdendritic constituents, and how it varied between field and no-field solidification samples. Experiments involving periodic application and removal of the magnetic field were also performed in order to permit a comparison with structural variations observed in a MAR-M 246+Hf alloy solidified during KC-135 high-g, low-g maneuvers.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-09-01
Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.
Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi
2016-01-01
In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism. PMID:27270334
NASA Astrophysics Data System (ADS)
Tang, Peng; Hu, Zhiliu; Zhao, Yanjun; Huang, Qingbao
2017-12-01
A numerical Newtonian thermal analysis (NTA) method was carried out for online monitoring the solidification course of commercial Al-Si alloys. The solidification paths of different molten Al-Si alloys were characterized by the fraction solid curves. The variation of heat capacity of Al and Si were concerned in the determination of baseline evaluation of latent heat. In this experiment, the pure Al, Al-1Si, Al-5Si, Al-9Si, Al-13Si and Al-18Si alloys were molten at 800 °C and cooled at room temperature, respectively. The cooling curves of these alloys were measured by using K-type thermocouples. The liquidus temperatures of these alloys decreased with the increase of Si %. An obvious stage occurred at about 580 °C, which was closely related to Al-Si eutectic reaction. Different phase fractions of these alloys were supported by the microstructure observation.
NASA Astrophysics Data System (ADS)
Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.
2018-01-01
Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
Directional solidification of Bi-Mn alloys using an applied magnetic field
NASA Technical Reports Server (NTRS)
Decarlo, J. L.; Pirich, R. G.
1987-01-01
Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.
Low gravity containerless processing of immiscible gold rhodium alloys
NASA Technical Reports Server (NTRS)
Andrews, J. Barry
1986-01-01
Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.
NASA Astrophysics Data System (ADS)
Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao
2017-07-01
A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.
NASA Astrophysics Data System (ADS)
Ma, Xiaoping; Li, Dianzhong
2018-07-01
The microstructures, segregation and cooling curve were investigated in the directional solidification of 20SiMnMo5 steel. The typical characteristic of faceted growth is identified. The microstructures within the single cellular and within the single dendritic arm, together with the contradictive segregation distribution against the cooling curve, verify the discrete crystal growth in multi-scales. Not only the single cellular/dendritic arm but also the single martensite zone within the single cellular/dendritic arm is produced by the discrete growth. In the viewpoint of segregation, the basic domain following continuous growth has not been revealed. Along with the multi-scale faceted discrete growth, the phase differentiation happens for both the solid and liquid. The differentiated liquid phases appear and evolve with different sizes, positions, compositions and durations. The physical mechanism for the faceted discrete growth is qualitatively established based on the nucleation of new faceted steps induced by the composition gradient and temperature gradient.
NASA Astrophysics Data System (ADS)
Ma, Xiaoping; Li, Dianzhong
2018-03-01
The microstructures, segregation and cooling curve were investigated in the directional solidification of 20SiMnMo5 steel. The typical characteristic of faceted growth is identified. The microstructures within the single cellular and within the single dendritic arm, together with the contradictive segregation distribution against the cooling curve, verify the discrete crystal growth in multi-scales. Not only the single cellular/dendritic arm but also the single martensite zone within the single cellular/dendritic arm is produced by the discrete growth. In the viewpoint of segregation, the basic domain following continuous growth has not been revealed. Along with the multi-scale faceted discrete growth, the phase differentiation happens for both the solid and liquid. The differentiated liquid phases appear and evolve with different sizes, positions, compositions and durations. The physical mechanism for the faceted discrete growth is qualitatively established based on the nucleation of new faceted steps induced by the composition gradient and temperature gradient.
Shu, Bin; Yang, Zhaoguang; Lee, Hsiaowan; Qiu, Bo; Li, Haipu
2016-02-01
An ultrasound-assisted emulsification microextraction based on the solidification of a floating organic droplet followed by gas chromatography with electron capture detection was developed for the simultaneous determination of 13 organochlorine pesticides in water samples. In the proposed method, ultrasound was applied to achieve the emulsification without addition of any dispersive solvent. In consequence, the volume of extraction phase remained unaffected by the ion strength of aqueous phase and high extraction recoveries were obtained. It was also found that dilution of the floating phase with acetone was necessary for preventing peak splitting in chromatogram. Under optimal conditions, the proposed method provided good sensitivity (the detection limits of organochlorine pesticides ranged from 1.3 to 3.9 ng/L) and good repeatability of extraction (below 6.5%, n = 5). The recoveries in reservoir and river water samples were between 75.8% and 96.9%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solidification of carbon-oxygen white dwarfs
NASA Technical Reports Server (NTRS)
Schatzman, E.
1982-01-01
The internal structure of white dwarfs is discussed. Highly correlated plasmas are reviewed. Implications for phase separation in the core of cooling white dwarfs are considered. The consequences for evolution of white dwarfs are addressed.
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Undercooling and solidification behavior in the InSb-Sb system. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Graves, J. A.
1985-01-01
Use of the droplet emulsion technique has been successful in studying the undercooling and crystallization behavior of Sb, InSb, and an InSb-Sb eutectic alloy. Both droplet size and imposed cooling rate were influential in controlling the extent of liquid undercooling. The droplet surface coating was of significant importance in determining the resultant solidification product structure through its effect on nucleation kinetics. The maximum undercooling for pure Sb was extended from 0.08 to 0.23 T sub m. While simple crushing techniques provided a dramatic increase in droplet undercooling over the bulk material, emulsification treatments both enhanced this undercooling and allowed successful formation of a metastable simple cubic Sb phase. This phase was stable to temperatures approaching the melting point. The simple cubic phase was detected in droplet samples processed using DTA, air and water quenching, and drop tube processing under a helium gas atmosphere. A deviation in the InSb parent ingot composition limited interpretation of the line compound results, however, emulsification techniques extended the undercooling of this material to 0.17 T sub L and provided a stable, protective surface coating for the droplets. Emulsification of the eutectic alloy was effective at producing various levels of undercooling from 0.1 to 0.2 T sub E. Microstructural examination revealed a normal-type eutectic structure in the undercooled droplets indicating that solidification occurred within the coupled zone and that this zone is somewhat symmetric about the eutectic composition.
The Case for a Heat-Pipe Phase of Planet Evolution on the Moon
NASA Technical Reports Server (NTRS)
Simon, J. I.; Moore, W. B.; Webb, A. A. G.
2015-01-01
The prevalence of anorthosite in the lunar highlands is generally attributed to the flotation of less dense plagioclase in the late stages of the solidification of the lunar magma ocean. It is not clear, however, that these models are capable of producing the extremely high plagioclase contents (near 100%) observed in both Apollo samples and remote sensing data, since a mostly solid lithosphere forms (at 60-70% solidification) before plagioclase feldspar reaches saturation (at approximately 80% solidification). Formation as a floating cumulate is made even more problematic by the near uniformity of the alkali composition of the plagioclase, even as the mafic phases record significant variations in Mg/(Mg+Fe) ratios. These problems can be resolved for the Moon if the plagioclase-rich crust is produced and refined through a widespread episode of heat-pipe magmatism rather than a process dominated by density-driven plagioclase flotation. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io's present activity. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an early episode of heat-pipe cooling. As the Moon likely represents the most wellpreserved example of early planetary thermal evolution in our solar system, studies of the lunar surface and of lunar materials provide useful data to test the idea of a universal model of the way terrestrial bodies transition from a magma ocean state into subsequent single-plate, rigid-lid convection or plate tectonic phases.
NASA Astrophysics Data System (ADS)
Li, Mingjun; Kuribayashi, Kazuhiko
2003-12-01
Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.
NASA Astrophysics Data System (ADS)
Li, Cheng-Jui; Tsai, Tsung-Wen; Tseng, Chien-Chou
The purpose of this research is to analyse the complex phase change and the heat transfer behavior of the Ti-6Al-4 V powder particle during the Selective Laser Melting (SLM) process. In this study, the rapid melting and solidification process is presented by Computational Fluid Dynamics (CFD) approach under the framework of the volume-of-fluid (VOF) method. The interaction between the laser velocity and power to the solidification shape and defects of the metal components will be studied numerically as a guideline to improve quality and reduce costs.
NASA Astrophysics Data System (ADS)
Li, Xi; Du, Dafan; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene
2014-11-01
The influence of a transverse magnetic field ( B < 1 T) on the solidification structure in directionally solidified Al-Si alloys was investigated. Experimental results indicate that the magnetic field caused macrosegregation, dendrite refinement, and a decrease in the length of the mushy zone in both Al-7 wt pct Si alloy and Al-7 wt pct Si-1 wt pct Fe alloys. Moreover, the application of the magnetic field is capable of separating the Fe-rich intermetallic phases from Al-7 wt pct Si-1 wt pct Fe alloy. Thermoelectric magnetic convection (TEMC) was numerically simulated during the directional solidification of Al-Si alloys. The results reveal that the TEMC increases to a maximum () when the magnetic field reaches a critical magnetic field strength (), and then decreases as the magnetic field strength increases further. The TEMC exhibits the multi-scales effects: the and values are different at various scales, with decreasing and increasing as the scale decreases. The modification of the solidification structure under the magnetic field should be attributed to the TEMC on the sample and dendrite scales.
Containerless drop tube solidification and grain refinement of NiAl3
NASA Technical Reports Server (NTRS)
Ethridge, E. C.; Curreri, P. A.; Kelly, M.; Workman, G.; Smith, A. M.; Bond, R.
1984-01-01
The possibility of undercooling Ni-Al alloys below the liquidus in order to produce a single phase peritectic structure by containerless drop tube solidification was studied. Containerless process is a technique for both high purity contamination free studies as well as for investigating the undercooling and rapid solidification of alloys by suppression of heterogeneous nucleation on container walls. In order to achieve large undercoolings one must avoid heterogeneous nucleation of crystallization. It was shown that the Marshall Space Flight Center drop tubes ae unique facilities for containerless solidification experiments and large undercoolings are possible with some alloys. The original goal of undercooling the liquid metal well below the liquidus to the peritectic temperature during containerless free to form primarily NiAl3 was achieved. The microstructures were interesting from another point of view. The microstructure from small diameter samples is greatly refined. Small dendrite arm spacings such as these could greatly facilitate the annealing and solid state transformation of the alloy to nearly 10% NiAl3 by reducing the distance over which diffusion needs to occur. This could minimize annealing time and might make it economically feasible to produce NiAl3 alloy.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng
2018-01-01
The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.
Solidification of undercooled liquids
NASA Technical Reports Server (NTRS)
Perepezko, J. H.; Shiohara, Y.; Paik, J. S.; Flemmings, M. C.
1982-01-01
During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy.
NASA Astrophysics Data System (ADS)
Ahmad, R.; Asmael, M. B. A.
2016-07-01
The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.
Paria, S.; Sarhan, A. A. D.; Goodarzi, M. S.; Baradaran, S.; Rahmanian, B.; Yarmand, H.; Alavi, M. A.; Kazi, S. N.; Metselaar, H. S. C.
2015-01-01
An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises. PMID:25879052
Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C
2015-01-01
An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bing; Tan, Dongyue; Lee, Tung Lik
Ultrasound processing of metal alloys is an environmental friendly and promising green technology for liquid metal degassing and microstructural refinement. However many fundamental issues in this field are still not fully understood, because of the difficulties in direct observation of the dynamic behaviours caused by ultrasound inside liquid metal and semisolid metals during the solidification processes. In this paper, we report a systematic study using the ultrafast synchrotron X-ray imaging (up to 271,554 frame per second) technique available at the Advanced Photon Source, USA and Diamond Light Source, UK to investigate the dynamic interactions between the ultrasonic bubbles/acoustic flow andmore » the solidifying phases in a Bi-8%Zn alloy. The experimental results were complimented by numerical modelling. The chaotic bubble implosion and dynamic bubble oscillations were revealed in-situ for the first time in liquid metal and semisolid metal. The fragmentation of the solidifying Zn phases and breaking up of the liquid-solid interface by ultrasonic bubbles and enhanced acoustic flow were clearly demonstrated and agreed very well with the theoretical calculations. The research provides unambiguous experimental evidence and robust theoretical interpretation in elucidating the dominant mechanisms of microstructure fragmentation and refinement in solidification under ultrasound.« less
Experimental investigation of solidification in metal foam enhanced phase change material
NASA Astrophysics Data System (ADS)
Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.
2017-10-01
A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.
NASA Astrophysics Data System (ADS)
Wu, M.; Ahmadein, M.; Kharicha, A.; Ludwig, A.; Li, J. H.; Schumacher, P.
2012-07-01
Empirical knowledge about the formation of the as-cast structure, mostly obtained before 1980s, has revealed two critical issues: one is the origin of the equiaxed crystals; one is the competing growth of the columnar and equiaxed structures, and the columnar-to-equiaxed transition (CET). Unfortunately, the application of empirical knowledge to predict and control the as-cast structure was very limited, as the flow and crystal transport were not considered. Therefore, a 5-phase mixed columnar-equiaxed solidification model was recently proposed by the current authors based on modeling the multiphase transport phenomena. The motivation of the recent work is to determine and evaluate the necessary modeling parameters, and to validate the mixed columnar-equiaxed solidification model by comparison with laboratory castings. In this regard an experimental method was recommended for in-situ determination of the nucleation parameters. Additionally, some classical experiments of the Al-Cu ingots were conducted and the as-cast structural information including distinct columnar and equiaxed zones, macrosegregation, and grain size distribution were analysed. The final simulation results exhibited good agreement with experiments in the case of high pouring temperature, whereas disagreement in the case of low pouring temperature. The reasons for the disagreement are discussed.
Wang, Bing; Tan, Dongyue; Lee, Tung Lik; ...
2017-11-03
Ultrasound processing of metal alloys is an environmental friendly and promising green technology for liquid metal degassing and microstructural refinement. However many fundamental issues in this field are still not fully understood, because of the difficulties in direct observation of the dynamic behaviours caused by ultrasound inside liquid metal and semisolid metals during the solidification processes. In this paper, we report a systematic study using the ultrafast synchrotron X-ray imaging (up to 271,554 frame per second) technique available at the Advanced Photon Source, USA and Diamond Light Source, UK to investigate the dynamic interactions between the ultrasonic bubbles/acoustic flow andmore » the solidifying phases in a Bi-8%Zn alloy. The experimental results were complimented by numerical modelling. The chaotic bubble implosion and dynamic bubble oscillations were revealed in-situ for the first time in liquid metal and semisolid metal. The fragmentation of the solidifying Zn phases and breaking up of the liquid-solid interface by ultrasonic bubbles and enhanced acoustic flow were clearly demonstrated and agreed very well with the theoretical calculations. The research provides unambiguous experimental evidence and robust theoretical interpretation in elucidating the dominant mechanisms of microstructure fragmentation and refinement in solidification under ultrasound.« less
Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth
NASA Astrophysics Data System (ADS)
Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.
2004-09-01
Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.
NASA Astrophysics Data System (ADS)
Adaikalanathan, Vimalan
Successive droplet impingement finds extensive applications in additive manufacturing technologies such as 3D printing, Liquid Metal Jetting and Net Form Manufacturing. Deposition, deformation and solidification of droplets are the constitutive stages in the process which determine the final outcome. Detailed knowledge about the flow behaviour, phase transformation and free surface deformation is required to have a complete understanding and optimization of the process parameters. Experimental research in this field is only limited to imaging techniques and post solidification analysis which only provide superficial information while overlooking most of the governing phenomenon. Knowledge of the physics governing the fluid and thermal behaviours can be applied to study the process with real time data pertaining to flow field, temperature profiles and solidification. However, free surface tracking, surface tension modelling, non-isothermal solidification and convection dominant heat transfer pose mathematical challenges in the solution of the governing equations. Moreover, deposition of droplets on pre-solidified splats or non-flat surfaces requires accurate special attention. The objective of the present work is to model the successive droplet impacts and simultaneous solidification and deformation. The highly non-linear flow field governed by the Navier Stokes equation is solved using a Two Step Projection method. The surface tension effects are accounted for through a Continuum Surface Force technique. One of the crucial elements in the study is the interface tracking algorithm. A Coupled Level Set Volume of Fluid (CLSVOF) method is formulated to give an accurate orientation of the drastically deforming interface and also facilitates generation of multiple droplets in a fixed domain at a user defined frequency, thereby conserving computational resources. The phase change is modelled using an enthalpy formulation of the energy equation with an implicit source term accounting for the latent heat. It is coupled with the flow solver through an Enthalpy-Porosity technique. A modified boundary condition which incorporates the contact resistance has also been implemented. The case of multiple eutectic solder droplet depositions has been simulated to study the various aspects of splat morphology and solidification characteristics. Effects of impact conditions on single as well as successive droplet depositions have been examined. The role of convection terms in the energy equation has been emphasized and quantitatively analysed. The effect of impact velocity is manifested as surface curvature of the pre-solidified splat and in turn, affects morphology of the subsequent droplets. Initial droplet temperature influences the solidification time of both single and multiple droplets. Under certain conditions, remelting of pre-solidified splat has been observed and its causes have been discussed. Contact resistance has been reported in the literature and has been found to have a strong influence not only on the heat transfer but also the spreading behaviour. Frequency of successive impingements is also an important factor affecting the metallurgical bonding properties.
Solidification studies of nanocrystalline and quasicrystalline materials from the undercooled state
NASA Astrophysics Data System (ADS)
Croat, Thomas Kevin
2001-07-01
Nanocrystallization occurring during metallic glass devitrification is studied in Zr-Al-Ni-Cu bulk metallic glasses (BMGs) and Al-RE-TM (RE = rare-earth, TM = transition metal) metallic glasses. The importance of transient nucleation in BMG devitrification was established by a direct transmission electron microscopy (TEM) measurement of the grain density in two-stage annealed samples. TEM examination of low temperature annealed BMGs also suggest that amorphous phase separation is occurring prior to crystallization. Nanocrystallization of rapidly quenched Al-RE-Ni glasses was preceded by the compositional segregation of the initially homogeneous glass into Al-rich and solute-rich regions (mainly nickel-enriched) on a ≈50--100 nm length scale, suggesting amorphous phase separation. This pre-existing compositional modulation on a nanometer scale leads naturally to the development of nanocrystals. The average rare earth radius (rRE) in Al-RE-Ni alloys was altered by co-substitution of chemically similar rare earth elements. In glasses with smaller r RE, nucleation of alpha-Al occurred preferentially near the boundaries of the phase-separated regions. However, phase separation did not universally lead to alpha-Al nanocrystallization; glasses with larger rRE crystallized to metastable intermetallic phases with a 50--100 nm grain size. Kinetic analysis of the alpha-Al crystallization was performed using isothermal DSC, yielding abnormally low Avrami exponents (n = 1.0--1.5); these values were found to be consistent with the observed transformation using a model that considers the overlapping diffusion fields of the alpha-Al grains during growth within the phase separated region. Containerless solidification experiments on Ti-based quasicrystal-forming alloys have been performed using various techniques, including drop-tube solidification, electromagnetic levitation (EML) and electrostatic levitation (ESL). In Ti-Fe-Si-O, the alpha-1/1 quasicrystal approximant phase is found to nucleate directly from the liquid over the range TixFe94-xSi 4(SiO2)2 with 67 < x < 69 in EML experiments. Both the alpha-1/1 phase in Ti-Fe-Si-O and the C14 Laves phase in Ti-Zr-Ni have lower relative undercoolings than nearby crystal phases. This presumably reflects the structural similarity between these polytetrahedral phases and the undercooled liquid, which leads to smaller nucleation barriers and lower maximum undercoolings.
NASA Astrophysics Data System (ADS)
Mandal, Nibir; Sarkar, Shamik; Baruah, Amiya; Dutta, Urmi
2018-04-01
Using an enthalpy based thermo-mechanical model we provide a theoretical evaluation of melt production beneath mid-ocean ridges (MORs), and demonstrate how the melts subsequently develop their pathways to sustain the major ridge processes. Our model employs a Darcy idealization of the two-phase (solid-melt) system, accounting enthalpy (ΔH) as a function of temperature dependent liquid fraction (ϕ). Random thermal perturbations imposed in this model set in local convection that drive melts to flow through porosity controlled pathways with a typical mushroom-like 3D structure. We present across- and along-MOR axis model profiles to show the mode of occurrence of melt-rich zones within mushy regions, connected to deeper sources by single or multiple feeders. The upwelling of melts experiences two synchronous processes: 1) solidification-accretion, and 2) eruption, retaining a large melt fraction in the framework of mantle dynamics. Using a bifurcation analysis we determine the threshold condition for melt eruption, and estimate the potential volumes of eruptible melts (∼3.7 × 106 m3/yr) and sub-crustal solidified masses (∼1-8.8 × 106 m3/yr) on an axis length of 500 km. The solidification process far dominates over the eruption process in the initial phase, but declines rapidly on a time scale (t) of 1 Myr. Consequently, the eruption rate takes over the solidification rate, but attains nearly a steady value as t > 1.5 Myr. We finally present a melt budget, where a maximum of ∼5% of the total upwelling melt volume is available for eruption, whereas ∼19% for deeper level solidification; the rest continue to participate in the sub-crustal processes.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William
1999-01-01
Experimental data on Al-0.8Au horizontal solidification of a 1 mm thick specimen in a BN crucible shows the effect of growth rate on the solidification interface shape. For translation rates below 0.5 micron/s the interface maintains a plain and flat shape. When the translation rate is 3 to 5 micron/s or more, the interface appearance changes to two planar zones, with the zone closer to the bottom having higher inclination. The interface shapes were measured by first quenching in place during growth. X-ray microscopy shows the interface shape within the quenched sample by viewing through the side of the specimen. In order to provide theoretical explanation of the phenomena, numerical modeling was undertaken using finite element code FIDAP. Double diffusion convection in Al-0.8Au melt and crystal-melt interface curvature during directional solidification was analyzed numerically. Actual thermophysical properties of Al-0.8Au including the binary Al-Au phase diagram were used. Although convection in the sample is weak, for the slower translation rate convection and diffusion is sufficient for the redistribution of initial compositional stratification caused by gravity. When translation rate is raised, neither convection nor diffusion can provide proper mixing so that solidification temperatures differ significantly near the bottom within the bulk of the sample. As a result, the solid-liquid interface appears to have two planar zones with different inclination.
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
NASA Technical Reports Server (NTRS)
Grugel, R.N.; Lee, C.P.; Cox, M.C.; Blandford, B.T.; Anilkumar, A.V.
2008-01-01
Controlled directional solidification experiments were performed in capillary channels, using nitrogen-saturated succinonitrile, to examine the effect of an in-situ stepwise processing pressure increase on an isolated pore evolution. Two experiments were performed using different processing pressure input profiles. The results indicate that a processing pressure increase has a transient effect on pore growth geometry characterized by an initial phase of decreasing pore diameter, followed by a recovery phase of increasing pore diameter. The experimental results also show that processing pressure can be used as a control parameter to either increase or terminate porosity formation. A theoretical model is introduced which indicates that the pore formation process is limited by the diffusion of solute-gas through the melt, and that the observed response toa pressure increase is attributed to the re-equilibration of solute concentration in the melt associated with the increased melt pressure.
Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel
NASA Astrophysics Data System (ADS)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.
2018-04-01
In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.
Benard convection in binary mixtures with Soret effects and solidification
NASA Technical Reports Server (NTRS)
Zimmermann, G.; Mueller, U.; Davis, S. H.
1992-01-01
Benard convection was studied in a two-component liquid which displayed Soret effects (Soret, 1879; DeGroot and Mazur, 1969) and in which the temperatures of the horizontal boundaries spanned the solidification temperature of the mixture. A steady basic state was observed, in which the layer is partly liquid (near the lower, heated plate) and partly solid (near the upper, cooled plate) with the interface being planar, and in which all transport is by conduction and diffusion. Linear stability of the basic state was examined to determine how the presence of solid and the ability of the material to solidify or melt under disturbance affects the critical conditions from the onset of instability. The theoretical results obtained for cases when the phase change is absent and when the Soret effects are absent (but the phase change is present) are compared with an experiment using alcohol-water mixtures.
Overview of waste stabilization with cement.
Batchelor, B
2006-01-01
Cement can treat a variety of wastes by improving physical characteristics (solidification) and reducing the toxicity and mobility of contaminants (stabilization). Potentially adverse waste-binder interactions are an important consideration because they can limit solidification. Stabilization occurs when a contaminant is converted from the dissolved (mobile) phase to a solid (immobile) phase by reactions, such as precipitation, sorption, or substitution. These reactions are often strongly affected by pH, so the presence of components of the waste that control pH are critical to stabilization reactions. Evaluating environmental impacts can be accomplished in a tiered strategy in which simplest approach would be to measure the maximum amount of contaminant that could be released. Alternatively, the sequence of release can be determined, either by microcosm tests that attempt to simulate conditions in the disposal zone or by mechanistic models that attempt to predict behavior using fundamental characteristics of the treated waste.
NASA Astrophysics Data System (ADS)
Yu, Fengyi; Wei, Yanhong
2018-05-01
The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.
Liquidus Temperatures and Solidification Behavior in the Copper-Niobium System
NASA Technical Reports Server (NTRS)
Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.
1998-01-01
The copper-niobium phase diagram has been under active debate; thus, a corroboratory experimental study is needed. In this investigation, the melts of Cu-Nb alloys at compositions ranging from 5 lo 86 wt% Nb were processed in different environments and solidified at relatively low rates of 50-75 C/s to determine liquidus temperatures and to study solidification behavior. For all samples processed under very clean conditions, only Nb dendrites in a Cu matrix were observed; while in the presents of oxygen impurities, the alloys containing 5-35 wt% Nb exhibited microstructure of Nb-rich spheroids and Nb dendrites in the Cu matrix. The results obtained from clean conditions are in fair agreement with the Cu-Nb phase diagram having an S-shaped, near-horizontal appearances of the liquidus. The formation of Nb-rich droplets at slow cooling rates is discussed in terms of a stable liquid miscibility gap induced by oxygen.
Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel
NASA Astrophysics Data System (ADS)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.
2018-06-01
In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.
An inverse model for a free-boundary problem with a contact line: Steady case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Oleg; Protas, Bartosz
2009-07-20
This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less
Scheil-Gulliver Constituent Diagrams
NASA Astrophysics Data System (ADS)
Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.
2017-06-01
During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Pirich, R. G.
1984-01-01
The effects of directional solidification processing on the microstructural, compositional, and magnetic properties of high-melting-temperature, commercially important alloys which form from the liquid state via peritectic or eutectic type reactions were determined. Emphasis was placed on ferromagnetic compounds of the commercially important Co-Sm and Al-Mn systems. The primary dendrite spacing for eutectic Sm2Co17/Co scaled with negative square root of V and varied from approximately 50 microns for V 20 cm/h to hundreds of microns for V 10 cm/h. Since the crystal growth mechanism was dendritic rather than cooperative, the assoicated permanent magnet properties were rather poor. Magnetization as a function of sample orientation indicates that the easy axis of magnetization was primarily along the direction of solidification for the eutectic Sm2Co17/Co and peritectic SmCo5/Sm2Co17 compositions. For the Al-Mn case, magnetization and microstructural characterization suggest isotropic, polycrystalling growth for all solidification velocities studied.
Influence of Pressure Field in Melts on the Primary Nucleation in Solidification Processing
NASA Astrophysics Data System (ADS)
Rakita, Milan; Han, Qingyou
2017-10-01
It is well known that external fields applied to melts can cause nucleation at lower supercoolings, fragmentation of growing dendrites, and forced convection around the solidification front. All these effects contribute to a finer microstructure of solidified material. In this article, we analyze how the pressure field created with ultrasonic vibrations influences structure refinement in terms of supercooling. It is shown that only high cavitation pressures of the order of 104 atmospheres are capable of nucleating crystals at minimal supercoolings. We demonstrate the possibility of sononucleation even in superheated liquid. Simulation and experiments with water samples show that very high cavitation pressures occur in a relatively narrow zone where the drive acoustic field has an appropriate combination of pressure amplitude and frequency. In order to accurately predict the microstructure formed by ultrasonically assisted solidification of metals, this article calls for the development of equations of state that would describe the pressure-dependent behavior of molten metals.
Two-Step Vapor/Liquid/Solid Purification
NASA Technical Reports Server (NTRS)
Holland, L. R.
1986-01-01
Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.
Meng, Fan-Tao; Zhang, Wan-Zhong; Ma, Guang-Hui; Su, Zhi-Guo
2003-08-01
Methoxypoly(ethylene glycol)-b-poly-DL-lactide (PELA) microcapsules containing bovine hemoglobin (bHb) were prepared by a W/O/W double emulsion-solvent diffusion process. bHb solution was used as the internal aqueous phase, PELA/organic solvent as the oil phase, and polyvinyl alcohol (PVA) solution as the external aqueous phase. This W/O/W double emulsion was added into a large volume of water (solidification solution) to allow organic solvent to diffuse into water. The optimum preparative condition for PELA microcapsules loaded with bovine hemoglobin was investigated. It was found that homogenization rate, type of organic solvent, and volume of the solidification solution influenced the activity of bovine hemoglobin encapsulated. When the homogenization rate was lower than 9000 rpm and ethyl acetate was used as the organic solvent, there was no significant influence on the activity of hemoglobin. High homogenization rate as 12 000 rpm decreased the P50 and Hill coefficient. Increasing the volume of solidification solution had an effect of improving the activity of microencapsulated hemoglobin. The composition of the PELA had the most important influence on the success of encapsulation. Microcapsules fabricated by PELA with MPEG2k block (molecular weight of MPEG block: 2000) achieved a high entrapment efficiency of 90%, better than PL A homopolymer and PELA with MPEG5k blocks. Hemoglobin microcapsules with native loading oxygen activity (P50 = 26.0 mmHg, Hill coefficient = 2.4), mean size of about 10 microm, and high entrapment efficiency (ca. 93%) were obtained at the optimum condition.
NASA Astrophysics Data System (ADS)
Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana
2016-12-01
The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.
Free energy change of off-eutectic binary alloys on solidification
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.
1991-01-01
A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.
Hysteresis in the phase transition of chocolate
NASA Astrophysics Data System (ADS)
Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua
2016-01-01
We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.
NASA Astrophysics Data System (ADS)
Payandeh, M.; Belov, I.; Jarfors, A. E. W.; Wessén, M.
2016-06-01
The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.
NASA Technical Reports Server (NTRS)
Copland, Evan
2008-01-01
The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.
NASA Astrophysics Data System (ADS)
Yuhan, Cao; Le, Luo
2009-08-01
A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding parameters are optimized based on both theoretical and experimental results. Verification shows that oxidation of the solder layer, voids and the scalloped-edge appearance of the Cu6Sn5 phase are successfully avoided. An average shear strength of 19.5 MPa and an excellent leak rate of around 1.9 × 10-9 atm cc/s are possible, meeting the demands of MIL-STD-883E.
NASA Astrophysics Data System (ADS)
Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo
2009-11-01
The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.
The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A
2010-03-01
This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.
Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1975-01-01
Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
Directional solidification of eutectic composites in space environment
NASA Technical Reports Server (NTRS)
Yue, A. S.
1972-01-01
The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.
Solidification and crystal growth of solid solution semiconducting alloys
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.
1984-01-01
Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.
Rapid solidification of high-conductivity copper alloys. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bloom, Theodore Atlas
1989-01-01
The main objective was to develop improved copper alloys of high strength and high thermal and electric conductivity. Chill block melt spinning was used to produce binary alloys of Cu-Cr and Cu-Zr, and ternary alloys of Cu-Cr-Ag. By quenching from the liquid state, up to 5 atomic percent of Cr and Zr were retained in metastable extended solid solution during the rapid solidification process. Eutectic solidification was avoided and the full strengthening benefits of the large volume fraction of precipitates were realized by subsequent aging treatment. The very low solid solubility of Cr and Zr in Cu result in a high conductivity Cu matrix strengthened by second phase precipitates. Tensile properties on as-cast and aged ribbons were measured at room and elevated temperatures. Precipitate coarsening of Cr in Cu was studied by changes in electrical resistance during aging. X-ray diffraction was used to measure the lattice parameter and the degree of supersaturation of the matrix. The microstructures were characterized by optical and electron microscopy.
NASA Astrophysics Data System (ADS)
Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.
2018-05-01
The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.
NASA Astrophysics Data System (ADS)
Phinichka, Natthapong
In strip casting the cast surface forms during the initial stage of solidification and the phenomenon that occurs during the first 50 milliseconds of contact time between the liquid steel and the mold define the cast surface and its quality. However the exact mechanism of the initial solidification and the process variables that affect initial solidification phenomena during that time are not well understood. The primary goal of this work is to develop a fundamental understanding of factors controlling strip casting. The purpose of the experimental study is to better understand the role of processing parameters on initial solidification phenomena, heat transfer rate and the formation of the cast steel surface. An investigation was made to evaluate the heat transfer rate of different kinds of steels. The experimental apparatus was designed for millisecond resolution of heat transfer behavior. A novel approach of simultaneous in-situ observation and measurement of rapid heat transfer was developed and enabled a coupling between the interfacial heat transfer rate and droplet solidification rate. The solidification rate was estimated from the varying position of the solidification front as captured by a CCD camera. The effects of experimental parameters such as melt superheat, sulfur content and oxide accumulation at the interface on measured heat flux were studied. It was found that the heat flux increased slightly when the percent of sulfur and increased significantly when superheat increased. The oxide accumulation at the interface was found to be manganese and silicon based oxide. When the liquid steel droplets were ejected onto the copper substrate repeatedly, without cleaning the substrate surface between the ejections, a large increase in the interfacial heat flux was observed. The results of the film study indicated that a liquid oxide film existed at the interface. The surface roughness measurement of the solidified specimen decreased with repeated experimentation and better contact between the droplet and the mold was found to be the cause of the improved heat transfer rate.
Interaction mechanisms between ceramic particles and atomized metallic droplets
NASA Astrophysics Data System (ADS)
Wu, Yue; Lavernia, Enrique J.
1992-10-01
The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of SiC particles occurred during droplet solidification. A comparison of the present results to those anticipated from well-established kinetic and thermodynamic models led to some interesting findings. First, the models proposed by Boiling and Cisse[24] and Chernov et al.[58] predict relative low critical interface velocities necessary for entrapment, inconsistent with the present experimental findings. Second, although the observed correlation between the critical front velocity and droplet diameter was generally consistent with that predicted by Stefanescu et a/.’s model,[27] the dependence on the size of SiC particles was not. In view of this discrepancy, three possible mechanisms were proposed to account for the experimental findings: nucleation of α-Al on SiC particles, entrapment of SiC particles between primary dendrite arms, and entrapment of SiC particles between secondary dendrite arms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K.; McKeown, J. T.; Liu, C.
In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s –1 to ~2.5 m s –1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s –1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K.
In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less
Zweiacker, K.; McKeown, J. T.; Liu, C.; ...
2016-08-04
In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s –1 to ~2.5 m s –1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s –1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Seong-Moon, E-mail: castme@kims.re.kr; Jeong, Hi-Won; Ahn, Young-Keun
Quantitative microsegregation analyses were systematically carried out during the solidification of the Ni-base superalloy CMSX-10 to clarify the methodological effect on the quantification of microsegregation and to fully understand the solidification microstructure. Three experimental techniques, namely, mushy zone quenching (MZQ), planar directional solidification followed by quenching (PDSQ), and random sampling (RS), were implemented for the analysis of microsegregation tendency and the magnitude of solute elements by electron probe microanalysis. The microprobe data and the calculation results of the diffusion field ahead of the solid/liquid (S/L) interface of PDSQ samples revealed that the liquid composition at the S/L interface is significantlymore » influenced by quenching. By applying the PDSQ technique, it was also found that the partition coefficients of all solute elements do not change appreciably during the solidification of primary γ. All three techniques could reasonably predict the segregation behavior of most solute elements. Nevertheless, the RS approach has a tendency to overestimate the magnitude of segregation for most solute elements when compared to the MZQ and PDSQ techniques. Moreover, the segregation direction of Cr and Mo predicted by the RS approach was found to be opposite from the results obtained by the MZQ and PDSQ techniques. This conflicting segregation behavior of Cr and Mo was discussed intensively. It was shown that the formation of Cr-rich areas near the γ/γ′ eutectic in various Ni-base superalloys, including the CMSX-10 alloy, could be successfully explained by the results of microprobe analysis performed on a sample quenched during the planar directional solidification of γ/γ′ eutectic. - Highlights: • Methodological effect on the quantification of microsegregation was clarified. • The liquid composition at the S/L interface was influenced by quenching. • The segregation direction of Cr varied depending on the experimental techniques. • Cr and Mo segregation in Ni-base superalloys was fully understood.« less
Mathematical modeling of microstructural development in hypoeutectic cast iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maijer, D.; Cockcroft, S.L.; Patt, W.
A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less
Porous Nb-Ti based alloy produced from plasma spheroidized powder
NASA Astrophysics Data System (ADS)
Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui
Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.
Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution
NASA Technical Reports Server (NTRS)
Sircar, S.; Chattopadhyay, K.; Mazumder, J.
1992-01-01
The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.
Crystallization dynamics in glass-forming systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, Timothy Edward
Crystallization under far-from-equilibrium conditions is investigated for two different scenarios: crystallization of the metallic glass alloy Cu 50Zr 50 and solidification of a transparent organic compound, o-terphenyl. For Cu 50Zr 50, crystallization kinetics are quanti ed through a new procedure that directly fits thermal analysis data to the commonly utilized JMAK model. The phase evolution during crystallization is quantified through in-situ measurements (HEXRD, DSC) and ex-situ microstructural analysis (TEM, HRTEM). The influence of chemical partitioning, diffusion, and crystallographic orientation on this sequence are examined. For o-terphenyl, the relationship between crystal growth velocity and interface undercooling is systematically studied via directionalmore » solidification.« less
Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria
NASA Astrophysics Data System (ADS)
Stein, Frank; Philips, Noah
2018-03-01
High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).
Self Assembled Structures by Directional Solidification of Eutectics
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2004-01-01
Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.
Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui
2017-07-01
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, G. Y.; Lan, C. W.
2017-09-01
Adaptive phase field modeling is used in order to model the formation mechanism of a silicon faceted interface in three dimensions. We investigate the faceting condition for equilibrium shapes and dynamic situations. In this study, we propose a new anisotropic function of surface energy for the phase-field simulations in three-dimension, and negative stiffness is further considered. The morphological evolutions are presented and compare well with experimental findings. The growth mechanism is further discussed.
The thickness of the crystal mush on the floor of the Bushveld magma chamber
NASA Astrophysics Data System (ADS)
Holness, Marian B.; Cawthorn, R. Grant; Roberts, James
2017-12-01
The thickness of the crystal mush on magma chamber floors can be constrained using the offset between the step-change in the median value of dihedral angles formed at the junctions between two grains of plagioclase and a grain of another phase (typically clinopyroxene, but also orthopyroxene and olivine) and the first appearance or disappearance of the liquidus phase associated with the step-change in median dihedral angle. We determined the mush thickness in the Rustenburg Layered Suite of the Bushveld Complex at clinopyroxene-in (in Lower Main Zone) and magnetite-in (in Upper Zone). We also examined an intermittent appearance of cumulus apatite in Upper Zone, using both the appearance and disappearance of cumulus apatite. In all cases, the mush thickness does not exceed 4 m. These values are consistent with field observations of a mechanically rigid mush at the bases of both magnetitite and chromitite layers overlying anorthosite. Mush thickness of the order of a few metres suggests that neither gravitationally-driven compaction nor compositional convection within the mush layer is likely to have been important processes during solidification: adcumulates in the Bushveld are most likely to have formed at the top of the mush during primary crystallisation. Similarly, it is unlikely either that migration of reactive liquids occurs through large stretches of stratigraphy, or that layering is formed by mechanisms other than primary accumulation.
Containerless Liquid-Phase Processing of Ceramic Materials
NASA Technical Reports Server (NTRS)
Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.
1996-01-01
The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Liu, Yinong; Huan, Yong
The concept of transformation-induced plasticity effect is introduced in this work to improve the plasticity of brittle intermetallic compound Ti3Sn, which is a potent high damping material. This concept is achieved in an in situ NiTi/Ti3Sn composite. The composite is composed of primary Ti3Sn phase and (NiTi + Ti3Sn) eutectic structure formed via hypereutectic solidification. The composite exhibits a high damping capacity of 0.075 (indexed by tan δ), a high ultimate compressive strength of 1350 MPa, and a large plasticity of 27.5%. In situ synchrotron high-energy X-ray diffraction measurements revealed clear evidence of the stress-induced martensitic transformation (B2 → B19)more » of the NiTi component during deformation. The strength of the composite mainly stems from the Ti3Sn, whereas the NiTi component is responsible for the excellent plasticity of the composite.« less
NASA Astrophysics Data System (ADS)
Carozzani, T.; Digonnet, H.; Gandin, Ch-A.
2012-01-01
A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum-7 wt% silicon alloy.
Surface Structure Formation in Direct Chill (DC) Casting of Al Alloys
NASA Astrophysics Data System (ADS)
Bayat, Nazlin; Carlberg, Torbjörn
2014-05-01
The aim of this study is to increase the understanding of the surface zone formation during direct chill (DC) casting of aluminum billets produced by the air slip technology. The depth of the shell zone, with compositions deviating from the bulk, is of large importance for the subsequent extrusion productivity and quality of final products. The surface microstructures of 6060 and 6005 aluminum alloys in three different surface appearances—defect free, wavy surface, and spot defects—were studied. The surface microstructures and outer appearance, segregation depth, and phase formation were investigated for the mentioned cases. The results were discussed and explained based on the exudation of liquid metal through the mushy zone and the fact that the exudated liquid is contained within a surface oxide skin. Outward solidification in the surface layer was quantitatively analyzed, and the oxide skin movements explained meniscus line formation. Phases forming at different positions in the segregation zone were analyzed and coupled to a cellular solidification in the exudated layer.
Real-Time Investigation of Solidification of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Kaukler, William; Sen, Subhayu
1999-01-01
Casting of metal matrix composites can develop imperfections either as non- uniform distributions of the reinforcement phases or as outright defects such as porosity. The solidification process itself initiates these problems. To identify or rectify the problems, one must be able to detect and to study how they form. Until, recently this was only possible by experiments that employed transparent metal model organic materials with glass beads to simulate the reinforcing phases. Recent results obtained from a Space Shuttle experiment (using transparent materials) will be used to illustrate the fundamental physics that dictates the final distribution of agglomerates in a casting. We have further extended this real time investigation to aluminum alloys using X-ray microscopy. A variety of interface-particle interactions will be discussed and how they alter the final properties of the composite. A demonstration of how a solid-liquid interface is distorted by nearby voids or particles, particle pushing or engulfment by the interface, formations of wormholes, Aggregation of particles, and particle-induced segregation of alloying elements will be presented.
NASA Technical Reports Server (NTRS)
Kattamis, T. Z.
1973-01-01
Results on specimen evaluation and discussion of solidification behavior in each case are reported in the following order: (1) specimen SL-1.6, (2) specimen SL-2.8, (3) specimen SL-2.4, (4) specimen SL-1.10 and (5) specimen SL-1.11. Comparison is made with ground-processed specimens of similar composition, whenever pertinent and meaningful. Among the nondestructive evaluation methods the measurement of sphericity was conducted by micrometric and shadowgraphic techniques. The intricate shape of specimens in some cases appeared difficult to define. In measuring the density, liquid penetration inside cavities that outcrop on the surface was avoided by sealing off these cavities. Among the destructive evaluation methods the use of the Quantimet 720 required particular attention, because of the small difference in contrast between second phases and micropores. With regard to microporosity microvoids in the core of some specimens were so fine that X-ray microradiography had to be used.
Liquidus Temperatures and Solidification Behavior in the Copper-Niobium System
NASA Technical Reports Server (NTRS)
Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.
1998-01-01
The copper-niobium phase diagram has been under active debate; thus, a corroboratory experimental study is needed. In this investigation, the melts of Cu-Nb alloys at compositions ranging from 5 to 86 wt pct Nb were processed in different environments and solidified at relatively low cooling rates of 50 to 75 C/s to determine liquidus temperatures and to study solidification behavior. For all samples processed under very clean conditions, only Nb dendrites in a Cu matrix were observed; while in the presence of oxygen impurities the alloys containing 5 to 35 wt pct Nb exhibited microstructure of Nb-rich spheroids and Nb dendrites in the Cu matrix. The results obtained from clean conditions are in fair agreement with the Cu-Nb phase diagram having an S-shaped, near-horizontal appearance of the liquidus. The formation of Nb- rich droplets at slow cooling rates is discussed in terms of a stable liquid miscibility gap induced by oxygen.
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Rong
2014-12-01
A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.
NASA Technical Reports Server (NTRS)
Copeland, Evan
2008-01-01
The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.
Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won
2017-08-01
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based on SPH method and macroscopic model based on FVM, FEM and FDM, can be applied to even more complicated system. In the mesoscopic model by SPH method, some fundamental mesoscopic phenomena, such as the microstructure evolution, interface morphology represented by high resolution, particle entrapment in solidification can be studied. In the macroscopic model, the heat transfer, fluid flow, species transport can be modeled, and the simulation results provided the velocity, temperature and species boundary condition necessary for the mesoscopic model. This part falls into the region of future work. (Abstract shortened by UMI.)
Controlling microstructure and mechanical properties of the new microelectronic interconnect alloys
NASA Astrophysics Data System (ADS)
Mutuku, Francis M.
An in-depth understanding of the physics of solidification could lead to the optimization of the properties of micro-electronic interconnects. Sn is the base material in the billions of interconnects in devices such as smart phones. These interconnects are formed by melting and solidifying a solder alloy (e.g. SnAgCu) in situ. But Sn has a low symmetry structure, Sn nucleation from the solder melt is complex and the morphology of the Sn and Sn alloys precipitates that form during solidification can vary tremendously (along with resultant mechanical properties). The effect of processing parameters on the solidification behavior, microstructure, and properties must be carefully addressed. Strong evidence adduced in this study shows that under many conditions, when cooling near eutectic SnAgCu from the melt, Ag3Sn nucleates before beta-Sn. The difficulty in the nucleation of beta-Sn provides a window of time between the nucleation of Ag3Sn precipitates and of beta-Sn solidification within which the Ag3Sn precipitate morphology can be manipulated. Thus distinct variations in precipitate number density, and inter-particle spacing were observed for different thermal histories, e.g. for different cooling rates. The average number density of Ag3Sn particles and the area of the pseudo-eutectic phase were observed to increase with increase in the Ag concentration, and with increase in the cooling rate. The shear strength and shear fatigue life increased with increase in the area fraction of the pseudo-eutectic phase. Upon aging of SnAgCu solder joints at an elevated temperature, the Ag3Sn particles coarsened, and became less effective in impeding dislocation motion. Consequently, the shear strength and shear fatigue performance degraded. On the other hand, alloys with constituents that formed solid solutions in Sn, such as small concentrations of Bi or Sb registered less degradation in both shear strength and shear fatigue life upon aging.
The primary objective of this study was to evaluate the performance of two selected chemical stabilization and solidification (S/S) techniques to treat three types of arsenic-contaminated wastes 1) chromated copper arsenate (CCA) wood treater waste, 2) La Trinidad Mine tailings, ...
A thermodynamic approach to obtain materials properties for engineering applications
NASA Technical Reports Server (NTRS)
Chang, Y. Austin
1993-01-01
With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.
Prediction of the As-Cast Structure of Al-4.0 Wt Pct Cu Ingots
NASA Astrophysics Data System (ADS)
Ahmadein, Mahmoud; Wu, M.; Li, J. H.; Schumacher, P.; Ludwig, A.
2013-06-01
A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the "big-bang" theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.
Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong
2016-11-01
The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-01-01
The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation. PMID:28788507
Effect of stress nonhomogeneity on the shear melting of a thin boundary lubrication layer.
Lyashenko, Iakov A; Filippov, Alexander E; Popov, Mikhail; Popov, Valentin L
2016-11-01
We consider the dynamical properties of boundary lubrication in contact between two atomically smooth solid surfaces separated by an ultrathin layer of lubricant. In contrast to previous works on this topic, we explicitly consider the heterogeneity of tangential stresses, which arises in a contact of elastic bodies that are moved tangentially relative to each other. To describe phase transitions between structural states of the lubricant we use an approach based on the field theory of phase transitions. It is assumed that the lubricant layer, when stressed, can undergo a shear-melting transition of first or second order. While solutions for the homogeneous system can be easily obtained analytically, the kinetics of the phase transitions in the spatially heterogeneous system can only be studied numerically. In our numerical experiments melting of the lubricant layer starts from the outer boundary of contact and propagates to its center. The melting wave is followed by a wave of solidification. This process repeats itself periodically, following the stick-slip pattern that is characteristic of such systems. Depending on the thermodynamic and kinetic parameters of the model, different modes of sliding with almost complete or only partial intermediate solidification are possible.
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-02-12
The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e. , strong enough, to avoid hot tear formation.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.
1992-01-01
The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic field results. Similarly addition of the Soret effect does not explain the flight and magnetic field results.
Direct numerical simulations of fluid flow, heat transfer and phase changes
NASA Technical Reports Server (NTRS)
Juric, D.; Tryggvason, G.; Han, J.
1997-01-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Metal-halide mixtures for latent heat energy storage
NASA Astrophysics Data System (ADS)
Chen, K.; Manvi, R.
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Analysis of microstructure in electro-spark deposited IN718 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanr
2016-09-15
The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free ofmore » the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.« less
Laser ultrasonic investigations of vertical Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Queheillalt, Douglas Ted
The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface geometry (i.e. axial location and shape) can be precisely recovered and the ultrasonic velocities of both solid and liquid phases obtained. To gain insight into the melting and solidification process, a single zone VB growth furnace was integrated with the laser ultrasonic sensor system and used to monitor the melting-solidification and directional solidification characteristics of Cd0.96Zn 0.04Te.
Solidification and solid-state transformation sciences in metals additive manufacturing
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...
2017-02-11
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
NASA Astrophysics Data System (ADS)
Hofmeister, M.; Franke, M. M.; Koerner, C.; Singer, R. F.
2017-12-01
Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called "counter pressure concept."
Simulating Macrosegregation in Var Ingots of Titanium Alloy During Solidification
2006-06-01
spacings in Ti- 6Al - 4V were estimated. A summary-status of the use of software by VAR titanium -ingot producers in the USA is also given. In its...Ti- 6Al - 4V with a melting condition provided by RMI Titanium Company (Proposed Case 11). Two ingots are simulated; one is simulated assuming a...revealed a more intense band. Since primary arm spacings in titanium alloys are not available, primary dendrite arm spacings in Ti-6A1- 4V were
NASA Astrophysics Data System (ADS)
Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.
2015-08-01
Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.
NASA Astrophysics Data System (ADS)
Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.
2018-05-01
Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.
2014-06-01
layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Alan A; Zhao, Ji-Cheng; Riggi, Adrienne
The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide largemore » amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.« less
Solidification of Magnesium (AM50A) / vol%. SiCp composite
NASA Astrophysics Data System (ADS)
Zhang, X.; Hu, H.
2012-01-01
Magnesium matrix composite is one of the advanced lightweight materials with high potential to be used in automotive and aircraft industries due to its low density and high specific mechanical properties. The magnesium composites can be fabricated by adding the reinforcements of fibers or/and particles. In the previous literature, extensive studies have been performed on the development of matrix grain structure of aluminum-based metal matrix composites. However, there is limited information available on the development of grain structure during the solidification of particulate-reinforced magnesium. In this work, a 5 vol.% SiCp particulate-reinforced magnesium (AM50A) matrix composite (AM50A/SiCp) was prepared by stir casting. The solidification behavior of the cast AM50A/SiCp composite was investigated by computer-based thermal analysis. Optical and scanning electron microscopies (SEM) were employed to examine the occurrence of nucleation and grain refinement involved. The results indicate that the addition of SiCp particulates leads to a finer grain structure in the composite compared with the matrix alloy. The refinement of grain structure should be attributed to both the heterogeneous nucleation and the restricted primary crystal growth.
Application of Solidification Theory to Rapid Solidification Processing
1984-07-01
solubility; _NiAl -Cr quasibinary alloys ; Rapid solidification ; Solidification theory I’.ASRACT ICfene an roerso aid it 000e..yV SON identify0 by Week...110100a) ~j ~apid solidification allows the production of alloys with new compositions and * uphases and also allows production of improved alloys by...control of microstructure;L and homogeneity. The effect of rapid solidification velocity on the micro- structure of Ag-Cu alloys is comprehensively
Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone
NASA Astrophysics Data System (ADS)
Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed
2005-02-01
A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.
Propagative selection of tilted array patterns in directional solidification
NASA Astrophysics Data System (ADS)
Song, Younggil; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Karma, Alain
2018-05-01
We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional solidification of a binary alloy when a preferred-growth crystal axis is misoriented with respect to the temperature gradient. In situ experimental observations and phase-field simulations in thin samples reveal the existence of a propagative source-sink mechanism of array spacing selection that operates on larger space and time scales than the competitive growth at play during the initial solidification transient. For tilted arrays, tertiary branching at the diverging edge of the sample acts as a source of new cells with a spacing that can be significantly larger than the initial average spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields a uniform spacing everywhere, selected independently of the initial conditions, except in a small region near the converging edge of the sample, which acts as a sink of cells. We propose a discrete geometrical model that describes the large-scale evolution of the spatial spacing profile based on the local dependence of the cell drift velocity on the spacing. We also derive a nonlinear advection equation that predicts the invasion velocity of the large-spacing domain, and sheds light on the fundamental nature of this process. The models also account for more complex spacing modulations produced by an irregular dynamics at the source, in good quantitative agreement with both phase-field simulations and experiments. This basic knowledge provides a theoretical basis to improve the processing of single crystals or textured polycrystals for advanced materials.
Xu, Hui; Ding, Zongqing; Lv, Lili; Song, Dandan; Feng, Yu-Qi
2009-03-16
A new dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of five kinds of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In this method, no specific holder, such as the needle tip of microsyringe and the hollow fiber, is required for supporting the organic microdrop due to the using of organic solvent with low density and proper melting point. Furthermore, the extractant droplet can be collected easily by solidifying it in the lower temperature. 1-Dodecanol was chosen as extraction solvent in this work. A series of parameters that influence extraction were investigated systematically. Under optimal conditions, enrichment factors (EFs) for PAHs were in the range of 88-118. The limit of detections (LODs) for naphthalene, diphenyl, acenaphthene, anthracene and fluoranthene were 0.045, 0.86, 0.071, 1.1 and 0.66ngmL(-1), respectively. Good reproducibility and recovery of the method were also obtained. Compared with the traditional liquid-phase microextraction (LPME) and dispersive liquid-liquid microextraction (DLLME) methods, the proposed method obtained about 2 times higher enrichment factor than those in LPME. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvent in the traditional DLLME method. The proposed method was successfully applied to determinate PAHs in the environmental water samples. The simple and low-cost method provides an alternative method for the analysis of non-polar compounds in complex environmental water.
1985-01-01
a pavillion with a snack bar, six cabins, eight recreational vehicle camping sites with electrical -- hookup only, a covered picnic area, and a small...solidification. Lava: The material extruded by a volcano which consists of molten or part- molten silicate material. Leachate: A solution resulting from
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...
Indirect measurement of the solid/liquid interface using the minimization technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, H.; Chun, M.
1985-11-01
The phenomenon of solidification of a flowing fluid in a vertical tube is closely related to the relocation dynamics of molten nuclear fuels in hypothetical core-disruptive accidents of a liquid-metal fast breeder reactor. The knowledge of the transient shape and the position of the liquid/solid interface is of practical importance in analysis of phase change processes. Sparrow and Broadbent directly measured the solid liquid interface via experiments, whereas Viskanta observed the solid/liquid interface motion via a photographic method. In this paper, a new method to predict the transient position of the solid/liquid interface is developed. This method is based onmore » the minimization technique. To use this method one needs the temperature of the wall on which the phase change is to take place. The new technique is useful, in particular, for the case of inward solidification of a flowing fluid in a tube where direct measurement of the solid/liquid interface is not possible, whereas the tube wall temperature measurement is relatively easy.« less
Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change
Nourgaliev, R.; Luo, H.; Weston, B.; ...
2015-11-11
A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as wellmore » as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.« less
NASA Astrophysics Data System (ADS)
Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao
2016-09-01
To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.
2013-09-01
Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi, Jiawei; Tan, Dongyue; Lee, Tung Lik
2014-12-11
Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with themore » solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement.« less
NASA Technical Reports Server (NTRS)
Seidel, A.; Soellner, W.; Stenzel, C.
2012-01-01
Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties.
Microscopic calculations of liquid and solid neutron star matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Sudip; Miller, Michael D.; Chia-Wei, Woo
1974-02-01
As the first step to a microscopic determination of the solidification density of neutron star matter, variational calculations are performed for both liquid and solid phases using a very simple model potential. The potential, containing only the repulsive part of the Reid /sup 1/S/sub o/ interaction, together with Boltzmann statistics defines a homework problem'' which several groups involved in solidification calculations have agreed to solve. The results were to be compared for the purpose of checking calculational techniques. For the solid energy good agreement with Canuto and Chitre was found. Both the liquid and solid energies are much lower thanmore » those of Pandharipande. It is shown that for this oversimplified model, neutron star matter will remain solid down to ordinary nuclear matter density.« less
NASA Astrophysics Data System (ADS)
Wang, Fu; Wu, Zining; Huang, Can; Ma, Dexin; Jakumeit, Jürgen; Bührig-Polaczek, Andreas
2017-12-01
The effect of withdrawal rates on the three-dimensional dendrite growth within the shrouds of single crystal blades during directional solidification was studied by both experiments and numerical simulations. The results showed that at given withdrawal rates, the dendrite pattern within the shrouds comprised three zones: primary dendrite zone, secondary dendrite spread zone, and a higher-order dendrite branched zone. With increasing withdrawal rate, the average primary dendrite arm spacing in the primary dendrite zone and the average secondary dendrite arm spacings in both the secondary dendrite spread zone and the higher-order dendrite branched zone were reduced. Independent of the variation in withdrawal rate, two analogous dendrite growth routes were observed within the shrouds of the employed blade geometry. These routes originated from the primary dendrites in the primary dendrite zone and filled in the shrouds by directly spreading secondary or successively branching higher-order dendrites. Except for a withdrawal rate of 6 mm min-1, these dendrites impinged at the shroud's highest extremity and could be explained by the simulated moving isotherms. As the withdrawal rate was increased to 2.5 mm min-1, undercooling and contraction stress-related equiaxed grains were observed in the interdendritic region at the lowest shroud extremity. With increasing withdrawal rate, the amount of the defects was increased. Since the defects destroy the integrity of single crystal blades, the solidification condition within the shroud should be controlled to avoid their occurrence. Along the dendrite growth route, an accumulated misorientation of the dendrites was observed. At the same positions, this accumulation increased with increasing withdrawal rate.
Dimensionless numbers in additive manufacturing
NASA Astrophysics Data System (ADS)
Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.
2017-02-01
The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.
A Review of Permanent Magnet Stirring During Metal Solidification
NASA Astrophysics Data System (ADS)
Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander
2017-12-01
Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.
When a water drop freezes before it solidifies
NASA Astrophysics Data System (ADS)
Kavehpour, Pirouz; Davis, Stephen; Tavakoli, Faryar
2012-11-01
When a drop of liquid is placed on a substrate which temperature is below the melting point of the liquid, one would expect the drop to solidify instantaneously. However, many liquids, such as water, must be subcooled to solidify below its melting temperature due to homogeneous nucleation's high activation energy. Most of the drop solidification research, particularly for water, phase change is assumed to occur at equilibrium freezing temperature; however, this is not the case. We found that after a certain degree of supercooling, a kinetic based nucleation begins and latent heat of fusion is suddenly liberated, causing an increase in liquid temperature. At the end of this stage, approximately 20% of the drop is crystallized. This phenomenon is known among metallurgists as recalescence. This is followed by a slow solidification process at the melting point. As a water droplet spreads on a cold substrate, its contact line stops just prior to freezing inception from the liquid-solid interface. In this study, we assert that recalescence prior to solidification may be the cause of water's sudden immobility, which results in a fixed contact angle and droplet diameter. In our experiments, the nucleation front initiates from the trijunction point and propagates to the drop volume.
Wu, Yan; Lee, Chuan-Pin; Mimura, Hitoshi; Zhang, Xiaoxia; Wei, Yuezhou
2018-01-05
Silica-based ammonium molybdophosphate (AMP/SiO 2 ) is an absorbent material that can effectively remove Cs from radioactive-contaminated wastewater (RCW) generated by Fukushima nuclide accident. Pressing/sintering method was used for final disposal of secondary waste (spent absorbent) to achieve the volume reduction of AMP-Cs/SiO 2 (AMP/SiO 2 saturation adsorption of Cs) and stable solidification of Cs by adding natural allophane. The structure of AMP-Cs completely collapsed at approximately 700°C, and most Mo and P species in AMP sublimed. The optimal sintering temperature was estimated as 900°C. The stable crystalline phase of Cs 4 Al 4 Si 20 O 48 was recrystallized by the reaction of Cs 2 O, Al 2 O 3 , and SiO 2 , and the immobilization ratio of Cs was approximately 100%. The leachability of Cs from the sintered product in distilled water was approximately 0.41%. The high immobilization and low leachability of Cs were attributed to the excellent solidification properties of the sintered products of AMP-Cs/SiO 2 -allophane. Copyright © 2017 Elsevier B.V. All rights reserved.
Xuan, Yang; Nastac, Laurentiu
2018-02-01
Recent studies showed that the microstructure and mechanical properties of aluminum based nanocomposites can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because ultrasonic cavitation processing plays an important role not only in degassing and dispersion of the nanoparticles, but also in breaking up the dendritic grains and refining the as-cast microstructure. In the present study, A356 alloy and Al 2 O 3 nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles were added into the molten A356 alloy and dispersed via ultrasonic cavitation processing. Ultrasonic cavitation was applied over various temperature ranges during molten alloy cooling and solidification to investigate the grain structure formation and the nanoparticle dispersion behavior. Optical Microscopy and Scanning Electron Microscopy were used to investigate in detail the differences in the microstructure characteristics and the nanoparticle distribution. Experimental results indicated that the ultrasonic cavitation processing and Al 2 O 3 nanoparticles play an important role for microstructure refinement. In addition, it was shown in this study that the Al 2 O 3 nanoparticles modified the eutectic phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy
NASA Astrophysics Data System (ADS)
Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc
2015-07-01
The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.
NASA Astrophysics Data System (ADS)
Yeo, Haram; Ki, Hyungson
2018-03-01
In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.
Phase equillibria and solidification behaviour in the vanillin- p-anisidine system
NASA Astrophysics Data System (ADS)
Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.
2008-12-01
Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.
Stefan problem for a finite liquid phase and its application to laser or electron beam welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasuya, T.; Shimoda, N.
1997-10-01
An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [{ital Conduction of Heat in Solids}, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefanmore » problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications. {copyright} {ital 1997 American Institute of Physics.}« less
Processing of alnico permanent magnets by advanced directional solidification methods
Zou, Min; Johnson, Francis; Zhang, Wanming; ...
2016-07-05
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (H ci) of 2.0 kOe, a remanence (B r) of 10.2 kG, and an energy product (BH) max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of highermore » Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m 2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti composition. As a result, higher Ti compositions did not display the preferred spinodal microstructure, explaining their inferior magnetic properties.« less
Experiments on Nucleation in Different Flow Regimes
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.
1999-01-01
The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods. Dilatometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov. The advantage of these experiments is that the samples are directly observable. The nucleation temperature can be measured by noncontact optical pyrometry, the mass of the sample is known, and post processing analysis can be conducted on the sample. The disadvantages are that temperature measurement must have exceptionally high precision, and it is not possible to isolate specific heterogeneous sites as in droplet dispersions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shi'ang
Primary particles formed in as-cast Al-5Mg-0.6Sc alloy and their role in microstructure and mechanical properties of the alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and tensile testing. It was found that primary particles due to a close orientation to matrix could serve as the potent heterogeneous nucleation sites for α-Al during solidification and thus impose a remarkable grain refinement effect. Eutectic structure consisted of layer by layer of ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ and cellular-dendritic substructure were simultaneously observed at the particles inside, indicating that these particles couldmore » be identified as the eutectics rather than individual Al{sub 3}Sc phase. A calculating method, based on EBSD results, was introduced for the spatial distribution of these particles in matrix. The results showed that these eutectic particles randomly distributed in matrix. In addition, the formation of primary eutectic particles significant improved the strength of the Al-Mg alloy in as-cast condition, which is ascribed to the structural evolution from coarse dendrites to prefect fine equiaxed grains. On the other hand, these large-sized particles due to the tendency to act as the microcrack sources could cause a harmful effect in the ductility of Al-Mg-Sc alloy. - Highlights: •Primary particles exhibit an ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ multilayer feature with a cellular-dendritic mode of growth. •EBSD analyses the mechanism of grain refinement and the distribution of primary particles in α-Al matrix. •A computational method was presented to calculate the habit planes of primary particles.« less
The solidification velocity of nickel and titanium alloys
NASA Astrophysics Data System (ADS)
Altgilbers, Alex Sho
2002-09-01
The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.
Visualization of solidification front phenomena
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.
1993-01-01
Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirro, J.
This report presents the results of a technical assessment of decontamination alternative prepared for the Western New York Nuclear Service Center (WNYNSC). The purpose of the assessment is to determine the recommended method for decontamination of cell surfaces and decontamination and removal of fuel reprocessing cell equipment to permit manual entry into the cells for the installation of waste solidification equipment. The primary cells of interest are the PMC, GPC, and CPC because they offer the largest usable volume for the solidification program. The secondary cells include XC-1, XC-2, XC-3 and the PPC which may be needed to support themore » solidification program. Five decontamination assessments were evaluated (A-E). The assessments included the estimated cost, occupational exposure, duration, manpower, waste volume generated, and final cell radiation levels achieved with the alternative decontamination methods. The methods varied from thorough destructive decontamination to equipment removal without decontamination followed by cell wall and floor decontamination. The recommended method for the primary cells is to utilize the remote manipulators and cranes to the maximum extent possible to decontaminate equipment and cell surfaces remotely, and to remove the equipment for temporary on-site storage. The recommended method for secondary cell decontamination is to remotely decontaminate the cells to the maximum extent possible prior to manned entry for contact-removal of the fuel reprocessing equipment (Assessment D). Assessment A is expected to cost $8,713,500 in 1980 dollars (including a 25% contingency) and will result in an occupational exposure of 180.3 manRem. Assessment D is expected to cost $11,039,800 and will result in an occupational exposure of 259 manRems.« less
Containerless Processing: Fabrication of Advanced Functional Materials from Undercooled Oxide Melt
NASA Astrophysics Data System (ADS)
Kumar, M. S. Vijaya; Ishikawa, Takehiko; Yoda, Shinichi; Kuribayashi, Kazuhiko
2012-07-01
Materials science in Microgravity condition is one of newly established cutting edge science field. After the effort of space development and space utilization, microgravity of space environment has been considered as one of novel tools for materials science because it assures containerless levitation. Containerless processing is a promising technique to explore the technologically important materials using rapid solidification of an undercooled melt. Recently, rare-earth ferrites and manganites have attracted great interest towards their wide applications in the field of electronic industry. Among these new hexagonal phases with a space group of P6 _{3}cm are technologically important materials because of multiferroic characteristics, i.e., the coexistence of ferroelectricity and magnetism in one compound. In the present study, containerless solidification of the R-Fe-O, and R-Mn-O melts were carried out to fabricate multiferroics under the controlled Po _{2}. Containerless processing is a promising technique to explore the new materials using rapid solidification of an undercooled melt because it provides large undercooling prior to nucleation. In order to undercool the melt deeply below the melting temperature under a precisely controlled oxygen partial pressure, an aerodynamic levitator (ADL) combined with ZrO _{2} oxygen sensor was designed. A spherical RFeO _{3} and RMnO _{3} sample was levitated by an ADL and completely melted by a CO _{2} laser in an atmosphere with predetermined Po _{2}.The surface temperature of the levitated droplet was monitored by a two-color pyrometer. Then, the droplet was cooled by turning off the CO _{2} laser. The XRD results of the rapidly solidified LuFeO _{3} and LuMnO _{3} samples at Po _{2} of 1x10 ^{5} Pa confirms the existence of the hexagonal metastable LuFeO _{3} phase. On the other hand, orthorhombic RFeO _{3} (R=Yb, Er, Y and Dy)and hexagonal RMnO _{3} (R=Ho-Lu)phases were identified. The cross-sectioned scanning electron microscopy (SEM) images and TG/DTA results revealed the existence of the stable and metastable phases with decreasing Po _{2}. The magnetic properties of the as-solidified samples were studied using vibrating sample magnetometer (VSM). These results indicate that a metastable and stable phase solidifies directly from the undercooled melt even when the melt is undercooled much below the peritectic temperature.
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Danilov, D. A.
2004-05-01
The interface stability against small perturbations of the planar solid-liquid interface is considered analytically in linear approximation. Following the analytical procedure of Trivedi and Kurz [
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Goldenfeld, Nigel
2001-01-01
Modeling solidification microstructures has become an area of intense study in recent years. The properties of large scale cast products, ranging from automobile engine blocks to aircraft components and other industrial applications, are strongly dependent on the physics that occur at the mesoscopic and microscopic length scales during solidification. The predominant morphology found in solidification microstructures is the dendrite, a tree-like pattern of solid around which solidification proceeds. The microscopic properties of cast products are determined by the length scales of these dendrites, and their associated segregation profiles. For this reason understanding the mechanisms for pattern selection in dendritic growth has attracted a great deal of interest from the experimental and theoretical communities. In particular, a great deal of research has been undertaken to understand such issues as dendrite morphology, shape and growth speed. Experiments on dendrite evolution in pure materials by Glicksman and coworkers on succinonitrile (SCN), and more recently pivalic acid (PVA), as well as other transparent analogs of metals, have provided tests of theories for dendritic growth, and have stimulated considerable theoretical progress. These experiments have clearly demonstrated that in certain parameter ranges the physics of the dendrite tip can be characterized by a steady value for the dendrite tip velocity, radius of curvature and shape. Away from the tip, the time-dependent dendrite exhibits a characteristic sidebranching as it propagates, which is not yet well understood. These experiments are performed by observing individual dendrites growing into an undercooled melt. The experiments are characterized by the dimensionless undercooling. Most experiments are performed at low undercooling.
Cast B2-phase iron-aluminum alloys with improved fluidity
Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.
2002-01-01
Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.
Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2014-01-01
The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.
Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels
NASA Astrophysics Data System (ADS)
Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.
2014-09-01
Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.
Characteristics of GTA fusion zones and heat affected zones in superalloy 713C
NASA Astrophysics Data System (ADS)
Lachowicz, M. B.; Dudziński, W.
2012-09-01
In this paper, metallographic examinations, characterising microstructural changes in the 713C superalloy subjected to remelting by GTA method, are presented. In the fusion zone, precipitation of M23C6 or M6C carbides based on chromium and molybdenum was observed. Eutectic mixtures of ( γ- gg')-M x C y type with highly developed morphology were also perceived. It was found that, in the matrix areas with non-homogeneous chemical composition, the eutectic reaction γ-γ' can occur at the temperature close to that of the precipitation of the M x C y carbides. The presence of silicon in the carbide phases can be conducive to lowering their solidification point by creating low-melting compound NbSi. Both in the fusion zone (FZ) and in the heat-affected zone (HAZ), the secondary precipitates of the Ni3(AlTi)- γ' phase, varying in size from 50 to 100 nm, were found. The lattice mismatch factor of the γ and γ' particles was +0.48 % to +0.71 %, which is characteristic of the coherent precipitates of the Ni3Al phase enriched with titanium. No dislocations or stacking faults were observed in the microstructure of the FZ. In the HAZ, some primary undissolved γ' precipitates, with a part of aluminium probably replaced with niobium were observed, which raised their melting point.
NASA Technical Reports Server (NTRS)
Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.
2014-01-01
This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.
1991-05-30
alloys and composites Solidification experiments with Succinonitrile-acetone system Experimerts with Salol I Directional Solidification of Mg-Li alloys ...Directional Solidification of Mg-Li Composites Microstructural Analysis and Modeling Combustion Synthesis Principles ( theory ) Nb-AI alloys made by...Combustion Synthesis Nb-AI - NbB composites made by Combustion Synthesis Directional Solidification of Nb-AI Alloys Directional Solidification of Nb- Al
The influence of gravity level during directional solidification of immiscible alloys
NASA Technical Reports Server (NTRS)
Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.
1992-01-01
During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.
Tranpsort phenomena in solidification processing of functionally graded materials
NASA Astrophysics Data System (ADS)
Gao, Juwen
A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.
Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy
NASA Astrophysics Data System (ADS)
Hai-kuo, Dong; Feng, Wang; Zhi, Wang; Jin-kun, Liu; Zheng, Liu; Ping-li, Mao
2018-03-01
The effects of different Sn additions (0, 0.5, 1.0, and 2.0 wt%) on hot tearing susceptibility (HTS) of AXJ530 alloy were studied using ‘T-shaped’ hot tearing mold at a pouring temperature of 700 °C and a mold temperature of 200 °C and paraffin permeation method. The dendrite coherency temperature was obtained by means of differential thermal analysis (DTA), and phases evolution, microstructures and morphology of the crack zone of AXJ530-xSn alloys were also investigated by using x-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The experimental results show that the HTS of AXJ530-xSn alloys increases with Sn additions up to 1.0 wt%, and then exhibits a slight decrease with further Sn additions up to 2.0 wt%. The Sn additions into AXJ530 alloy can first form CaMgSn phase with high melting point, reduce amount of α-Mg+(Mg,Al)2Ca eutectic phase, increase the dendrite coherency temperature, decrease the thickness of liquid film and the feeding ability at the end of solidification, resulting in the rise of the HTS. However, the improvement in hot tearing resistance for AXJ530-2.0Sn alloy can be attributed to the grain refinement, lower dendrite coherency temperature and formation of the Mg17Al12 phase with a low melting point to feed more readily at the end of solidification, which improves the state of dendrite and the feeding channel.
NASA Astrophysics Data System (ADS)
Sham, Kin-Ling
Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was refined. Austenite decomposition temperatures into different ferrite products were also suppressed to refine the effective ferrite grain size with increasing nickel. Finally, dislocation density and strain increased and a more preferred orientation behavior was observed. At five wt. pct nickel, a precipitate in the form of MnNi3 or FeNi3 was observed. Its presence in both inter and intragranular regions enhanced strength and toughness by limiting the ferrite grain size and precipitation strengthening.
Modelling of crater formation on anode surface by high-current vacuum arcs
NASA Astrophysics Data System (ADS)
Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura
2016-11-01
Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.
Hu, Lu; Zhang, Panjie; Shan, Wanyu; Wang, Xuan; Li, Songqing; Zhou, Wenfeng; Gao, Haixiang
2015-11-01
A novel dispersion liquid-liquid microextraction method based on the solidification of sedimentary ionic liquids (SSIL-DLLME), in which an in situ metathesis reaction forms an ionic liquid (IL) extraction phase, was developed to determine four pyrethroid insecticides (i.e., permethrin, cyhalothrin, fenpropathrin, and transfluthrin) in water followed by separation using high-performance liquid chromatography. In the developed method, in situ DLLME was used to enhance the extraction efficiency and yield. After centrifugation, the extraction solvent, tributyldodecylphosphonium hexafluorophosphate ([P44412][PF6]), was easily collected by solidification in the bottom of the tube. The effects of various experimental parameters, the quantity of tributyldodecylphosphonium bromide ([P44412]Br), the molar ratio of [P44412]Br to potassium hexafluorophosphate (KPF6), the ionic strength, the temperature of the sample solution, and the centrifugation time, were optimized using a Plackett-Burman design to identify the significant factors that affected the extraction efficiency. These significant factors were then optimized using a central composite design. Under the optimized conditions, the recoveries of the four pyrethroid insecticides at four spiked levels ranged from 87.1% to 101.7%, with relative standard deviations (RSDs) ranging from 0.1% to 5.5%. At concentration levels between 1 and 500 µg/L, good linearity was obtained, with coefficients of determination greater than 0.9995. The limits of detection (LODs) for the four pyrethroid insecticides were in the range of 0.71-1.54 µg/L. The developed method was then successfully used for the determination of pyrethroid insecticides in environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Interactions between solidification and compositional convection in mushy layers
NASA Technical Reports Server (NTRS)
Worster, M. Grae
1994-01-01
Mushy layers are ubiquitous during the solidification of alloys. They are regions of mixed phase wherein solid crystals are bathed in the melt from which they grew. The matrix of crystals forms a porous medium through which the melt can flow, driven either by external forces or by its own buoyancy in a gravitational field. Buoyancy-driven convection of the melt depends both on temperature gradients, which are necessary for solidification, and on compositional gradients, which are generated as certain components of the alloy are preferentially incorporated in the solid phase and the remaining components are expelled into the melt. In fully liquid regions, the combined action of temperature and concentration on the density of the liquid can cause various forms of double-diffusive convection. However, in the interior of mushy regions the temperature and concentration are thermodynamically coupled so only single-diffusive convection can occur. Typically, the effect of composition on the buoyancy of the melt is much greater than the effect of temperature, and thus convection in mushy layers in driven primarily by the computational gradients within them. The rising interstitial liquid is relatively dilute, having come from colder regions of the mushy layer, where the liquidus concentration is lower, and can dissolve the crystal matrix through which it flows. This is the fundamental process by which chimneys are formed. It is a nonlinear process that requires the convective velocities to be sufficiently large, so fully fledged chimneys (narrow channels) might be avoided by means that weaken the flow. Better still would be to prevent convection altogether, since even weak convection will cause lateral, compositional inhomogeneities in castings. This report outlines three studies that examine the onset of convection within mushy layers.
On the Role of Mantle Overturn during Magma Ocean Solidification
NASA Astrophysics Data System (ADS)
Boukaré, C. E.; Parmentier, E.; Parman, S. W.
2017-12-01
Solidification of potential global magma ocean(s) (MO) early in the history of terrestrial planets may play a key role in the evolution of planetary interiors by setting initial conditions for their long-term evolution. Constraining this initial structure of solid mantles is thus crucial but remains poorly understood. MO fractional crystallization has been proposed to generate gravitationally unstable Fe-Mg chemical stratification capable of driving solid-state mantle overturn. Fractional solidification and overturn hypothesis, while only an ideal limiting case, can explain important geochemical features of both the Moon and Mars. Current overturn models consider generally post-MO overturn where the cumulate pile remains immobile until the end of MO solidification. However, if the cumulate pile overturns during MO solidification, the general picture of early planet evolution might differ significantly from the static crystallization models. We show that the timing of mantle overturn can be characterized with a dimensionless number measuring the ratio of the MO solidification time and the purely compositional overturn timescale. Syn-solidification overturn occurs if this dimensionless parameter, Rc, exceeds a critical value. Rc is mostly affected by the competition between the MO solidification time and mantle viscosity. Overturn that occurs during solidification can result in smaller scales of mantle chemical heterogeneity that could persist for long times thus influencing the whole evolution of a planetary body. We will discuss the effects of compaction/percolation on mantle viscosity. If partially molten cumulate do not have time to compact during MO solidification, viscosity of cumulates would be significantly lower as the interstitcial melt fraction would be large. Both solid mantle remelting during syn-solidification overturn and porous convection of melt retained with the cumulates are expected to reduce the degree of fractional crystallization. Syn-solidification overturn of a sluggish mantle can thus be an alternative to solid-state post-MO solidification overturn.
NASA Astrophysics Data System (ADS)
Balout, Bahaa
Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.
Modelling directional solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.
1991-01-01
The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.
Improved Crystal Quality By Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Wang, Yaz-Hen; Wang, Jian-Bin
2003-01-01
Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long term goals have been: (1) To develop a complete understanding of all of the phenomena of detached solidification.; (2) To make it possible to achieve detached solidification reproducibly; (3) To increase crystallographic perfection through detached solidification. We have three major achievements to report here: (1) We obtained a new material balance solution for the Moving Meniscus Model of detached solidification. This solution greatly clarifies the physics as well as the roles of the parameters in the system; (2) We achieved detached solidification of InSb growing on earth in BN-coated ampoules; (3) We performed an extensive series of experiments on freezing water that showed how to form multiple gas bubbles or tubes on the ampoule wall. However, these did not propagate around the wall and lead to fully detached solidification unless the ampoule wall was extremely rough and non-wetted.
Modelling Directional Solidification
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun
1992-01-01
The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.
Moon, Deok Hyun; Wazne, Mahmoud; Yoon, In-Ho; Grubb, Dennis G
2008-11-30
A stabilization/solidification (S/S) process for arsenic (As) contaminated soils was evaluated using cement kiln dust (CKD). Laboratory-prepared slurries, made of either kaolinite or montmorillonite, and field soils spiked with either As(3+) or As(5+) were prepared and treated with CKD ranging from 10 to 25 wt%. Sodium arsenite and sodium arsenate at 0.1 wt% were used to simulate arsenite (As(3+)) and arsenate (As(5+)) source contamination in soils, respectively. The effectiveness of treatment was evaluated at curing periods of 1- and 7-days based on the toxicity characteristic leaching procedure (TCLP). As-CKD and As-clay-CKD slurries were also spiked at 10 wt% to evaluate As immobilization mechanism using X-ray powder diffraction (XRPD) analyses. Overall, the TCLP results showed that only the As(5+) concentrations in kaolinite amended with 25 wt% CKD after 1 day of curing were less than the TCLP regulatory limit of 5mg/L. Moreover, at 7 days of curing, all As(3+) and As(5+) concentrations obtained from kaolinite soils were less than the TCLP criteria. However, none of the CKD-amended montmorillonite samples satisfied the TCLP-As criteria at 7 days. Only field soil samples amended with 20 wt% CKD complied with the TCLP criteria within 1 day of curing, where the source contamination was As(5+). XRPD and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results showed that Ca-As-O and NaCaAsO(4).7.5H(2)O were the primary phases responsible for As(3+) and As(5+) immobilization in the soils, respectively.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Shah, R.
1996-01-01
Thermosolutal convection in the dendritic mushy zone occurs during directional solidification of hypoeutectic lead tin alloys in a positive thermal gradient, with the melt on the top and the solid below. This results in macrosegregation along the length of the solidified samples. The extent of macrosegregation increases with increasing primary dendrite spacings for constant mushy zone length. For constant primary spacings, the macrosegregation increases with decreasing mushy zone length. Presence of convection reduces the primary dendrite spacings. However, convection in the interdendritic melt has significantly more influence on the spacings as compared with that in the overlying melt, which is caused by the solutal buildup at the dendrite tips.
NASA Technical Reports Server (NTRS)
Macpherson, Glenn J.; Davis, Andrew M.
1993-01-01
A Type B Ca-, Al-rich 6-m-diam inclusion (CAI) found in the Vigarano C3V chondrite was inspected using optical and scanning electron microscopies and ion microprobe analyses. It was found that the primary constituents of the CAI inclusion are (in percent), melilite (52), fassaite, (20), anorthite (18), spinel (10), and trace Fe-Ni metal. It is noted that, while many of the properties of the inclusion indicate solidification from a melt droplet, the Al-26/Mg-26 isotopic systematics and some textural relationships are incompatible with single-stage closed system crystallization of a homogeneous molten droplet, indicating that the history of this inclusion must have been more complex than melt solidification alone. Moreover, there was unusually high content of Na in melilite, suggesting that the droplet did not form by melting of pristine high-temperature nebular condensates.
NASA Astrophysics Data System (ADS)
Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.
2015-06-01
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.
Tourret, D.; Karma, A.; Clarke, A. J.; ...
2015-06-11
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less
NASA Technical Reports Server (NTRS)
Matson, D. M.; Loser, W.; Rogers, J. R.; Flemings, M. C.
2001-01-01
Containerless processing using electromagnetic levitation (EML) is a powerful technique in the investigation of reactive molten metal systems. On ground, the power required to overcome the weight of the sample is sufficient to cause significant heating and induce substantial melt convection. In microgravity, the heating and positioning fields may be decoupled and the field strength may be varied to achieve the desired level of convection within the limits set by the geometry of the levitation coil and the sample size. From high-speed digital images of the double recalescence behavior of Fe-Cr-Ni alloys in ground-based testing and in reduced-gravity aboard the NASA KC-135 parabolic aircraft, we have shown that phase selection can be predicted based on a growth competition model. An important parameter in this model is the delay time between primary nucleation and subsequent nucleation of the stable solid within the liquid/metastable solid array. This delay time is a strong function of composition and a weak function of the undercooling of the melt below the metastable liquidus. From the results obtained during the first Microgravity Sciences Laboratory (MSL-1) mission, we also know that convection may significantly influence the delay time, especially at low undercoolings. Currently, it is unclear what mechanism controls the formation of a heterogeneous site that allows nucleation of the austenitic phase on the pre-existing ferrite skeleton. By examining the behavior of the delay time under different convective conditions, we hypothesize that we can differentiate between several of these mechanisms to gain an understanding of how to control microstructural. evolution. We will anchor these predictions by examining samples quenched at different times following primary recalescence in microgravity. A second important parameter in the growth competition model is the identification of the growth rate of the stable phase into the semi-solid array that formed during primary recalescence. Current dendritic growth theory is inadequate in predicting solidification behavior under these conditions as metallographic analyses show that stable phase growth proceeds along the interface between the metastable solid and residual liquid. Since growth velocity is independent of the initial undercooling relative to the metastable liquidus, we hypothesize that purely thermal effects can be separated from other important growth model parameters by careful selection of the liquid composition in a ternary system.
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; li, Yiran
2013-01-01
This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)–capric acid (CA), TD–lauric acid (LA), and TD–myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM), 24.53 °C/24.92 °C (FS TD–LA PCM), and 33.15 °C/30.72 °C (FS TD–MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties. PMID:28788358
Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; Li, Yiran
2013-10-22
This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)-capric acid (CA), TD-lauric acid (LA), and TD-myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD-CA PCM), 24.53 °C/24.92 °C (FS TD-LA PCM), and 33.15 °C/30.72 °C (FS TD-MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.
The processing of materials in outer space
NASA Technical Reports Server (NTRS)
Gelles, S. H.; Colling, E. W.
1977-01-01
Zero-gravity environment may lead to fabrication of new and improved materials. According to comprehensive study of application of this promising technology to superconducting and electrical contact materials, outer space processing could improve microstructure and homogeneity of many single and multicomponent systems formed from solidification of fluid phases. New structures that are impossible to form terrestrially may also be accessible in space environment.
Cellular monotectic model solidification
NASA Technical Reports Server (NTRS)
Kaukler, William F.
1987-01-01
Succinonitrile (sn) was purified to a superior level using a fractional recrystallization method. The melting point of the best twice recrystallized sn was not raised by following with double distillation. This was tested using differential scanning calorimetry. The peak shape on melting also proved that double distillation after double recrystallization did not improve the quality. Stability and phase diagrams for succinonitrile and glycerol are presented.
Workshop on the Physics and Chemistry of Magma Oceans from 1 Bar to 4 Mbar
NASA Technical Reports Server (NTRS)
Agee, Carl B. (Editor); Longhi, John (Editor)
1992-01-01
Evidence for the existence of magma oceans is discussed in great detail, and among the many new items introduced were high-pressure phase equilibrium experiments, calculations of depth of impact-produced melting, models incorporating crystal growth rates with degree of crystallinity and convection, and models of hard turbulent convection. It was agreed that before we can point to some present-day observable parameters and confidently establish the existence of magma oceans, we must learn much more about their phase equilibria and solidification dynamics.
Finite Element Models for Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the computation of thermal gradient, solidification rate, and velocity (G,R,V) coupled with the use of a solidification map that should be known a priori. The second approach relies completely on computer simulation. For this purpose a criterion for the prediction of morphology was proposed, which was combined with three alternative models for the prediction of microstructure; one based on solidification kinetics, the second on phase diagram, and the third on differential scanning calorimetry data. The last was found to be the simplest and the most versatile; it can be used with multicomponent alloys and rapid solidification without any additional difficulty. For the purpose of (limited) experimental validation, finite element models developed in this effort were applied to three different shapes made of stainless steel 304 material, designed expressly for this effort with an increasing level of complexity. These finite element models require large computation time, especially when applied to deposits with multiple adjacent beads and layers. This problem can be overcome, to some extent, by the use of fast, multi-core computers. Also, due to their numerical nature coupled with the fact that solid mechanics- based models are being used to represent the material behavior in liquid and vapor phases as well, the models have some inherent approximations that become more pronounced when dealing with multi-bead and multi-layer deposits.
Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari
2016-01-01
The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967
NASA Technical Reports Server (NTRS)
Mccay, M. H.
1988-01-01
The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.
Simulation Computation of 430 Ferritic Stainless Steel Solidification
NASA Astrophysics Data System (ADS)
Pang, Ruipeng; Li, Changrong; Wang, Fuming; Hu, Lifu
The solidification structure of 430 ferritic stainless steel has been calculated in the solidification process by using 3D-CAFE model under the condition of water cooling. The calculated results consistent with those obtained from experiment. Under watercooling condition, the solidification structure consists of chilled layer, columnar grain zone, transition zone and equiaxed grain zone.
Microstructure Characterization Of Lead-Free Solders Depending On Alloy Composition
NASA Astrophysics Data System (ADS)
Panchenko, Iuliana; Mueller, Maik; Wolter, Klaus-Juergen
2010-11-01
Fatigue and crack nucleation in solder joints is basically associated with changes in the microstructure. Therefore the microstructure evolution of SnAgCu solder joints during solidification and subsequent application is an important subject for reliability investigations and physics of failure analysis. The scope of this study is a systematic overview of the as-cast microstructures in small sized lead-free SnAgCu solder spheres after solidification. A total of 32 alloy compositions have been investigated with varying Ag content from 0 to 5 wt.% and varying Cu content from 0 to 1.2 wt.%. The solder spheres had a diameter of approx. 270 μm and were all manufactured under the similar conditions. Subsequent cross-sectioning was carried out in order to analyze the microstructure by optical and electron microscopy as well as Electron Backscatter Diffraction and Energy Dispersive X-ray Spectroscopy. The results allow a comprehensive overview of the dependence of the as-cast microstructure on the solder composition. It is shown that strong changes in microstructure can be caused by small changes in solder composition. In addition, a solidification phenomenon known as cyclic twinning has been found in the samples. Three different microstructures related to that phenomenon will be presented and detailed characterizations of these structures are given in this study. These microstructures differ in their appearance by solidification morphology, phase distribution as well as grain structure and can be described as follows: 1. large dentritic areas of different grain orientations which are characterized by approx. 60° twin boundaries; 2. areas of small β-Sn cells with approx. 60° twin relation and larger intermetallic precipitates; 3. large grains consisting of a β-Sn matrix with very fine intermetallic precipitates and high angle grain boundaries between adjacent grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Bismarck Luiz, E-mail: bismarck_luiz@yahoo.com.br; Reinhart, Guillaume; Nguyen-Thi, Henri
2015-09-15
Sn–Bi solders may be applied for electronic applications where low-temperature soldering is required, i.e., sensitive components, step soldering and soldering LEDs. In spite of their potential to cover such applications, the mechanical response of soldered joints of Sn–Bi alloys in some cases does not meet the strength requirements due to inappropriate resulting microstructures. Hence, careful examination and control of as-soldered microstructures become necessary with a view to pre-programming reliable final properties. The present study aims to investigate the effects of solidification thermal parameters (growth rate — V{sub L} and cooling rate — T-dot{sub L}) on the microstructure of the Sn–52more » wt.%Bi solder solidified under unsteady-state conditions. Samples were obtained by upward directional solidification (DS), followed by characterization through metallography and scanning electron microscopy (SEM). The microstructures are shown to be formed by Sn-rich dendrites decorated with Bi precipitates surrounded by a complex regular eutectic mixture, with alternated Bi-rich and Sn-rich phases. Experimental correlations of primary (λ{sub 1}), secondary (λ{sub 2}), tertiary (λ{sub 3}) dendritic and eutectic spacings (λ{sub coarse} and λ{sub fine}) with cooling rate and growth rate are established. Two ranges of lamellar eutectic sizes were determined, described by two experimental equations λ = 1.1 V{sub L}{sup −1/2} and λ = 0.67 V{sub L}{sup −1/2}. The onset of tertiary branches within the dendritic array along the Sn–52 wt.%Bi alloy DS casting is shown to occur for cooling rates lower than 1.5 °C/s. - Highlights: • The Sn–52 wt.%Bi solder was shown to have two eutectic sizes. • The fishbone eutectic is preferably located adjacent to the Bi-rich lamellar phases. • The onset of tertiary dendritic branches in Sn–Bi is associated with T-dot{sub L} < 1.5 °C/s. • Higher eutectic fraction and λ{sub 3} provoked a reverse increase in σ{sub u} and σ{sub y}.« less
Metallic glass formation at the interface of explosively welded Nb and stainless steel
NASA Astrophysics Data System (ADS)
Bataev, I. A.; Hokamoto, K.; Keno, H.; Bataev, A. A.; Balagansky, I. A.; Vinogradov, A. V.
2015-07-01
The interface between explosively welded niobium and stainless steel SUS 304 was studied using scanning electron microscopy, transmission electron microscopy and energy dispersive X-Ray spectroscopy. The wavy interface along which vortex zones were located was observed. The vortex zones formed due to the mixing of materials typically had amorphous structure. Inoue's criteria of glass formation were used to explain this result. The effect of the composition, cooling rate and pressure on the glass formation are discussed. The conditions of deformation, heating, and cooling as well as shockwaves propagation were numerically simulated. We show that the conditions of vortex zone formation resemble the conditions of rapid solidification processes. In contrast to the "classical" methods of rapid solidification of melt, the conditions of metastable phase formation during explosive welding are significantly complicated by the fluctuations of composition and pressure. Possible metastable structures formation at the interface of some common explosively joined materials is predicted.
NASA Technical Reports Server (NTRS)
Kaukler, William F.
1988-01-01
The purpose of this work was to resolve a scientific controversy in the understanding of how second phase particles become aligned during unidirectional growth of a monotectic alloy. A second aspect was to make the first systematic observations of the solidification behavior of a monotectic alloy during cellular growth in-situ. This research provides the first systematic transparent model study of cellular solidification. An interface stability diagram was developed for the planar to cellular transition of the succinonitrile glycerol (SNG) system. A method was developed utilizing Fourier Transform Infrared Spectroscopy which allows quantitative compositional analysis of directionally solidified SNG along the growth axis. To determine the influence of cellular growth front on alignment for directionally solidified monotectic alloys, the planar and cellular growth morphology was observed in-situ for SNG between 8 and 17 percent glycerol and for a range of over two orders of magnitude G/R.
Segregation effects during solidification in weightless melts
NASA Technical Reports Server (NTRS)
Li, C.
1973-01-01
Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.
Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium
NASA Astrophysics Data System (ADS)
Höche, Daniel; Shinn, Michelle; Müller, Sven; Schaaf, Peter
2009-04-01
Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.
Lens and dendrite formation during colloidal solidification
NASA Astrophysics Data System (ADS)
Worster, Grae; You, Jiaxue
2017-11-01
Colloidal particles in suspension are forced into a variety of morphologies when the suspending fluid medium is frozen: soil is compacted between ice lenses during frost heave; ice templating is a recent and growing technology to produce bio-inspired, micro-porous materials; cells and tissue can be damaged during cryosurgery; and metal-matrix composites with tailored microstructure can be fabricated by controlled casting. Various instabilities that affect the microscopic morphology are controlled by fluid flow through the compacted layer of particles that accumulates ahead of the solidification front. By analysing the flow in connection with equilibrium phase relationships, we develop a theoretical framework that identifies two different mechanisms for ice-lens formation, with and without a frozen fringe, identifies the external parameters that differentiates between them and the possibility of dendritic formations, and unifies a range of apparently disparate conclusions drawn from previous experimental studies. China Scholarship Council and the British Council.
Atomistic simulations of carbon diffusion and segregation in liquid silicon
NASA Astrophysics Data System (ADS)
Luo, Jinping; Alateeqi, Abdullah; Liu, Lijun; Sinno, Talid
2017-12-01
The diffusivity of carbon atoms in liquid silicon and their equilibrium distribution between the silicon melt and crystal phases are key, but unfortunately not precisely known parameters for the global models of silicon solidification processes. In this study, we apply a suite of molecular simulation tools, driven by multiple empirical potential models, to compute diffusion and segregation coefficients of carbon at the silicon melting temperature. We generally find good consistency across the potential model predictions, although some exceptions are identified and discussed. We also find good agreement with the range of available experimental measurements of segregation coefficients. However, the carbon diffusion coefficients we compute are significantly lower than the values typically assumed in continuum models of impurity distribution. Overall, we show that currently available empirical potential models may be useful, at least semi-quantitatively, for studying carbon (and possibly other impurity) transport in silicon solidification, especially if a multi-model approach is taken.
Long-Term High-Level Defense-Waste technology
NASA Astrophysics Data System (ADS)
1982-07-01
In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumurugoti, P.; Clark, B.M.; Edwards, D.J.
Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffractionmore » (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.« less
Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids
NASA Technical Reports Server (NTRS)
Wessels, V.; Sahu, K. K.; Gangopadhyay, A. K.; Huett, V. T.; Canepari, S.; Goldman, A. I.; Hyers, R. W.; Kramer, M. J.; Rogers, J. R.; Kelton, K. F.;
2008-01-01
Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.
MARMOT Phase-Field Model for the U-Si System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagesen, Larry Kenneth; Schwen, Daniel
2016-09-01
A phase-field model for the U-Si system has been implemented in MARMOT. The free energies for the phases relevant to accident-tolerant fuel applications (U 3Si 2, USi, U 3Si, and liquid) were implemented as free energy materials within MARMOT. A new three-phase phase-field model based on the concepts of the Kim-Kim-Suzuki two-phase model was developed and implemented in the MOOSE phase-field module. Key features of this model are that two-phase interfaces are stable with respect to formation of the third phase, and that arbitrary phase free energies can be used. The model was validated using a simplified three-phase system andmore » the U-Si system. In the U-Si system, the model correctly reproduced three-phase coexistence in a U 3Si 2-liquid-USi system at the eutectic temperature, solidification of a three-phase mixture below the eutectic temperature, and complete melting of a three-phase mixture above the eutectic temperature.« less
Partially melted zone in aluminum welds
NASA Astrophysics Data System (ADS)
Huang, Chen-Che
The partially melted zone (PMZ) is a region immediately outside the weld metal where grain boundary (GB) liquation can occur and cause intergranular cracking. Aluminum alloys are known to be susceptible to liquation and liquation cracking. The PMZ of alloy 2219 (essentially Al-6.3Cu) was studied. Liquation is initiated eutectically. Solidification of the GB liquid was directional---upward and toward the weld as a result of the temperature gradients across the PMZ. The liquated material solidifies with severe segregation into a low-strength, low-ductility structure consisting of a solute-depleted ductile phase and a solute-rich brittle eutectic. In tensile testing the maximum load and displacement before failure were both far below those of the base metal. The GB eutectic fractured while the adjacent Cu-depleted a deformed readily under tension. The solidification mode of the grain boundary liquid was mostly planar. However, cellular solidification was also observed near the bottom of partial-penetration welds, where temperature gradients were lowest. The liquation mechanisms in wrought multicomponent aluminum alloys during welding were also studied. Three mechanisms were identified. They cover most, if not all, wrought aluminum alloys. Liquation cracking in the PMZ was investigated in full-penetration aluminum welds. Liquation cracking occurs because the solidifying PMZ is pulled by a solidifying and thus contracting weld metal that is stronger than the PMZ. Liquation cracking can occur if there is significant liquation in the PMZ, if there is no solidification cracking in the adjacent weld metal, and if the PMZ becomes lower in solid fraction (and hence strength) during its terminal solidification than the solidifying weld metal. Liquation cracking in the PMZ was also investigated in partial-penetration aluminum welds. The papillary (nipple) type penetration common in welding with spray transfer of the filler wire actually oscillates along the weld and promotes cracking regardless of the filler metal used. The fast-solidifying weld metal immediately behind the penetration tip contracts and pulls the PMZ near the tip and, regardless of the weld-metal composition, cracking can occur if PMZ liquation is significant.
NASA Astrophysics Data System (ADS)
Hutter, Jeffrey Lee
When a material freezes, the form it takes depends on the solidification conditions. For instance, as the undercooling is increased, one typically sees solidification into less-ordered forms. The resulting growth modes appear to be generic, with qualitative similarities between systems whose microscopic details are quite dissimilar. I have used both optical and atomic-force microscopy to study the transitions between different growth morphologies during the solidification of a particular liquid crystal, 10 OCB. We have observed six different solidification modes, each with a distinct micro and meso structure. The front-velocity-vs.-undercooling curve has a discontinuity in its slope and, in some cases, in the curve itself at mode transitions, suggesting that these transitions are analogous to phase transitions. Such transitions have been seen in other systems, but no general rule has been found that can predict which morphology will be selected. We show that, contrary to intuition and widespread speculation, the fastest-growing mode is not always the one selected. One of the growth modes exhibited by 10 OCB is known as banded spherulitic growth. Spherulites have been seen in a wide variety of materials including minerals, pure elements, polymers, biomolecules, and metal alloys. However, despite a century of study, there is no generally accepted theory of spherulitic growth. In particular, the cause of the concentric banding seen in many spherulites remains a mystery. Our studies of banded spherulites in 10 OCB using both optical and atomic-force microscopy show that the bands are associated with a density modulation and thus are not merely the result of a birefringent effect, as is commonly believed. As the atomic-force microscope (AFM) is a relatively new tool, some time was spent studying its capabilities. We found that because the AFM resolution is largely determined by attractive forces between the tip of the probe and the sample, resolution can be improved by imaging in a suitable liquid medium. We also developed a simple method for calibrating AFM cantilevers--a crucial step in using the AFM to obtain quantitative force data. This work is presented in an appendix.
The structure of melting mushy zones, with implications for Earth's inner core (Invited)
NASA Astrophysics Data System (ADS)
Bergman, M. I.; Huguet, L.; Alboussiere, T.
2013-12-01
Seismologists have inferred hemispherical differences in the isotropic wavespeed, the elastic anisotropy, the attenuation, and the attenuation anisotropy of Earth's inner core. One hypothesis for these hemispherical differences involves an east-west translation of the inner core, with enhanced solidification on one side and melting on the other. Another hypothesis is that long term mantle control over outer core convection can lead to hemispherical variations in solidification that could even result in melting in some regions of the inner core boundary. It has also been hypothesized that the inner core is growing dendritically, resulting in an inner core that has the structure of a mushy zone (albeit one with a high solid fraction). It would therefore be helpful to understand how the structure of a melting mushy zone might look in comparison with one that is solidifying, in an effort to help interpret the seismic inferences. We have carried out experiments on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone. The experiments run in a centrifuge, in order to reach a more realistic ratio of convective velocity to phase change rate, expected to be very large at the boundary of the inner core. Hypergravity thus increases the experimental solid fraction of the mush. So far the maximum gravity we have achieved is 200 g. A Peltier cell provides cooling at one end of the cell, and after the mushy zone has grown we turn on a heater at the other end. Probes monitor the temperature along the height of the cell. As ammonium chloride in the mushy zone melts it produces more dense fluid, which results in convection in the mushy zone, a greater ammonium chloride concentration deeper in the mushy zone, and hence enhanced solidification there. This thus changes the solid fraction profile from that during solidification, which may be observable in the lab experiments using ultrasonic transducers and post-mortem under a microscope. The melting may also change the propagation of chimney convection. It remains unclear whether these changes will be observable seismically.
Solidification/Stabilization Resource Guide
This Solidification/Stabilization Resource Guide is intended to inform site cleanup managers of recently-published materials such as field reports and guidance documents that address issues relevant to solidification/stabilization technologies.
The Solidification of Multicomponent Alloys
Boettinger, William J.
2017-01-01
Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348
X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design
Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; ...
2015-01-30
X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. In this study, this x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.
Parabolic aircraft solidification experiments
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan
1996-01-01
A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.